
Fundamental solutions for the wave operator on static Lorentzian

manifolds with timelike boundary
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Abstract

We consider the wave operator on static, Lorentzian manifolds with timelike boundary and we
discuss the existence of advanced and retarded fundamental solutions in terms of boundary conditions.
By means of spectral calculus we prove that answering this question is equivalent to studying the self-
adjoint extensions of an associated elliptic operator on a Riemannian manifold with boundary (M, g).
The latter is diffeomorphic to any, constant time hypersurface of the underlying background. In turn,
assuming that (M, g) is of bounded geometry, this problem can be tackled within the framework of
boundary triples. These consist of the assignment of two surjective, trace operators from the domain
of the adjoint of the elliptic operator onto an auxiliary Hilbert space h, which is the third datum of
the triple. Self-adjoint extensions of the underlying elliptic operator are in one-to-one correspondence
with self-adjoint operators Θ on h. On the one hand, we show that, for a natural choice of boundary
triple, each Θ can be interpreted as the assignment of a boundary condition for the original wave
operator. On the other hand, we prove that, for each such Θ, there exists a unique advanced and
retarded fundamental solution. In addition, we prove that these share the same structural property
of the counterparts associated to the wave operator on a globally hyperbolic spacetime.

1 Introduction

The existence and the characterization of the fundamental solutions of the D’Alembert wave operator
� on a Lorentzian manifold (N, g) is a classical problem which has been thoroughly studied in many
contexts. Particularly if the underlying background is globally hyperbolic, a complete answer is known,
cf. [BGP07], showing that there exist two unique distributions G± ∈ D′(N×N), called advanced (−) and
retarded (+) fundamental solutions whose associated Green operators G± : D(N) → C∞(N) are such
that � ◦ G± = G± ◦ � = id|D(N) and, for any f ∈ D(N), supp(G±(f)) ⊆ J∓(supp(f)), J± being the
causal future (+) and past (−).
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Completely different is the situation if (N, g) is a Lorentzian manifold with timelike boundary (∂N, ι∗Ng),
where ιN : ∂N ↪→ N and where (∂N, ι∗Ng) is a Lorentzian submanifold. In this case a complete, cohesive
analysis of the existence of fundamental solutions is not available. Yet, this class of backgrounds contains
several notable examples, such as anti-de Sitter (AdS) or asymptotically AdS spacetimes which play a
key rôle in several models that have recently attracted a lot of attention for the study of the properties
of the wave or of the Klein-Gordon equation, see for example [Bac12, Hol12, Wro17, Vas12].

In addition, fundamental solutions play a pivotal rôle in the covariant quantization of free field theories,
most notably in the construction of the ∗-algebra of observables. As a matter of facts, focusing on
Bosonic fields, the canonical commutation relations are implemented in terms of a ∗-ideal which, in turn,
is built out of a symplectic form defined out of the fundamental solutions, so to encode the information
of dynamics and causality, see e.g. [BDH13, BD15]. From this viewpoint, the question that we shall
answer in this paper has a direct impact in our understanding of several physical systems, as existence
of fundamental solutions guarantees on the one hand that any underlying quantum field theory can be
constructed following the standard rationale. On the other hand, if these solutions turn out not to be
unique, it will entail that each of the possible choices corresponds to a different physical quantum system,
as it has been already observed in different contexts, e.g. [BDS18, DF17, DNP16].

More precisely, our last statement stems from the observation that, in comparison to the same class of
linear hyperbolic, partial differential equations on globally hyperbolic backgrounds, the main structural
difference in our setting lies in the fact that initial data are not sufficient to identify a unique solution,
which can be obtained only if one supplements with a suitable boundary condition. From the perspective
of fundamental solutions, this statement amounts to saying that one cannot expect unique, advanced
and retarded Green’s operators, rather their existence should be tied to the specific boundary conditions
assigned on ∂N . The goal of this paper is to start a full-fledged analysis of this problem on a large class
of manifolds with non-empty boundary. Observe that, although we restrict the attention to the scalar
wave equation, a similar analysis could be done for vector valued partial differential equations. In the
special case of the Dirac field a recent work, connected to this problem, has appeared in [GM18].

We focus on globally hyperbolic, oriented and time-oriented Lorentzian manifolds (N,h) with timelike
boundary [AFS18], such that there exists, in addition, an isometry between (N,h) and a standard static
spacetime M ×β R. This is a warped product between R and a Riemannian manifold (M, g) with a
non-empty boundary (∂M, ι∗Mg) where ιM : ∂M ↪→ M . Thereon, we consider the D’Alembert wave

operator �̃ as well as the auxiliary problem � = −∂2
t + A, t being the coordinate along R, while A is a

second-order, elliptic, partial differential operator built out of g and of β. In this framework the advanced
and retarded fundamental fundamental solutions are defined as G± ∈ D′(N̊ × N̊), N̊

.
= N \ ∂N , whose

associated Green operators G± : D(N̊)→ D′(N̊) satisfy � ◦ G± = G± ◦� = id|D(N̊), while also enjoying

the support property supp(G±(f)) ⊆ J±(supp(f)), for all f ∈ D(N̊). On account of the underlying
metric being static, as a first step one can reduce the problem to an auxiliary one obtained via the ansatz
G+ = θ(t − t′)G and G− = −θ(t′ − t)G, where θ is the Heaviside distribution while G ∈ D′(N̊ × N̊) is a
solution of {

(�⊗ I)G = (I⊗�)G = 0
G|t=t′ = 0, ∂tG|t=t′ = −∂t′G|t=t′ = δdiag(M̊)

,

where |t=t′ indicates the pull-back of a distribution on N̊ × N̊ to ({t} × M̊) × ({t} × M̊) while δdiag(M̊)

is the Dirac delta distribution on the diagonal of M̊ × M̊ . As it stands, the above initial value problem
is incomplete unless one also assigns a boundary condition on ∂N which allows for the identification
of a unique solution. In order to understand which class of such conditions is admissible we focus our
attention on A, which, being the metric static, is a partial differential operator acting on scalar functions
over M . Our strategy proceeds in two steps. In the first we start by reading A as a symmetric operator
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on H ≡ L2(M ; dµg), dµg being the metric-induced volume form and we show that, for every self-adjoint
extension of A, by means of spectral calculus, it is possible to construct G, solution of the above system
of partial differential equations.

In the second step instead we start by investigating which are the possible self-adjoint extensions of
A and how to characterize them explicitly in terms of boundary conditions. To this avail we require an
additional assumption, namely (M, g) ought to be of bounded geometry, a widely used structure which
has been recently studied in the context of manifolds with boundary in [AGN16, GS13, Sch01]. On the
one hand, we observe that our assumptions include several interesting scenarios such as anti-de Sitter
spacetime. On the other hand, Riemannian manifolds with boundary and of bounded geometry turn out
to be the natural framework to construct Sobolev spaces and to prove thereon a generalization of the
standard Lions-Magenes trace theorems on Rn. This last feature is of special interest to us since it allows
us to classify and to characterize the self-adjoint extensions using the framework of boundary triples,
[Gru68] and [HSF12, Ch. 6].

In short and adapting it to the case at hand, the latter includes and even supersedes Von Neumann
theory of deficiency indexes – see [Pos18] for an equivalent approach based on resolvents. It associates to
the symmetric operator A an auxiliary Hilbert space, in our case chosen as h ≡ L2(∂M, dµι∗Mg), together
with two linear, surjective maps γi : D(A∗)→ h, i = 0, 1 where A∗ is the adjoint of A, so that a Green’s
formula holds true:

(A∗f |f ′)H − (f |A∗f ′)H = (γ1f |γ0f
′)h − (γ0f |γ1f

′)h ∀f, f ′ ∈ D(A∗).

In the case we are interested in, it turns out that γ0, γ1 can be built working at the level of Sobolev
spaces over M as combination between the above mentioned trace theorems and the normal derivative to
∂M . As a by-product, one can apply a standard result from the theory of boundary triples according to
which there is a one-to-one correspondence between the self-adjoint operators Θ on h and the self-adjoint
extensions of A, denoted by AΘ.

By using these results and the spectral calculus for AΘ we are able to construct explicitly, for each
choice of Θ, fundamental solutions G±Θ associated to �, proving in addition with an energy estimate that
they enjoy the sought support properties. In addition, we show that, for every f ∈ D(N), it holds that
γ1(G±Θ(f)) = Θγ0(G±Θ(f)), where G±Θ are the advanced and retarded Green’s operators associated with
G±Θ. This justifies our statement according to which fixing Θ, and thus a pair of fundamental solutions G±Θ,
is subordinated to a choice of boundary condition. Furthermore, under mild assumptions on the warping
factor β, so to ensure that the operator A is uniformly elliptic, we are able to prove two additional results
which strongly characterize the advanced and retarded Green’s operators. On the one hand, we show
that G±Θ[D(N̊)] ⊂ C∞(N), on the other hand we are able to enlarge the domain of GΘ

.
= G−Θ − G+

Θ so to
construct an exact sequence of linear maps, which characterize completely, for every admissible Θ, the
space of associated smooth solutions of the equation of motion ruled by �.

Finally we observe that, although the class of boundary conditions that we define in terms of the self-
adjoint extensions of A is rather large including for example those of Robin type, it does not encompass
some cases which are often discussed in the literature. Most notably it might be desirable to allow an
explicit time-dependence of the boundary condition, as it happens for example in those of Wentzell type,
which have remarkable applications in several models, see [Fel57, Ue73, Z18] and [GGG03] in particular.
The last part of this work is devoted to an analysis of such scenario. We show that it is possible to
extend the range of applicability of the framework of boundary triples proving in particular the existence
of fundamental solutions for a larger class of boundary conditions, including those of Wentzell type.

The structure of the paper is the following: In Section 1.1 we introduce the basic geometric data
of this paper. In particular, we emphasize the notion of a static Lorentzian spacetime with timelike
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boundary and we outline the notion of manifold with boundary and of bounded geometry, reviewing
its main properties. In Section 1.2 we introduce Sobolev spaces on Riemannian manifolds of bounded
geometry and we put a particular emphasis on the trace theorem as proven in [GS13]. In Section 2 we
discuss the framework of boundary triples, first from an abstract point of view and then we specialize it to
the case of a second-order, elliptic partial differential operators, making a direct connection to the theory
of Sobolev spaces outlined in the previous section. In particular, we use boundary triples to characterize
the self-adjoint extensions of symmetric operators with equal deficiency indexes. In Section 3 we obtain
the main results of this work. Here we start from the D’Alembert wave operator on a static Lorentzian
spacetime and we rewrite it in terms of an equivalent operator of the form � = −∂2

t + A, where A is
a second-order, elliptic partial differential operator, symmetric on L2(M ; dµg). As a first step, by using
spectral analysis, we prove the existence of advanced and retarded Green’s operators for any choice of
self-adjoint extension of A. Via a suitable boundary triple, these are in turn put into a one-to-one relation
with the choice of a self-adjoint operator on L2(∂M ; dµi∗Mg). Subsequently, we prove several structural
properties of the fundamental solutions, ranging from the support to the characterization of the relation
between the choice of boundary condition for � and the self-adjoint extension of A. Furthermore, under
additional mild conditions on the metric, we show that all smooth solutions to the wave equation can
be written in terms of the advanced and retarded Green’s operators which thus turn out to encompass
as much information on the underlying operator ruling the dynamics as their natural counterpart on
globally hyperbolic spacetimes. At last, in Section 3.1, we extend the previous framework to account also
for a larger class of time-dependent boundary condition, including in particular those of Wentzell type.

1.1 Geometric data

The goal of this section is to introduce both the geometric data and the key functional spaces at the
heart of this work, fixing in particular the notations and conventions. With respect to the structure
of Lorentzian manifolds with empty boundary we refer mainly to [BEE96], while, for the case with a
non-empty, timelike boundary, recent analyses are available in [CGS09, Sol06]. It is noteworthy that our
framework can be read as a special instance of that considered and studied in [AFS18].

Following the standard definition, see for example [Lee00, Ch. 1], in this paper both the symbols
M and N refer to a smooth, second-countable, connected, manifold of dimension m ≥ 1 (resp. m + 1),
with smooth boundary ∂M (resp. ∂N). A point p ∈ M (resp. N) such that there exists an open
neighbourhood U containing p, diffeomorphic to an open subset of Rm (resp. Rm+1), is called an interior
point and the collection of these points is indicated with Int(M) ≡ M̊ (resp. Int(N) ≡ N̊). As a
consequence ∂M (resp. ∂N), if non empty, can be read as a manifold on its own and ∂M = M \M̊ (resp.
∂N = N \ N̊).

Definition 1: We say that N is a Lorentzian manifold with timelike boundary if it is oriented,
time oriented and endowed with a smooth Lorentzian metric h such that also ι∗Nh is a Lorentzian metric,
ιN being the embedding of ∂N in N .

In the class of Lorentzian manifolds with timelike boundary (N,h), we will be interested in those
which are standard static, that is for which there exists a nowhere vanishing, irrotational, timelike Killing
field χ ∈ Γ(TN), cf. [BEE96, Lemma 3.78] and [San06], and (N,h) is isometric to the warped product
M ×β R, with line element

h = −βdt2 + g , (1)

where t : M×βR→ R is the projection along the second component, playing thus the role of time variable,
β ∈ C∞(M ; (0,∞)) and g identifies a time-independent Riemannian metric on each submanifold {t}×M .
As a consequence
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Corollary 2: Let (N,h) be a standard static, Lorentzian manifold with timelike boundary. Then also
∂N is a standard static Lorentzian manifold.

Proof. Per hypothesis (N,h) is isometric to M ×β R with line element (1) where ∂t plays the role of the
complete, irrotational, timelike, nowhere vanishing Killing field. Hence ∂N is isometric to ∂M ×β R and,

calling ιM : ∂M → M the embedding map, (1) reduces to −β̃dt2 + ι∗M (g), β̃
.
= β|∂M . As a consequence

∂N has the sought property.

Observe that, with these data, M comes equipped with an induced orientation and with a smooth
Riemannian metric g, so that (∂M, g̃) is also an oriented Riemannian manifold if endowed with the
induced orientation and metric, that is g̃

.
= ι∗M (g), ιM being the embedding of ∂M in M . In the

class of Riemannian manifolds with non-empty boundary, we are interested in a particular subclass,
distinguished by its geometric properties in a neighbourhood of ∂M . The following definitions were first
given in [AGN16, GN17], barring the next one, which is standard, cf. [Eich91]:

Definition 3: A Riemannian manifold (M, g) with ∂M = ∅ is called of bounded geometry if the
injectivity radius rinj(M) > 0 and if TM is of totally bounded curvature, that is ‖∇kR‖L∞(M) < ∞ for
all k ∈ N ∪ {0}, R being the scalar curvature and ∇ the Levi-Civita connection associated with g.

To avoid the problem that rinj(M) vanishes whenever ∂M 6= ∅, one must first consider the following
generalization:

Definition 4: Let (M, g) be a Riemannian manifold of bounded geometry and let (Y, ιY ) be a codimen-
sion k closed, embedded, smooth submanifold with an inward pointing, unit normal vector field νY . We
say that (Y, ι∗Y g) is a bounded geometry submanifold if the following holds:

1. the second fundamental form KY of Y in M together with all its covariant derivatives along Y is
bounded,

2. there exists εY > 0 such that the map ϕνY : Y × (−εY , εY ) → M defined as (x, z) 7→ ϕνY (x, z)
.
=

expx(zνY,x) is injective, where expx is the exponential map of M at x.

We observe that, as proven in [AGN16], Definition 4 entails that (Y, ι∗Y g) is automatically a Riemannian
manifold of bounded geometry. We introduce the class of Riemannian manifolds we will be working with
in this paper:

Definition 5: Let (M, g) be a Riemmannian manifold with non-empty boundary ∂M . We say that

(M, g) has bounded geometry if there exists a Riemannian manifold of bounded geometry (M̂, ĝ) of
the same dimension of M such that

1. M ⊂ M̂ and g = ĝ|M ,

2. (∂M, ι∗ĝ) is a bounded geometry submanifold of M̂ , where ι : ∂M → M̂ is the embedding map1.

Remark 6: Definition 5 is equivalent to the original one of manifolds with boundary and of bounded
geometry given by Schick in [Sch01]. We observe that, while the definition given in this last cited paper

does not require any extrinsic data such as in particular M̂ , all results obtained are independent from
the choice of the latter.

Since, from now on, we will be working only with Riemannian manifolds with non-empty boundary
and of bounded geometry, we will drop the subscript Y as in Definition 4, since we will be always referring

1Recall that, if we consider the restriction map res : M̂ →M , then res ◦ ι = ι. Hence ι∗ĝ = ι∗g.
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to ∂M as the embedded submanifold. In addition we call geodesic collar (of ∂M) the set ∂M × [0, ε) such
that the map ϕν is a diffeomorphism onto its image and we define

GCε(M)
.
= ϕν [∂M × [0, ε)]. (2)

Remark 7: We observe that all Riemannian manifolds with compact boundary meet the requirements
of Definition 5. At the same time one can also consider non-compact boundaries such as for example Hn,
the collection of all points (x1, ..., xn) ∈ R+ × Rn−1 endowed with the Euclidean metric of Rn.

As a next step, if (M, g) is a Riemannian manifold of bounded geometry, we can introduce a distin-
guished set of coordinates which are at the heart of the definition of Sobolev spaces and of the associated
trace theorem proven in [GS13]. Here, we will recall only the basic structures and facts, leaving all details
and proofs to [AGN16, Sec. 4.2] and to [GS13, Sec. 4.1]. Note that the following construction was used
in [Sch01] though with the name of normal collar coordinates.

Let (M, g) be a Riemannian manifold with boundary and of bounded geometry as per Definition 5.
For any p ∈ ∂M , we can choose any orthonormal basis of Tp∂M to identify it with Rm−1, m = dimM .
From now on this identification will be left implicit. Since the injectivity radius of ∂M is finite, for all
0 < r < rinj(∂M), the exponential map exp∂Mp : Bm−1(0) → Br(p) is a diffeomorphism. Here Bm−1(0)
stands for the ball of radius r in Rm−1 centered at 0. By considering in addition the map ϕν for ∂M (see

Definition 4 and (2)), whenever 0 < r < min
{
rinj(∂M)

2 ,
rinj(M)

4 , ε2

}
, we identify the following:

{
κp : Bm−1(0)× [0, r)→M, κp(x, z)

.
= ϕν(exp∂Mp (x), z), p ∈ ∂M

κp : Bmr (0)→M, κp(v)
.
= expMp (v), p ∈ M̊ , (3)

where Bmr (0) indicates the ball of radius r centered at the origin of TpM , here implicitly identified with
Rm. Let Up(r) stand for the image in M of the map κp, then we can define the following:

Definition 8: Let (M, g) be a Riemannian manifold with boundary and of bounded geometry and let 0 <

r < min
{
rinj(∂M)

2 ,
rinj(M)

4 , ε2

}
. We call Fermi (or normal collar) chart the map κp : Bm−1(0)×[0, r)→M

for p ∈ ∂M . The ensuing coordinates (xi, z) : Up(r) → Rm−1 × [0,∞), i = 1, ...,m − 1 are called Fermi
(or normal collar) coordinates.

If the point p does not lie on the boundary of M , one can adapt straightforwardly this last definition
to obtain the standard normal geodesic coordinates. Since we will not make use of them, we omit giving
an explicit expression.

To conclude the section, we study the interplay between Riemannian manifolds with boundary and
of bounded geometry and standard static, Lorentzian manifolds with a timelike boundary.

Proposition 9: Let (M, g) be a Riemannian manifold with boundary and of bounded geometry and let

(M̂, ĝ) be a Riemannian manifold of bounded geometry such that M ⊂ M̂ and g = ĝ|M . Then

1. Every β ∈ C∞(M ; (0,∞)) identifies an isometry class [(N,h)] of standard static, Lorentzian mani-
folds with timelike boundary,

2. If in addition there exists β̂ ∈ C∞(M̂ ; (0,∞)) such that β̂|M = β and if ĝ

β̂
identifies a complete

Riemannian metric on M̂ , then each representative (N,h) of [(N,h)] is a submanifold of a standard

static, globally hyperbolic spacetime (N̂ , ĥ).

A manifold (N,h) satisfying condition 1. of Proposition 9 will be called a static Lorentzian spacetime,
with timelike boundary.
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Proof. Consider M as per hypothesis and construct the warped product M ×β R endowed with the line
element ds2 = −βdt2 + g where t : M ×β R → R is the projection along the second component. Every
manifold (N,h) which is isometric to M ×β R with the given metric is standard static, hence proving
the first point. To prove the second statement, it suffices to observe that M ×β R can be seen as being

isometrically embedded in the standard static spacetime M̂ ×β̂ R with line element ds2 = −β̂dt2 + ĝ.

This manifold is globally hyperbolic on account of [BEE96, Theorem 3.66].

Remark 10: Observe that condition 2 in the last proposition is a constraint only on the admissible
functions β̂. As a matter of fact, every Riemannian manifold of bounded geometry is metric complete
[Eich91] and thus ĝ

β̂
is also complete if and only if β̂ behaves at most quadratically at infinity, cf. [San06,

Rem. 2.2].

1.2 Sobolev spaces on manifolds of bounded geometry

We shall introduce the functional spaces that we will be using in the next sections, as well as their main
properties. We will be using most of the results from [GS13]. In the following we consider (M̂, ĝ), a

Riemannian manifold of bounded geometry such that ∂M̂ = ∅. The case with non empty boundary has
been discussed mainly in [AGN16]. With D(M̂) we will indicate the space of smooth, compactly supported

functions on M̂ endowed with the standard locally convex topology, while with Lp(M̂)
.
= Lp(M̂, dµĝ),

p ∈ N we consider the completion of D(M̂) with respect to the Lp-norm constructed out of the metric

induced volume form dµĝ. With E(M̂) we will indicate the space of smooth functions on M̂ endowed

with the standard locally convex topology. With D′(M̂) we refer to the space of distributions, whose test

functions are the elements of D(M̂).

Remark 11: The same definitions apply, mutatis mutandis, to the case of (M, g) being a Riemannian
manifold with boundary and of bounded geometry, though in this case D(M) is replaced in the prece-
ding and in the forthcoming discussion by Cme(M), that is the equivalence classes of complex valued
measurable functions over M . Observe that, in view of Definition 5, we can replace D(M) also with

D(M̂)/{f ∈ D(M̂)| f |M = 0}, which is isomorphic to the former.

In order to introduce Sobolev spaces we need suitable local charts. On the one hand, since every
Riemannian manifold (M̂, ĝ) of bounded geometry is also complete, we can define the standard geodesic
normal coordinates, whose associated atlas is indicated with

(
Ugeo
β , κgeo

β

)
β∈J , J being a suitable index

set. If we let {hgeo
β }β∈J be a partition of unity subordinated to this cover we have identified the triple

Tgeo .
=
(
Ugeo
β , κgeo

β , hβ
)
β∈J , which we will refer to as geodesic trivialization of M̂ .

On the other hand we say that a cover {Uα}α∈I of M̂ , I being an index set, is uniformly locally finite
if there exists n ∈ N such that each element of the cover is intersected by at most n other sets of the
cover. In addition, we consider

1. on each Uα, α ∈ I, local coordinates, that is a diffeomorphism κα : Vα → Uα, where Vα is an open
subset of Rm, m = dimM ,

2. a partition of unity {hα}α∈I subordinated to the cover {Uα}α∈I .

The triple T
.
= (Uα, κα, hα)α∈I is called a uniformly locally finite trivialization of M̂ . In the collection of

these trivializations, we select a distinguished subclass by the relation with geodesic coordinates:

Definition 12: Let (M̂, ĝ) be a manifold of bounded geometry of dimension m. We call T a uniformly

locally finite trivialization of M̂ admissible if the following two conditions are met:
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1. The atlas (Uα, kα)α∈I built out of T is compatible with a geodesic atlas (Ugeo
β , kgeo

β )β∈J of M̂ , that
is, for all k ∈ N ∪ {0}, there exists Ck > 0 such that, for all α ∈ I, for all β ∈ J and for all
multi-indices a ∈ (N ∪ {0})m with |a| ≤ k,∣∣∣Da(κ−1

α ◦ κ
geo
β )

∣∣∣ ≤ Ck and
∣∣∣Da((κgeo

β )−1 ◦ κα)
∣∣∣ ≤ Ck,

2. for all k ∈ N, there exists ck > 0 such that, for all α ∈ I and for all multi-indices a ∈ (N ∪ {0})m
with |a| ≤ k, it holds

|Da(hα ◦ κα)| ≤ ck.

From now on we shall only consider admissible, uniformly locally finite trivializations.

Definition 13: Let (M̂, ĝ) be a Riemannian manifold of bounded geometry of dimension m and let T be
an admissible, uniformly locally finite trivialization, and let Tgeo be an associated geodesic trivialization.
Then, for every s ∈ R and for every integer 1 < p <∞, we call Hs,T

p (M̂) the collection of all distributions

u ∈ D′(M̂) such that

‖u‖Hs,Tp
.
=

[∑
α∈I
‖(hαu) ◦ κα‖pHsp(Rm)

] 1
p

<∞,

where ‖ · ‖Hsp(Rm) indicates the standard Sobolev norm on Hsp(Rm). Equivalently we define Hs,Tgeo

p (M̂) by
replacing T with Tgeo.

The following proposition summarizes the results of [GS13, Th. 3.9] and of Section 7.4.5 in [Tri92],
see also [Heb96]:

Proposition 14: Let (M̂, ĝ) be a Riemannian manifold of bounded geometry and let T,Tgeo be respecti-

vely a uniformly locally finite and a geodesic trivialization of M̂ . Let k ∈ N∪ {0} and let W k
p (M̂) be the

completion of the subspace Ekp(M̂)
.
= {f ∈ E(M̂)| f,∇f, . . . ,∇kf ∈ Lp(M̂))} with respect to the norm

‖f‖
Wk
p (M̂)

.
=

( k∑
i=0

‖∇if‖p
Lp(M̂)

) 1
p

,

∇ being the covariant derivative built out of the metric ĝ. Then it holds that, for all s ∈ R and for all
integer p such that 1 < p <∞, neither Hs,T

p (M̂) nor Hs,Tgeo

p (M̂) depend on the choice of the trivialization.

Hence Hs
p(M̂) ≡ Hs,T

p (M̂) = Hs,Tgeo

p (M̂). In addition, if s ∈ N ∪ {0}, it holds that W s
p (M̂) = Hs

p(M̂).

Remark 15: In the preceding discussion we have considered only manifolds without boundary. Nonet-
heless it is possible to extend or to adapt all definitions also to any Riemannian manifold (M, g) with
boundary and of bounded geometry using Definition 13. A detailed discussion has been given especially in
[AGN16, Sec. 5.1]. In particular we observe that Fermi coordinates as per Definition 8 can be completed
to define an admissible trivialization out of which it is possible to define Hs,T

p (M) for all s ∈ R and for all
integer values of p such that 1 < p <∞. Most notably, it holds, also in this case, that Hs

p(M) = W s
p (M)

for all s ∈ N ∪ {0}.
Whenever a boundary is present, one can introduce the subspace Hs

0,p(M) ⊂ Hs
p(M) defined as the

completion of D(M) with respect to the Hs
p(M)-norm. Observe that, whenever M is metric complete

(e.g. if M is a Riemannian manifold of bounded geometry), Hs
0,p(M) = Hs

p(M), while the inclusion is
strict in general.

To conclude this section we state the trace theorem, as proven in [GS13, Th. 4.10 & Cor. 4.12], though
specialized to the case of our interest:
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Theorem 16: Let (M, g) be a Riemannian manifold with boundary and of bounded geometry. Let
s ∈ R and let Hs(M)

.
= Hs

2(M), Hs
0(M)

.
= H2

0,2(M) be the Sobolev spaces as per Definition 13 and per

Proposition 14, see also Remark 15. Then, if s > 1
2 , the restriction map from D(M) to D(∂M) extends

to a continuous surjective map
Γ : Hs(M)→ Hs− 1

2 (∂M) .

If s ≥ 1, ker Γ = Hs(M) ∩H1
0 (M).

Observe that, in view of this last theorem, one can read the elements of Hs
0,p(M), s ∈ N as those of

Hs
p(M) whose representatives are functions whose derivatives with order less than s have vanishing trace

on ∂M .

2 Boundary triples and their application to second-order elliptic
differential operator

In this section, we consider second-order, elliptic differential operators on a Riemannian manifold with
boundary and of bounded geometry, and characterize their self-adjoint extensions. A convenient frame-
work for addressing this question is that of boundary triples, a thoroughly analysed topic of which we
recall the main aspects following [BL12] and references therein.

2.1 Boundary triples

In this section H indicates a separable Hilbert space over C while S : D(S) ⊂ H→ H is a closed, symmetric
linear operator.

Definition 17: A boundary triple for the adjoint operator S∗ is a triple (h, γ0, γ1) consisting of a separable
Hilbert space h over C and two linear maps γ0, γ1 : D(S∗)→ h such that

(S∗f |f ′)H − (f |S∗f ′)H = (γ1f |γ0f
′)h − (γ0f |γ1f

′)h ∀f, f ′ ∈ D(S∗) . (4)

and the map γ : D(S∗)→ h× h, defined by γ(f) = (γ0(f), γ1(f)) for all f ∈ D(S∗), is surjective.

Example 18: A canonical example of boundary triple, sometimes termed ordinary boundary triple,
can be constructed if S has equal and finite deficiency indices d±(S) = dim(N±(S∗)) < ∞, N±(S∗)

.
=

ker(S∗ ± iI), hence admitting self-adjoint extensions. In this case, letting V : N−(S∗)→ N+(S∗) be any,
but fixed unitary operator, one can set h = N+(S∗). Since D(S∗) = D(S)⊕SN+(S∗)⊕SN−(S∗) 2, one can
introduce the projection maps π± : D(S∗)→ N±(S∗), defining γ0

.
= π+−V ◦π− and γ1

.
= i(π+ +V ◦π−).

Observe that, since V is a bijection, the map γ as in Definition 17 is automatically surjective. Finally,
equation (4) follows by the identity

(S∗f |f ′)− (f |S∗f ′) = 2i
[
(π−f |π−f ′)H − (π+f |π+f

′)H
]
,

which holds true for all f, f ′ ∈ D(S∗).

Boundary triples allow us to characterize the self-adjoint extensions of S in terms of “boundary conditions”
on h. As a starting point one can observe, that, under the hypotheses of Definition 17, one can single
out two distinguished self-adjoint extensions of S, namely

S0
.
= S∗|ker γ0

, S1
.
= S∗|ker γ1

, (5)

2The orthogonal decomposition ⊕S refers to the scalar product on D(S∗) defined by (f | f ′)S := (f | f ′) + (S∗f |S∗f ′) .
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which are transversal since D(S) = D(S0) ∩ D(S1) and D(S∗) = D(S0) + D(S1), + standing for the
algebraic sum. The following proposition shows how to construct all other sought extensions, cf. [Mal92]
for a proof:

Proposition 19: Let S be a closed, symmetric operator on H. Then an associated boundary triple
(h, γ0, γ1) exists if and only if S∗ has equal deficiency indices. In addition, if Θ: D(Θ) ⊆ h→ h is a closed
and densely defined linear operator, then SΘ

.
= S∗|ker(γ1−Θγ0) is a closed extension of S with domain

D(SΘ)
.
= {f ∈ D(S∗) | γ0(f) ∈ D(Θ), γ1(f) = Θγ0(f)} .

The map Θ 7→ SΘ is one-to-one and S∗Θ = SΘ∗ , that is, it restricts to a one-to-one map from self-adjoint
operators Θ to self-adjoint extensions of S.

Observe that, in this formulation, S1 can be recovered by setting Θ = 0, while S0 represents a kind of
degenerate scenario, which has to be included by hand. The reason is due to the formulation of the
proposition which we have chosen so to emphasize the connection with the heuristic notion of boundary
conditions.

Example 20: With reference to Example 18, self-adjoint extensions of S are in one-to-one correspon-
dence with surjective isometries U : N−(S∗) → N+(S∗), cf. [Mor18, Th. 5.37], the domain of the
extension being D(SU ) = D(S)⊕S (I− U)N−(S∗). At the same time Proposition 19 guarantees that all
self-adjoint extensions of S are completely determined by the self-adjoint operators Θ : h→ h. Since the
domain of the extension SΘ is the collection of elements f ∈ D(S∗) such that γ1(f) = Θγ0(f), this is
equivalent to requiring (iI−Θ)π+(f) = −(iI + Θ)V ◦ π−(f). In other words π+(f) = C(−Θ)V ◦ π−(f),
where C(−Θ) stands for the Cayley transform of Θ, hence a unitary operator on h, cf. [Mor18, Th. 5.34].
By identifying U = C(−Θ)V we have shown how to relate the two viewpoints.

To conclude this short digression, we emphasize how boundary triples also allow to obtain the spectral
properties of the self-adjoint extensions of an Hermitian operator S as above. To this end, first we need
an auxiliary lemma, [BL12]

Lemma 21: Let S : D(S) ⊆ H→ H be a closed, symmetric operator and let (h, γ0, γ1) be an associated
boundary triple. Let S′ be any self-adjoint extension of S, S ⊂ S′ ⊂ S∗, and let λ ∈ ρ(S′), ρ being the
resolvent set. Then 3

D(S∗) = D(S′)uNλ(S∗), Nλ(S∗)
.
= ker(S∗ − λI) .

Proof. Let f ∈ D(S∗) and let f̃ = (S′ − λI)−1((S∗ − λI)f) ∈ D(S′), where λ ∈ ρ(S′). For any f ′ ∈ D(S)
it holds that

((S′ − λ̄I)f ′, f − f̃)H = ((S′ − λ̄I)f ′, f)H − ((S′ − λ̄I)f ′, (S′ − λI)−1((S∗ − λI)f))H

= ((S′ − λ̄I)f ′, f)H − (f ′, (S∗ − λI)f)H = 0 ,

where the last equality descends by using that S∗∗ = S, being S closed. Hence f − f̃ ∈ Ran(S − λ̄I)⊥ =
ker(S∗ − λI) = Nλ(S∗). We have found the sought decomposition. To prove that it is unique, it suffices
to observe that D(S′) ∩Nλ(S∗) = {0} since λ ∈ ρ(S′) per assumption.

We define the following auxiliary functions:

3In this paper V uW denotes the direct sum between the subspaces V,W ⊆ H (V + W = H and V ∩W = {0}) while
V ⊕W denotes the orthogonal direct sum (V +W = H and V ⊥W ).

10



Definition 22: Let S : D(S) ⊆ H→ H be a closed, symmetric operator and let (h, γ0, γ1) be an associated
boundary triple. Moreover, consider the self-adjoint extension S0 of S defined by S0

.
= S∗|ker γ0

. We call
γ-field and Weyl function respectively the maps Γ: ρ(S0)→ D(S∗) and M : ρ(S0)→ h such that

Γ(λ)
.
=
[
γ0|Nλ(S∗)

]−1
, M(λ)

.
= γ1 ◦ Γ(λ) ,

where ρ(S0) is the resolvent of S0.

We have all the ingredients to state the following key theorem which specializes to the case at hand a
statement proven in [DM91]:

Theorem 23: Let S : D(S) ⊆ H→ H be a closed, symmetric operator and let (h, γ0, γ1) be an associated
boundary triple. Let SΘ be a self-adjoint extension of S determined by means of a self-adjoint operator
Θ: D(Θ) ⊆ h→ h. Let ρ, σp and σc indicate respectively resolvent, point and continuous spectrum of an
operator. Then for every λ ∈ ρ(S0), S0 = D(S∗)|ker γ0

, it holds

1. λ ∈ ρ(SΘ) if and only if 0 ∈ ρ(Θ−M(λ)), where M is the Weyl function,

2. λ ∈ σi(SΘ), i = p, c if and only if 0 ∈ σi(Θ−M(λ)).

In other words, this theorem guarantees that the computation of the spectrum of SΘ, a self-adjoint
extension of S, boils down to evaluating the spectra of S0 and of Θ−M(λ).

2.2 Application to second-order elliptic differential operators

In this section we apply the theory of boundary triples to the study of second-order, elliptic differential
operators. We start our analysis from the distinguished, albeit special case of the Laplace-Beltrami
operator, subsequently generalizing our construction. Hence, let (M, g) be a Riemannian manifold with
boundary and of bounded geometry as per Definition 5. On top of M we consider the Laplace-Beltrami
operator ∆g, which reads in a local chart ∆g = −∇igij∇j , ∇ being the Levi-Civita connection built
out of g. We wish to identify a boundary triple for ∆g, which is regarded as a densely defined operator
∆g : H2

0 (M) → L2(M ; dµg), H
2
0 (M) being the closure of D(M) with respect to the H2(M)-norm as

defined in Proposition 14, see also Remark 15. Standard arguments yield that ∆g is a closed symmetric
operator on L2(M) ≡ L2(M ; dµg) whose adjoint ∆∗g is defined on the so-called maximal domain

Dmax(∆∗g)
.
= {f ∈ L2(M)| ∆g(f) ∈ L2(M)} , ∆∗gf

.
= ∆gf .

Since (M, g) is of bounded geometry, then ∆g is uniformly elliptic and the maximal domain coincides
with H2(M). Hence we shall identify Dmax(∆∗g) = H2(M).

To construct a boundary triple associated with ∆∗g, let n be the outward-pointing unit normal of ∂M
and let

Γ0 : H2(M) 3 f 7→ Γf ∈ H3/2(∂M), Γ1 : H2(M) 3 f 7→ −Γ∇nf ∈ H1/2(∂M) ,

where Γ is the trace map defined in Theorem 16. For f1, f2 ∈ H2(M) = Dmax(∆∗g), the following Green’s
identity holds true:

(∆∗gf1| f2)L2(M) − (f1|∆∗gf2)L2(M) = (Γ1f1|Γ0f2)L2(∂M) − (Γ0f1|Γ1f2)L2(∂M) . (6)

Moreover, since the inner product ( | )L2(∂M) on L2(∂M) ≡ L2(∂M ; ι∗Mdµg), ιM : ∂M ↪→ M , extends

continuously to a pairing on H−1/2(∂M)×H1/2(∂M) as well as on H−3/2(∂M)×H3/2(∂M), there exist
isomorphisms

j± : H±1/2(∂M)→ L2(∂M), ι± : H±3/2(∂M)→ L2(∂M) ,
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such that, for all (ψ, φ) ∈ H1/2(∂M)×H−1/2(∂M) and for all (ψ̃, φ̃) ∈ H3/2(∂M)×H−3/2(∂M),

(ψ, φ)(1/2,−1/2) = (j+ψ| j−φ)L2(∂M) , (ψ̃, φ̃)(3/2,−3/2) = (ι+ψ̃| ι−φ̃)L2(∂M) ,

where ( , )(1/2,−1/2) and ( , )(3/2,−3/2) stand for the duality pairings between the associated Sobolev
spaces.

Gathering all the above ingredients, the following result holds, being a generalization to the case of
Riemannian manifolds with boundary and of bounded geometry of a classical result, e.g. [Gru68] :

Proposition 24: Let ∆∗g be the adjoint of the Laplace-Beltrami operator on a Riemannian manifold
(M, g) with boundary and of bounded geometry. Let

γ0 : H2(M) 3 f 7→ ι+Γ0f ∈ L2(∂M) , (7)

γ1 : H2(M) 3 f 7→ j+Γ1f ∈ L2(∂M) , (8)

Then (L2(∂M), γ0, γ1) is a boundary triple for ∆∗g. Moreover the self adjoint extension ∆g,0
.
= ∆∗g|ker γ0

coincides with the Dirichlet operator ∆∗g|H2(M)∩H1
0 (M).

Proof. It suffices to observe that, in view of our assumption on the geometry of (M, g), the trace map
Γ is both continuous and surjective, c.f [GS13]. Hence also the map γ : H2(M) → L2(∂M) × L2(∂M)
is surjective by combining the properties of Γ together with the fact that ι+ and j+ are isomorphisms
and ∇n : Hs(M) → Hs−1(M). Together with this data one can repeat the same proof as in [Gru68] in
combination with a partition of unity argument. The last statement of this proposition descends from
Theorem 16 and, in particular from the kernel of Γ acting on Hs(M) being H1

0 (M) ∩ Hs(M) for all
s ≥ 1.

Remark 25: Notice that Proposition 24 ensures that the self-adjoint extensions of ∆g are parametrized
by all densely defined self-adjoint operators Θ on L2(∂M). Therefore, the class of boundary conditions
ker(γ1 −Θγ0) is more general then the one considered usually in the literature [Hör90].

Remark 26: We observe that, while the results of Proposition 24 can be straightforwardly extended if
one adds to ∆g terms of order 0 which are both smooth and bounded, dealing with a generic elliptic
differential operator A of order 2 on (M, g) requires a more careful investigation.

More specifically consider an operator A which reads locally A = −∇iaij∇j , where both aij and
∇iaij ∈ C∞(M) ∩ L∞(M) . One has individuated a closed, symmetric operator A : H2

0 (M) → L2(M)
whose adjoint A∗ has a maximal domain

D(A∗)
.
= {f ∈ L2(M)| Af ∈ L2(M)} , A∗f

.
= Af .

Since (M, g) is of bounded geometry, H2(M) ⊆ D(A∗), though the inclusion is in general strict unless A
is uniformly elliptic. Since H2(M) is dense in D(A∗), see [ILP13] and references therein, the maps

(Γ0,Γ1) : H2(M) 3 f 7→ (Γf,−Γ∇a,nf) ∈ H1/2(∂M)×H3/2(∂M) ,

where ∇a,nf
.
= nia

ij∇jf while Γ is defined as in Theorem (16), can be extended to linear continuous
maps

(Γ̃0, Γ̃1) : D(A∗)→ H−1/2(∂M)×H−3/2(∂M) .

In addition, if f1 ∈ D(A∗) and f2 ∈ H2(M), it holds

(A∗f1| f2)L2(M) − (f1| A∗f2)L2(M) = (Γ̃1f1| Γ0f2)L2(∂M) − (Γ̃0f1| Γ1f2)L2(∂M) (9)

= (ι−Γ̃1f1| ι+Γ0f2)− 3
2 ,

3
2
− (j−Γ̃0f1| j+Γ1f2)− 1

2 ,
1
2
,
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where in the last equality we used the definition of ι±, j± while ( , )− 3
2 ,

3
2
, ( , )− 1

2 ,
1
2

denote the pairing
between dual spaces. In order for the above data to define a boundary triple, let A0 be the Dirichlet
self-adjoint extension of A, defined as A0

.
= A∗|H2(M)∩H1

0 (M). By applying Lemma 21 for S∗ = A∗ and
for S′ = A0 it follows that, for an arbitrary but fixed λ ∈ ρ(A0), the maximal domain D(A∗) decomposes
as

D(A∗) = D(A0)u ker(A∗ − λ) . (10)

One can consider the maps

(γ0, γ1) : D(A∗) 3 f 7→ (j−Γ̃0fλ, ι+Γ̃1f0) = (j−Γ̃0fλ, ι+Γ1f0) ∈ L2(∂M)× L2(∂M) , (11)

where f0 ∈ D(A0) is the “Dirichlet part” of f = f0 + fλ according to decomposition (10), while fλ ∈
ker(S∗−λ). It can be shown that (L2(∂M), γ0, γ1) is a boundary triple for A∗ [HSF12, Gru71], moreover,
the self adjoint extension S0

.
= S∗|H2(M)∩H1

0 (M) coincides with the self-adjoint extension S∗|ker γ0
, hence

justifying the notation. We remark that the ambiguity in the choice of λ ∈ ρ(S0) reflects possible
degeneracies of A.

3 Fundamental solutions on spacetimes with timelike boundary

In this section, following Section 1.1 and Proposition 9 in particular, we consider (N, h̃) to be a static
Lorentzian spacetime with timelike boundary. Henceforth, for any Ω ⊆ N , with J±(Ω) we indicate the
causal future (+) and the causal past (−) of Ω, cf. [BEE96, Ch. 1]. On top of it we consider the
D’Alembert wave operator which, in view of (1), reads locally

�h̃ = −h̃ij∇i∇j = β−1∂2
t −

1

2
gij∂i(lnβ)∂j + ∆g , (12)

where ∆g is the Laplace-Beltrami operator associated with (M, g). The solutions of the wave equation
built out of (12) are best characterized in terms of the fundamental solutions associated with �h̃.

Definition 27: A continuous linear map G̃± : D(N̊) → D′(N̊) is called a retarded (+) or an advanced
(−) Green’s operator for �h̃ on a static Lorentzian spacetime (N,h) with timelike boundary if, for every

f ∈ D(N̊), N̊
.
= N \ ∂N ,

�h̃ ◦ G̃
±f = G̃± ◦�h̃f = f , supp(G̃±f) ⊆ J∓(supp(f)) . (13)

The causal (or advanced-minus-retarded) propagator G̃ associated to the pair (G̃+, G̃−) is the linear
operator

G̃
.
= G̃− − G̃+ : D(N̊)→ D′(N̊) . (14)

Remark 28: In view of Proposition 9, under mild additional hypotheses, (N, h̃) can be realized as

a submanifold of a standard static, globally hyperbolic spacetime (N̂ , ĥ). Thereon one can consider
the D’Alembert wave operator �ĥ and standard results in the theory of normally hyperbolic operators

guarantee the existence of unique advanced/retarded fundamental solutions Ĝ± with the same defining

properties as in (14) and, in addition, Ĝ±[D(N̂)] ⊂ C∞(N̂). As a consequence, whenever Ω ⊂ N̊ endowed

with ĥ|Ω identifies a globally hyperbolic submanifold of N and thus also of N̂ , it turns out that, calling G̃±Ω
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the fundamental solutions for the D’Alembert wave operator on (Ω, ĥ|Ω), then Ĝ±|Ω = G̃±Ω and, whenever

G̃± exist, G̃±|Ω = G̃±Ω . The same line of reasoning cannot be used to compare Ĝ± with G̃± since N is not

a globally hyperbolic submanifold of N̂ . We will be showing that the existence and uniqueness of G̃± is
instead subordinated to the choice of ‘boundary conditions’ at ∂N .

Conformal reduction. In order to address the problem of the existence of G̃±, it is convenient to
consider on (N, h̃) the conformally rescaled metric

h
.
= β−1h̃ = −dt2 + β−1g , (15)

whose wave operator reads �h = ∂2
t + ∆β−1g. The connection between these wave operators is well

known, in particular

�h̃ ◦ β
1−m

4 = β−
3+m

4

[
�h +

1−m
2

β−
1
2�h(β

1
2 )− (1−m)(m− 3)

4
β hij∇iβ∇jβ

]
.
= β−

3+m
4

[
∂2
t +A

]
,

(16)

where dimN = m + 1 while A is an elliptic operator as per remark 26. In the following we will give
a construction for the advanced and retarded Green’s operators G± for ∂2

t + A rather that for �h̃. Its

counterparts, namely G̃±, are related to the former ones via the identity

G̃± = β
1−m

4 ◦ G± ◦ β
3+m

4 . (17)

In the following our results will depend on the regularity properties of β and in particular we shall select
it in such a way that the spacetime (N,h) meets the conditions of Proposition 9, where h = −dt2 +β−1g.
This entails in particular that the operator

A
.
= ∆β−1g +

1−m
2

β−
1
2 ∆β−1g(β

1
2 )− (1−m)(m− 3)

4
gij∇i(β)∇j(β) , (18)

is uniformly elliptic.
In order to tackle the problem of the existence of G± as per Definition 27, one can use Schwartz kernel

theorem, rewriting the underlying problem in terms of two distributions G± ∈ D′(N̊ × N̊) such that,
besides the condition on the support stated in (13),

[(∂2
t +A)⊗ I]G± = [I⊗ (∂2

t +A)]G± = δdiag(N̊) . (19)

Here δdiag(N̊) being the Dirac-delta distribution on the diagonal diag(N̊)
ι
↪→ N̊ × N̊ of N̊ × N̊ such that,

for every f ∈ D(N̊ × N̊), δdiag(N̊)(f) =
∫
N

ι∗fdµh, where dµh is the metric induced volume form on N .

Since (N,h) is per assumption a standard static spacetime, realizing it as the warped product M×βR, we
can make the ansatz G− = θ(t− t′)G and G+ = −θ(t′− t)G, where θ stands for the Heaviside distribution
on R × R which is implicitly extended to N̊ × N̊ . From (19) it turns out that G ∈ D′(N̊ × N̊) is the
distribution associated to G via Schwartz kernel theorem and it satisfies{

[(∂2
t +A)⊗ I]G = [I⊗ (∂2

t +A)]G = 0
G|t=t′ = 0, ∂tG|t=t′ = −∂t′G|t=t′ = δdiag(M̊)

, (20)

where |t=t′ indicates the pull-back of a distribution on N̊ × N̊ to ({t} × M̊) × ({t} × M̊) while δdiag(M̊)

stands for the Dirac delta distribution on the diagonal of M̊ × M̊ . Observe that the product between the
Heaviside distribution and G which defines G± is well-posed as a consequence of [Hör90, Th. 8.2.10].
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Remark 29: From the previous discussion, it emerges that the existence of the Green’s operators G± can
be reduced to finding first a solution for (20) and proving, subsequently, that the support properties in
(13) are verified. In order to motivate the strategy that we shall follow to address these two questions for
static Lorentzian spacetimes with timelike boundary, let us consider a special instance of the scenario of
Remark 28. (N,h) is realized as a submanifold of a globally hyperbolic, standard static spacetime (N̂ , ĥ)

where the warping factor β̂ of Proposition 9 is assumed to be equal to 1. Hence N̂ is isometric to M̂ ×R
where (M̂, ĝ) is a complete Riemannian manifold. The d’Alembert wave operator reads �ĥ = ∂2

t + ∆ĝ.
In this framework the Laplace-Beltrami operator ∆ĝ is known to be an essentially self-adjoint operator

on L2(M̂) ≡ L2(M̂ ; dµĝ), dµĝ being the metric induced volume form. Indicating with a slight abuse of

notation still with ∆ĝ the unique self-adjoint extension, for every f ∈ D(M̂ × R) it holds

Ĝ(f1, f2) =

∫
R2

(
f1(t)

∣∣∣∣∆− 1
2

ĝ sin
[
∆

1
2

ĝ (t− t′)
]
f2(t′)

)
dtdt′ ,

where f(t) ∈ H2(M) denotes the evaluation of f , regarded as an element of C∞c (R, H2(M̂)). Here

∆
− 1

2

ĝ sin
[
∆

1
2

ĝ (t− t′)
]

in a densely defined self-adjoint operator on L2(M) which is defined exploiting the

functional calculus for ∆̂g [ReSi81, Chap. 7].

From the example outlined in this last remark, it turns out that a solution of (20) can be identified by
exploiting the boundary triples introduced in the previous section. Indeed, by fixing a boundary condition
Θ we are reduced to dealing with the operator ∂2

t + AΘ for which we can exploit the spectral calculus
associated with AΘ as in the previous remark 29. This procedure will define a causal propagator for
∂2
t +A which can also be regarded as the unique causal propagator for ∂2

t +AΘ. The following theorem
translates this paradigm:

Theorem 30: Let (N,h) be a static Lorentzian spacetime with timelike boundary as per Proposition 9.
Let (γ0, γ1, L

2(∂M)) be the boundary triple as in (11) associated with the elliptic operator A∗ defined in
(18) and let Θ be a densely defined self-adjoint operator on L2(∂M). Let AΘ be the self-adjoint extension
of A defined as per Proposition 19 by AΘ

.
= A∗|D(AΘ), where D(AΘ)

.
= ker(γ1 −Θγ0). Furthermore, let

assume that the spectrum of AΘ is bounded from below.
Then the advanced and retarded Green’s operators G±Θ associated to the wave operator ∂2

t + AΘ exist
and they are unique. They are completely determined in terms of the bidistributions G−Θ = θ(t − t′)GΘ

and G+
Θ = −θ(t′ − t)GΘ, where GΘ ∈ D′(N̊ × N̊) is such that, for all f ∈ D(N̊)

GΘ(f1, f2)
.
=

∫
R2

dtdt′
(
f1(t)

∣∣∣∣A− 1
2

Θ sin
[
A

1
2

Θ(t− t′)
]
f2(t′)

)
, (21)

where f(t) ∈ H2(M) denotes the evaluation of f , regarded as an element of C∞c (R, H∞(M)) and

A
− 1

2

Θ sin
[
A

1
2

Θ(t− t′)] is defined exploiting the functional calculus for AΘ. Moreover it holds that

G±Θ : D(N̊)→ C∞(R, H∞Θ (M)) ,

where H∞Θ (M)
.
=
⋂
k≥0D(AkΘ). In particular,

γ1

(
G±Θf

)
= Θγ0

(
G±Θf

)
∀f ∈ C∞0 (N̊) . (22)

Proof. As starting point, we observe that, since per assumption AΘ is bounded from below, the function
σ(AΘ) 3 λ 7→ λ−1/2 sin(

√
λτ) is smooth and bounded for all τ ∈ R. Hence, for any f ∈ C∞0 (N̊) (21)
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identifies an element GΘf ∈ C∞(R, D(A
1/2
Θ )) ⊂ D′(N̊). Moreover, for all k ∈ N ∪ {0} and for all t ∈ R,

we have
(1 +AΘ)k[GΘf ](t) = GΘ[(1 +AΘ)kf ](t) = GΘ[(1 +A)kf ](t) ,

which identifies an element of L2(M) since (1 + A)kf ∈ D(N̊). Therefore [GΘf ](t) lies in H∞Θ (M) and
equation (22) follows. Notice that, since the hypothesis on β guarantees that A is a uniformly elliptic
operator, H∞Θ (M) ⊂ H∞(M).

The operator GΘ identifies unambiguously GΘ ∈ D′(N̊ × N̊) satisfying per construction (20). In order
to claim that G+ .

= θ(t − t′)G and G− = −θ(t′ − t)G are the sought fundamental solutions we need to
prove that supp(G±(f)) ⊆ J∓(supp(f)). To this end it suffices to show that supp(G(f)) ⊆ J(supp(f)),
J(supp(f))

.
= J−(supp(f)) ∪ J+(supp(f)).

This property is in turn a consequence of an energy estimate. Let u(t)
.
= [GΘ(f)](t) and let K ⊆M '

{0}×M be a compact set. We prove that, if u(0)|K = u̇(0)|K = 0, then u vanishes on UK
.
= N \J(M \K).

As a consequence u(t) vanishes on Kt
.
= Mt ∩ UK for all t ∈ R, where Mt

.
= {t} ×M . To this end we

introduce the positive energy functional

EK [u](t)
.
=

1

2

[
C∞‖u(t)‖2L2(Kt)

+ ‖u̇(t)‖2L2(Kt)
+ ‖∇β−1gu(t)‖2L2(Kt)

]
,

where u̇(t) stands for d
dtu(t) and where square integrability is defined still with respect to the metric-

induced volume form, here left implicit. Moreover we set C∞
.
= supUK |C| > 0 where C := A −∆β−1g,

see equation (18). A direct computation shows that

d

dt
EK [u](t) = C∞(u̇(t)|u(t))− (u̇(t)|[∆β−1g + C]u(t)) + (∇β−1gu̇(t)|∇β−1gu(t))

− 1

2

[
C∞‖γ0,Ktu(t)‖2L2(∂Kt)

+ ‖γ0,Kt u̇(t)‖2L2(∂Kt)
+ ‖γ1,Ktu(t)‖2L2(∂Kt)

]
,

where γ0,Ktu(t)
.
= u(t)|∂Kt , γ1,Ktu(t)

.
= ∇β−1gu(t)|∂Kt are the traces of u(t), ∇β−1gu(t) on ∂Kt, which

are well-defined in view of the regularity of u(t). The divergence theorem yields

(∇β−1gu̇(t)|∇β−1gu(t)) = (γ0,Kt u̇(t)|γ1,Ktu(t))L2(∂Kt) + (u̇(t)|∆β−1gu(t))

≤ 1

2

[
‖γ0,Kt u̇(t)‖2L2(∂Kt)

+ ‖γ1,Ktu(t)‖2L2(∂Kt)

]
+ (u̇(t)|∆β−1gu(t)) .

From this estimate we obtain a bound for the time derivative of EK [u](t), namely

d

dt
EK [u](t) ≤ C∞(u̇(t)|u(t))− (u̇(t)|Cu(t)) ≤ bEK [u](t) ,

where b > 0. By Grönwall’s inequality it follows that EK [u](t) ≤ ebtEK [u](0) which vanishes because
of our hypothesis on u. Since EK [u](t) is positive it follows that u(t) = 0 vanishes on Kt for all t ∈ R.
This proves that G enjoys the desired support property. In addition the energy estimate also entails the
uniqueness of G and in turn of G±. Suppose a second pair of retarded and advanced fundamental solutions
exist, say G±2 . Then, calling G2 = G−2 − G+

2 , it would hold that, for every f ∈ D(N), G(f, ·)− G2(f, ·) is a
solution of the D’Alembert wave equation with vanishing initial data. The energy estimate entails that
this must be the zero solution, from which uniqueness descends.

Remark 31: One may wonder for which Θ the self-adjoint extension AΘ is bounded from below. To
the best of our knowledge this is an open problem. In [Gru70] it was shown that, if the Dirichlet
extension A0 = A∗|ker γ0

has a finite lower bound m(A0) then AΘ has a finite lower bound m(AΘ)
whenever that Θ has a lower bound such that m(Θ) > −m(A0). Moreover, in this latter case it holds
m(AΘ) > m(Θ)m(A0)[m(Θ) +m(A0)]−1.
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Remark 32: Observe that, since the operator A is per assumption uniformly elliptic, H∞Θ (M) ⊂ H∞(M)
where H∞(M)

.
=
⋂
k≥0H

k(M). In view of Remark 11, we can identify this space as the quotient between

H∞(M̂) and the collection of those elements v ∈ H∞(M̂) such that v|M = 0. Since M̂ is a metric complete

Riemannian manifold, being of bounded geometry, it turns out that each element v ∈ H∞(M̂) admits a

representative in C∞(M̂), see [Heb96, Ch. 3]. Consequently every u ∈ H∞Θ (M) admits a representative
lying in C∞(M).

Remark 33: The previous analysis proves existence and uniqueness of the fundamental solutions for a
wide class of boundary conditions. Yet it is important to mention that using the theory of boundary triples
is not the only possible path which can be followed. In [Pos18] self-adjoint extensions of the restriction of
a given self-adjoint operator are classified via an efficient parametrization of their resolvent. In [ILP13,
ILP14], a class of self-adjoint extensions of the Laplace-Beltrami operator on a smooth Riemannian
manifold M with smooth compact boundary ∂M has been studied in the framework of quadratic forms.
While the extension to a non-compact boundary has not been investigated yet, this method highlights
that, among the collection of boundary conditions, a distinguished class is represented in terms of their
interplay with the unitary representations of the isometry group of ∂M acting on L2(∂M).

Remark 34: We expect that a result similar in spirit to Theorem 30 can be derived also in the framework
of [DS17], up to a suitable modification of the geometrical setting considered therein. This would allow
to consider the wave operator with the insertion of an electromagnetic potential and with possibly low
regularity of both the metric and the electromagnetic potential in the sense of [DS17]. We are currently
investigating this topic.

To conclude the analysis of the structural properties of the fundamental solutions, we extend to
the case at hand a result which, in the case of globally hyperbolic spacetimes, was proven in [BGP07,
Th. 3.4.7]. The goal is to prove that the advanced and retarded Green operators allow for a complete
characterization of the space of smooth solutions of the D’Alembert wave equation. In view of equations
(16) and (17) we can still work with the operator ∂2

t +A. To this end, first of all we need to enlarge the
domain of definition of the operators G±Θ defined in Theorem 30.

Definition 35: Under the same hypotheses of Theorem 30, let H∞Θ (M)
.
=
⋂
k≥1D(AkΘ). Hence, moti-

vated by the nomenclature in [Bar15] we call:

1. C∞fc (R, H∞Θ (M)) the space of future compact, H∞Θ -valued smooth functions, that is the collection
of f ∈ C∞(R, H∞Θ (M)) for which J+

R×βM (x) ∩ supp(f) is compact or empty for all x ∈ R ×β M ,

where J+
R×βM stands for the causal future in R×β M endowed with the metric (15),

2. C∞pc(R, H∞Θ (M)) the space of past compact H∞Θ (M)-valued smooth functions, that is the collection

of f ∈ C∞(R, H∞Θ (M)) for which J−R×βM (x) ∩ supp(f) is compact or empty for all x ∈ R ×β M ,

where J−R×βM stands for the causal past in R×β M endowed with the metric (15),

3. C∞tc (R, H∞Θ (M))
.
= C∞pc(R, H∞Θ (M))∩C∞fc (R, H∞Θ (M)) the collection of timelike compact H∞Θ (M)-

valued smooth functions.

By combining Theorem 30 and the results of [Bar15], it descends that G±Θ extend respectively to linear
maps

G+
Θ : C∞fc (R, H∞Θ (M))→ C∞(R, H∞Θ (M)) , G−Θ : C∞pc(R, H∞Θ (M))→ C∞(R, H∞Θ (M)) ,

which preserve the properties �Θ ◦ G±Θ = G±Θ ◦�Θ = id and supp(G±f) ⊆ J∓(supp(f)).
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Proposition 36: Under the hypotheses of Theorem 30, let �Θ
.
= ∂2

t + AΘ. Then the following is an
exact sequence of linear maps:

0→ C∞tc (R, H∞Θ (M))
�Θ−→ C∞tc (R, H∞Θ (M))

GΘ−→ C∞(R, H∞Θ (M))
�Θ−→ C∞(R, H∞Θ (M))→ 0 . (23)

Proof. The proof follows the same steps of [BGP07, Th. 3.4.7]. Let f ∈ C∞tc (R, H∞Θ (M)) be such that
�Θf = 0. Hence f = G+

Θ�Θf = 0, which shows the injectivity of the first arrow ruled by �Θ.
For all f ∈ C∞tc (R, H∞Θ (M)) it holds from Definition 27 that �ΘGΘf = GΘ�Θf = 0. There-

fore �ΘC
∞
tc (R, H∞Θ (M)) ⊆ kerGΘ. Let now f ∈ C∞tc (R, H∞Θ (M)) be such that GΘf = 0. Then

ψ = G+
Θf = −G−f belongs to C∞tc (R, H∞Θ (M)) and �Θψ = f , which entails f ∈ �ΘC

∞
Θ (R, H∞Θ (M)).

Hence Im(�Θ) = kerGΘ which prove the exactness of the second and of third arrow. We now show that
GΘ[C∞tc (R, H∞Θ (M))] = ker[�Θ|C∞(R,H∞Θ (M))]. The inclusion ⊆ follows from �ΘGΘC

∞
tc (R, H∞Θ (M)) = 0.

Let f ∈ C∞(R, H∞Θ (M)) be such that �Θf = 0. Let us consider its (non-unique) decomposition as
f = f+ + f− with f± ∈ C∞(R, H∞Θ (M)) where f+ (resp. f−) is future (resp. past) compact. It follows
that �Θf− ∈ C∞pc(R, H∞Θ (M)) ⊂ C∞(R, H∞Θ (M)) and from the support properties of G±Θ combined with
�Θf+ = −�Θf−,

GΘ�Θf− = G−Θ�Θf− + G+
Θ�Θf+ = f+ + f− = f ,

from which it descends the exactness of the third and forth arrows. Finally, the last arrow entails instead
that, for every h ∈ C∞(R, H∞Θ (M)) there exists f ∈ C∞(R, H∞Θ (M)) such that 2Θf = h. Similarly to
the proof of the previous points, it suffices to split h = h+ + h− where h+ ∈ C∞fc (R, H∞Θ (M)) while h− ∈
C∞pc(R, H∞Θ (M)). As a consequence of the properties of G±Θ, the sought function is f = G+h++G−h−.

Remark 37: Observe that another, equivalent way of reading the sequence (23) of Proposition 36 is
that the causal propagator GΘ

.
= G−Θ−G+

Θ induces an isomorphism between the quotient of vector spaces
C∞tc (R,H∞Θ (M))

�Θ[C∞tc (R,H∞Θ (M))] and SΘ(R×β N)
.
= {u ∈ C∞(R;H∞Θ (M)) | �Θu = 0}.

Example 38: To better illustrate the above analysis we discuss in detail an explicit example often used
in the literature. Most notably we consider a static Lorentzian spacetime with boundary N = M × R
with warping factor β = 1. The underlying manifold (M, g) is assumed to be R+ × Rn, n ≥ 0, endowed
with the standard Euclidean metric. Let (γ0, γ1, L

2(Rn)) be the boundary triple as per Proposition 24
for n > 1 while, for n = 0 the boundary Hilbert space is C. The Laplace-Beltrami operator associated to
(M, g) reads in Cartesian coordinates

∆g = −∂2
x1
−
n+1∑
i=2

∂2
xi ,

and we indicate with ∆Θ the self-adjoint extension induced by Θ according to Theorem 23. If n = 0
∆ becomes simply −∂2

x1
. This is a special case, for which the following discussion is not necessary. In

order to apply Theorem 30, the first step consists of checking that ∆Θ is bounded from below. Taking

the Fourier transform FRn in all variables barring x1 and using the notational shortcut k2 .
=

n+1∑
i=2

k2
i this

question reduces to the study of the spectral property of

∆̃
.
= (1⊗ FRn)−1 ◦∆g ◦ (1⊗ FRn) = −∂2

x1
+ k2 .

defined on the domain (the tilde symbol indicating that the domains refer to the operator ∆̃)

H̃2
0 (R+ × Rn) = {ψ ∈ L2(R+ × Rn) | ∂2

x1
ψ, k2ψ ∈ L2(R+ × Rn) , γ0(ψ) = γ1(ψ) = 0} .
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The adjoint is defined on

H̃2(R+ × Rn) = {ψ ∈ L2(R+ × Rn) | ∂2
x1
ψ, k2ψ ∈ L2(R+ × Rn)} , [∆̃h]∗ψ = ∆̃hψ.

The deficiency indexes of ∆̃ are equal, in particular ker(∆̃ ± i) ' L2(Rn). According to Proposition 19

any self-adjoint extension of ∆̃ can be obtained from a self-adjoint operator Θ̃ on L2(R) as

D(∆̃Θ̃)
.
= {ψ ∈ H̃2(R+ × Rn) | γ0(ψ) ∈ D(Θ̃) , γ1(ψ) = Θ̃γ0(ψ)} ,

where, for smooth ψ, (γ0ψ)(y) = ψ(0, y) while (γ1ψ)(y) = ∂xψ(0, y). Notice that, since 1⊗FRn : L2(R+×
Rn) → L2(R+ × Rn) is a unitary operator, each self adjoint extension ∆̃Θ̃ corresponds to a self adjoint

counterpart ∆Θ where Θ̃
.
= (1⊗ FRn)−1 ◦Θ ◦ (1⊗ FRn).

In order to evaluate the spectrum of ∆̃Θ̃, first we focus on the Dirichlet self-adjoint extension

D(∆̃∞)
.
= {ψ ∈ H̃2(R+ × Rn) | γ0(ψ) = 0} .

For each ψ ∈ D(∆̃∞), ext[ψ](x1, k) = θ(x1)ψ(x1, k)−θ(−x1)ψ(−x1, k) identifies an element in H̃2(Rn+1) =
(1⊗FRn+1)H2(Rn+1), θ being the Heaviside distribution. The sine transform along the x1-variable yields

∆̃∞ψ(x1, k) =
2

π

∫
R+

dξ (ξ2 + k2) sin(ξx1)

[ ∫
R+

dy1 sin(ξy1)ψ(y1, k)

]
,

from which we read that ∆̃∞ coincides with the multiplication operator by ξ2 +k2, which entails, in turn,
σ(∆̃∞) = σ(∆∞) = (0,+∞).

The remaining contribution to the spectrum of ∆̃Θ̃ can be studied via Theorem 23. In particular the
Weyl function associated with the boundary triple (L2(Rn), γ0, γ1) is,

[M(λ)g](k) = −
√
k2 − λ g(k) for λ ∈ ρ(∆̃∞) ∩ R = (−∞, 0) .

Still applying Theorem 23 we obtain that λ ∈ σ(∆̃Θ̃) if and only if 0 ∈ σ(Θ̃−M(λ)) = σ(Θ̃ +
√
k2 − λ).

At this stage we specialize to a specific scenario: Robin boundary conditions. In other words Θ = αI, I
being the identity operator on L2(Rn), while α ∈ R. Hence also Θ̃ = αI and it descends

σ(Θ̃ +
√
k2 − λ) = {α+

√
k2 − λ | k ∈ R} .

Thus if α ≥ 0, 0 /∈ σ(Θ − M(λ)), while, if α < 0, all negative values of λ greater that −α2 are

allowed. Hence ∆̃αI is bounded from below for all α ∈ R with σ(∆̃αI) = (−α2,+∞) for α < 0, while

σ(∆̃αI) = (0,+∞) for α ≥ 0. A special scenario occurs if we consider n = 0, since the Weyl function
reads M(λ) =

√
−λ. In this case, if α < 0, the only admissible, negative value for λ is −α2 and thus all

conditions of Theorem 23 are met. We observe that this result is consistent with that of [DF17] for the
study of a massless, conformally coupled real, scalar field on the Poincaré patch of AdS spacetime.
We can thus write the causal propagator G̃αI for ∂2

t + ∆̃ explicitly. This is tantamount to computing GαI
up to the Fourier transform in all spatial variables barring x1. We have[
G̃αIf

]
(t, x1, k) =

∫
R

∫
R+

sin
[
(ξ2 + k2)

1
2 (t− s)

]
(ξ2 + k2)−

1
2ψ(x1, ξ)

[ ∫
R+

ψ(y1, ξ)f(s, y1, k)dy1

]
dξ ds

−
∫
R

sinh
[
(α2 − k2)

1
2 (t− s)

]
(α2 − k2)−

1
2 1(−α,α)(k)eα(x1)

[ ∫
R+

eα(y1)f(s, y1, k)dy1

]
ds ,
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where we defined

ψ(x1, ξ)
.
= (ξ2 + α2)−

1
2 [ξ cos(ξx1) + α sin(ξx1)] eα(x)

.
= (2α)

1
2 e−αx .

Another relevant choice for Θ is a differential operator. This may model a Riemannian version of the
well-known Wentzell boundary conditions (which will be treated in the next section). In particular, in

this latter case the operator Θ̃ acts as [Θ̃f ](k) = pΘ(k)f(k) where pΘ is the symbol associated with
Θ via Fourier transform. Thus the condition for λ < 0 to be in the spectrum of ∆Θ is that 0 ∈
{pΘ(k)−

√
k2 − λ| k ∈ R} .

3.1 Dynamical boundary conditions

Theorem 30 and the analysis of the previous section were tied to the construction of the advanced and
retarded Green’s operators G±Θ in terms of boundary conditions ascribed to a choice both of boundary
triple and of a self-adjoint operator Θ on the boundary Hilbert space L2(∂M). From the Lorentzian
viewpoint, this scenario can be interpreted as assigning via Θ a time-independent boundary condition.

Nonetheless, in many models and applications, this is not sufficient since one wishes to relax the
hypothesis of time-independence, see e.g. [Fel57, Z18] for a specific example. We show how it is possible
to extend our previous analysis to encompass also most of these scenarios.

In the rest of the section, we consider (N,h), a generic Lorentzian, static spacetime, with timelike
boundary where h is given by equation (15). We assume that the warping factor β is chosen in such a
way that, writing the D’Alembert wave operator as � = ∂2

t + A with A defined as per equation (18), A
is a uniformly elliptic operator on L2(M).

In addition, let (γ0, γ1, L
2(∂M)) be the boundary triple associated to A∗ as per (11). With (γ̃0, γ̃1) we

denote the natural extension of (γ0, γ1) to C∞(R;D(A∗)), while the boundary condition is implemented
by restricting to the subspace of C∞(R;D(A∗)) whose elements u satisfy

γ̃1u = (∂2
t + Θ̃)γ̃0u , (24)

where Θ̃ is the natural extension to C∞(R, D(Θ)) of a self-adjoint operator Θ: D(Θ) ⊆ L2(∂M) →
L2(∂M). Observe that, being the background static, ∂2

t γ̃0 = γ̃0∂
2
t .

In order to address the problem of existence and uniqueness of the advanced and retarded Green’s
operators for the system at hand we make use of a technique which extends the one used in [Fel57, Z18].
It consists of rewriting the wave equation (20) with boundary conditions prescribed via (24) in terms of
the following equivalent system: Let û = (u, v) ∈ C∞(R, D(A∗))× C∞(R, D(Θ))

P̂û
.
= ∂2

t û+ ÂΘû = 0 , ÂΘ =

(
Ã∗ 0

−γ̃1 Θ̃

)
, γ̃0(u) = v , (25)

where Ã∗ indicates the natural extension of A∗ to C∞(R;D(A∗)).

Observe that in (25) we have introduced the auxiliary operator ÂΘ which acts on C∞(R;D(ÂΘ)),

where D(ÂΘ) is the subset of Ĥ
.
= H⊕ h = L2(M)⊕ L2(∂M), the Hilbert space with scalar product

(φ̂1|φ̂2)Ĥ = (φ1|φ2)H + (ϕ1|ϕ2)h , φ̂i = (φi, ϕi), i = 1, 2,

such that

D(ÂΘ)
.
= {φ̂ = (φ, ϕ) ∈ Ĥ | φ ∈ H2(M) , ϕ ∈ D(Θ) , γ0φ = ϕ} , ÂΘφ̂ =

(
A∗φ
Θϕ− γ1φ

)
. (26)
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The Hilbert space structure on Ĥ is defined by

(φ̂1|φ̂2)Ĥ = (φ1|φ2)H + (ϕ1|ϕ2)h , φ̂i = (φi, ϕi), i = 1, 2 .

We recall that Θ: D(Θ) ⊆ h→ h is a self-adjoint operator on h and that (h, γ0, γ1) is a boundary triple

for A∗. We can prove a relevant property of ÂΘ.

Proposition 39: Let (h, γ0, γ1) be the boundary triple associated with A∗ as per Proposition 24. Let

Θ: D(Θ) ⊆ h → h be a self adjoint operator. Then the operator ÂΘ : D(ÂΘ) ⊆ Ĥ → Ĥ, defined as per
equation (26), is self-adjoint.

Proof. Since γ0 is a surjective map, while D(Θ) is dense in h and H1
0 (M) = ker γ0, D(ÂΘ) is dense in Ĥ.

On account of equation (4) it holds (ÂΘφ̂|ψ̂) = (φ̂|ÂΘψ̂) for all φ̂, ψ̂ ∈ D(ÂΘ), that is, ÂΘ is a symmetric

operator. We prove that D(Â∗Θ) ⊆ D(ÂΘ). Let φ̂ ∈ D(Â∗Θ). The map D(ÂΘ) 3 ρ̂ 7→ (φ̂|ÂΘρ̂) ∈ C is

bounded. A direct inspection shows that, if φ̂ = (φ, ϕ) and ρ̂ = (ρ, %),

(φ̂|ÂΘρ̂)Ĥ = (φ|A∗ρ)H + (ϕ|Θ%− γ1ρ)h . (27)

If ρ ∈ ker γ1 ∩ ker γ0 = H2
0 (M), the last term on the right hand side of equation (27) vanishes and the

boundedness of the left hand side implies that φ ∈ D(A∗) = H2(M). By applying equation (4) we find

(Â∗Θφ̂|ρ̂)Ĥ = (φ̂|ÂΘρ̂)Ĥ = (φ|Aρ)H = (A∗φ|ρ)H , (28)

where in the last equality we used equation (4). This shows that pr1Â
∗
Θφ̂ = A∗φ where pr1 : Ĥ→ L2(M)

is the projection on the first component.
Let us now consider ρ̂ ∈ D(ÂΘ). Since φ ∈ H2(M), we can combine equations (27) and equation (4)

for the boundary triple (h, γ0, γ1) to obtain

(φ̂|ÂΘρ̂)Ĥ = (A∗φ|ρ)H + (γ0φ|γ1ρ)h − (γ1φ|%)h + (ϕ|Θ%)h − (ϕ|γ1ρ)h . (29)

In particular, the boundedness condition on ρ̂ 7→ (φ̂|ÂΘρ̂) implies that ϕ ∈ D(Θ∗) = D(Θ). Therefore
equation (29) simplifies further and we conclude that

(Â∗Θφ̂|ρ̂)Ĥ − (ÂΘφ̂|ρ̂)Ĥ = (γ0φ− ϕ|γ1ρ)h . (30)

If ρ ∈ ker γ0, the left hand side vanishes – we recall that pr1Â
∗
Θφ̂ = A∗φ. Since (γ0, γ1) is a surjective

map, it follows that γ0(φ) = ϕ, that is, φ̂ ∈ D(ÂΘ).

Remark 40: Proposition 39 can be easily generalized to the case of an arbitrary boundary triple
(h, γ0, γ1) for the adjoint S∗ of a densely defined symmetric operator S on an Hilbert space H 4. In

this latter case, Θ is a densely defined self-adjoint operator on h, while the operator ŜΘ is defined on
D(ŜΘ) ⊂ Ĥ

.
= H⊕ h, in particular,

D(ŜΘ)
.
= {φ̂ ∈ Ĥ| φ ∈ D(S∗) , ϕ ∈ D(Θ) , γ0φ = ϕ} ,

where φ̂ = (φ, ϕ).

4For the sake of completeness, one should assume that γ0 is not closable with respect to the norm topology of H – in
order to ensure that D(ÂΘ) is dense in Ĥ: This is the case in all applications.
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Remark 41: The spectral properties of ÂΘ can be linked to elliptic boundary value problems with
spectral-dependent boundary conditions, see for example [Beh10] and [BL12]. Indeed, λ ∈ ρ(ÂΘ) implies
that λ ∈ ρ(AΘ−λ), where AΘ−λ denotes the self-adjoint extension of A defined via Proposition 19.

We can now formulate the counterpart of Theorem 30 for the case at hand. Since the proof is the
same mutatis mutandis, we will omit it:

Theorem 42: Let (h, γ0, γ1) be the boundary triple associated with A∗ as per Proposition 24. Let
Θ: D(Θ) ⊆ h→ h be a self-adjoint operator and let assume that the spectrum of the self-adjoint operator

ÂΘ defined in Proposition 39 is bounded from below. Finally let pr1 : H → L2(M) be the projection to

the first component of Ĥ and let ext : H2(M) → Ĥγ0
be the extension map φ 7→ φ̂ext

.
= (φ, γ0φ). For

f ∈ C∞(N̊), let

[GΘf ](t)
.
= pr1

[ ∫
R
Â
− 1

2

Θ sin
[
Â

1
2

Θ(t− t′)
]
f̂ext(t

′)dt′
]
. (31)

Then (G+
Θ,G

−
Θ) where G+ = θ(t− t′)G and G− = −θ(t′ − t)G is a pair of advanced and retarded Green’s

operators for P as per Definition 27 subjected to the boundary conditions (24).

Example 43: With reference to the same geometric setting as in Example 38 we apply the previous
analysis, Theorem 42 in particular, to the dynamical boundary condition (24) defined out of the operator

Θ = −
∑n+1
`=2 ∂

2
x`

. Following [Z18], a normalized complete system of generalized eigenfunctions is

ψ̂ξ,k(x1, x) =
[
a(ξ2 + 1)

]− 1
2

(
eikx

(
cos(ξx1)− ξ sin(ξx1)

)
eikx

)
, (32)

where a = (2π)n−1 π
2 . A direct computation yields

[
pr1∆̂φ̂

]
(x1, x) =

∫
R+×R

(k2 + ξ2)ψξ,k(x1, x)

[ ∫
R+×R

ψξ,k(y1, y)φ(y1, y)dy1dy

]
dξdk

[GΘf ](t, x1, x) =

∫
R

∫
R+×R

sin
[
(ξ2 + k2)

1
2 (t− s)

]
(ξ2 + k2)−

1
2ψξ,k(x1, x)·

·
[ ∫

R+×R
ψξ,k(y1, y)f(s, y1, y)dy1dy

]
dξdkds .

Acknowledgements

The work of C. D. was supported by the University of Pavia. The work of N. D. was supported in part
by a research fellowship of the University of Pavia. The work of N. D. and of H. F. was supported
in part by a fellowship of the “Progetto Giovani GNFM 2017” under the project “Wave propagation
on Lorentzian manifolds with boundaries and applications to algebraic QFT” fostered by the National
Group of Mathematical Physics (GNFM-INdAM). We are grateful to Felix Finster, Nadine Grosse, Valter
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