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Abstract

We propose a novel multivariate approach for dependence analysis in the energy market.

The methodology is based on tree copulas and GARCH type processes. We use it to study

the dependence structure among the main factors affecting energy price, and to perform

portfolio risk evaluation. The temporal dynamic of the examined variables is described

via a set of GARCH type models where the joint distribution of the standardised residuals

is represented via suitable tree copula structures. Working in a Bayesian framework, we

perform both qualitative and quantitative learning. Posterior summaries of the quantities

of interest are obtained via MCMC methods.
Keywords: Multivariate Analysis, Bayesian Analysis, Copula Model, Energy Market,

Markov Chain Monte Carlo.

1. Introduction

In recent years, the behaviour of the energy market has assumed a crucial role in the

global economy, impacting and influencing both economic and social activities. Energy

price directly affects industrial costs, becoming a fundamental element in the decision-

making process of companies and entrepreneurs. The energy price is related to the cost

and quantity of raw materials used to produce it. Moreover, since 2005, it is also related

to the price for carbon emission (CO2). Indeed, when applying the Kyoto Protocol, the

European Union Emissions Trading Scheme (EU-ETS) of 2005 set up caps for the CO2
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emissions of plants. Installations can increase emissions above their caps by acquiring

emission allowances. Furthermore, installations with emissions below caps are allowed to

sell unused allowances. Permits can be traded in spot, future and option markets and the

power sector is a key player in the EU-ETS, see e.g. Reinaud (2007). Finally, the elements

determining the energy price have become increasingly interconnected in the last years.

In this paper, we use Bayesian AR-GARCH copula models to study the behaviour

and the connections among the main factors affecting energy price (coal, gas, oil and CO2

prices). Our aim is to identify the dependence structure characterising the market, with

particular attention to tail behavior. We focus on two representative European markets,

the Italian and the German. For both markets we consider daily observations of one

year forward contracts subscribed in 2014. Differently from the German case, only in

2014 Italian power prices were traded on a regulated market. In order to investigate the

effect of this event we also analyse the Italian market in the period 2013-2016. We work

in terms of monthly logarithmic return rates and we model their temporal dynamic via

AR-GARCH processes. We account for the dependence between the variables by fitting

alternative copula models to the distribution of the standardised residuals.

We perform both qualitative and quantitative Bayesian analysis, and we show how

suitable pictorial representations of the dependence structure of the processes can be ob-

tained. Finally, we illustrate how market risk of energy portfolios can be easily estimated

via Bayesian predictive measures.

The estimated dependence structures are in line with some specific characteristics

of the current energy market. In particular, we observe that the price of Brent (one

of the major classifications of oil) has a marginal influence on the power price and the

commodities that mostly impact the energy price are natural gas and coal. Furthermore,

for the Italian case we find that the pairwise dependence between variables increases for

almost all the examined quantities from 2013 to 2016.

Among possible alternative models for dependence analysis, we focus on copula func-

tions, which are nowadays very popular in finance, insurance, econometrics and recently

in the analysis of commodity markets; see e.g. Czado et al. (2011); Wen et al. (2012); Wu

et al. (2012); Jaschke (2014); Marimoutou and Soury (2015); Dalla Valle et al. (2016) and

Oh and Patton (2017). Although there are different types of bivariate copulas available,

2



the choice of multivariate copulas is rather limited, due to computational and theoretical

limitations. To overcome this issue, Joe (1996) introduced the Pair Copula Construction

(PCC), as an instrument for building flexible multivariate copulas starting from a set of

bivariate ones, referred to as linking copulas. The core of this approach is its graphical

representation, called R-vines, that consists of a nested set of trees, each edge of which is

associated with a linking copula, see Bredford and Cooke (2001, 2002). Unfortunately, R-

vines present a combinatorial complexity that may create difficulties in structural learning

and parameter estimation both in frequentist and in Bayesian settings. In the frequentist

approach, a two steps estimation procedure, known as Inference Function for Margins

(IFM) proposed by Joe (1997), is usually applied. Also in the Bayesian framework it is

common the use of a suitable two steps procedure where the underlying copula structure

is selected a priori, see e.g. Hofmann and Czado (2010); Min and Czado (2010) and Czado

et al. (2011). Recently, Gruber and Czado (2015a,b) developed a Bayesian approach for

vine with structural learning. Nevertheless, due to the nested structure of the R-vine,

the algorithms used to simulate from the posterior distributions are computationally de-

manding.

In order to reduce the complexity of the learning procedure and develop an efficient

Bayesian approach to jointly estimate the copula structure and its parameters, in this

paper we rely on tree copula models introduced by Kirshner (2007). Tree copulas are

truncated R-vines, see Kurowicka (2011), whose underlying graphical structure, simpler

than the R-vine structure, allows the inference procedure to be simplified. Furthermore,

they provide a pictorial representation of the dependence structure that is easy to explain

to non-experts. Nevertheless, considering only tree structures may be too restrictive to

represent a realistic dependence among variables. Hence, following Silva and Gramcy

(2009) and Elidan (2013), we also examine finite and infinite mixture of tree copulas. In

the latter case we assume a non-parametric Dirichlet Process prior.

The use of Bayesian techniques in contrast to frequentist methods is motivated by the

fact that the latter are not asymptotically efficient when applied to copula models, see

Joe (2005). Moreover, in the Bayesian setting parameters uncertainty can be considered

in the prediction. Another advantage of our approach based on Markov Chain Monte

Carlo (MCMC) methods is that it allows mixture models to be estimated easily. Finally,
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portfolio predictive cumulative distributions, risk measures and credible intervals for all

the estimated parameters can be straightforwardly approximated by using the output of

the MCMC.

The outline of the paper is as follows. In Section 2 our tree copula models are pre-

sented. In Section 3 the Bayesian estimation methodology is outlined. Section 4 describes

the application of the proposed methodology to the analysis of real data. Readers pri-

marily interested in the application may wish to browse lightly through Sections 2-3 and

focus on Section 4. Concluding remarks are given in Section 5. The details of the MCMC

algorithms and further results on simulated data are provided in the Supplementary Ma-

terial.

2. AR-GARCH copula models specification

In order to describe the dynamic of the prices of the commodities we rely on AR-

GARCH copula models. Let St,k be the price at day t of commodity k, and Xt,k =

log
{
St+20,k/St,k

}
be the corresponding monthly logarithmic return rate. Varying t over

the set of working days, we obtain for each commodity k = 1, . . . , N a time series (Xk,t)

that we model via an AR(p)−GARCH(q, r) structure. More precisely,

Xk,t =
p∑
i=1

ak,iXk,t−i + εk,t,

εk,t = σk,tZk,t,

σ2
k,t = σ2

k +
q∑
i=1

bk,iσ
2
k,t−i +

r∑
j=1

ck,jε
2
k,t−j. (1)

Setting q and r equal to 0, one obtains an AR(p) model with σ2
k,t = σ2

k for every t ≥ 1.

The vectors Zt = (Z1,t, . . . , ZN,t) for t = 1, . . . , T are usually assumed to be inde-

pendent and identically distributed. A common assumption is that Zk,t = εk,t/σk,t are

standardised residuals normally distributed with zero mean and unit variance, and are

jontly normally distributed with unknown correlation matrix. As an alternative, in this

work we propose copula based models for the vector Zt of the standardised residuals, see

Section 2.4.

In Sections 2.1, 2.2 and 2.3 we briefly introduce copula functions, the related notation

and terminology needed to define our models.
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2.1. Copula Functions

A popular and efficient tool in multivariate dependence analysis is the copula func-

tion. The advantage of copulas is the ability to obtain the joint multivariate distribution

embedding the dependence structure of the variables. A copula is a multivariate distri-

bution with uniform margins on the unit interval. It is used to couple one-dimensional

marginal distributions in order to obtain the corresponding joint multivariate distribu-

tion. Sklar’s theorem (Sklar, 1959) states that any N -dimensional cumulative distribution

function (cdf) F , with univariate cumulative marginal distributions F1, . . . , FN , can be

written as F (z1, . . . , zN) = C
(
F1(z1), . . . , FN(zN)

)
, where C is a suitable copula function.

Consequently, if F is absolutely continuous, the corresponding joint probability density

function (pdf) is given by

f(z1, . . . , zN) = c
(
F1(z1), . . . , FN(zN)

)
f1(z1) · · · fN(zN),

where c is the copula density function.

2.2. Tree Copula

As mentioned in Section 1 graphical models can be used to simplify the construction of

multivariate copulas. In a graphical model, the structure of the graph provides a pictorial

representation of the conditional independence relationships between the variables; for a

detailed presentation and the relevant terminology see Lauritzen (1996).

In this paper, we consider a Markov tree model, a particular type of graphical model

having as underling graph an undirected tree with set of nodes V = {1, . . . , N} and set

of edges E (unordered pair of nodes). A random variable is associated with each node

of the tree and the global Markov property is used to read conditional independencies

among them. According to this property, disconnected sets of variables are conditionally

independent given a separating set. Since a tree is uniquely defined by its edge set, in

the following we use E to denote the tree structure. We indicate with EN the set, of

cardinality NN−2, of all tree structures with N nodes.

If Z is a random vector with multivariate (positive) pdf f on Z ⊂ RN represented by

a Markov tree E , then its joint density can be factorised as

f(z1, . . . , zN) =
 ∏

(l,m)∈E

fl,m(zl, zm)
fl(zl)fm(zm)

 N∏
i=1

fi(zi), (2)
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where fl is the marginal density of Zl and fl,m is the joint density of (Zl, Zm).

Following the tree copula construction of Kirshner (2007), we represent each density

fl,m in (2) via the corresponding bivariate linking copula density cl,m associated with the

edge (l,m). Hence, equation (2) can be re-written as

f(z1, . . . , zN) =
∏

(l,m)∈E
cl,m

(
Fl(zl), Fm(zm)

) N∏
i=1

fi(zi),

where Fl and Fm are the marginal cdfs of Zl and Zm.

Conversely, given a tree structure E and a family of a bivariate copula cl,m(ul, um|θl,m)

(parameterised through a parameter θl,m), cθ(u1, . . . , uN) = ∏
(l,m)∈E cl,m(ul, um|θl,m) is

an admissible copula density. To simplify the notation, if m is the parent node of l

in the directed version of E with root node 1, we set cθl,m
(ul, um) = cl,m(ul, um|θl,m);

otherwise if l is the parent node of m, cθm,l
(um, ul) = cl,m(ul, um|θl,m). Consequently,

fθ(z1, . . . , zN) = ∏
(l,m)∈E cθl,m

(
Fl(zl), Fm(zm)

)∏N
i=1 fi(zi), is a density with margins fi,

i = 1, . . . , N .

For example, for the tree copula reported in Figure 1, the joint density factorises as

f(z1, z2, z3, z4) = cθ1,2 (F1(z1), F2(z2)) cθ1,3 (F1(z1), F3(z3)) cθ3,4 (F3(z3), F4(z4))
4∏

k=1
fk(zk).

Figure 1: Graphical representation of a tree copula on 4 variables.

θ12 θ13

θ34

Z1

Z2 Z3

Z4

2.3. Mixture of Tree Copula

In order to overcome the restrictions imposed by the tree structure, we consider copula

functions obtained as the mixture of tree copulas. This strategy allows us to preserve
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the relative low complexity of the Markov tree structures, taking into account richer

dependencies between the variables. A mixture of Markov tree copulas is given by

c(u1, . . . , uN) =
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(ul, um),

where D ≤ +∞ is the number of mixture components, (wd)d=1,...,D are positive weights

with ∑D
d=1wd = 1, Ed (d = 1, . . . , D) is the tree structure of the d-th component of the

mixture, and {θ(d)
l,m} are the copula parameters corresponding to the tree structure Ed.

A possible drawback of the mixture of tree copula is that its graphical model cannot

be straightforwardly identified. See Meilă and Jordan (2000) for more details.

2.4. Distribution of the Standardised Residuals

In our AR-GARCH models we consider two alternative copula-based distributions for

the vectors of standardised residuals. According to the first one, we assume that for any

fixed t the dependence structure among the standardised residuals is given by a tree copula

distribution with unknown underlying structure E . Therefore, the pdf of the vector Zt is

given by

fZt(z1,t, . . . , zN,t|θ, E) =
∏

(l,m)∈E
cθl,m

(
Fνl

(zl,t), Fνm(zm,t)
) N∏
k=1

fνk
(zk,t), (3)

where θ is the collection of all the copula parameters θl,m with (l,m) ∈ E , Fνk
is the

marginal cumulative distribution function with parameter νk and fνk
the corresponding

density. In the second model, we represent the joint density of the standardised residuals

via a mixture of tree copulas, i.e.

fZt(z1,t, . . . , zN,t|w,E,Θ) =
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl

(zl,t), Fνm(zm,t)
) N∏
k=1

fνk
(zk,t),

where w = (w1, . . . , wD), E = {E1, . . . , ED}, Θ = {θ1, . . . ,θD}, θd denoting the collection

of the copula parameters θ(d)
l,m for the d-th component.

The assumption of normality for the marginal distribution function Fνk
of the stan-

dardised residuals may be not adequate due to possible heavy tails and asymmetry in

the data. Hence, in addition to the case of Normal residuals, we also consider the case

in which the standardised residuals follow a Skew Student-t distribution of parameters

νk = (λk, ηk).
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Following Hansen (1994), the Skew-t density with parameters λ (skewness) and η

(degree of freedom) is defined as

fλ,η(z) =


b c
(

1 + 1
η−2

(
bz+a
1−λ

)2)−(η+1)/2
z < −a/b

b c
(

1 + 1
η−2

(
bz+a
1+λ

)2)−(η+1)/2
z ≥ −a/b

with η > 2 and −1 < λ < 1. The constants a, b and c are given by a = 4λc
(
η−2
η−1

)
,

b2 = 1 + 3λ2 − a2, and c = Γ
(
η+1

2

)
/
√
π(η − 2)Γ(η/2).

Hansen (1994) shows that this is a proper density function with mean 0 and unit vari-

ance. Furthermore, if λ = 0 the Skew-t is reduced to the standard Student-t distribution.

If λ > 0 (λ < 0), then this function is positively (negatively) skewed.

2.5. Linking Copulas

We assume that every bivariate copula density cθl,m
belongs to a specific family de-

pending on a parameter θl,m. We focus on two well-known family of copulas for tail

dependence, Gumbel and Clayton, and their rotations (Double Gumbel and Double Clay-

ton). These copulas have been widely used in applied analyses to study tail dependence

between variables of interest. More sophisticated families of copulas for tail dependence

can be effectively approximated for practical purposes by Gumbel and Clayton ones, see

Demarta and McNeil (2005).

Double Gumbel and Double Clayton copulas are based on the rotations of stan-

dard Gumbel and Clayton copula family. The Gumbel copula is given by CG(u, v) =

exp
{
−
[
(− log u)φ + (− log v)φ

]1/φ}
, where φ is a parameter assuming value in [1,∞).

The Clayton copula is defined as CC(u, v) =
[
max

(
u−φ + v−φ − 1, 0

)]−1/φ
, where φ ∈

(0,∞). In order to define Double Clayton and Double Gumbel copulas, we first reparam-

eterise the copulas defined above in term of Kendall’s tau measure; τ = (φ− 1)/φ for the

Gumbel copula, while τ = φ/(2 + φ) in the case of Clayton copula.

Subsequently, rotations are used to obtain the Double Clayton and Double Gumbel

copulas. If cG(u, v; τ) is the Gumbel copula density reparameterised by the Kendall’s tau,

the Double Gumbel copula of first kind of parameter τ is defined by

cDG1(u, v; τ) =

 cG(u, v; τ) for τ > 0

cG(1− u, v;−τ) for τ < 0,
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while the Double Gumbel copula of second kind is

cDG2(u, v; τ) =

 cG(1− u, 1− v; τ) for τ > 0

cG(u, 1− v;−τ) for τ < 0.

In an analogous way we define the Double Clayton of first and second kind, DC1 and DC2,

in term of rotations and Kendall’s tau. Therefore, any linking copula cθl,m
is completely

described by the parameter θl,m = (τl,m, ζl,m) taking values in (−1, 1) × H, where H =

{DG1, DG2, DC1, DC2}.

3. Methodology

In this section, we illustrate how to perform Bayesian inference for AR-GARCH cop-

ula models. We denote with Φ the collection of all the parameters describing the cop-

ula structures (for instance in the case of the simple tree copula distribution one has

Φ = {θ, E}), with ν = (ν1, . . . , νN) the collection of the parameters of the marginal distri-

butions and with A the collection of the parameters of the marginal time series models.

In a fully Bayesian approach, if π(·) is the prior density on the parameters (Φ,ν,A) and

L(OT |Φ,ν,A) is the likelihood of the observations OT = {(x1,t, . . . , xN,t) , t = 1, . . . , T},

we obtain the posterior density using Bayes’ theorem as

π(Φ,ν,A|OT ) ∝ L(OT |Φ,ν,A)π(Φ,ν,A).

In principle, from the posterior distribution one can extract all the information needed for

inference. In particular, one can compute posterior quantities, such as the mean or mode,

as estimators for the parameters and evaluate predictive distributions for forecasting.

Often the posterior distribution does not have a closed-form analytical expression. One

possibility is to use MCMC methods to produce samples from a Markov chain having as

stationary distribution the posterior of the model parameters, see e.g. Robert and Casella

(2004). In the fully Bayesian approach, even MCMC algorithms can be inefficient and

computationally demanding due to the structure of the likelihood.

In order to reduce the computational complexity of the fully Bayesian approach, in this

paper we apply a combination of IFM and Bayesian procedures (shortly B-IFM), see e.g.

Min and Czado (2010) and Dalla Valle et al. (2016). Following Min and Czado (2010)

and Czado and Min (2011), in a first step we use a frequentist approach to estimate
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the parameters A of the univariate marginal AR-GARCH models. This is done via

the forward-backward approach implemented in the package rugarch of R. Subsequently,

estimates of copula parameters Φ and of marginals parameters ν (given the estimated

parameters A) are obtained in a Bayesian way. The posterior distributions for the copula

parameters Φ and for the marginals parameters ν (given the estimated parameters A)

can be obtained by

π(Φ,ν|A,OT ) ∝ L(OT |Φ,ν,A)π(Φ,ν).

Although such a two steps procedure may lead to an underestimate of the uncertainty

in the other parameters, in practice one usually does not see any significative difference

between parameters estimated with a fully Bayesian approach and those estimated with

this two steps approach. In Section 4 we compare the results obtained via our B-IFM

procedures to the ones deriving from a fully Bayesian approach. Further comparisons are

presented in the Supplementary Material.

In the following subsections, we describe the choice of the prior in the B-IFM setting

for AR-GARCH copula models with Skew-t marginals. The case of AR copula mod-

els and/or Normal marginals, as well as the fully Bayesian setting, can be obtained via

straightforward modifications. More details are provided in Section 4 and in the Sup-

plementary Material. It is important to observe that the Bayesian models that will be

described in Sections 3.1–3.3, can be easily adapted to employ other types of copulas

and/or marginal distributions.

3.1. Bayesian Tree Copula Model

In this model, we assume that the standardised residuals have a tree copula distribution

(3), where each cθl,m
is a Double Copula with parameter θl,m, as described in Section 2.5.

We suppose that the standardised residuals follow the univariate Hansen Skew-t pdfs with

parameters νk = (λk, ηk) described in Section 2.4.

We assign the following independent prior distributions

λk ∼ Beta(−1,1)(αk, βk)

ηk ∼ Exp(Λk) (4)

θl,m = (τl,m, ζl,m) ∼ Beta(−1,1)(δl,m, γl,m)× UnifH(·)

E ∼ U(·),
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for k = 1, . . . , N and (l,m) ∈ E . We denote with π(ν,θ, E) the corresponding joint prior

density. In (4), Beta(−1,1)(α, β) indicates a translated Beta distribution on (−1, 1) of pa-

rameters (α, β) 1 and UnifH(·) is a uniform distribution on H = {DG1, DG2, DC1, DC2}.

For the prior on the degrees of freedom, following Geweke (1993), we consider an expo-

nential distribution Exp(Λ) with parameter Λ. In the absence of specific prior information

on the dependence structure, we use uniform prior on EN . Note that this prior is a special

case of the default decomposable prior proposed by Meilă and Jaakkola (2006). The joint

posterior density is

π(θ,ν, E|OT ,A) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl

(
xl,t −

∑p
i=1 al,ixl,t−i
σl,t

)
, Fνm

(
xm,t −

∑p
i=1 am,ixm,t−i
σm,t

))
×

N∏
k=1

1
σk,t

fνk

(
xk,t −

∑p
i=1 ak,ixk,t−i
σk,t

)
π(θ,ν, E),

where θ is the collection of all the copula parameters θl,m.

Since the previous posterior density cannot be obtained in closed form, we rely on

a Metropolis within Gibbs algorithm, based on the works of Silva and Gramcy (2009),

Gruber and Czado (2015a,b). For more details, see the Supplementary Material.

3.2. Bayesian Tree Copula Mixture Model

We now consider the case in which the joint distribution of the standardised residuals

is represented via a finite mixture of D tree copulas with double linking copulas and

Hansen Skew-t margins. The pdf of the standardised residuals is equal to

fZt(z1,t, . . . , zN,t) =
D∑
d=1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl

(zl,t), Fνm(zm,t)
) N∏
k=1

fνk
(zk,t).

In the previous equation, w = (w1, . . . , wD) is the vector of weights and Ed and θd = {θ(d)
l,m}

are the tree copula structure and the vector of copula parameters for the d-th component,

respectively. Finally, we set E = {E1, . . . , ED} and Θ = {θ1, . . . ,θD}.

1X has translated Beta distribution on (−1, 1) with parameters (α, β), if X = 2Y − 1 where Y has

Beta distribution with parameters (α, β).
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We assign the following independent prior distributions to the parameters

w ∼ Dir(ψ1, . . . , ψD) (5)

λk ∼ Beta(−1,1)(αk, βk)

ηk ∼ Exp(Λk)

θ
(d)
l,m = (τ (d)

l,m, ζ
(d)
l,m) ∼ Beta(−1,1)(δl,m, γl,m)× UnifH(·)

Ed ∼ U(·)

for k = 1, . . . , N , d = 1, . . . , D and we denote with π the corresponding prior density.

In the above Dir(ψ1, . . . , ψD) is a Dirichlet distribution with density proportional to∏D−1
d=1 w

ψd−1
d (1−∑D−1

j=1 wj), with wD = 1−∑D−1
d=1 wd.

In order to sample from the posterior distribution of the finite mixture of tree copulas

we adopt the data augmentation procedure by Van Dyk and Meng (2001). The details

of the resulting Metropolis within Gibbs algorithm are described in the Supplementary

Material.

3.3. DP-Tree Copula Model

As an extension of the tree copula mixture model described in the previous subsection,

we propose a Bayesian nonparametric approach based on a Dirichlet process (DP) mixture

model. In this way we do not need to fix a priori the number of the mixture components.

The Dirichlet process DP (G0, ψ) is a measure on measures. It has two parameters,

a scaling parameter ψ > 0 and a base probability measure G0. It was first formalised

by Ferguson (1973) for general Bayesian statistical modelling, as a prior over distribu-

tions with wide support yet tractable posteriors. It is currently one of the most popular

Bayesian nonparametric model. The so-called stick breaking construction, Sethuraman

(1994), shows that if G is a draw from a DP (G0, ψ), then G(·) = ∑
d≥1wdδΨd

(·) where the

atoms Ψd are i.i.d. random variables with distribution G0, δΨd
is a probability measure

concentrated on Ψd and the weights wd are generated using the stick-breaking construc-

tion. More precisely, w1 = v1 and wd = vd
∏
l<d(1 − vl) with vd i.i.d. random variables

with Beta(1, ψ) distribution.

The DP mixture model can be derived as the limit of a finite mixture model where

the number of the components tends to infinity, see e.g. Ishwaran and Zarepour (2002),

and allows for the inclusion of the the uncertainty about the number of components.
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In the DP-Tree Copula Model we assume that the pdf of the standardised residuals

at time t has the form

fZt(z1,t, . . . , zN,t) =
∫ ∏

(l,m)∈E
cθl,m

(
Fνl

(zl,t), Fνm(zm,t)
) N∏
k=1

fνk
(zk,t)G(dθdE),

where G ∼ DP (ψ,G0). By the stick breaking representation we obtain

fZt(z1,t, . . . , zN,t) =
∑
d≥1

wd
∏

(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl

(zl,t), Fνm(zm,t)
) N∏
k=1

fνk
(zk,t).

The base measure G0 decomposes into the product of a prior on θd and a prior on Ed.

We also assume that the concentration parameter ψ of the DP and the parameters ν are

unknown.

Summarising, in the DP-Tree Copula model the prior π is described by

λk ∼ Beta(−1,1)(αk, βk) (6)

ηk ∼ Exp(Λk)

vd ∼ Beta(1, ψ)

(θd, Ed) ∼ G0(·)

ψ ∼ Gamma(aψ, bψ)

for k = 1, . . . , N and d ≥ 1. In (6), Gamma(a, b) denotes a Gamma density with shape

parameter a and scale parameter b. Moreover, we assume that G0 is equal to the product

between a prior on θd with density p0 and a uniform prior on the tree structure Ed. Since

θd = {θ(d)
l,m}, we set p0 = ∏

(l,m) Beta(−1,1)(δl,m, γl,m).

In order to sample from the posterior distribution we adopt a variant of the slice

sampling MCMC algorithm, proposed by Walker (2007) and Kalli et al. (2011). See the

Supplementary Material.

3.4. Model comparison

A commonly used criterion for model comparison is the Deviance Information Criterion

(DIC) introduced by Spiegelhalter et al. (2002). Since DIC cannot be applied to mixture

models, we rely on DIC3, a variant of the original criterion, see Richardson (2002) and

Celeux et al. (2006). Given a density function f(x1:T |ϕ) depending on a set of parameters

ϕ, the DIC is defined as

DIC = −4Eϕ
[

log f(x1:T |ϕ)|x1:T
]

+ 2 log f(x1:T |ϕ̃), (7)
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where ϕ̃ is a posterior estimate of ϕ (a common choice is the posterior mean) and

x1:T = (x1, . . . ,xT ) is the set of observations up to time T .

In the mixture model the set of parameters ϕ is not always identifiable, and conse-

quently we cannot obtain ϕ̃ straightforwardly. To overcome this problem, one can replace

the term depending on ϕ̃ in equation (7) with a function invariant under permutation.

A natural choice is to consider the posterior predictive Eϕ
[
f(x1:T |ϕ)|x1:T

]
, obtaining in

this way the DIC3 as

DIC3 = −4Eϕ
[

log f(x1:T |ϕ)|x1:T
]

+ 2 log
[
Eϕ
[
f(x1:T |ϕ)|x1:T

]]
.

Although these measures present some limitations (see the discussion of the paper of

Spiegelhalter et al. (2002)), they are simple to calculate using MCMC and therefore,

despite the criticisms, widely used in the Literature.

As an alternative measure for model comparison, following the econometric Bayesian

literature, we consider the cumulative log-score, see e.g. Gneiting and Raftery (2007). It

is defined as

log-score =
τ1∑
t=τ0

log
{
Eϕ
[
f(xt+1|x1:t,ϕ)|x1:t

]}
, (8)

where x1:t = (x1, . . . ,xt) is the set of observations up to time t, ϕ is the set of parameters,

f(xt+1|x1:t,ϕ) is the conditional likelihood and Eϕ
[
f(xt+1|x1:t,ϕ)|x1:t

]
is the posterior

predictive distribution. Higher values of the log-score correspond to better fits.

3.5. Dependence Analysis

For the tree copula model of Section 3.1 the dependence structure between the stan-

dardised residuals is directly encoded by the underling graphical structure E . A simple

estimate of the unknown tree structure E is the maximum a posteriori probability (MAP)

tree structure defined as EMAP = argmaxEπ(E|OT ). In addition to the MAP tree one can

evaluate the values of the Kendall’s tau between pairs of standardised residuals. As an

estimate of this measure we compute its predictive posterior mean

τ̂i,j = E[τ(zi,T+1, zj,T+1|Φ,ν)|OT ] =
∫
τ(zi,T+1, zj,T+1|Φ,ν,A)π(dΦdν|OT ,A),

where τ(zi,T+1, zj,T+1|Φ,ν,A) is the Kendall’s tau between the variables zi,T+1 and zj,T+1

under the AR-GARCH copula model given the unknown parameters Φ,ν and the mar-

ginally estimated parameters A. For the models described in Sections 3.1-3.3, numerical
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approximations of the previous quantities can be easily obtained from the output of the

corresponding MCMC algorithm.

For the mixture of tree copula models, in order to obtain a representative graphical

structure, we apply the Minimum Spanning Tree (MST) approach. This procedure allows

us to obtain a representative tree from the weighted graph based on Kendall’s tau, see

e.g. Wang and Xie (2016). More precisely, we consider a complete weighted graph in

which the weight of each edge (i, j) is the absolute value of the (estimated) Kendall’s tau

between the variables i and j, i.e. |τ̂i,j|. The Minimum Spanning Tree is the spanning

tree that maximises the sum of edge weights or, equivalently, it is the spanning tree E∗

such that ∑(i,j)∈E∗(1− |τ̂i,j|) = minE
∑

(i,j)∈E(1− |τ̂i,j|), where the minimum is taken over

the set of all possible spanning trees.

It is worth noticing that there is no direct correspondence between missing edges in

the MST and conditional independences between the variables. In particular there is no

connection between this tree and a possible Markov Tree structure associated to the joint

distribution of the variables.

3.6. Risk Measures

Different risk measures are usually used to analyse and quantify the tail risk exposure,

see e.g. Klumgman et al. (2008) and Szegö (2005). In order to evaluate the market risk

of an energy portfolio we focus on two well-known quantile risk measures: Value-at-Risk

(V aR) and Expected Shortfall (ES).

Following Artzner et al. (1999), the V aR at given probability level α is defined as

V aRα(V ) = − inf{v : FV (v) ≥ α},

where FV is the cdf of the net worth V of a portfolio. Typically α is set equal to 0.01

or 0.05, corresponding to the so-called 99% and 95% VaR. The VaR is one of the most

commonly used risk measure by practitioners, it is easy to estimate and to explain even

to non-experts. The 99% V aR for a horizon of two weeks is acceptable measure of risk

according to the Basel Committee on Banking and Supervision of Banks for International

Settlement (Basel Committee (1995) and following amendments). Nevertheless, many

authors have criticised its adequacy as a measure of risk for different reasons, see e.g.
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Acerbi and Tasche (2002). The main problems are the following. First of all, it consid-

ers only a single quantile of the portfolio distribution, so that it does not provide any

information about the potential size of loss that exceeds its value. Secondly, it does not

satisfy the sub-additivity property and, consequently, it may underestimate the portfolio

risk. A measure that overcomes the previous problems is the Expected Shortfall (ES),

see eg Artzner et al. (1999). For a significance level α, the ES is (minus) the conditional

expectation of V , given that V is below −V aRα(V ), i.e.

ESα = −E[V |V < −V aRα(V )].

ES is a coherent risk measure and, in contrast to V aR, is sensitive to the severity of

losses beyond V aR. For a comprehensive and critical comparison between V aR and ES,

see e.g. Embrechts et al. (2014) and Emmer et al. (2015).

Using a Bayesian approach, given the data observed until time T , the k-step-ahead

V aR at level α, i.e. the V aRα(VT+k), can be estimated using the α-quantile of the k-

step-ahead (posterior) predictive distribution of the net worth. This posterior predictive

distribution at time T + k is given by

FVT +k
(v|OT ) := P{VT+k ≤ v|OT} =

∫
P{VT+k ≤ v|OT ,Φ,ν}π(dΦdν|OT ).

In the previous equation, P{VT+k ≤ v|OT ,Φ,ν} is the predictive distribution of VT+k

given the observations OT and the unknown parameters Φ,ν, and π(dΦdν|OT ) is the

posterior distribution of the parameters given the observations OT . Hence, V aRα(VT+k),

is estimated by

V aRα,T+k = − inf{v : FVT +k
(v|OT ) ≥ α}

and the k step ahead ES at level α is estimated by

ESα,T+k = −E[VT+k|VT+k < −V aRα,T+k,OT ].

The previous quantities can be easily approximated using the MCMC output, see e.g.

Osiewalski and Pajor (2010).
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4. Empirical analysis

4.1. Data description

We apply the proposed models to the analysis of the Italian and German energy mar-

kets. We consider the following variables: Power (Italy/German), Brent, TTF (natural

gas price deriving from transactions in virtual trading points in the Netherlands), CO2

(price to pay for the emission of carbon dioxide into the atmosphere) and API (index rep-

resenting a reference price benchmark for coal imported into North-West Europe). For the

Italian market we also take into account PSV (natural gas price deriving from transactions

in virtual trading points in Italy). The data are daily observations of one-year forward

contracts. Power prices are obtained from the European Energy Exchange (EEX)2, the

leading energy exchange in Central Europe, while the remaining data are obtained from

Reuters3; all values are expressed in Euros. Due to the intrinsic nature of these contracts,

the dependence structure among the considered variables can differ significantly from one

year to another. Since our model does not take into account changes of regime, in our

analysis we focus on a single year at the time. In the following we present a detailed

analysis of the behaviour of Italian and German markets from January 2014 to December

2014. For completeness of the analysis in Section 4.3 we present a multi-year analysis of

the Italian market. As described in Section 2, in our analysis we work with the monthly

logarithmic return rates Xt,i = log
{
St+20,i/St,i

}
where St,i is the price at each day t of

commodity i and t assumes values in the set of all working days. Descriptive measures for

the considered commodities and for the corresponding logarithmic returns are reported

in Table 1.

4.2. Prior settings and models comparison

In order to describe the marginal time series, we considered a variety of AR-GARCH

models of different orders with Normal or Skew-t marginal distributions. Following a

frequentist approach we selected the model and the order that best fits the data through

the AIC criterion. Table 2 lists the AIC values for a set of representative cases.

2https://www.eex.com
3http://www.reuters.com
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Table 1: Descriptive statistics for the examined commodities (daily prices) and the corresponding

(monthly) logarithmic returns (from January 2014 to December 2014).

Commodities

Power Power Brent API TTF PSV CO2
Italy Germany

Mean 53.71 35.07 72.84 58.82 25.77 27.47 6.095

Std 1.69 0.82 6.59 1.63 0.92 0.86 0.63

Min 49.80 33.77 50.67 54.68 23.05 24.81 4.48

Max 58.45 36.90 79.66 63.85 27.81 29.10 7.42

Kurt 3.67 2.31 6.94 2.43 2.89 2.70 2.32

Skew 0.86 0.64 -1.97 -0.55 -0.20 -0.38 -0.13

Logarithmic return rates

Power Power Brent API TTF PSV CO2
Italy Germany

Mean -0.34 -0.13 -0.37 -0.25 -0.58 0.19 -0.28

Std 0.022 0.023 0.028 0.030 0.027 0.131 0.062

Min -3.18 -3.07 -2.84 -2.60 -2.59 -3.74 -3.83

Max 2.02 2.15 2.42 2.61 1.47 2.76 0.78

Kurt 3.46 2.99 3.27 3.44 2.08 4.90 6.20

Skew -0.32 -0.17 0.22 0.20 -0.080 -0.59 -1.80

We note that none of the models has the lowest AIC value for all marginals. On the

other hand, we observe that the GARCH model shows the worst fit and it will not be

further investigated. We select AR(3)-GARCH(1,1) and AR(3) models that show a good

fit for a high number of marginal series.

In the following, we apply the Bayesian models described in Sections 3.1-3.3: the tree

copula model (TCM), the finite mixture of tree copulas model (Mix-TCM), and the DP-

tree copula model (DP-TCM). In addition to the Skew-t margins case, for the sake of

comparison, we also consider standard Normal marginal distributions. If an AR model

is examined, we include in the parameters list also the precision pk = 1/σ2
k, see (1).
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Table 2: AIC values for representative alternative models for the marginal series.

PowIT PowDE TTF PSV API CO2 Brent

AR(2)-GARCH(2,2) Norm 140 131 312 263 67 75 -147

AR(2)-GARCH(2,2) Skew-t 112 132 299 250 69 73 -147

AR(3)-GARCH(1,1) Norm 141 131 307 255 63 75 -147

AR(3)-GARCH(1,1) Skew-t 112 132 293 243 66 67 -148

AR(3) Norm 144 134 303 252 60 144 -73

AR(3) Skew-t 118 134 290 240 64 96 -107

AR(2) Norm 142 132 304 257 60 140 -75

AR(2) Skew-t 115 132 291 245 63 94 -110

GARCH(1,1) Norm 469 498 517 510 532 390 218

GARCH(1,1) Skew-t 449 491 519 504 483 369 204

This means that we assume νk = (λk, ηk, pk) for Skew-t margins and νk = pk for Normal

margins. Finally, for both cases we assume a standard Gamma prior for pk.

For the prior distributions we consider the following hyperparameters values. We

choose (δl,m, γl,m) = (1, 1), i.e. a uniform prior for each θl,m. In the finite mixture

models we use a symmetric Dirichlet prior with hyperparameters equal to 10 for the

weights w. In DP-tree copula model the hyperparameters of the Gamma prior on ψ are

(aψ, bψ) = (16, 0.25). In case of marginal Skew-t distribution we consider a translated

Beta prior with parameters (1, 1) on λk (skewness parameter) and an Exponential prior

on ηk (degree of freedom) with mean 10. On the parameters precision pk we assign a

Gamma prior with parameters (1, 1). Sensitivity analysis shows that the choice of the

prior settings does not affect significantly the posterior estimates. The DIC3 is slightly

sensitive to the choice of the hyperparameters for the prior on ψ. Hence we tuned them

to get the best result in term of DIC3.

In Table 3 we compare the alternative models in terms of DIC3. The DP tree model

with Skew-t margins shows the best results for both the Italian and the German markets.

Moreover, the models with Skew-t margins are always better than the corresponding ones

with Normal margins. Log-scores, computed out of sample on the last 50 observations
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Table 3: DIC3 values for the alternative models

Italy Germany

Norm Skew-t Norm Skew-t

AR(3) TCM 654 412 655 365

AR(3) Mix-TCM 2 Comp. 624 367 645 367

AR(3) Mix-TCM 5 Comp. 638 373 656 376

AR(3) DP-TCM 564 341 625 354

AR(3)-GARCH(1,1) TCM 235 217 291 273

AR(3)-GARCH(1,1)Mix-TCM 2 Comp. 235 216 287 276

AR(3)-GARCH(1,1)Mix-TCM 5 Comp. 237 237 291 287

AR(3)-GARCH(1,1) DP-TCM 223 207 281 270

and in sample on the last 200 observations, confirm these findings. In Figure 2, we report

the comparison among the out of sample cumulative log-score obtained with the DP-tree

models applied to the AR(3)-GARCH(1,1) and AR(3) estimated standardised residuals

for each domestic market.

With regard to the marginal distribution of the standardised residuals, we computed

the posterior mean and 95% credible interval for the parameters (λ, η) of the Skew-t. Table

4 shows the results for the DP-TCM. One can observe that the estimates of the skewness

parameters λk are very close to zero for all standardised residuals. The 0.95 credible

intervals suggest that there is posterior support for zero for all commodities, although the

ones associated with CO2 and Brent have zero very close to one of the end points. On

the basis of the posterior means of λk, one can suppose that the standardised residuals

of the CO2 series are slightly positively skewed, while Brent’s standardised residuals are

slightly negatively skewed. As far as the estimated degrees of freedom is concerned, the

tails of the API standardised residuals are the most close to Normal (with the estimates of

η between 44 and 49 in the AR copula models and between 17 and 18 in the AR-GARCH

copula models). For all the other commodities the estimated degrees of freedom range

between 4 and 14, supporting the hypothesis of heavy tails.

As discussed in Section 3.3, using the DP-tree copula models one can also estimate

the posterior distribution of the number of clusters. With the AR(3)-GARCH(1,1) DP-
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Figure 2: Out of sample cumulative log-score (on the last 50 observations) for the DP-tree models: Italian

market (first row) and German market (second row).
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Table 4: Posterior mean and 95% credible interval (CI) for the parameters (η, λ) obtained with the

DP-TCM with Skew-t margins.

AR(3)-GARCH(1,1) marginal AR(3) marginal

Market η 95% CI λ 95%CI η 95% CI λ 95%CI

Italy

PowIT 4.69 [3.31,7.29] 0.03 [-0.12,0.21] 6.4 [3.33,14.0] 0.03 [-0.11,0.17]

PSV 7.81 [4.49,15.02] 0.05 [-0.08,0.20] 7.9 [4.24,13.3] -0.04 [-0.27,0.13]

TTF 4.82 [3.39,7.65] 0.04 [-0.07,0.18] 7.8 [4.63,12.1] 0.03 [-0.16,0.19]

API 17.7 [9.1,27.9] -0.06 [-0.22,0.10] 44.0 [25.7,64.0] -0.04 [-0.21,0.11]

CO2 4.71 [3.43,7.42] 0.12 [-0.03,0.27] 4.11 [2.80,6.41] 0.136 [-0.01,0.30]

Brent 11.5 [6.33,19.32] -0.16 [-0.33,0.01] 3.54 [2.25,5.91] -0.10 [-0.24,0.04]

German

PowDE 13.58 [9.70,27.2] 0.10 [-0.09,0.26] 12.28 [4.30,20.8] 0.06 [-0.12,0.24]

TTF 4.54 [3.20,7.31] -0.03 [-0.1,0.13] 7.8 [3.35,15.3] -0.03 [-0.19,0.11]

API 18.6 [6.7,34.7] -0.05 [-0.21,0.13] 49.1 [26.6,73.1] -0.04 [-0.22,0.15]

CO2 4.38 [3.53,6.23] 0.12 [-0.01,0.30] 4.00 [2.84,6.11] 0.14 [0.01,0.30]

Brent 12.5 [6.33,18.9] -0.16 [-0.28,0.05] 3.90 [2.83,6.04] -0.09 [-0.22,0.04]

tree the posterior mode of the number of clusters is 6 for the Italian market and 8 for the

German market. We have similar results with the AR(3) DP-tree copula model for which

the posterior mode of the number of clusters is 5 for the Italian and 8 for the German

one. The posterior histograms of the number of clusters are reported in Figure S5 and S6

in the Supplementary Material.

4.3. Dependence Structure Analysis

In this subsection we study the dependence between the commodities in each domestic

market. We start by considering the tree copula model with Skew-t margins described

in Section 3.1 applied to the estimated standardised residuals of the AR(3)-GARCH(1,1)

and of the AR(3) models. The posterior distribution on tree structures is quite flat

and the probabilities of the MAP trees ranges between 0.08 and 0.22 (in the alternative

models/markets). As an example, in Figure 3 we report the MAP structures obtained

for the AR(3)-GARCH(1,1) model for each domestic market, with posterior probabilities

equal to 0.22 and 0.13, respectively. In Figure 5 we display the corresponding results
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obtained with the AR(3) estimated standardised residuals. In this case, the posterior

probabilities are 0.09 for the Italian market and 0.08 for the German market.

Ranking the trees with respect to their posterior probabilities, we find that the highest

ranked trees share some interesting features. In order to obtain a cumulative posterior

probability at least equal to 0.5, in the AR(3)-GARCH(1,1) model we need to consider

6 structures for the Italian market and 8 structures for the German one. In all these

structures Brent is an end node. Moreover, in the Italian case, Power Italy is always

connected to TTF or CO2 and, in addition, the path PSV-TTF-API is always included.

For the German market, in each of these structures we find the edge TTF-API and Power

Germany is connected to TTF or CO2. In case of AR(3) estimated standardised residuals,

we need to consider the first 8 ranked structures for the Italian market and the first 10 for

the German market in order to obtain a cumulative posterior probability at least equal to

0.5. Also in this case, for the Italian market we find the path PSV-TTF-API and Power

Italy is connected to CO2. In the German market there are always the edges TTF-API

and Power Germany-CO2 and Brent is an end node in both markets.

Figure 3: AR(3)-GARCH(1,1) TCM with Skew-t margins: MAP tree structure for the Italian market

(left) and German market (right). The posterior mean of the Kendall’s tau (given the MAP tree structure)

is reported on each edge.
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The ranked trees are in line with some well-known characteristics of the current en-

ergy markets. Indeed, in both markets, Brent is always an end node and the value of

the Kendall’s tau of the corresponding edge is quite low confirming that the use of this
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Figure 4: AR(3)-GARCH(1,1) TCM with Skew-t margins: weighted graph for the Italian market (left)

and German market (right). The weights on each edge correspond to the posterior probability that the

same edge belongs to the ranked trees with at least 0.5 cumulative probability. The edges of the MST

are reported in light blue. The (global) posterior mean of the Kendall’s tau is reported within brackets

on each edge.
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commodity for energy production has drastically decreased in the last years. Moreover, as

expected, the two gas nodes, TTF and PSV, are always connected in the Italian market

and present high values of the Kendall’s tau. The commodity that impacts mostly on

the energy price is TTF, although also CO2 plays an important role in the market. This

is consistent with the fact that TTF is one of the main raw material used for energy

production and the cost of CO2 permissions cannot be neglected in the analysis of energy

price behaviour, see e.g. Marimoutou and Soury (2015) and references therein.

Starting from the ranked tree structures, we constructed a graph with weights associ-

ated to each edge corresponding to the posterior probability that the same edge belongs

to the ranked trees with at least 0.5 cumulative probability. Finally, we built the cor-

responding MST by maximising the posterior probabilities. The results are reported in

Figures 4 and 6. The edges defining the MST are in light blue. The grey edges are those

not included in the MST. Edges with weight < 0.02 are not depicted. We note that the

MST structures are equal to the corresponding MAP trees, suggesting that the above

discussed dependence paths are meaningful.

Following Section 3.5, we estimated pairwise Kendall’s tau between the standardised

residuals by computing the corresponding posterior mean for all the models, i.e. TCM,
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Figure 5: AR(3) TCM with Skew-t margins: MAP tree structure for the Italian market (left) and German

market (right). The posterior mean of the Kendall’s tau (given the MAP tree structure) is reported on

each edge.
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Figure 6: AR(3) TCM with Skew-t margins: weighted graph for the Italian market (left) and German

market (right). The weights on each edge correspond to the posterior probability that the same edge

belongs to the ranked trees with at least 0.5 cumulative probability. The edges of the MST are reported

in light blue. The (global) posterior mean of the Kendall’s tau is reported in brackets on each edge.
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Figure 7: Kendall’s tau weighted graph for the AR(3)-GARCH(1,1) DP-TCM with Skew-t margins.

Italian market (left) and German market (right). The absolute value of the posterior mean of the

Kendall’s tau between the adjacent nodes is reported on each edge. The edges corresponding to MST are

in ligth blue.
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Figure 8: Kendall’s tau weighted graph for the AR(3) DP-TCM with Skew-t margins Italian market (left)

and German market (right). The absolute value of the posterior mean of the Kendall’s tau between the

adjacent nodes is reported on each edge. The edges corresponding to MST are in ligth blue.
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Mix-TCM and DP-TCM. The estimated values are then used to construct the weighted

graphs and the MST structures. In Figures 7 and 8 we show the results for DP-TCM with

Skew-tmargins applied to the estimated standardised residuals of the AR(3)-GARCH(1,1)

and AR(3). We can observe that some values of the Kendall’s tau are very small. This is

not surprising since we are dealing with the residuals of log-returns and not directly with

prices of the commodities. In order to check that these small values are not due to mis-

specification of the linking copulas or to our estimation procedure, we also estimated these

quantities by frequentist approach obtaining comparable results. Also a graphical com-

parison of the behaviour of the predictive residuals (obtained with our Bayesian model)

with respect to the residuals of a frequentist IFM model suggests similar conclusions.

Comparing the MST structures for the DP-TCM models (Figures 7 and 8) and the

MAP trees for the TCM models (Figures 3 and 5) we can note some similarities. For

the German market the MST and the MAP tree structures are the same. On the other

hand, for the Italian market they differ by the edge connecting Brent to the remaining

part of each tree. In all structures Brent is an end point node with different neighbour

sets. More precisely, in the MAPs it is adjacent to PSV, in the AR(3)-GARCH(1,1) MST

it is connected to CO2 and in the AR(3) MST is linked to API. All these edges present

very low values of the estimated Kendall’s tau.

We conclude this section with some results regarding a multi-year analysis of the

Italian market. Italian energy contracts were traded for the first time by EEX in 2014.

Here, we examine data from the previous year 2013 up to December 2016. Data for

2013 have been provided by traders of a leading Italian energy company. In Figure 9 we

report, for each year, the weighted graph based on the absolute values of the Kendall’s

tau obtained with the AR(3)-GARCH(1,1) DP-TCM. It is interesting to note that the

estimated values of the pairwise Kendall’s tau increases for almost all variables from

2013 to 2016. More precisely, Kendall’s tau between PSV and TTF increases from 0.37

to 0.86, reflecting the reduction of price differential between PSV and TTF from 2013

to 2016, see the annual reports of Italian Regulatory Authority for Electricity and Gas

(http://www.autorita.energia.it). An analogous behaviour characterises the dependence

between API and Power Italy as well TTF/PSV and Power Italy. In contrast, Kendall’s

tau between Power Italy and Brent does not present an increasing trend, ranging between
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0.02 and 0.13. This can be possibly explained by the minor rule of Brent in the energy

production.

Figure 9: Kendall’s tau weighted graph for the AR(3)-GARCH(1,1) DP-TCM with Skew-tmargins Italian

market: 2013, 2014, 2015, 2016. The absolute value of the posterior mean of the Kendall’s tau between

the adjacent nodes is reported on each edge. The edges corresponding to MST are reported in light blue.
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4.4. Energy Market Portfolio Analysis

In order to evaluate the market risk of an energy portfolio, we compute the Bayesian

predictive V aR and ES. For each domestic market, we consider a portfolio made of

one power asset and the remaining examined commodities. In our analysis, we work in

the perspective of an energy company that sells energy and buys the other commodi-

ties in order to produce it. Consequently, in the portfolio composition, power has a

positive weight, q1, while the remaining components should have negative weights, −qi,
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i = 2, . . . , N . Hence, the portfolio value (corresponding to its net worth) at time t is

given by Vt = q1St,1 −
∑N
i=2 qiSt,i. The composition of each portfolio has been provided

us by experts of one of the major Italian energy company. More precisely, for the Italian

market we consider a portfolio made of Power Italy, TTF, PSV, API, CO2, Brent with

weights [1, 0, 0.14, 0.28, 0.69, 0], while for the German one, we use a portfolio made of

Power Germany, TTF, API, CO2, Brent with weights [1, 0.61, 0.27, 0.76, 0]. The weights

are a good approximation to the real ones used by the energy company. In the following

we refer to this portfolio as the “realistic” one.

For completeness, we tested our methodology using also alternative portfolio weights.

Some results for an equally weighted portfolio are discussed in the last part of this sub-

section.

As described in Section 3.5, one can simulate the portfolio predictive distribution

at time T + 1 on the basis of the information up to time T and, then, compute the

related Bayesian predictive V aR and ES. As an example, the predictive portfolio value

distribution at time T + 1 (T = 15th December 2014) for Italian/German market for

AR(3)-GARCH(1,1) and AR(3) DP-TCM with Skew-t and Normal margins are shown in

Figure 10. One can clearly note that the portfolio value corresponding to the AR(3) DP-

TCM has larger variance with respect to the analogous portfolio estimated with AR(3)-

GARCH(1,1) DP-TCM. In all the cases the portfolio distribution corresponding to models

with Skew-t margins are more peaked although they show heavier tails.

We analysed the forecasting performance of our models using both in sample and

an out of sample analysis for one day ahead portfolio value estimation. For the out of

sample portfolio we considered the last 50 observations and we estimated the portfolio

by the output of the MCMC algorithm (10000 iterations) for each t = 174, . . . , 224. The

estimated portfolios values are obtained by taking the predictive mean of the portfolio

value, i.e. V̂t+1 = E[Vt+1|Ot]. This value can be easily approximated by using the output

of the MCMC. The results for the Italian and for the German portfolio obtained with

the AR(3)-GARCH(1,1) DP-TCM models with Skew-t margins are reported in Figures

11 and 12, respectively. The estimated portfolio values (continuous line) are compared

with the true portfolio values (dotted line). The 99% credible intervals of the estimated

portfolio values are in grey and minus the 99% ES is plotted with a blue line. Clearly,
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Figure 10: One day ahead predictive distributions of the Italian and German portfolio values (15th

December 2014).
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Figure 11: One day ahead estimated Italian portfolio values (continuous black line) compared with the

true portfolio values (dotted black line), with 99% credible intervals (grey areas) and minus the 99% ES

(blue line) under the AR(3)-GARCH(1,1) DP-TCM with Skew-t margins. In sample (on the last 200

observations) first row, out of sample (on the last 50 observations) second row.
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minus the 99% VaR coincides with the lower bound of the grey areas. Overall, there is

good agreement between the behaviours of predictive portfolios and the historical ones.

In the out of sample case, the true values are always above minus the estimated 99% VaR.

Finally, Table 5 reports the Mean Absolute Error (MAE) between the out of sample

forecasting portfolio and the historical portfolio, that is

1
τ1 − τ0

τ1∑
t=τ0

∣∣∣∣E[Vt+1|Ot
]
− Vt+1

∣∣∣∣,
where τ0 = 174 and τ1 = 224, corresponding to October 6, 2014 and December 15, 2014.

For the “realistic” portfolio the best performance in term of MAE is obtained by the
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Figure 12: One day ahead estimated German portfolio values (continuous black line) compared with the

true portfolio values (dotted black line) with 99% credible intervals (grey areas) and minus the 99% ES

(blue line) under the AR(3)-GARCH(1,1) DP-TCM with Skew-t margins. In sample (on the last 200

observations) first row, out of sample (on the last 50 observations) second row.
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Table 5: MAEs between the out of sample forecasting portfolio (on the last 50 observations) and the

historical portfolio.

“Realistic” Portfolio Equally Weighted Portfolio

Italy Germany Italy Germany

Norm Skew-t Norm Skew-t Norm Skew-t Norm Skew-t

AR(3) TCM 0.182 0.190 0.210 0.202 0.154 0.160 0.168 0.179

AR(3) Mixt-TCM 0.179 0.189 0.209 0.200 0.153 0.159 0.167 0.179

AR(3) DP-TCM 0.178 0.188 0.210 0.201 0.153 0.160 0.168 0.178

AR(3)-GARCH(1,1) CTM 0.194 0.193 0.207 0.201 0.161 0.161 0.178 0.181

AR(3)-GARCH(1,1) Mix-TCM 0.193 0.192 0.206 0.200 0.160 0.161 0.177 0.180

AR(3)-GARCH(1,1) DP-TCM 0.193 0.190 0.205 0.198 0.159 0.160 0.176 0.180

AR(3)-DP-TCMwith Normal margins for the Italian portfolio and by AR(3)-GARCH(1,1)-

DP-TCM with Skew-t margins for the German portfolio. It should be noted that the

MAEs of the AR(3) models differ significantly from the corresponding MAEs for the

AR(3)-GARCH(1,1) models in the Italian case, while in the German portfolio exercise

all the MAEs are very close. In sample MAEs on 200 observations (see Table S13 in the

Supplementary Material) show similar trends, in particular all the methods have simi-

lar MAEs when applied to the forecasting of the German portfolio. For this reason we

computed the MAEs for other type of portfolio weights. As an example, in Table 5, we

show the (out of sample) estimates for an equally weighted portfolio (see Table S13 in

Supplementary Materials for the in sample results). For this portfolio, the trends are

similar for both the Italian and the German market and the AR models show the best

results in term of MAE (both in the in sample and in the out of sample experiments).

We conclude this subsection with a comparison of the previous results with the ones

obtained with a fully Bayesian approach with AR tree copula models. In the fully Bayesian

case, in addition to the priors (4), (5) and (6) we also consider a Normal prior on the AR

parameters:

αk ∼ Np(Mk,Σk)

where Np(M ,Σ) is a p-dimensional Normal distribution with mean M and covariance

matrix Σ. Table 6 reports the MAEs between the out of sample forecasting portfolio
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values and the historical ones. It is worth noticing that the values are very similar to

the ones obtained with the B-IFM procedures (see Table 5), although for the “realistic”

portfolio they are slightly better. Overall, the improvement in the MAEs does not justify

the additional computational work needed for a fully Bayesian estimation of the proposed

models.

Table 6: MAEs between the out of sample (on the last 50 observations) forecasting portfolio for the fully

Bayesian AR(3) tree copula models and the historical portfolio.

“Realistic” Portfolio Equally Weighted Portfolio

Italy Germany Italy Germany

Norm Skew-t Norm Skew-t Norm Skew-t Norm Skew-t

AR(3) TCM 0.179 0.181 0.208 0.200 0.155 0.159 0.171 0.178

AR(3) Mixt-TCM 0.178 0.178 0.208 0.198 0.155 0.159 0.170 0.177

AR(3) DP-TCM 0.174 0.176 0.205 0.195 0.153 0.158 0.169 0.176

5. Summary and concluding remarks

The aim of this paper was to propose a novel Bayesian methodology for multivariate

dependence analysis in the energy market. Our final goal was to study the connections

between the main factors affecting energy price, and to provide efficient tools for portfolio

risk evaluations.

We presented a Bayesian analysis of AR-GARCH copula models, in which the joint

distribution of the standardised residuals of a panel of AR-GARCH time series is described

via suitable tree copula models. Tree copulas are a particular type of R-vines, whose

simple underlying graphical structure allows for an efficient inferential engine. In addition,

via the graphical representation of the model, dependencies among the variables can be

easily explained to non-experts. Nevertheless, in some cases the independence constraints

implied by the tree structure can be too stringent. For this reason, we also considered

mixtures of tree copulas. Using this strategy we preserved the relative low complexity of

the tree copula structures, taking into account richer dependencies between the variables.

We examined both the case in which the joint distribution of the standardised residuals

is represented via a finite mixture of tree copulas and by an infinite mixture.
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We applied our methodology to the analysis of two representative European markets,

the Italian and German one. Our data are daily observations of one-year forward con-

tracts. Due to the nature of the data, the dependence structure among variables can

differ significantly from one year to another. Hence, we focused on a single year at the

time. We presented a detailed analysis of year 2014 for both markets, and we provided a

multi-year analysis of the Italian market from 2013 to 2016. We select this specific time

period to to investigate the effect of the entrance of Italy in the EEX market in 2014.

The estimated dependence structure are in line with specific characteristics of the current

energy market. Bayesian predictive estimates of standard risk measures, i.e. V aR and

ES, together with portfolio predictive distribution are easily obtained from the MCMC

output.

Even if in our models we assumed that the marginal distributions of the standardised

residuals are Normal or Skew-t and the linking copulas are Double Clayton and/or Double

Gumbel, the methodology and the corresponding computational algorithms can be easily

adapted to employ other types of copulas and/or marginal distributions.
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Supplementary Material for:

”Multivariate Dependence Analysis via Tree Copula Models: an

Application to One-year Forward Energy Contracts”
by F. Bassetti, M.E. De Giuli, E. Nicolino, C. Tarantola.

S1. Computational details

In this section we present the MCMC algorithms for the particular case of the fully

Bayesian AR copula models with Skew-t margins. Inference on B-IFM AR-GARCH

copula models is obtained by discarding the metropolis step on the parameters A, which

are estimated marginally and hence are fixed in the sampler. Finally, if the Normal

margins are used the only change is the full conditional of ν.

In what follows we compactly write

εm,t := xm,t −
p∑
i=1

am,ixm,t−i. (S1)

In order to obtain the algorithms for the B-IFM AR-GARCH copula models one simply

need to assume

εm,t := (xm,t −
p∑
i=1

am,ixm,t−i)σ−1
m,t (S2)

and remember that σm,t are estimated marginally and hence are fixed in the MCMC

algorithm.

S1.1. MCMC for the Tree Copula Model

The algorithm iteratively samples from the full conditionals:

i) ν given [E ,θ,A,OT ] (Metropolis-Hasting step);

ii) E ,θ given [ν,A,OT ] (Metropolis-Hasting step);

iii) A given [E ,θ,ν,OT ] (Metropolis-Hasting step).

The variance of the random walk proposal densities are tuned to achieve acceptance

rates between 20% and 80%.
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• Full conditional of ν. Recall that in the case of the fully Bayesian AR copula models

with Skew-t margins, νk = (λk, ηk, pk). The full conditional of ν given (E ,θ,A,OT ) is

π(ν|E ,θ,A,OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl

(εl,t), Fνm(εm,t)
) N∏
k=1

fνk

(
εk,t

)
π(λk)π(ηk)π(ηk)

where π(λk) denotes the Beta prior on the skewness parameters and π(ηk) the Exponential

prior on the degrees of freedom and π(pk) the Gamma prior on the precision pk = 1/σk. In

order to sample the marginal parameters, we consider three separate Metropolis-Hasting

steps, one for the skewness parameters λ = (λ1, . . . , λN), one for the degrees of freedom

η = (η1, . . . , ηN) and one for p = (p1, . . . , pN) .

As for λ, we assume a proposal density of the form

q(λ∗|λ) =
N∏
k=1

q(λ∗k|λk)

where we sample each λ∗k (after an appropriate change of variable) with a random walk

proposal on R. The acceptance probability of the corresponding MH step is given by

min

1,
T∏
t=1

∏
(l,m)∈E

cθl,m

(
F(λ∗

l
,ηl,pl)(εl,t), F(λ∗

m,ηm,pm)(εm,t)
)

cθl,m

(
F(λl,ηl,pl)(εl,t), F(λm,ηm,pm)(εm,t)

) N∏
k=1

f(λ∗
k
,ηk,pk)

(
εk,t
)

f(λk,ηk,pk)
(
εk,t
)
.

For the parameters η and p we proceed similarly.

• Full conditional of
(
E ,θ

)
. Samples from the full conditional of

(
E ,θ

)
given

(
ν,A

)
are

obtained again by using a Metropolis-Hasting step. The full conditional is

π(E ,θ|A,ν,OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl

(εl,t), Fνm(εm,t)
)
π(E ,θ)

where π(E ,θ) is the prior over (E ,θ) specified in Section 3.1. First, we sample the new tree

E∗ and then, conditionally on the new tree E∗, we (independently) sample the parameters

θl,m = (τl,m, ζl,m). Formally, the proposal is

q(E∗,θ∗|E ,θ) = q (E∗|E)
∏

(l,m)
q
(
θ∗l,m|E , θl,m, E∗

)
.

In order to propose a new tree E∗, one can use different proposals. For instance one can

simply sample from the prior or, as we have done in the present work, one can use the

local move by Silva and Gramcy (2009). Further details on this local move are given
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in the next paragraph. As for the copula parameters, we distinguish between the edges

(l,m) /∈ E∗, the edges (l,m) ∈ E ∩ E∗, and the edges (l,m) ∈ (E∗ \ E). The proposal for

the parameters associated to edges (l,m) /∈ E∗ is chosen equal to the prior. Note that

these parameters do not appear in the copula construction and, since they are not used in

the acceptance probability, one does not need to sample them. For every (l,m) ∈ E ∩ E∗

we sample τ ∗l,m (after an appropriate change of variable) with a random walk proposal on

R, while the corresponding parameter ζl,m is left unchanged. Finally, for the parameters

corresponding to (l,m) ∈ E∗ \ E , we sample τ ∗l,m (after an appropriate change of variable)

from a Normal distribution cantered on the (transformed) empirical estimate τ̃l,m (based

on the residuals (εl,t, εm,t)t=1,...,T ) of the Kendall’s tau and we sample ζ∗l,m from the discrete

distribution on H = {DG1, DG2, DC1, DC2}

q
(
ζ∗l,m = j|τ ∗l,m

)
=

∏T
t=1 c(τ∗

l,m
,j)
(
Fνl

(εl,t), Fνm(εm,t)
)

∑
h∈H

∏T
t=1 c(τ∗

l,m
,h)
(
Fνl

(εl,t), Fνm(εm,t)
) .

The acceptance probability of the MH step is

min

1,
T∏
t=1

∏
(l,m)∈E∗ cθ∗

l,m

(
Fνl

(εl,t), Fνmεm,t)
)
U(E∗)q (E|E∗)∏(l,m)∈E∗ pl,m

(
θ∗l,m

)
∏

(l,m)∈E cθl,m

(
Fνl

(εl,t), Fνmεm,t)
)
U(E)q (E∗|E)∏(l,m)∈E pl,m (θl,m)

×

∏
(l,m)∈E∗∩E q

(
τl,m|τ ∗l,m

)∏
(l,m)∈E\E∗ q(ζl,m|τl,m)q(τl,m|τ̃l,m)∏

(l,m)∈E∗∩E q
(
τ ∗l,m|τl,m

)∏
(l,m)∈E∗\E q(ζ∗l,m|τ ∗l,m)q(τ ∗l,m|τ̃l,m)

,
where q(τ |τ0) is the (transformed) Normal proposal centred on τ0.

• Random walk proposal for sampling trees: the tree-angular proposal. Sampling a tree

uniformly or from the prior distribution can frequently produce a tree with very low

acceptance probability. For this reason, we use the local proposal introduced in Silva and

Gramcy (2009). This move leaves the tree unchanged except for a triangular path say

i−j−k which is changed to j−i−k. As proved in Silva and Gramcy (2009), it is possible

to traverse the whole space of spanning trees with sequences of tree-angular moves. More

precisely, the tree-angular proposal, say qTA(·|E), given a tree E , propose a new tree E∗

as follows:

1. choose an edge (u, v) in E (with uniform probability);

2. choose a neighbour node w of (u, v) in the tree E , which is neither u nor v, uniformly

at random;
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3. obtain a new tree E∗ that results from removing from E the edge (u, v) and adding

the edge (z, w), where z = u if v and w are adjacent in E and otherwise z = v.

In order to improve the mixing of the chain for the copula parameters, we choose

q(E∗|E) = ηδE(E∗) + (1− η)qTA(E∗|E)

with some fixed probability η.

• Full conditional of A. The full conditional of A given (E ,θ,ν,OT ) is

π(A|E ,θ,ν,OT ) ∝
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl

(xl,t −
p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

N∏
k=1

fνk

(
εk,t
)
π(αk)

where π(αk) is the p-dimensional Normal prior Np
(
Mk,Σk

)
. We proceed again with a

Metropolis-Hasting step.

The proposal density q(A∗|A) is a multivariate Normal distribution with mean A and

covariance matrix σ2
AIp×N . The acceptance probability is

min

1,
T∏
t=1

∏
(l,m)∈E

cθl,m

(
Fνl

(xl,t −
∑p
i=1 α

∗
l,ixl,t−i), Fνm(xm,t −

∑p
i=1 α

∗
m,ixm,t−i)

)
cθl,m

(
Fνl

(xl,t −
∑p
i=1 αl,ixl,t−i), Fνm(xm,t −

∑p
i=1 αm,ixm,t−i)

)×
N∏
k=1

fνk

(
xk,t −

∑p
i=1 α

∗
k,ixk,t−i

)
π(α∗k)

fνk

(
xk,t −

∑p
i=1 αk,ixk,t−i

)
π(αk)

.
S1.2. MCMC for the Finite Mixture of Tree Copulas

We introduce an allocation variable for each observation, It ∈ {1, . . . , D} for t =

1, . . . , T . The complete data likelihood is given by

L(OT , I|E,Θ,ν,w,A) ==
T∏
t=1

wIt

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl

(εl,t), Fνm(εm,t)
) N∏
k=1

fνk
(εk,t) (S3)

where I = (I1, . . . , IT ). The likelihood of the finite mixture model can be easy obtained

as marginal distribution of (S3). The posterior density of the allocation variables I and

the parameters is

π(E,Θ,ν,w, I,A|OT ) ∝ L(OT , I|E,Θ,ν,w,A)π(E,Θ,ν,w,A)

where π(·) is the prior setting described in (5).

The algorithm samples iteratively from the full conditionals:
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i) w given [E,Θ,A,ν,OT , I] (closed form);

ii) ν given [E,Θ,A,w,OT , I] (Metropolis-Hasting step);

iii) (E,Θ) given [w,A,ν,OT , I] (Metropolis-Hasting step);

iv) I given [E,Θ,w,ν,A,OT ] (closed form);

v) A given [E,Θ,w,ν,OT , I] (Metropolis-Hasting step).

• Full conditional of w. The full conditional of w given (E,Θ,A,ν,OT , I) is

π(w|E,Θ,A,ν,OT , I) ∝
T∏
t=1

wItπ(w)

=
D∏
d=1

w
Nd(I)
d π(w)

where π(w) is the Dirichlet prior over w and Nd(I) = #{It = d} is the number of the

element It equal to d.

This full conditional is in closed form, i.e. Dir (ψ1 +N1(I), . . . , ψD +ND(I)), and we

can sample directly from it.

• Full conditional of ν. The full conditional of ν given (E,Θ,A,w,OT , I) is

π(ν|E,Θ,A,OT , I) ∝
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl

(εl,t), Fνm(εm,t)
) N∏
k=1

fνk
(εk,t) π(λk)π(ηk)π(pk).

We sample the marginal parameters using MH steps, as done in Section S1.1 for the

analogous point.

• Full conditional of (E,Θ). For every (Ed,θd), d = 1, . . . , D the full conditional is

π(Ed,θd|w,A,ν,OT ) ∝
∏
t:It=d

∏
(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl

(εl,t), Fνm(εm,t)
)
π(Ed,θd)

where π(Ed,θd) is the prior specified in Section 3.2.

We proceed with a MH step. For every component (Ed,θd), we choose the proposal

q(E∗d ,θ∗d|E ,θ) = q (E∗d |Ed)
∏

(l,m)
q
(
θ

(d)∗
l,m |Ed, θ

(d)
l,m, E∗d

)
.
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As in the tree copula model, the proposal over the tree structure can be choose equal

to the prior or one can use a local move. For the parameters θd we consider the same

proposal density describe in the previous algorithm.

The acceptance probability of each MH step is

min

1,
∏
t:It=d

∏
(l,m)∈E∗

d
c
θ

(d)∗
l,m

(
Fνl

(εl,t), Fνm(εm,t)
)
U(E∗d )q (Ed|E∗d )∏(l,m)∈E∗

d
pl,m

(
θ

(d)∗
l,m

)
∏

(l,m)∈Ed
c
θ

(d)
l,m

(
Fνl

(εl,t), Fνm (εm,t)
)
U(Ed)q (E∗d |Ed)

∏
(l,m)∈Ed

pl,m
(
θ

(d)
l,m

) ×
∏

(l,m)∈E∗
d
∩Ed

q
(
τ

(d)
l,m|τ

(d)∗
l,m

)∏
(l,m)∈Ed\E∗

d
q(ζ(d)

l,m|τ
(d)
l,m)q(τ (d)

l,m|τ̃
(d)
l,m)∏

(l,m)∈E∗
d
∩Ed

q
(
τ

(d)∗
l,m |τ

(d)
l,m

)∏
(l,m)∈E∗

d
\Ed

q(ζ(d)∗
l,m |τ

(d)∗
l,m )q(τ (d)∗

l,m |τ̃
(d)
l,m)

.
where q(τ |τ0) is the (transformed) Normal proposal centred on τ0.

• Full conditional of I. The full conditional of I given (E,Θ,w,ν,A,OT ) is

π(I|E,Θ,w,ν,A,OT ) ∝
T∏
t=1

wIt

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl

(εl,t), Fνm(εm,t)
)
.

We sample each It from a discrete distribution on {1, . . . , D} with probability of

{It = d} equal to
wd
∏

(l,m)∈Ed
c
θ

(d)
l,m

(
Fνl
εl,t), Fνm(εm,t)

)
∑D
h=1wh

∏
(l,m)∈Eh

c
θ

(h)
l,m

(
Fνl
εl,t), Fνm(εm,t)

)
for d = 1, . . . , D and t = 1, . . . , T .

• Full conditional of A. We sample A using a MH step. The full conditional of A given

(E,Θ,w,ν,OT , I) is

π(A|E,Θ,w,ν,OT , I) ∝
T∏
t=1

∏
(l,m)∈EIt

c
θ

(It)
l,m

(
Fνl

(xl,t −
p∑
i=1

αl,ixl,t−i), Fνm(xm,t −
p∑
i=1

αm,ixm,t−i)
)
×

T∏
t=1

fνk

(
xk,t −

p∑
i=1

αk,ixk,t−i

)
π(αk).

We consider a MH step similar to the previous algorithm.
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S1.3. MCMC for DP-tree copula model

The slice sampling algorithm introduces two latent variables ut and It for each obser-

vation t = 1, . . . , T . The complete augmented data likelihood becomes

T∏
t=1

1(wIt > ut)
∏

(l,m)∈EIt

c
θ

(It)
l,m

(Fνl
(εl,t), Fνm(εm,t))

N∏
k=1

fνk
(εk,t)

where U = (u1, . . . , uT ) and I = (I1, . . . , IT ).

We define the set D = {d : ∃t such that It = d} that represents the non-empty

mixture components. The cardinality of D gives the number of the mixture components

and D∗ = maxD is the number of stick breaking components used in the mixture. In the

following we denote with V = (v1, v2, . . . ) the element of the stick breaking construction

and with (E,Θ) the collection of all the tree structures and the corresponding copula

parameters, respectively.

The Metropolis within Gibbs algorithm developed for the DP-TCM samples iteratively

from the full conditionals:

(i) ν given [E,Θ,A, ψ,V ,U , I,OT ] (Metropolis-Hasting step);

(ii) (E,Θ) given [ν,A, ψ,V ,U , I,OT ] (Metropolis-Hasting step);

(iii) U ,V , ψ given [E,Θ,ν,A, I,OT ] sampled as a block:

– ψ given [E,Θ,ν,A, I,OT ] (Metropolis-Hasting step);

– V given [E,Θ,ν,A, ψ, I,OT ] (closed form);

– U given [E,Θ,ν,A, ψ,V , I,OT ] (closed form);

(iv) I given [E,Θ,ν,A, ψ,V ,U , I,OT ] (closed form);

(v) A given [E,Θ,ν, ψ,V ,U , I,OT ] (Metropolis-Hasting step).

• Full conditional of ν. As in the previous algorithm.

• Full conditional of E,Θ. The full conditional of (E,Θ) given (ν,A, ψ,V ,U , I,OT ) is

π(E,Θ|ν,A, ψ,V ,U , I,OT ) =
∏

d:It=d

∏
(l,m)∈Ed

c
θ

(d)
l,m

(
Fνl

(εl,t), Fνm(εm,t)
)
G0(θd, Ed)

where G0 is the prior density on (θd, Ed).
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We proceed by distinguishing between the elements d ∈ D and the elements /∈ D. For

every d ∈ D we use a MH step with a proposal density of the form

q(E∗d ,θ∗d|Ed,θd) = q (E∗d |Ed)
∏

(l,m)
q
(
θ

(d)∗
l,m |Ed, θ

(d)
l,m, E∗d

)
,

as in the finite mixture model. For each θ
(d)
l,m ∈ θd we use the same proposal density

for the tree copula model and for the tree structure we apply the tree-angular proposal

previously described.

For the element d /∈ D we don’t need a MH step and we sample the parameters directly

from the prior. In theory, we need to sample an infinite number of θ(d)
l,m, but actually, in

order to proceed with the algorithm, only a finite number parameters is necessary, i.e.

only the elements involved in the full conditional of I.

• Full conditional of (U ,V , ψ). At this step we sample (U ,V , ψ) as a block. This means

sampling ψ given the rest excluded (U ,V ) and then sampling (U ,V ) given all the rest.

Firstly, we present how to sample (U ,V ). Also for this variables we consider a block-

ing, and we sample V given the rest excluded U and U given all the other parameters.

The full conditional of V given (E,Θ,ν,A, ψ, I,OT ) is

π(V |E,Θ,ν,A, ψ, I,OT ) ∝
∏

d:It=d

(
vd
∏
l<d

(1− vd)
)
π(vd)

where π(vd) is the prior density Beta(1, ψ).

If d ∈ D the full conditional is in closed form and equal to a Beta(γd, δd) with param-

eters

γd = 1 +
T∑
t=1

1(It = d)

δd = ψ +
T∑
t=1

1(It > d).

If d /∈ D but d ≤ D∗, we sample vd from a Beta(1, δd), otherwise for all d > D∗ we sample

directly from the prior density Beta(1, ψ). Also in this case, we don’t need to sample

an infinite number of vd, since only the elements affecting the full conditional of I are

necessary.

The full conditional of U given (E,Θ,ν,A,V , I, ψ,OT ) is

π(U |E,Θ,ν,A,V , I, ψ,OT ) ∝
T∏
t=1

1(wIt > ut).
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Therefore we can sample each ut from a uniform distribution on (0, wIt), for t = 1, . . . , T .

Finally, we can compute the full conditional of ψ given (E,Θ,ν,A, I,OT ). The infor-

mation on ψ are provided only by the sample size and the different cluster, that is the

number of different It. The full conditional of ψ involves only (I,OT ) and is given by

π(ψ|I,OT ) ∝ ψDΓ(ψ)
Γ(ψ + T )π(ψ)

where D is the number of cluster, π(ψ) the Gamma prior on ψ and, Γ(z) =
∫+∞

0 tz−1e−tdt

is the Gamma function. In order to sample from this full conditional, we consider a MH

step with proposal given by s Gamma(aψ, bψ). The acceptance probability is

min
{

1, ψ
∗DΓ(ψ∗)Γ(ψ + T )
ψDΓ(ψ)Γ(ψ∗ + T )

}
.

• Full conditional of I. The full conditional of I given (E,Θ,ν,A, ψ,V ,U ,OT ) is

π(I|E,Θ,ν,A, ψ,V ,U ,OT ) ∝
T∏
t=1

1(wIt > ut)
∏

(l,m)∈EIt

c
θ

(It)
l,m

(Fνl
(εl,t), Fνm(εm,t)) .

For each t, we sample It = k from a discrete distribution with probability proportional to

1(wk > ut)
∏

(l,m)∈Ek

c
θ

(k)
l,m

(Fνl
(εl,t), Fνm(εm,t).)

As shows in Walker (2007) and Kalli et al. (2011), we have to sample, almost surely, from

a finite set. More precisely, if we define Nt the smallest integer for which

Nt∑
k=1

wk > 1− ut, for t = 1, . . . , T

and N∗ = max(Nt), we can observe that for every k > N∗ and for all t, wk < ut, and

therefore 1(wk > ut) = 0.

• Full conditional of A. We proceed as in the previous algorithm.

S2. Simulation Studies

In this section we present the results obtained using simulated data to investigate the

performance of the methodologies proposed in Section 3.

We considered different alternative scenarios. For all scenarios the posterior estimates

are consistent with parameters used to generate the data. Further experiments of this
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kind have been performed, obtaining similar results. For each scenario we present two

alternative prior settings, the values of the parameters used to generate the data, the

posterior means for the parameters of interest and the MAP tree structure (for the TCM).

For brevity, in the rest of the section, each tree is identified by its Prüfer code, see e.g.

Skiena (1990). The Prüfer code is a classical way of coding a tree with a (unique)

sequence of n− 2 numbers, each being one of the numbers 1 through n.

Before describing in more details the alternative simulation scenarios, it is worth men-

tioning that, due to the label switching problem, attention should be paid to evaluate the

posterior tree probabilities for the mix-TCM and for the DP-TCM. In fact, in mixture

models, inference on (functions of) parameters, which are not invariant to parameter per-

mutation, is very delicate if not essentially meaningless. Different solutions to the label

switching problem have been proposed in the literature, see e.g. Jasra et al. (2005). One

possibility is to identify and work only with statistical quantities that are not affected

by it. Indeed, if the function of interest is invariant to parameter permutations, label

switching does not create any problem. In our case, instead of estimating the posterior

probability of the tree appearing in each component, we simply evaluate the (posterior)

probability that a given tree (i.e. a given conditional dependence structure) belongs to

the mixture structure. To this end, for a tree E0 we introduce the following permutation

invariant function

ΨE0(E,w) =
D∑
d=1

wd1{E0 = Ed}. (S1)

Equation (S1) defines the weight of the tree E0 in the mixture and its posterior mean is

equal to the posterior probability that the tree E0 is contained in the mixture.

In Scenario 1 we simulated a dataset of T = 300 observations from a specific tree

copula distributions with Double Gumbel or Double Clayton bivariate linking copulas

and Skew-t margins with fixed parameters. We apply the Bayesian Tree Copula Models

(TCM) to make inference on all the parameters involved. The results obtained with two

alternative prior setting are summarised in Table S7. In this table we report the values of

the parameters used to generate the data, the two prior settings, the MAP tree structure,

the posterior mode of ζ and the posterior means of ν and θ.

In Figures S1 we display the histograms of the simulated values of the posterior dis-

tributions for ν and θ (first prior setting of Table S7).
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Figure S1: Histograms of the simulated values of the posterior distributions for the parameters of Scenario

1 (first prior setting of Table S7), where we consider a tree copula model with bivariate Double Gumbel

and Double Clayton copulas with Skew-t margins.
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Table S7: Simulation study: Scenario 1. Tree copula model with bivariate Double Gumbel or Double

Clayton copulas and Skew-t margins. For each prior settings, we report the posterior mean of the

parameters ν, the posterior mode for ζ and, the MAP tree structure. For the tree structure, the posterior

probability is reported within brackets.

Scenario 1 First Prior Setting Second Prior Setting

N = 5 (τl,m, ζl,m) Beta(−1,1)(1, 1)× Unif(H) Beta(−1,1)(1, 3)× Unif(H)

λk Beta(−1,1)(1, 1) Beta(−1,1)(1, 2)

ηk Exp(10) Exp(5)

True Values Posterior Means/Modes

νk = (λk, ηk) (0.5 , 3) (0.49, 3.04) (0.47, 3.16)

(−0.6, 3) (−0.58 , 3.07) (−0.62, 2.86)

(−0.3, 5) (−0.30 , 4.55) (−0.35, 4.80)

(0.6, 6) (0.58, 6.46) (0.64, 5.01)

(0.3, 4) (0.29, 4.24) (0.22, 4.01)

(τ , ζ) (−0.3, DG1) (−0.27 , DG1) (−0.27, DG1)

(0.5, DC1) (0.55 , DG1) (0.51, DC1)

(0.7, DG1) (0.67 , DG1) (0.69, DG1)

(−0.6, DC1) (−0.56 , DC1) (−0.57, DC2)

E [1, 5, 5]∗ [1, 5, 5](0.928) [1, 5, 5](0.895)
∗Prüfer code corresponding to the tree structure {(2, 1), (3, 5), (4, 5), (5, 1)}

In Scenario 2, to test the performance of the DP-TCM, we consider a dataset of

T = 300 observations generated from a specific mixture of tree copula distributions with

fixed number of components D = 3, Skew-t margins and w = [1/3, 1/3, 1/3].

The results of Scenario 2 are shown in Table S8, where we report the values of the

parameters used to generate the data, the two alternative prior settings, the posterior

means of the parameters ν, the posterior mode D̂ of the number of clusters and the list

of the higher posterior probability tree structures obtained via Equation (S1).

In Figures S2 we display the histograms of the simulated values of the posterior dis-

tributions for ν (first prior setting of Table S8). Finally, the histograms of the simulated
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Table S8: Simulation study: Scenario 2. DP-tree copula model with bivariate Double Gumbel or Double

Clayton linking copulas and Skew-t margins. For each prior setting we show the posterior mean of the

parameters ν and the posterior mode D̂ of the number of cluster. In last part of the table, we list

the highest posterior probability tree structures. For each tree structure, the posterior mean of (S1) is

reported in brackets.

Scenario 2 First Prior Setting Second Prior Setting

N = 4 (τl,m, ζl,m) Beta(−1,1)(1, 1)× Unif(H) Beta(−1,1)(2, 2)× Unif(H)

D = 3 λk Beta(−1,1)(1, 1) Beta(−1,1)(1, 3)

ηk Exp(10) Exp(5)

ψ Gamma(0.2, 1) Gamma(0.25, 2)

True Values Posterior Means/Modes

νk = (λk, ηk) (0.2, 6) (0.19, 6.0) (0.17, 6.2)

(−0.2, 4) (−0.20, 3.9) (−0.23, 3.8)

(−0.4, 5) (−0.43, 4.7) (−0.33, 4.6)

(0.8, 7) (0.80, 6.9) (0.78, 6.8)

D 3 3 3

E [1, 1] [4,3](0.298) [1,1](0.354)

[3, 2] [3,2](0.236) [4,3](0.334)

[4, 3] [1,1](0.129) [3,2](0.110)

values of the posterior distributions of the number of clusters are presented in Figures S3

for both prior setting. The histograms are centred on the true value of D, i.e. D = 3.

In Scenario 3 we simulated a dataset of T = 300 observations from a multivariate AR

model with fixed parameters, a specific tree structure with Double Gumbel or Double

Clayton bivariate copulas and Normal margins with fixed precision. We apply the fully

Bayesian AR-TCM with Double Gumbel/Double Clayton as linking copulas and Normal

margins. The results obtained with two alternative prior setting are summarised in Table

S9. We report the values of the parameters used to generate the data, the two prior

settings, the MAP tree structure, the posterior mode of ζ and the posterior means of
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Figure S2: Histograms of the simulated values of the posterior distributions for the parameters of Scenario

2 (first prior setting of Table S8), where we consider a DP-tree copula model with bivariate Double Gumbel

and Double Clayton copulas with Skew-t margins.
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Figure S3: Histograms of the simulated values of the posterior distributions of number of components

for Scenario 2, where we study a DP-tree copula model with Double Gumbel/Double Clayton linking

copulas. On the left, the result with the first prior setting of Table S8, on the right with the second prior

setting. The data are generated from a mixture with D = 3 components.
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(τ ,ν,A).

Table S9: Simulation study: Scenario 3. AR-Tree copula model with bivariate Double Gumbel or Double

Clayton copulas and Normal margins. For each prior settings, we report the posterior mean of the

parameters τ ,ν,A, the posterior mode for ζ and, the MAP tree structure. For the tree structure, the

posterior probability is reported within brackets.

Scenario 3 First Prior Setting Second Prior Setting

N = 5 (τl,m, ζl,m) Beta(−1,1)(1, 1)× Unif(H) Beta(−1,1)(1, 1)× Unif(H)

p = 2 pk Gamma(0.1, 0.1) Gamma(0.5, 0.1)

αk Np([0.7, 0.1], 100Ip) Np([0.3, 0.4], 10Ip)

True Values Posterior Means/Modes

1
pk

0.5 0.49 0.54

0.3 0.32 0.33

0.4 0.43 0.39

0.6 0.63 0.59

0.2 0.22 0.22

αk (0.3, 0.5) (0.25, 0.55) (0.32, 0.48)

(−0.3, 0.4) (−0.33, 0.39) (−0.26, 0.39)

(0.1, 0.6) (0.04, 0.69) (0.14, 0.49)

(−0.2, 0.4) (−0.18, 0.41) (−0.17, 0.35)

(0.1, 0.5) (0.08, 0.52) (0.12, 0.46)

(τ , ζ) (0.7, DC1) (0.54, DG2) (0.69, DC1)

(−0.2, DG1) (−0.23, DG1) (−0.25, DG1)

(0.3, DG2) (0.29, DG2) (0.37, DG2)

(−0.6, DG1) (−0.59, DG1) (−0.61, DG2)

E [1, 2, 5]∗ [1, 2, 5](0.895) [1, 2, 5](0.892)
∗Prüfer code corresponding to the tree structure {(2, 1), (3, 1), (4, 5), (5, 2)}

We conclude this Section testing the AR-DP-TCM. We simulate datasets of T = 200

observations generated from a multivariate AR model with fixed parameters and a spe-

cific mixture of tree copula distributions with fixed number of components D and Normal
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margins. As is often the case with Dirichlet Process mixture models, the concentration pa-

rameter ψ turns out to be more sensible with respect to the other parameters. Therefore,

in the following prior settings, we consider two alternative choice for the hyper-parameters

of the Gamma priors (the first one is an informative setting with small variance, while

the second setting is less informative with a bigger value for the variance) and also the

case in which the parameter ψ is fixed.

In Scenario 4 we consider a dataset simulated from a mixture of two tree copula dis-

tributions with bivariate Double Gumbel/Double Clayton copulas, weights w = [0.5, 0.5]

and Normal margins. In Scenario 5, we used simulated data from a mixture of four tree

copulas with linking Double copulas and weights w = [0.25, 0.25, 0.25, 0.25] and Normal

margins. In both cases, we apply the fully Bayesian DP-TCM. In Scenario 4 we assume

a gamma prior for the parameter ψ, while in Scenario 6 we do not make inference on ψ,

i.e. we fix a specific value for the concentration parameter.

The results of Scenario 4 are shown in Table S10. We show the values of the parameters

used to generate the data and the corresponding posterior estimates obtained with two

alternative prior settings. In particular, we present the posterior means of the parameters

(ν,A), the posterior mode D̂ of the number of clusters and the list of the higher posterior

probability tree structures obtained via Equation (S1).

The values of the parameters used to generate the data in Scenario 5 and the cor-

responding posterior estimates computed with two different prior settings are reported

in Table S11. The prior settings present different value for the concentration parameter,

respectively ψ = 0.1 and ψ = 0.5. The posterior distributions of the number of clusters

obtained with each prior setting of Scenario 3 are shown in Figure S4. Also in this case,

both the distributions are centred around the true value of D. As expected, the distri-

bution obtained with the first prior setting is more concentrated than the distribution

obtained with the second prior setting that, indeed, shows a higher values of ψ.

Finally, in Table S12 we compare the values of the DIC3 for scenarios 3,4,5 computed

with the fully Bayesian approach and with the B-IFM procedure. The models estimated by

the fully Bayesian approach have a slighter lower DIC3 with respect to the corresponding

models estimated by B-IFM procedure.
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Figure S4: Histograms of the simulated values of the posterior distributions of number of components

for Scenario 5. AR-DP-TCM with Double Gumbel and Double Clayton copulas and with fixed value of

ψ. On the left, the result with the first prior setting of Table S11 (ψ = 0.1) and on the right with the

second prior setting (ψ = 0.5).
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Table S10: Simulation study: Scenario 4. AR-DP-TCM with bivariate Double Gumbel or Double Clayton

linking copulas and Normal margins. For each prior setting we show the posterior mean of the parameters

(ν,A) and the posterior mode D̂ of the number of clusters. In last part of the table, we list the highest

posterior probability tree structures. For each tree structure, the posterior mean of (S1) is reported in

brackets.

Scenario 4 First Prior Setting Second Prior Setting

N = 5 (τl,m, ζl,m) Beta(−1,1)(1, 2)× Unif(H) Beta(−1,2)(1, 1)× Unif(H)

p = 2 pk Gamma(1, 0.01) Gamma(1, 0.01)

D = 2 αk Np([0.1, 0.3], 10Ip) Np([0.2, 0.3], 10Ip)

ψ Gamma(0.2, 1) Gamma(0.08, 25)

True Values Posterior Means/Modes

1
pk

0.5 0.56 0.53

0.3 0.36 0.30

0.4 0.46 0.42

0.7 0.71 0.71

0.9 0.98 0.84

αk (0.3,−0.4) (0.27,−0.35) (0.28,−0.40)

(−0.3, 0.4) (−0.23, 0.44) (−0.34, 0.35)

(0.1, 0.6) (0.12, 0.59) (0.06, 0.62)

(−0.2, 0.4) (−0.16, 0.41) (−0.18, 0.40)

(0.1, 0.5) (0.10, 0.46) (0.05, 0.52)

D̂ 2 2 2

E [1, 2, 5] [1,2,5](0.451) [1,4,5](0.4745)

[1, 4, 5] [1,4,5](0.190) [1,2,5](0.1711)

S3. Additional real data results

This section presents additional details of the application of our AR-GARCH tree

copula models to the real data application discussed in Section 4.
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Table S11: Simulation study: Scenario 5. AR-DP-TCM with Double Gumbel and Double Clayton copulas

and with fixed value of ψ. For each prior setting we show the posterior mean of the parameters (ν,A)

and the posterior mode D̂ of the number of clusters. In last part of the table, we list the highest posterior

probability tree structures. For each tree structure, the posterior mean of (S1) is reported within brackets.

Scenario 5 First Prior Setting Second Prior Setting

N = 5 (τl,m, ζl,m) Beta(−1,1)(2, 2)× Unif(H) Beta(−1,1)(1, 2)× Unif(H)

p = 2 pk Gamma(1, 0.01) Gamma(1, 0.01)

D = 4 αk Np([0.1, 0.3], 10Ip) Np([0.1, 0.3], 10Ip)

ψ ψ = 0.1 ψ = 0.5

True Values Posterior Means/Modes

1
pk

0.5 0.55 , 0.57

0.3 0.32 0.34

0.4 0.44 0.47

0.7 0.74 0.68

0.9 0.93 0.90

αk (0.3,−0.4) (0.27,−0.34) (0.33,−0.39)

(−0.3, 0.4) (−0.25, 0.44) (−0.24, 0.40)

(0.1, 0.6) (0.15, 0.53) (0.12, 0.62)

(−0.2, 0.4) (−0.23, 0.39) (−0.16, 0.48)

(0.1, 0.5) (0.10, 0.47) (0.23, 0.46)

D̂ 4 4 4

E [1, 2, 5] [2,3,5](0.292) [2,3,5](0.193)

[1, 4, 5] [3, 5, 4](0.080) [1, 4, 5](0.108)

[2, 1, 5] [5, 1, 4](0.078) [1,2,5](0.080)

[2, 3, 5] [1, 2, 3](0.055) [1, 1, 3](0.057)

[1, 5, 1](0.041) [5, 1, 5](0.049)

[1,4,5](0.036) [2, 2, 5](0.045)

[3, 2, 5](0.0298) [2,1,5](0.034)

[2,1,5](0.293) [3, 5, 5](0.030)

[1,2,5](0.278) [1,4,5](0.274)
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Figure S5: Histograms of the posterior distributions of number of clusters with the DP-tree model for

Italian (on the left) and German (on the right) markets applied to the residuals of the AR(3)-GARCH(1,1)

models.
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Figure S6: Histograms of the posterior distributions of number of clusters with the DP-tree model for

Italian (on the left) and German (on the right) markets applied to the residuals of the AR(3) models.
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Table S12: Simulated Data: fully Bayesian vs BIF, DIC3 Table.

True Model Fully Bayesian B-IFM

Scenario 3(TCM) 528 579

Scenario 4(DP-TCM) 1208 1446

Scenario 5(DP-TCM, fixed ψ) 1341 1465

Table S13: MAEs between predictive portfolio and historical one for the “realistic” portfolio described in

Section 4.4 and an equally weighted portfolio. In sample results on the last 200 observations.

“Realistic” Portfolio Equally Weighted Portfolio

Italy Germany Italy Germany

Margins Norm Skew-t Norm Skew-t Norm ST Norm Skew-t

AR(3) CTM 0.2360 0.2450 0.2421 0.2439 0.1474 0.1494 0.1498 0.1512

AR(3) DP-TCM 0.2345 0.2440 0.2431 0.2411 0.1468 0.1477 0.1493 0.1511

AR(3)-GARCH(1,1) CTM 0.2446 0.2492 0.2471 0.2435 0.1478 0.1470 0.1501 0.1517

AR(3)-GARCH(1,1) DP-TCM 0.2443 0.2490 0.2450 0.2415 0.1459 0.1473 0.1500 0.1509

S22


