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We consider a real, massive scalar field on PAdSdþ1, the Poincaré domain of the (dþ 1)-dimensional
anti–de Sitter (AdS) spacetime. We first determine all admissible boundary conditions that can be applied
on the conformal boundary, noting that there exist instances where “bound states” solutions are present.
Then, we address the problem of constructing the two-point function for the ground state satisfying those
boundary conditions, finding ultimately an explicit closed form. In addition, we investigate the singularities
of the resulting two-point functions, showing that they are consistent with the requirement of being of
Hadamard form in every globally hyperbolic subregion of PAdSdþ1 and proposing a new definition of
Hadamard states which applies to PAdSdþ1.
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I. INTRODUCTION

Quantum field theory on curved backgrounds is nowa-
days a well-established, thriving branch of mathematical
and theoretical physics. In the past decade, especially
thanks to the algebraic approach [1,2], not only several
specific models, including those with perturbative inter-
actions, were thoroughly studied, but also foundational and
structural aspects, such as renormalization or local gauge
invariance, were analyzed.
A cornerstone of most of the recent papers is the

assumption that the underlying background is globally
hyperbolic. This condition on the geometry of the space-
time guarantees that solutions to wavelike operators, such
as the Klein-Gordon, the Dirac, or the Proca equation, can
be found in terms of an initial value problem. As a
consequence, whenever one considers a free field theory,
one can follow a well-established quantization scheme, to
associate with any such systems an algebra of observables,
encompassing the information on structural properties such
as dynamics, locality, and causality. The only choice
consists in the selection of a quantum state, but, also in
this respect, it is nowadays universally accepted that a
physically acceptable criterion lies in the so-called
Hadamard condition. This is a technical requirement which
guarantees, on the one hand, that the singular behavior of
the two-point functionGþðx; x0Þ of the underlying free field
theory mimics in the ultraviolet regime that of the Poincaré
vacuum, while, on the other hand, the quantum fluctuations
of all observables are finite [3,4]. As a consequence one can
give a covariant definition of Wick polynomials, extending
the standard one on Minkowski spacetime, and, as a by-
product, interactions can be introduced at a perturbative

level. In other words, if one focuses the attention on quasi-
free/Gaussian states, selecting a physically acceptable state
boils down to the construction of a positive, two-point
function Gþðx; x0Þ. This is a solution of the equation of
motion in both entries, with a prescribed singular behavior.
The most famous examples of Hadamard states are the
Poincaré vacuum and the Bunch-Davies state on de Sitter
spacetime [5,6], but several construction schemes are
nowadays known, especially on black hole [3,7–9] and
cosmological spacetimes [10–13].
The situation changes drastically the moment we drop

the assumption of the spacetime being globally hyperbolic.
Already at a classical level we face additional difficulties
since we cannot construct and characterize the solutions of
the equations of motion just in terms of an initial value
problem. It is therefore tempting to take the easy path of
concluding that these scenarios are not of interest since they
bear no physical information. This attitude is not justified
as there are renowned, experimentally verified effects, e.g.
the Casimir force, which are described by field theoretical
models whose underlying geometry is not that of a globally
hyperbolic spacetime, since the manifold possesses boun-
daries [14].
Another relevant instance of a manifold which is not

globally hyperbolic, while being central in several, impor-
tant physical models is the (dþ 1)-dimensional anti–de
Sitter AdSdþ1 spacetime, d ≥ 2. This is a maximally
symmetric solution of the vacuum Einstein equations with
a negative cosmological constant Λ whose underlying
manifold M ≃ S1 ×Rd is such that the time coordinate
runs along S1, hence yielding closed timelike curves
[[15], §5.2].
In this paper, we will focus on this class of backgrounds,

more precisely on the so-called Poincaré fundamental
domain PAdSdþ1 which covers only a portion of the full
AdSdþ1 spacetime and which is extensively used in the
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prominent AdS=CFT correspondence—see, for example,
the recent monograph [16]. Contrary to AdSdþ1, PAdSdþ1

can be described as the subset Rd × ð0;∞Þ of Rdþ1

endowed with the metric ds2¼l2

z2 ð−dt2þdz2þδijdxidxjÞ,
i; j ¼ 1;…; d − 1, where l2 ¼ − dðd−1Þ

Λ and where ðt; z; xiÞ
are standard Cartesian coordinates with z ranging only over
the half line. One can realize per direct inspection that we
can attach to PAdSdþ1 a conformal, timelike boundary
at z ¼ 0.
From the point of view of the matter content, we will

consider a real, massive scalar field, with a possibly
nonminimal coupling to scalar curvature. Although the
dynamics is ruled by the Klein-Gordon operator, its smooth
solutions cannot be constructed only starting from suitable
initial data, but one needs also to prescribe boundary
conditions at z ¼ 0. This additional input has dramatic
effects at the level of quantum theory, both in the con-
struction of the collection of all possible observables and in
the identification of a physically acceptable quantum state.
In this paper, we will be focusing on the second problem.
As a matter of fact, we will be asking ourselves two
questions. The first is if one can construct the two-point
function Gþðx; x0Þ for the ground state. This must be
invariant under all isometries of PAdSdþ1, a solution of
the equations of motion in both entries, and it must also
encode the choice of boundary conditions. The second
question is whether such Gþðx; x0Þ is the two-point
function for a physically acceptable state. In this respect,
the notion of Hadamard states cannot be invoked since it is
strongly tied to spacetimes which are globally hyperbolic.
When such a requirement is missing, there is no universally
accepted replacement and actually this is an interesting
open problem. Nonetheless, a minimal request, which one
can ask, is that at least the restriction of the two-point
function to any globally hyperbolic subregion of PAdSdþ1

is of Hadamard form, a condition which can be traced back
to [17].
As a first step, we will be showing that for a certain range

of the mass and curvature coupling no boundary condition
at z ¼ 0 is required, whereas for its complement a whole
one-parameter family of boundary conditions can be
considered. As a second step, we will show that a two-
point function Gþðx; x0Þ with the desired characteristics
exists and it encodes in particular the choice of boundary
conditions. It is important to stress that, while Dirichlet and
Neumann are always unproblematic choices (whenever
admissible), the Robin boundary conditions are rather
tricky. As a matter of fact, we will prove that there exist
instances where, upon choosing Robin boundary condi-
tions, “bound states” solutions, which are exponentially
suppressed for large z, appear. This is a very troublesome
feature, first of all since it destroys the invariance under the
PAdSdþ1 isometry group. This peculiar scenario is dras-
tically different from the usual free field theories, and for

this reason we will highlight its existence, leaving a more
detailed analysis to future works.
In terms of the singular behavior of Gþðx; x0Þ, we will

show that singularities occur whenever x and x0 are
connected by a null geodesic, possibly reflected at the
boundary. This behavior is consistent not only with the
requirement that Gþðx; x0Þ be of Hadamard form in every
globally hyperbolic subregion but also with the construc-
tion via the method of images of the two-point function,
associated with the Casimir effect [14], which corresponds
to one of the particular cases considered here: a massless,
conformally coupled scalar field.
It is important to stress that we are not the first ones to

study the quantization of a real, massive scalar field in anti–
de Sitter, since a first analysis appeared already in the late
1970s in [18]. Also the construction of a maximally
symmetric two-point function was tackled before; see
[19,20]. Other recent works for this and other matter fields
on AdS include [21,22]. Yet, these works considered only
the special case of the Dirichlet boundary condition, which
corresponds to the Friedrichs extension of the Helmholtz
operator built out of the PAdSdþ1 metric at constant time. In
[23], the Friedrichs extension was shown to be only one of
the possible self-adjoint extensions of the Helmholtz
operator, which correspond to different Robin boundary
conditions. In this paper, we use an alternative method to
determine all these possible boundary conditions,1 and, in
addition, we construct the associated two-point functions
for a ground state, obtaining their singular behavior.
The paper is organized as follows: In Sec. II, we will

recall the basic structural, geometric properties of AdSdþ1

and in particular of the associated Poincaré fundamental
domain. In Sec. III, we will consider the Klein-Gordon
equation on PAdSdþ1 and, by means of a conformal
rescaling, we will transform it to a wave equation with a

singular potential on H
̥
dþ1, the subset of Minkowski

spacetime with z > 0. After a Fourier transform in the
directions orthogonal to z we will reduce the dynamics to a
one-dimensional ordinary differential equation of Sturm-
Liouville type. This is a well studied topic, in particular
with reference to the assignment of boundary conditions at
the end point of the domain of definition of the equation. As
a matter of fact, at the point z ¼ 0, where we want to
prescribe boundary conditions, the potential of the differ-
ential equation is singular. Hence, it fails the usual idea that
Dirichlet, Neumann, or Robin boundary conditions are
nothing but a prescription at the boundary of the behavior
of a linear combination between a solution of the

1In the spirit of analyzing a correspondence between
dynamical theories in the bulk and in the boundary of an AdS
spacetime, one might wish to adapt to this case the Wentzell
boundary conditions, a generalized version of the Robin ones.
A preliminary, recent investigation along these lines can be found
in [24].
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differential equation and its derivatives. We will outline
how this obstruction can be circumvented in the language
of a Sturm-Liouville problem. In Sec. IV, we will construct
via a mode expansion the two-point functions for all
admissible boundary conditions. We will show that for a
certain class of Robin boundary conditions bound states
solutions appear, while, in all other cases, one can push the
analysis to the very end obtaining a closed form expression
for the two-point function. In addition, we will show
invariance under all isometries of the background, hence
proving that we have constructed a maximally symmetric
state. Finally, we will study the singular behavior of the
two-point function, unveiling its consistence with the
standard Hadamard prescription in all globally hyperbolic
subregions and proposing a new definition of Hadamard
states which apply to PAdSdþ1.

II. ANTI–DE SITTER AND THE
POINCARÉ DOMAIN

In this paper, our starting point is the anti–de Sitter
spacetime, AdSdþ1, the maximally symmetric solution to
the (dþ 1)-dimensional Einstein’s equation (d ≥ 2) with a
negative cosmological constant Λ. It can be constructed
starting from the embedding space M2;d, that is, Rdþ2

endowed with metric

ds2 ¼ ~ηABdXAdXB ¼ −dX2
0 − dX2

1 þ
Xdþ1

i¼2

dX2
i ;

where ðX0;…; Xdþ1Þ are the standard Cartesian coordi-
nates, and considering only the region identified by the
relation

−X2
0 − X2

1 þ
Xdþ1

i¼2

X2
i ¼ −l2; l2 ≐ −

dðd − 1Þ
Λ

: ð2:1Þ

For our purposes and in many physical applications, we
do not work directly on AdSdþ1, but rather on the Poincaré
fundamental domain, PAdSdþ1, which is identified via the
coordinate transformation

8>>>>>>>>><
>>>>>>>>>:

X0 ¼ l
z t;

Xi ¼ l
z xi; i ¼ 1;…d − 1;

Xd ¼ l
�
1 − z2

2z
þ −t2 þ δijxixj

2z

�
;

Xdþ1 ¼ l
�
1þ z2

2z
−
−t2 þ δijxixj

2z

�
;

ð2:2Þ

where both t and all xi are ranging over the whole R,
whereas z ∈ ð0;∞Þ. This translates the constraint which
descends from the identity Xd þ Xdþ1 ¼ l

z, hence showing
that PAdSdþ1 covers only half of the full AdSdþ1 (see

Fig. 1). In addition, the metric of the Poincaré domain
becomes

ds2 ¼ l2

z2
ð−dt2 þ dz2 þ δijdxidxjÞ; i ¼ 1;…; d − 1;

ð2:3Þ

where δij stands for the Kronecker delta. Hence, PAdSdþ1

is conformal to a portion of Minkowski spacetime, the
“upper-half plane”

H
̥ dþ1 ≐ fðt; x1;…; xd−1; zÞ ∈ Rdþ1jz > 0g;

where we adopted the same Cartesian coordinates as in

(2.3). If we endow H
̥ dþ1 with the standard Minkowskian

metric η, then η ¼ Ω2g ¼ z2

l2 g where g is the metric (2.3) of
PAdSdþ1 and Ω ¼ z

l is the conformal factor.
To finish this short introduction on the geometric aspects

of the background, let us briefly describe the notion of
invariant distance in AdS. One can proceed in two distinct,
albeit equivalent ways. Intrinsically, one can define the
geodesic distance s on PAdSdþ1 between two arbitrary
points x and x0 and Synge’s world function σ given by
σðx; x0Þ ≐ 1

2
sðx; x0Þ2. In view of (2.1), one can start instead

from the chordal distance se between x and x0 through the
embedding space M2;d and from Synge’s world function
defined on M2;d as

σeðx;x0Þ≐ 1

2
seðx;x0Þ2¼

1

2
~ηABðXA−X0

AÞðXB−X0
BÞ; ð2:4Þ

where x and x0 are two points constrained by (2.1), hence
lying in AdSdþ1. These two notions are related by

cosh

�
s
l

�
¼ 1þ s2e

2l2
; cosh

� ffiffiffiffiffi
2σ

p

l

�
¼ 1þ σe

l2
ð2:5Þ

FIG. 1. Conformal diagram of AdSdþ1 and the Poincaré domain
and the representation with one spatial dimension restored.
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(see e.g. Sec. 2.4 of [25]). In the rest of the paper, we
set l≡ 1.

III. MASSIVE SCALAR FIELD ON ADS

A. Klein-Gordon equation

We consider a real, massive scalar field ϕ: PAdSdþ1 → R
such that

Pϕ ¼ ð□g −m2
0 − ξRÞϕ ¼ 0; ð3:1Þ

where □g is the D’Alembert wave operator built out of
(2.3), m0 is the mass of the scalar field, ξ is the scalar-
curvature coupling constant, and R ¼ −dðdþ 1Þ is the
Ricci scalar.
In order to study the solutions of this equation, we follow

a slightly unconventional strategy which relies on the
observation made previously that PAdSdþ1 is conformal

to H
̥ dþ1 and it consists in translating (3.1) into a partial

differential equation intrinsically defined on H
̥
dþ1. This is a

standard procedure, see e.g. Appendix D of [26]. Let ϕ:
PAdSdþ1 → R be any solution of (3.1), and let Φ ≐ Ω1−d

2 ϕ.

The latter can be read as a scalar field Φ: H
̥ dþ1

→ R,
solution of the equation

PηΦ ¼
�
□η −

m2

z2

�
ΦðzÞ ¼ 0; ð3:2Þ

in which □η is the standard wave operator built out
of the Minkowski metric η and we define2 m2 ≐
m2

0 þ ðξ − d−1
4d ÞR. In other words, the Klein-Gordon

equation in PAdSdþ1 is transformed to a wave equation

on H
̥
dþ1 with a potential, singular at z ¼ 0.

In order to construct solutions of (3.2), in view of
the invariance of the metric under translations along
the directions orthogonal to z, we take the Fourier
transform,

Φðx; zÞ ¼
Z
Rd

ddk

ð2πÞd2 e
ik·xΦ̂kðzÞ; ð3:3Þ

where x ≐ ðt; x1;…; xd−1Þ, k ≐ ðω; k1;…; kd−1Þ, and Φ̂k

are solutions of

LΦ̂k ≐
�
−

d2

dz2
þm2

z2

�
Φ̂kðzÞ ¼ λΦ̂kðzÞ;

λ≡ q2 ≐ ω2 −
Xd−1
i¼1

k2i : ð3:4Þ

This is a singular Sturm-Liouville equation3 on z ∈
ð0;þ∞Þ with spectral parameter λ.
To fully specify a well-posed Sturm-Liouville problem,

we need to add at most two boundary conditions at the end
points 0 and þ∞. The required number and the form of the
boundary conditions depend on the classification of the end
points, as explained in the next section. After specifying
appropriate boundary conditions, it is known that there is a
continuous spectrum contained in ð0;∞Þ and, for some
boundary conditions, there is also a point spectrum with
negative eigenvalues, which is indicative of the existence of
bound states in the space of solutions of (3.4), that is,
exponentially decaying solutions in z. To the best knowl-
edge of the authors of this paper, these solutions have not
been discussed so far in the literature of scalar field theory
on AdS.
The next step is therefore to study the possible

(λ-independent) boundary conditions that can be applied
to this problem. For that purpose, as a preliminary step, we
note that two linearly independent solutions of (3.4) areffiffiffi
z

p
Jνð

ffiffiffi
λ

p
zÞ and

ffiffiffi
z

p
Yνð

ffiffiffi
λ

p
zÞ, where Jν and Yν are the

Bessel functions of the first and second kinds, respectively,
and

ν ≐ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
: ð3:5Þ

We assume that ν ∈ ½0;∞Þ or, equivalently, m2 ∈
½− 1

4
;∞Þ (the lower bound is the Breitenlohner-Freedman

bound [28]).

B. End point classification

The types of boundary conditions that are allowed at a
given end point depend on the integrability of the solutions
near the end point. This classification of end points for a
Sturm-Liouville problem has its origins with Weyl’s
classical limit-point and limit-circle theory [29]. A modern
overview may be found e.g. in [27]. Here, we summarize
the main results.
For the Sturm-Liouville problem (3.4) the two end points

are 0 and þ∞.

1. End point 0

Concerning the end point 0, it is classified as
(i) regular if the “potential term” z ↦ m2

z2 ∈ L1ð0; z0Þ
for some z0 ∈ ð0;þ∞Þ, i.e. if m2 ¼ 0 (ν ¼ 1

2
);

otherwise, it is singular, i.e. if m2 ≠ 0 (ν ≠ 1
2
);

(ii) limit circle (notation LC) if, for some λ ∈ C, all
solutions of the equation are in L2ð0; z0Þ for
some z0 ∈ ð0;þ∞Þ; otherwise, it is limit point
(notation LP).

2Note that m2 differs from the “effective mass” m2
0 þ ξR used

in other references.

3A good reference on singular Sturm-Liouville problems
is [27].
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Given that, for any λ > 0, z ↦
ffiffiffi
z

p
Jνð

ffiffiffi
λ

p
zÞ ∼z→0 zνþ

1
2 is in

L2ð0; z0Þ for all ν ∈ ½0;∞Þ and that z ↦
ffiffiffi
z

p
Yνð

ffiffiffi
λ

p
zÞ ∼z→0

z−νþ1
2 is in L2ð0; z0Þ only if ν ∈ ½0; 1Þ, for any

z0 ∈ ð0;þ∞Þ, we may conclude that the end point 0 is
LC for ν ∈ ½0; 1Þ (in particular, it is regular for ν ¼ 1

2
) and

LP for ν ∈ ½1;∞Þ.

2. End point þ∞
As for the end point þ∞, it is classified as
(i) singular, as it is not finite;
(ii) limit circle if, for some λ ∈ C, all solutions of the

equation are in L2ðz0;þ∞Þ for some z0 ∈ ð0;þ∞Þ;
otherwise, it is limit-point.

For any λ ∈ C, we see that the solutions z ↦
ffiffiffi
z

p
Jνð

ffiffiffi
λ

p
zÞ∼

z→þ∞ cosð ffiffiffi
λ

p
z − νπ

2
− π

4
Þ and z ↦

ffiffiffi
z

p
Yνð

ffiffiffi
λ

p
zÞ∼z→þ∞

sinð ffiffiffi
λ

p
z − νπ

2
− π

4
Þ are not in L2ðz0;þ∞Þ for all ν ∈

½0;∞Þ. There is a solution, given by z ↦
ffiffiffi
z

p
Hð1Þ

ν ð ffiffiffi
λ

p
zÞ∼

z→þ∞ exp½ið ffiffiffi
λ

p
z − νπ

2
− π

4
Þ�, called the first Hankel function,

which is in L2ðz0;þ∞Þ when ImðλÞ ≠ 0, but any other
linearly independent solution is not. Hence, the end point
þ∞ is always LP.

C. Boundary conditions

In this section, we identify the λ-independent boundary
conditions that may be assigned to the end points of the
Sturm-Liouville problem (3.4). Their necessity and type
essentially depend on the classification of the end points
given in the previous section.
We note that in [23] the boundary conditions that can be

applied to the conformal boundary of AdS were determined
by finding all self-adjoint extensions of the Helmholtz
operator built out of the PAdSdþ1 metric. Here, we give
an alternativemethod that is consistent and complements that
of [23] and, in addition, it gives an account of thebound states
solutions that occur for a class of boundary conditions.
We pick as a fundamental pair of solutions fΦ̂1

k; Φ̂
2
kg,

with

Φ̂1
kðzÞ ¼

ffiffiffi
π

2

r
q−ν

ffiffiffi
z

p
JνðqzÞ; ð3:6aÞ

Φ̂2
kðzÞ ¼

(
−

ffiffi
π
2

p
qν

ffiffiffi
z

p
J−νðqzÞ; ν ∈ ð0; 1Þ;

−
ffiffi
π
2

p ffiffiffi
z

p ½Y0ðqzÞ − 2
π logðqÞ�; ν ¼ 0:

ð3:6bÞ

For future reference, we note that Φ̂1
k is the principal

solution at the end point 0, as it is the unique solution (up to
scalar multiples) such that limz→0þΦ̂

1
kðzÞ=Ψ̂kðzÞ ¼ 0 for

every solution Ψ̂k which is not a scalar multiple of Φ̂1
k. The

other solution Φ̂2
k is called a nonprincipal solution and is not

unique, as it may be given by a linear combination

of the principal solution with any linearly independent
solution.
A general solution may then be written as

Φ̂kðzÞ ¼ N k½cosðαÞΦ̂1
kðzÞ þ sinðαÞΦ̂2

kðzÞ�; ð3:7Þ

where N k and α ∈ ½0; πÞ are independent of z. The
fundamental solutions (3.6) were chosen such that α is
in addition independent of k.
We note that this Sturm-Liouville problem is discussed

in Sec. 4.11 of the classical work of Titchmarsh [30], in the
context of Fourier-Bessel expansions, and instead of α, it is
used as constant c ∈ R, also independent of k, which is
related to α by c ¼ cotðαÞ.
We consider separately the following cases for different

values of ν.

1. Case ν= 1
2

This corresponds to the massless, conformally coupled
scalar field. The end point 0 is regular in this case, whereas
the end point þ∞ is singular.
The fundamental pair of solutions fΦ̂1

k; Φ̂
2
kg reduces to

Φ̂1
kðzÞ ¼

ffiffiffiffiffiffi
πz
2q

r
J1

2
ðqzÞ ¼ sinðqzÞ

q
;

Φ̂2
kðzÞ ¼ −

ffiffiffiffiffiffiffiffi
πqz
2

r
J−1

2
ðqzÞ ¼ − cosðqzÞ: ð3:8Þ

Since the end point 0 is regular, the most general
homogeneous boundary condition that may be applied is
a Robin boundary condition in its regular form

cosðαÞΦ̂kð0Þ þ sinðαÞΦ̂0
kð0Þ ¼ 0; α ∈ ½0; πÞ: ð3:9Þ

The particular case which selects the principal solution Φ̂1
k,

i.e. α ¼ 0, is called the Friedrichs boundary condition, and
it corresponds to the standard homogeneous Dirichlet
boundary condition Φ̂kð0Þ ¼ 0. Other common examples
are the homogeneous Neumann boundary condition,
Φ̂0

kð0Þ ¼ 0, which corresponds to α ¼ π
2
, and the trans-

parent boundary conditions,4 which corresponds to α ¼ π
4
.

An important feature occurs when we impose a Robin
boundary condition with c > 0 or, equivalently, α ∈ ð0; π

2
Þ.

In this case, it can be shown (Sec. 4.11 of [30]) that the
spectrum of the eigenvalue problem associated with the
Sturm-Liouville problem (3.4) does not consist purely
of the continuous spectrum but it also includes a negative
eigenvalue λbs ¼ −c2 ¼ − cot2ðαÞ. This indicates the
existence of a bound state solution, that is, of a mode
solution which exponentially decays with z, given by
e−cz ¼ e− cotðαÞz, and which satisfies trivially the boundary
condition. This eigenvalue implies that the Fourier transform
(3.3) does not represent the full solution to the equationwhen

4The transparent boundary conditions were used in [18] for the
quantization of the massless, conformally coupled scalar field.
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c > 0. A general solution for a boundary condition of this
type needs to include this bound state, besides the usual
propagating modes.

2. Case ν ∈ ½0;1Þnf12g
In this case, the end point 0 is singular and limit circle.

Hence, both solutions Φ̂1
k and Φ̂

2
k are square integrable near

the origin and may be used to construct a general solution.
However, a Robin boundary condition written in the regular

form (3.9) is no longer valid, as for instance limz→0Φ̂
2
kðzÞ

diverges.
To motivate a natural way to implement a Robin

boundary condition for a singular end point, note that in
the regular case (3.9) may be equivalently written as

lim
z→0

fcosðαÞWz½Φ̂k; Φ̂
1
k� þ sinðαÞWz½Φ̂k; Φ̂

2
k�g ¼ 0; ð3:10Þ

since Φ̂1
kð0Þ¼0, ðΦ̂1

kÞ0ð0Þ¼1, Φ̂2
kð0Þ¼−1, and ðΦ̂1

kÞ0ð0Þ¼0

when ν ¼ 1
2
. In the expression, Wz½u; v� ≐ uðzÞv0ðzÞ −

vðzÞu0ðzÞ is the Wronskian of two differentiable functions
u and v. However, (3.10) is also valid in the singular case as
the limit exists.5 Hence, one may take (3.10) as the form of a
Robin boundary condition when the end point 0 is singular
and limit circle, a natural generalization of the regular case.
Therefore, (3.10) is themost general boundary condition that
can be applied for all ν ∈ ð0; 1Þ.
The important particular example of the Friedrichs boun-

dary condition, which selects the principal solution at 0,
corresponds to α ¼ 0, and we use it to define the generalized
Dirichlet boundary condition. When ν ∈ ð0; 1Þ, we also
define the generalized Neumann boundary condition to
correspond to α ¼ π

2
, which selects the nonprincipal solution

Ψ̂2
k. However, note that, given the nonuniqueness of non-

principal solutions, there is no unique way to define a
generalized Neumann boundary condition in the singular
case which reduces to the standard definition in the regular
one, Φ̂0

kð0Þ ¼ 0. For instance, since J−1
2
ðzÞ ¼ −Y1

2
ðzÞ, the

boundary condition obtained by replacing Φ̂2
k in (3.10)

by a solution proportional to qν
ffiffiffi
z

p
YνðqzÞ and setting

α ¼ π
2

is not equivalent to the generalized Neumann
boundary defined above. Finally, when ν ¼ 0, we define
these examples of generalized boundary conditions
similarly.6

As in the regular case, it can be shown (Sec. 4.11 of [30])
that, if c > 0, or, equivalently, α ∈ ð0; π

2
Þ, there is a negative

eigenvalue in the spectrum of the eigenvalue problem
associated with the Sturm-Liouville problem (3.4), λbs ¼
−c1=ν ¼ − cot1=νðαÞ if ν ∈ ð0; 1Þ and λbs ¼ −e−πc ¼
−eπ cotðαÞ if ν ¼ 0. Hence, there is a bound state solution

of the form
ffiffiffi
z

p
Kνð

ffiffiffiffiffiffiffiffijλbsj
p

zÞ ∼z→∞ e−
ffiffiffiffiffiffi
jλbsj

p
z, whereKν is the

modified Bessel solution of the second kind. This negative
eigenvalue implies once more that the Fourier transform
(3.3) does not represent the full solution to the equation
when c > 0. A general solution for a boundary condition of
this type needs to include this bound state solution, besides
the usual propagating modes.

3. Case ν ∈ ½1;∞Þ
In this case, the end point 0 is singular and limit point.

Among the two fundamental solutions (3.6), only the
principal solution Φ̂1

k is square integrable near the origin,
and, hence, no boundary condition is required. In practice,
this is as if one had chosen the generalized Dirichlet
boundary condition. Furthermore, there are no eigenvalues
in the spectrum of the eigenvalue problem associated with
the Sturm-Liouville problem (3.4), and thus there is no
bound state solution.
All the cases analyzed above and the allowed boundary

conditions, when necessary, are summarized in Table I.

IV. TWO-POINT FUNCTION

In this section we calculate the two-point or Wightman
function7 Gþ for a massive scalar field on PAdSdþ1,

Gþðx; x0Þ ≐ hψ jΦðxÞΦðx0Þjψi; ð4:1Þ

TABLE I. Allowed boundary conditions at z ¼ 0, with α ∈ ½0; πÞ and Φ̂1
k and Φ̂2

k defined in (3.6).

ν ¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m2

p
Classification of z ¼ 0 Boundary condition at z ¼ 0

ν ¼ 1
2

Regular (R) cotðαÞΦ̂kð0Þ þ Φ̂k
0ð0Þ ¼ 0

ν ∈ ½0; 1Þ; ν ≠ 1
2

Limit circle (LC) cotðαÞWz½Φ̂k; Φ̂
1
k� þWz½Φ̂k; Φ̂

2
k� ¼ 0

ν ∈ ½1;∞Þ Limit point (LP) Not required

5In fact, the Wronskians in (3.10) are independent of z, but this
formula remains valid if instead of the solutions Φ̂1

k, Φ̂
2
k we pick

two functions u and v whose Wronskian limit is nonzero and Lu
and Lv are square integrable near the origin (see more details
in [27]).

6The definition of Neumann boundary conditions for the
nonregular cases varies from author to author, given the non-
uniqueness of nonprincipal solutions. For instance, in [23], when
ν ¼ 0 it coincides with the Dirichlet boundary condition.

7In the literature of algebraic quantum field theory, the two-
point function associated with a given algebraic state ω is denoted
by ω2. Also, note that Gþ is sometimes reserved for the advanced
propagator.
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for the ground state jψi. We perform the calculation in two
ways: by a mode expansion and by closed form solutions of
the differential equation satisfied byGþ. We show that both
approaches coincide in Appendix A.

A. Mode expansion

In order to construct the two-point function for the
ground state, we first use a mode expansion, a procedure
already advocated in previous works, e.g. [31], but always
in the special case of Dirichlet boundary conditions. Here,
we want to consider all admissible boundary conditions
discussed in the previous section. We perform the calcu-
lation for the two-point function Gþ

H in H
̥ dþ1, but we can

immediately obtain the two-point function on PAdSdþ1, by
using the relation Gþðx; x0Þ ¼ ðzz0Þd−12 Gþ

Hðx; x0Þ.
Starting from (3.2), we look for Gþ

H satisfying

ðPη ⊗ IÞGþ
H ¼ ðI ⊗ PηÞGþ

H ¼ 0; ð4:2Þ

where Pη is the operator defined in (3.2). We consider the
Fourier transform8

Gþ
Hðx; z; x0; z0Þ ¼

Z
Rd

ddk

ð2πÞd2 e
ik·ðx−x0ÞĜþ

k ðz; z0Þ: ð4:3Þ

The remaining unknown Ĝþ
k ðz; z0Þ is a solution of

ðL ⊗ IÞĜþ
k ¼ ðI ⊗ LÞĜþ

k ¼ λĜþ
k ;

and where appropriate boundary conditions are applied at
z ¼ 0 and z0 ¼ 0 when ν ∈ ½0; 1Þ.
Given thatGþ

H is radially symmetric in the (d − 1) spatial
directions excluding the z direction, instead of a Fourier
transform along those directions we consider a Hankel or
Fourier-Bessel transform

Gþ
Hðx; x0Þ ¼ lim

ϵ→0þ

Z
∞

0

dωffiffiffiffiffiffi
2π

p e−iωðt−t0−iϵÞ

×
Z

∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞĜþ

k ðz; z0Þ;

where r2 ≐ P
d−1
i¼1 ðxi − x0iÞ2, only positive frequencies are

taken for the ground state and iϵ was introduced to
regularize the two-point function [32]. Finally, a change
of integration variables q2 ≐ ω2 − k2 leads to

Gþ
Hðx; x0Þ ¼ lim

ϵ→0þ

Z
∞

0

dqq
Z

∞

0

dkk
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p �

k
r

�d−3
2

× Jd−3
2
ðkrÞĜþ

k ðz; z0Þ:

At this point, some comments are in order. The anti-
symmetric part of the two-point function is given by
iGðx; x0Þ, whereGðx; x0Þ ¼ hψ j½ΦðxÞ;Φðx0Þ�jψi is the com-
mutator function. In addition to satisfying (4.2) as the two-
point function, it also satisfies

Gðx; x0Þjt¼t0 ¼ 0;

∂tGðx; x0Þjt¼t0 ¼ ∂t0Gðx; x0Þjt¼t0 ¼
Yd−1
i¼1

δðxi − x0iÞδðz − z0Þ:

ð4:4Þ
We can then write it as

Gðx; x0Þ ¼ lim
ϵ→0þ

ffiffiffi
2

p Z
∞

0

dqq

×
Z

∞

0

dkk
sin ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ q2

p
ðt − t0 − iϵÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

πðk2 þ q2Þ
p �

k
r

�d−3
2

× Jd−3
2
ðkrÞĜþ

k ðz; z0Þ:

The second condition in (4.4) implies thatffiffiffi
2

π

r Z
∞

0

dqq
Z

∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞĜþ

k ðz; z0Þ

¼
Yd−1
i¼1

δðxi − x0iÞδðz − z0Þ:

If we assume that Ĝk does not depend on k (as it is the
case), then by using the identity derived in Appendix B,

Z
∞

0

dkk
�
k
r

�d−3
2

Jd−3
2
ðkrÞ

¼ 2
d−3
2 Γ

�
d − 1

2

�
δðrÞ
rd−2

¼ ð2πÞd2Γðd−1
2
Þffiffiffi

2
p

Γðd
2
Þ

Yd−1
i¼1

δðxi − x0iÞ;

we obtain the one-dimensional delta distribution represen-
tation

ð2πÞd2Γðd−1
2
Þffiffiffi

π
p

Γðd
2
Þ

Z
∞

0

dqqĜþ
k ðz; z0Þ ¼ δðz − z0Þ:

In other words we are looking for a resolution of the
identity in terms of eigenfunctions of L. This problem has
its roots in the theory of eigenfunction expansions, and, for
the case in hand, it has been tackled in Sec. 4.11 of [30]. We
present the results below and leave the details of their
derivation to Appendix C.

8The Fourier transforms exists, as we are performing the
computation for the ground state, which is maximally symmetric
on AdS. For the two-point function of any other quantum state, it
is sufficient to add a smooth, positive, and symmetric bisolution
of (4.2).
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1. Case ν ∈ ½1;∞Þ
When ν ∈ ½1;∞Þ, as we have seen in the previous section, no boundary conditions are required at the end point 0. The

delta distribution expanded in terms of eigenfunctions of L is given by

δðz − z0Þ ¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

dqqJνðqzÞJνðqz0Þ:

Hence, the two-point function is

Gþ
Hðx; x0Þ ¼ lim

ϵ→0þ
N

ffiffiffiffiffiffi
zz0

p Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

Z
∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p JνðqzÞJνðqz0Þ; ð4:5Þ

where N is a normalization constant.

2. Case ν ∈ ð0;1Þ
This case, which includes the ν ¼ 1

2
example, requires a Robin boundary condition of the form (3.10) to be applied to the

solutions of the field equation. The delta distribution, expanded in terms of eigenfunctions of L which satisfy the boundary
condition with c < 0, is given by

δðz − z0Þ ¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

dqq
½cJνðqzÞ − q2νJ−νðqzÞ�½cJνðqz0Þ − q2νJ−νðqz0Þ�

c2 − 2cq2ν cosðνπÞ þ q4ν
: ð4:6Þ

Hence, for c < 0, the two-point function is given by

Gþ
Hðx; x0Þ ¼ lim

ϵ→0þ
N

ffiffiffiffiffiffi
zz0

p Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

Z
∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p ½cJνðqzÞ− q2νJ−νðqzÞ�½cJνðqz0Þ− q2νJ−νðqz0Þ�

c2 − 2cq2ν cosðνπÞ þ q4ν
:

ð4:7Þ

If we denote GþðDÞ
H ≐ Gþ

H jα¼0 and GþðNÞ
H ≐ Gþ

H jα¼π
2
, we verify that the two-point function satisfies the following boundary

conditions at z ¼ 0 and z0 ¼ 0:

lim
z→0

fcosðαÞWz½Gþ
H ; G

þðDÞ
H � þ sinðαÞWz½Gþ

H ; G
þðNÞ
H �g ¼ 0; ð4:8aÞ

lim
z0→0

fcosðαÞWz0 ½Gþ
H ; G

þðDÞ
H � þ sinðαÞWz0 ½Gþ

H ; G
þðNÞ
H �g ¼ 0: ð4:8bÞ

In the particular case ν ¼ 1
2
, these reduce to

cosðαÞGþ
Hð0; z0Þ þ sinðαÞdG

þ
Hðz; z0Þ
dz

����
z¼0

¼ 0;

cosðαÞGþ
Hðz; 0Þ þ sinðαÞdG

þ
Hðz; z0Þ
dz0

����
z0¼0

¼ 0:

For c > 0, the existence of a bound state solution with spectral parameter λ ¼ −c1=ν adds a contribution to the delta
distribution

δðz − z0Þ ¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

dqq
½cJνðqzÞ − q2νJ−νðqzÞ�½cJνðqz0Þ − q2νJ−νðqz0Þ�

c2 − 2cq2ν cosðνπÞ þ q4ν
þ 2

ffiffiffiffiffiffi
zz0

p
c1=ν

sinðπνÞ
πν

Kνðc1=ð2νÞzÞKνðc1=ð2νÞz0Þ:

Hence, for c > 0, the two-point function is given by
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Gþ
Hðx; x0Þ ¼ lim

ϵ→0þ
N

ffiffiffiffiffiffi
zz0

p Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

�Z
∞

0

dqq

�
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p

×
½cJνðqzÞ − q2νJ−νðqzÞ�½cJνðqz0Þ − q2νJ−νðqz0Þ�

c2 − 2cq2ν cosðνπÞ þ q4ν

�

þ 2c1=ν
e−i

ffiffiffiffiffiffiffiffiffiffiffi
k2−c1=ν

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 − c1=νÞ
p sinðπνÞ

πν
Kνðc1=ð2νÞzÞKνðc1=ð2νÞz0Þ

	
: ð4:9Þ

The extra term is not invariant under the isometries of AdS, as it is not a function of the geodesic distance (the first term is in
fact invariant, as it is shown in the next section). Therefore, it is not the two-point function for the ground state. Note,
however, that it is still invariant under translations along the directions orthogonal to z and z0, and hence the Fourier
transform (4.3) still makes sense.

3. Case ν= 0

This case also requires a Robin boundary condition of the form (3.10) to be applied to the solutions of the field
equation. The delta distribution, expanded in terms of eigenfunctions of L which satisfy the boundary condition, is
given by

δðz − z0Þ ¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

dqq
½ðcþ 2

π logðqÞÞJ0ðqzÞ − Y0ðqzÞ�½ðcþ 2
π logðqÞÞJ0ðqz0Þ − Y0ðqz0Þ�

ðcþ 2
π logðqÞÞ2 þ 1

þ 2
ffiffiffiffiffiffi
zz0

p
e−πcK0ðe−πc=2zÞK0ðe−πc=2z0Þ:

For any c ∈ R there is an extra contribution from a bound state solution. The two-point function is given by

Gþ
Hðx; x0Þ ¼ lim

ϵ→0þ
N

ffiffiffiffiffiffi
zz0

p Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

�Z
∞

0

dqq

�
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p

×
½ðcþ 2

π logðqÞÞJ0ðqzÞ − Y0ðqzÞ�½ðcþ 2
π logðqÞÞJ0ðqz0Þ − Y0ðqz0Þ�

ðcþ 2
π logðqÞÞ2 þ 1

�

þ 2e−πc
e−i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−e−πc=2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 − e−πc=2Þ
p K0ðe−πc=2zÞK0ðe−πc=2z0Þ

	
: ð4:10Þ

Similar to the case ν ∈ ð0; 1Þ, the extra term is not invariant
under the isometries of AdS, as it is not a function of the
geodesic distance. Therefore, when ν ¼ 0, we conclude
that we are unable to construct a ground state. This may be
seen as the counterpart of a massless, minimally coupled
scalar field on four-dimensional de Sitter spacetime, for
which there is also no ground state [33].

B. Closed form expression

The two-point function Gþðx; x0Þ for a scalar field in
AdSdþ1 on the ground state, or more generally in any
maximally symmetric state, may also be given in closed
form. Because of the maximal symmetry of the spacetime
and of the state, it depends only on the geodesic distance
between x and x0. In Ref. [19] it was shown that Gþ
satisfies an ordinary differential equation of hypergeomet-
ric type,

�
uð1 − uÞ d2

du2
þ ½c − ðaþ bþ 1Þu� d

du
− ab

	
GþðuÞ ¼ 0;

ð4:11Þ

where

a ¼ d
2
− ν; b ¼ d

2
þ ν; c ¼ dþ 1

2
;

and

u ¼ uðσÞ ≐ cosh2
� ffiffiffiffiffi

2σ
p

2

�

is an invariant quantity which depends only on Synge’s
world function σ defined in Sec. II. In the Poincaré domain,
using (2.4) and (2.5), u may be written as
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u ¼ cosh2
� ffiffiffiffiffi

2σ
p

2

�
¼ 1þ σM

2zz0
¼ σð−ÞM

2zz0
; ð4:12Þ

where, with i ¼ 1;…; d − 1,

σM ¼ 1

2
½−ðt − t0Þ2 þ δijðxi − x0iÞðxj − x0jÞ þ ðz − z0Þ2�;

σð−ÞM ¼ 1

2
½−ðt − t0Þ2 þ δijðxi − x0iÞðxj − x0jÞ þ ðzþ z0Þ2�:

Note that u ∈ ½0; 1Þ for timelike separation and u ∈ ð1;∞Þ
for spacelike separation.
Two independent solutions of (4.11) when ν > 0 are

Gþ
1 ðuÞ ¼ lim

ϵ→0þ
u
−d
2
−ν

ϵ
Fðd

2
þ ν; 1

2
þ ν; 1þ 2ν; u−1ϵ Þ

Γð1þ 2νÞ ; ð4:13aÞ

Gþ
2 ðuÞ ¼ lim

ϵ→0þ
u
−d
2
þν

ϵ
Fðd

2
− ν; 1

2
− ν; 1 − 2ν; u−1ϵ Þ

Γð1 − 2νÞ ; ð4:13bÞ

where uϵ ≐ uðσ þ 2iϵðt − t0Þ þ ϵ2Þ implements the regu-
larization of the two-point function.
The function Fða; b; c; zÞ=ΓðcÞ (known as the regular-

ized hypergeometric function) is an entire function of its
parameters a, b, and c (see e.g. §9.4 of [34]). Hence, the
solutions above are defined for all ν ≥ 0. However, they are
identical for ν ¼ 0, and thus a second linearly independent
solution needs to be found. In this case, two independent
solutions are

Gþ
1 ðuÞ ¼ lim

ϵ→0þ
u
−d
2

ϵ F

�
d
2
;
1

2
; 1; u−1ϵ

�
; ð4:14aÞ

Gþ
2 ðuÞ ¼ lim

ϵ→0þ
F

�
d
2
;
d
2
;
dþ 1

2
; uϵ

�
: ð4:14bÞ

The second independent solution may equivalently be
written as

Gþ
2 ðuÞ ¼ lim

ϵ→0þ
Γ
�
dþ 1

2

�
ð−uϵÞ−d

2

X∞
j¼0

Γðd
2
þ jÞΓð1

2
þ jÞ

ðj!Þ2

× ½logð−uϵÞ þ hðjÞ�u−jϵ ;

where

hðjÞ ≐ 2ψðjþ 1Þ − ψ

�
d
2
þ j

�
− ψ

�
1

2
− j

�
;

and ψðwÞ ≐ Γ0ðwÞ=ΓðwÞ is the digamma function.
These closed form expressions for the two-point func-

tions coincide with the mode expansions obtained in the
previous section. In Appendix A, we show that for ν > 0

Gþ
1 ðuÞ ∝ lim

ϵ→0þ
ðzz0Þd2

Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p JνðqzÞJνðqz0Þ;

Gþ
2 ðuÞ ∝ lim

ϵ→0þ
ðzz0Þd2

Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p J−νðqzÞJ−νðqz0Þ:

We see that, up to normalization, Gþ
1 is the two-point

function for ν ∈ ½1;∞Þ and for ν ∈ ð0; 1Þ when Dirichlet
boundary conditions are applied,Gþ

1 ∝ GþðDÞ, whereas Gþ
2

is the two-point function for ν ∈ ð0; 1Þ when Neumann
boundary conditions are applied, Gþ

2 ∝ GþðNÞ. Since they
are linearly independent, we conclude that the two-point
function for ν ∈ ð0; 1Þ and Robin boundary conditions of
the form (4.8) is

Gþðx; x0Þ ¼ N ½cosðαÞGþ
1 ðuÞ þ sinðαÞGþ

2 ðuÞ�;

α ∈
�
π

2
; π

�
; ð4:15Þ

where N is a normalization constant. For Robin boundary
conditions with α ∈ ð0; π

2
Þ, the contributions from the

bound state solutions obtained in Sec. IVA need to be
added. Observe in particular that the admissible range for α
includes also π

4
, which corresponds to transparent boundary

conditions. In this case, thus, we expect that bound states
must be taken into account, a feature which was not
highlighted previously in the literature.
In the case ν ¼ 0, the first result in (4.14) is still valid,

Gþ
1 ðuÞ ∝ lim

ϵ→0þ
ðzz0Þd2

Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

×
Z

∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p J0ðqzÞJ0ðqz0Þ;

and thus Gþ
1 is still the two-point function when Dirichlet

boundary conditions are applied, Gþ
1 ∝ GþðDÞ, minus the

contribution coming from the bound states. We were unable
to show explicitly that Gþ

2 ∝ GþðNÞ, but given that it is a
nonprincipal solution of (4.11) it must be given by a linear
combination of GþðDÞ and GþðNÞ, as given in (4.10).
However, we note once more that, when ν ¼ 0, the two-
point function obtained above is not that of the ground
state, given the lack of maximal symmetry.

V. HADAMARD CONDITION

In this section, we verify that the states for which the
two-point functions were obtained in the previous section
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satisfy a natural generalization of the Hadamard condition
for PAdSdþ1.
First, recall that, for globally hyperbolic spacetimes, a

quantum state is said to satisfy the local Hadamard
condition if its two-point function is of Hadamard form.
A two-point function is of the Hadamard form if it is
given by

Gþðx; x0Þ ¼ Hðdþ1Þðσðx; x0ÞÞ þOðσ0Þ

≐ lim
ϵ→0þ

Γðd−1
2
Þ

2ð2πÞdþ1
2

�
Uðx; x0Þ

ðσϵðx; x0ÞÞd−12
þ Vðx; x0Þ

× logðσϵðx; x0ÞÞ þOðσ0Þ
�
; ð5:1Þ

where σϵ ≐ σ þ 2iϵðt − t0Þ þ ϵ2 and U and V are smooth
biscalars which are uniquely determined and only depend
on the geometric features of the spacetime and on the
parameter m2 [35]. The biscalar V is identically zero for
odd dþ 1 spacetime dimensions. Hðdþ1Þðσðx; x0ÞÞ is the
so-called (dþ 1)-dimensional Hadamard parametrix. It is
important to keep in mind that, having set l ¼ 1 in (2.3),
σðx; x0Þ is a dimensionless quantity. Hence, although in the
standard version of the local Hadamard form of the two-
point function the argument of the logarithm is divided by a
reference scale length, in our case this is not necessary as
this length has been fixed a priori.
In globally hyperbolic spacetimes, it follows that the

local Hadamard condition is equivalent to the global
Hadamard one [36,37], which entails in addition that the
only singularity of the two-point function is at σ ¼ 0 and
that it is of Hadamard form. A more rigorous definition
requires the tools of microlocal analysis and may be found
in [[2], Chap. 5].
Even though AdS is not globally hyperbolic, we can still

verify if the two-point functions obtained above are of
Hadamard form for every globally hyperbolic subregion. If
that is the case, we say that the maximally symmetric state
in AdS satisfies the local Hadamard condition. However, it
does not follow that the state satisfies a global Hadamard
condition, as the standard definition, adopted in globally
hyperbolic spacetimes, does not apply. A novel analysis is
required, and we plan to address it in future work [38], also
in view of the investigation in [39,40]. Here, we verify that
the two-point functions in PAdS have a richer singularity
structure9 than those in globally hyperbolic spacetimes,
while at the same time satisfying the local Hadamard
condition in any globally hyperbolic subregion.
We will focus on the study of the singularities of the two-

point functions obtained for the ground state in the cases of

d ¼ 2 and d ¼ 3. Analogous comments can be made for
larger d, as we discuss briefly below.
We start with d ¼ 3, the physically relevant case, and

assume ν > 0. The two-point function is a linear combi-
nation of the solutions (4.13), and we know that the
hypergeometric functions in those solutions have only
three singular points: u ¼ 0; 1;∞. The latter, u → ∞,
occurs when either z → 0 or z0 → 0, which takes one of
the points x, x0 to the boundary and, therefore, does not
belong to the spacetime.
The singularity u ¼ 1 corresponds to σ ¼ 0; cf. (4.12). If

we expand the solutions (4.13) with d ¼ 3 in σ, such that x
and x0 belong to a globally hyperbolic subregion of AdS4,

Gþ
1 ðuϵÞ ¼

21þ2νΓð1þ νÞffiffiffi
π

p
Γð3

2
þ νÞΓð1þ 2νÞ

×

�
1

σϵ
þ 1

2

�
ν2 −

1

4

�
logðσϵÞ þOðσ0Þ

�
;

Gþ
2 ðuϵÞ ¼

21−2νΓð1 − νÞffiffiffi
π

p
Γð3

2
− νÞΓð1 − 2νÞ

×

�
1

σϵ
þ 1

2

�
ν2 −

1

4

�
logðσϵÞ þOðσ0Þ

�
:

This expansion is exactly the Hadamard expansion (5.1),
up to normalization constants, presented for d ¼ 3 in [35]
for a globally hyperbolic subregion of AdS4. Hence, in
view of (4.15), the two-point function reads

Gþðx; x0Þ ∝ ½cosðαÞ þ sinðαÞ�Hð4Þðσðx; x0ÞÞ þOðσ0Þ:
By choosing a suitable α-dependent normalization con-
stant, we can make Gþðx; x0Þ satisfy the local Hadamard
property (5.1), except if α ¼ 3π

4
.

The singularity u ¼ 0 corresponds to σð−Þ ¼ 0, where
σð−Þ is such that [cf. Eq. (4.12)]

u ≐ −sinh2
� ffiffiffiffiffiffiffiffiffiffiffi

2σð−Þ
p

2

�
¼ σð−ÞM

2zz0
:

Two points x and x0 are such that σð−Þðx; x0Þ ¼ 0 if there is a
null geodesic starting at x that is “reflected” at the boundary

FIG. 2. Singularity structure of the two-point function.

9As a side comment, this feature resembles what happens in de
Sitter spacetime when one considers the so-called α vacua [41],
although, in this case, the additional singularities are pathologi-
cal, being the underlying background globally hyperbolic.
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and ends at x0 (see Fig. 2). More rigorously, if we consider
the conformally related spacetime H

̥
4 and allow z to take all

real values, σð−Þðx; x0Þ vanishes if σð−ÞM ðx; x0Þ ¼ 0, or
equivalently if σMðxð−Þ; x0Þ ¼ 0, where xð−Þ ≐ xjz↦−z.
Note that there is no globally hyperbolic subregion of
AdS4 in which σð−Þðx; x0Þ ¼ 0; hence this singularity is not
present for a two-point function on a globally hyperbolic
submanifold.
If we now expand the two solutions in σð−Þ, we

obtain

Gþ
1 ðuϵÞ ¼ ið−1Þν 21þ2νΓð1þ νÞffiffiffi

π
p

Γð3
2
þ νÞΓð1þ 2νÞ

×

�
1

σð−Þϵ

þ 1

2

�
ν2 −

1

4

�
logðσð−Þϵ Þ þOððσð−ÞÞ0Þ

�
;

Gþ
2 ðuϵÞ ¼ ið−1Þ−ν 21−2νΓð1 − νÞffiffiffi

π
p

Γð3
2
− νÞΓð1 − 2νÞ

×

�
1

σð−Þϵ

þ 1

2

�
ν2 −

1

4

�
logðσð−Þϵ Þ þOððσð−ÞÞ0Þ

�
:

This has exactly the same Hadamard form, up to
normalization constants, but with respect to σð−Þ.
Hence, in view of (4.15), the two-point function reads

Gþðx; x0Þ ∝ ½cosðαÞ þ ð−1Þ−2ν sinðαÞ�Hð4Þðσð−Þðx; x0ÞÞ
þOððσð−ÞÞ0Þ:

The singular contribution vanishes for ν ¼ 1
2
and α ¼ π

4
,

for which there are no singularities along reflected null
geodesics. This justifies why α ¼ π

4
is referred to as

transparent boundary conditions for the massless, con-
formally coupled scalar field.
We analyze now the two-point function for d ¼ 2 and

ν > 0. The two solutions (4.13) with d ¼ 2 have the same
two singularities at u ¼ 1 and u ¼ 0. If we expand them in
σ, such that x and x0 belong to a globally hyperbolic
subregion of AdS3, we obtain

Gþ
1 ðuϵÞ ¼

2
1
2
þ2ν

Γð1þ 2νÞ
1ffiffiffiffiffi
σϵ

p þOðσ0Þ;

Gþ
2 ðuϵÞ ¼

2
1
2
−2ν

Γð1 − 2νÞ
1ffiffiffiffiffi
σϵ

p þOðσ0Þ:

Again, this is of the same Hadamard form (5.1) as
presented in [35] for d ¼ 2 in any globally hyperbolic
subregion of AdS3. Hence, in view of (4.15), the two-
point function reads

Gþðx; x0Þ ∝ ½cosðαÞ þ sinðαÞ�Hð3Þðσðx; x0ÞÞ þOðσ0Þ:

If we instead expand them in σð−Þ, we obtain

Gþ
1 ðuϵÞ ¼ ið−1Þν 2

1
2
þ2ν

Γð1þ 2νÞ
1ffiffiffiffiffiffiffiffi
σð−Þϵ

q þOðσ0Þ;

Gþ
2 ðuϵÞ ¼ ið−1Þ−ν 2

1
2
þ2ν

Γð1þ 2νÞ
1ffiffiffiffiffiffiffiffi
σð−Þϵ

q þOðσ0Þ:

Hence, in view of (4.15), the two-point function reads

Gþðx; x0Þ ∝ ið−1Þν½cosðαÞ þ ð−1Þ−2ν sinðαÞ�
×Hð3Þðσð−Þðx; x0ÞÞ þOððσð−ÞÞ0Þ:

Therefore, we shall also call a quantum state Hadamard
in PAdS3 a state whose two-point function has the
singularity structure described above.
Similar investigations can be made for larger d.

However, it becomes increasingly impractical to perform
the expansions in σ and σð−Þ since we would have to resort
to a case by case analysis. There are recursive methods to
obtain the expansions of U and V in σ for any fixed d, but
they get significantly more complex for larger d (detailed
expressions for dþ 1 up to 6 may be found in Ref. [35]).
Nevertheless, using the tools of microlocal analysis, it is
possible to show that the singularity structure observed for
d ¼ 2 and d ¼ 3, with which we defined the notion of a
Hamadard state on PAdS3 and PAdS4, is verified for any d.
We leave this proof to a forthcoming work [38].
In view of the above analysis, we define a Hadamard

quantum state in PAdSdþ1, d ≥ 2, to be any state whose
two-point function Gþðx; x0Þ is such that

Gþðx; x0Þ −Hðdþ1Þðσðx; x0ÞÞ − ið−1Þ−ν

×
cosðαÞ þ ð−1Þ−2ν sinðαÞ

cosðαÞ þ sinðαÞ Hðdþ1Þðσð−Þðx; x0ÞÞ

is a smooth function on PAdSdþ1 × PAdSdþ1. In particular,
if α ¼ 3π

4
, we cannot find a Hadamard state satisfying this

definition.
Notice that although a ground state does not exist for

α ∈ ð0; π
2
Þ, on account of the presence of bound state

solutions, the proposed definition still applies to these cases.

VI. CONCLUSIONS

In this paper, we have considered a real, massive scalar
field on PAdSdþ1, the Poincaré domain of the (dþ 1)-
dimensional AdS spacetime. In particular, we have deter-
mined all admissible boundary conditions that can be
applied on the conformal boundary, and we have con-
structed the two-point function associated with the ground
state, finding ultimately an explicit closed form. In addi-
tion, we have investigated its singular structure, showing
consistency with the minimal requirement of being of
Hadamard form in every globally hyperbolic subregion
of PAdSdþ1. As a consequence we propose a new definition
of Hadamard states which applies to PAdSdþ1.
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To conclude our work, we would like to highlight two
open issues which we deem appropriate of further inves-
tigations. The first concerns the choice of boundary
conditions. As we have shown, there are instances where
bound state solutions appear in the construction of the two-
point and of the commutator functions. The main direct
consequence of this unexpected feature is the lack of a
ground state for the underlying system, as invariance under
the action of certain isometries is broken. On the one hand,
we can observe that this poses no obstruction to the
existence of Hadamard states, but, on the other hand, there
is no clear physical interpretation why such bound state
solutions appear and what are the concrete consequences of
their existence.
The second open problem lies in the investigation of the

notion of Hadamard states for a real, massive scalar field on
PAdSdþ1. In the last section we have given a local
definition, which exploits ultimately the existence of a

global coordinate chart on H
̥ dþ1. If one aims at generalizing

these results to asymptotically AdS spacetimes or even to
manifolds with timelike boundaries, we cannot expect that
a local construction becomes practical. Hence, following a
similar path to the one taken by those who investigated

Hadamard states on globally hyperbolic spacetimes, we
expect that a necessary step is to translate our analysis in the
language of microlocal analysis. In this way, we hope to be
able to give a global definition of Hadamard states and to
formulate a version of the work of Radzikowski [36,37] in
the context of asymptotically AdS spacetimes.
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APPENDIX A: TWO-POINT FUNCTION
COMPUTATION FOR ν > 0

The two-point function for a massive scalar field in H
̥ dþ1

for ν ∈ ½1;∞Þ or in the case of Dirichlet boundary con-
ditions for ν ∈ ð0; 1Þ is given by (4.5),

Gþ
Hðx; x0Þ ¼ N

ffiffiffiffiffiffi
zz0

p Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ

Z
∞

0

dqq
e−i

ffiffiffiffiffiffiffiffiffi
k2þq2

p
ðt−t0−iϵÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2πðk2 þ q2Þ
p JνðqzÞJνðqz0Þ; ðA1Þ

where we omit the limit ϵ → 0þ for presentation simplicity. The two-point function in the case of Neumann boundary
conditions when ν ∈ ð0; 1Þ can also be obtained from (A1) by allowing ν ∈ ð−1; 0Þ (see Sec. III C 2).
In this appendix, we compute explicitly the integrals in (A1) and obtain the two-point function in closed form, as

presented in Sec. IV B.
Using Eqs. (6.737.5) and (6.737.6) of [42], for d ¼ 2, 3, we obtain

Gþ
Hðx; x0Þ ¼ N

ffiffiffiffiffiffi
zz0

p Z
∞

0

dqq
d
2JνðqzÞJνðqz0Þ

8<
:1

π
Θðr − ðt − t0ÞÞ

Kd
2
−1



q

ffiffiffiffiffi
χ2ϵ

p �

 ffiffiffiffiffi

χ2ϵ
p �d

2
−1

−
i
2
Θðt − t0 − rÞ

J1−d
2



q

ffiffiffiffiffiffiffiffi
−χ2ϵ

p �
− iY1−d

2



q

ffiffiffiffiffiffiffiffi
−χ2ϵ

p �
ð

ffiffiffiffiffiffiffiffi
−χ2ϵ

p
Þd2−1

9=
;

¼ N

ffiffiffiffiffiffi
zz0

p

π

Z
∞

0

dqq
d
2

Kd
2
−1



q

ffiffiffiffiffi
χ2ϵ

p �

 ffiffiffiffiffi

χ2ϵ
p �d

2
−1

JνðqzÞJνðqz0Þ; ðA2Þ

where χ2ϵ ≐ r2 − ðt − t0 − iϵÞ2,Θ is the Heaviside function,Kd
2
−1 is the modified Bessel function of the second kind, and we

used (see e.g. [[34], §5.6–5.7])

JαðwÞ − iYαðwÞ ¼ Hð2Þ
α ðwÞ ¼ eiπαHð2Þ

−αðwÞ; w ∉ ð−∞; 0�;

KαðwÞ ¼ −
iπ
2
e−

iπα
2 Hð2Þ

α ð−iwÞ; argðwÞ ∈
�
−
π

2
; π

�
;

whereHð2Þ
α is the second Hankel function. Even though the calculation leading to (A2) is valid for d ¼ 2, 3, the result can be

analytically continued to d ≥ 2.
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At this point, it is convenient to consider even and odd d separately. Let d ¼ 2nþ 1, n ¼ 1; 2;…. Then,

Gþ
Hðx; x0Þ ¼ N

ffiffiffiffiffiffi
zz0

p

π

Z
∞

0

dqqnþ1
2

Kn−1
2
ðqχϵÞ

χ
n−1

2
ϵ

JνðqzÞJνðqz0Þ

¼ N

ffiffiffiffiffiffi
zz0

p

π

�
1

χ

d
dχ

�
n
Z

∞

0

dq
K−1

2
ðqχÞ

ðqχÞ−1
2

JνðqzÞJνðqz0Þ
����
χ¼χϵ

¼ N

ffiffiffiffiffiffi
zz0

pffiffiffiffiffiffi
2π

p
�
1

χ

d
dχ

�
n
Z

∞

0

dqe−qχJνðqzÞJνðqz0Þ
����
χ¼χϵ

¼ N
1ffiffiffiffiffiffiffi
2π3

p
�
1

χ

d
dχ

�
n
Qν−1

2

�
z2 þ z02 þ χ2

2zz0

�����
χ¼χϵ

¼ N
1ffiffiffiffiffiffiffi

2π3
p

ðzz0Þn
dn

dηn
Qν−1

2
ðηÞ

����
η¼ηϵ

¼ N
1ffiffiffiffiffiffiffi

2π3
p

ð2zz0Þn
dn

dun
Qν−1

2
ð2u − 1Þ

����
u¼uϵ

¼ N
1ffiffiffiffiffiffiffi

2π3
p

ðzz0Þn
�

1

sinhðsÞ
d
ds

�
n
Qν−1

2
ðcoshðsÞÞ

����
s¼sϵ

; ðA3Þ

where

ηϵ ≐ z2 þ z02 þ r2 − ðt − t0 − iϵÞ2
2zz0

¼ 2uϵ − 1 ≐ coshðsϵÞ;

Qν−1
2
is the Legendre function of the second kind, and where we used Eq. (6.612.3) of [42] and the relation

�
1

χ

d
dχ

�
n
ðχ−αKαðχÞÞ ¼ χ−α−nKαþnðχÞ: ðA4Þ

Note that (A3) is valid for ν > − 1
2
but is not defined for ν ¼ −1=2; hence it cannot be used as currently written for

the case of Neumann boundary conditions. However, we can extend it analytically to ν > −1 as follows. From Eq. (14.10.4)
of [43],

ð1 − η2ϵÞQ0
ν−1

2

ðηϵÞ ¼
�
νþ 1

2

�
½ηϵQν−1

2
ðηϵÞ −Qνþ1

2
ðηϵÞ�: ðA5Þ

Qν−1
2
is not defined for ν ¼ −1=2, as for Eq. (14.3.7) of [43] one has

Qν−1
2
ðηÞ ¼

ffiffiffi
π

p
Γðνþ 1

2
Þ

2ν−
1
2ηνþ1

2Γðνþ 1ÞF
�
ν

2
þ 3

4
;
ν

2
þ 1

4
; νþ 1;

1

η2

�
;

for ν ∉ − 2Nþ1
2

and η > 1. Nevertheless, one can analytically continue (A5) to ν > −1 as

ð1 − η2ϵÞQ0
ν−1

2

ðηϵÞ ¼
ffiffiffi
π

p
Γðνþ 3

2
Þ

2ν−
1
2η

ν−1
2

ϵ Γðνþ 1Þ
F

�
ν

2
þ 3

4
;
ν

2
þ 1

4
; νþ 1;

1

η2ϵ

�
−
�
νþ 1

2

�
Qνþ1

2
ðηϵÞ:

Using the same notation for the extended function, (A3) may be used for the Neumann boundary conditions
with ν ∈ ð−1; 0Þ.
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Let d ¼ 2n, n ¼ 1; 2;…. Then,

Gþ
Hðx; x0Þ ¼ N

ffiffiffiffiffiffi
zz0

p

π

Z
∞

0

dqqn
Kn−1ðqχϵÞ

χn−1ϵ
JνðqzÞJνðqz0Þ

¼ N

ffiffiffiffiffiffi
zz0

p

π

�
1

χ

d
dχ

�
n−1 Z ∞

0

dqqK0ðqχÞJνðqzÞJνðqz0Þ
����
χ¼χϵ

¼ N

ffiffiffiffiffiffi
zz0

p

π

�
1

χ

d
dχ

�
n−1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2þðzþz0Þ2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2þðz−z0Þ2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2þðzþz0Þ2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2þðz−z0Þ2

p
�

−ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðχ2 þ ðzþ z0Þ2Þðχ2 þ ðz − z0Þ2Þ

p
��������
χ¼χϵ

¼ N
2ν−1

πðzz0Þn−1
2

dn−1

dηn−1



ηþ

ffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 1

p �
−ν

ffiffiffiffiffiffiffiffiffiffiffiffi
η2 − 1

p
������
η¼ηϵ

¼ N
2ν−2

πðzz0Þnþ1
2

dn−1

dun−1



2u − 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

uðu − 1Þp �
−ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðu − 1Þp

������
u¼uϵ

¼ N
2ν−1

πðzz0Þn−1
2

�
1

sinhðsÞ
d
ds

�
n−1 e−νs

sinhðsÞ
����
s¼sϵ

;

where we used Eq. (6.522.3) of [42] and (A4).
To prove that these results are equivalent to the ones written in terms of the hypergeometric functions (4.13), we show that

they satisfy the same initial conditions, since they are all solutions of the same differential equation.
First, we verify the claim for d ¼ 2, 3. In terms of the invariant quantity u, for d ¼ 2, let

gd¼2
1 ðuÞ ¼ u−1−νϵ F

�
1þ ν;

1

2
þ ν; 1þ 2ν; u−1ϵ

�
;

gd¼2
2 ðuÞ ¼ 4ν



2uϵ − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uϵðuϵ − 1Þp �

−ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uϵðuϵ − 1Þp :

Then,

gd¼2
1 ðuÞ ¼ gd¼2

2 ðuÞ ¼ u−1−νϵ

�
1þ 1þ ν

2u
þOðu−2Þ

�
:

Hence, gd¼2
1 ¼ gd¼2

2 . For d ¼ 3, let

gd¼3
1 ðuÞ ¼ u

−3
2
−ν

ϵ F

�
3

2
þ ν;

1

2
þ ν; 1þ 2ν; u−1ϵ

�
;

gd¼3
2 ðuÞ ¼ −

41þνffiffiffi
π

p Γð1þ νÞ
Γð3

2
þ νÞ Q

0
ν−1

2

ð2uϵ − 1Þ:

Then,

gd¼3
1 ðuÞ ¼ gd¼3

2 ðuÞ ¼ u
−3
2
−ν

ϵ

�
1þ

3
2
þ ν

2u
þOðu−2Þ

�
:

Hence, gd¼3
1 ¼ gd¼3

2 .
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For arbitrary d, we give a proof by induction. For even d,
let it be true for a fixed d ¼ 2n. For d ¼ 2ðnþ 1Þ, let

gd¼2nþ2
1 ðuÞ ¼ u−n−1−νϵ F

�
nþ 1þ ν;

1

2
þ ν; 1þ 2ν; u−1ϵ

�
;

gd¼2nþ2
2 ðuÞ ¼ N nþ1

dn

dun



2uϵ − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uϵðuϵ − 1Þp �

−ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uϵðuϵ − 1Þp ;

for some constant N nþ1. We know that

gd¼2n
1 ðuÞ ¼ gd¼2n

2 ðuÞ

¼ N n dn−1

dun−1



2uϵ − 1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uϵðuϵ − 1Þp �

−ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uϵðuϵ − 1Þp

and that

gd¼2nþ2
2 ðuÞ ¼ N nþ1

N n

d
du

gd¼2n
2 ðuÞ ¼ N nþ1

N n

d
du

gd¼2n
1 ðuÞ

¼ −
N nþ1

N n ðnþ νÞ

× u−n−νϵ

�
1þ nþ 1þ ν

2u
þOðu−2Þ

�
:

Comparing with

gd¼2nþ2
1 ðuÞ ¼ u−n−νϵ

�
1þ nþ 1þ ν

2u
þOðu−2Þ

�
;

we conclude that gd¼2nþ2
1 ¼ gd¼2nþ2

2 with

N nþ1 ¼ −
N n

nþ ν
¼ ð−1Þn N 1

Γðnþ 1þ νÞ ¼
ð−1Þn4ν

Γðnþ 1þ νÞ :

Similarly, for odd d, let it be true for a fixed d ¼ 2nþ 1.
For d ¼ 2nþ 3, let

gd¼2nþ3
1 ðuÞ ¼ u

−n−3
2
−ν

ϵ F

�
nþ 3

2
þ ν;

1

2
þ ν; 1þ 2ν; u−1ϵ

�
;

gd¼2nþ3
2 ðuÞ ¼ N nþ1

dnþ1

dunþ1
Qν−1

2
ð2uϵ − 1Þ;

for some constant N nþ1. We know that

gd¼2nþ1
1 ðuÞ ¼ gd¼2nþ1

2 ðuÞ ¼ N n dn

dun
Qν−1

2
ð2uϵ − 1Þ

and that

gd¼2nþ3
2 ðuÞ ¼ N nþ1

N n

d
du

gd¼2nþ1
2 ðuÞ ¼ N nþ1

N n

d
du

gd¼2nþ1
1 ðuÞ

¼ −
N nþ1

N n

�
nþ 1

2
þ ν

�

× u
−n−3

2
−ν

ϵ

�
1þ nþ 3

2
þ ν

2u
þOðu−2Þ

�
:

Comparing with

gd¼2nþ3
1 ðuÞ ¼ u

−n−3
2
−ν

ϵ

�
1þ nþ 3

2
þ ν

2u
þOðu−2Þ

�
;

we conclude that gd¼2nþ3
1 ¼ gd¼2nþ3

2 with

N nþ1 ¼ −
N n

nþ ν
¼ ð−1Þn N 1

Γðnþ 3
2
þ νÞ

¼ 41þνffiffiffi
π

p ð−1Þnþ1Γð1þ νÞ
Γð3

2
þ νÞΓðnþ 3

2
þ νÞ :

This concludes the proof.

APPENDIX B: DELTA DISTRIBUTION
REPRESENTATION

In this appendix, we prove the identities

Z
∞

0

dkk
�
k
r

�d−3
2

Jd−3
2
ðkrÞ ¼ 2

d−3
2 Γ

�
d − 1

2

�
δðrÞ
rd−2

¼ ð2πÞd2Γðd−1
2
Þffiffiffi

2
p

Γðd
2
Þ

Yd−1
i¼1

δðxi − x0iÞ;

ðB1Þ

where d ≥ 2 is an integer and r > 0.
We start with a standard representation of the delta

distribution [Eq. (1.17.13) of [43]],

δðr − r0Þ ¼ r
Z

∞

0

dkkJμðkrÞJμðkr0Þ;

with ReðμÞ > −1 and r; r0 > 0. Given that δðr − r0Þ is zero
when r ≠ r0, we may write

δðr − r0Þ ¼ rμþ1

r0μ

Z
∞

0

dkkJμðkrÞJμðkr0Þ:

Using

Jμðkr0Þ ¼
ð1
2
kr0Þμ

Γðμþ 1Þ þOðr0μþ1Þ;

and letting r0 → 0, we get
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δðrÞ ¼ rμþ1

2μΓðμþ 1Þ
Z

∞

0

dkkμþ1JμðkrÞ:

Letting μ ¼ d−3
2
, this allows us to obtainZ

∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ ¼ 2

d−3
2 Γ

�
d − 1

2

�
δðrÞ
rd−2

:

Finally, by changing from the Cartesian coordinates xi,
i ¼ 1;…; d − 1, to spherical coordinates,

Yd−1
i¼1

δðxi − x0iÞ ¼ δðrÞ
Ad−1rd−2

¼ Γðd
2
Þ

2π
d
2

δðrÞ
rd−2

;

where Ad−1 is the area of a (d − 1) sphere. Hence, we obtain
the desired identity

Z
∞

0

dkk

�
k
r

�d−3
2

Jd−3
2
ðkrÞ ¼ ð2πÞd2Γðd−1

2
Þffiffiffi

2
p

Γðd
2
Þ

Yd−1
i¼1

δðxi − x0iÞ:

APPENDIX C: EIGENFUNCTION EXPANSION
OF THE DELTA DISTRIBUTION

In this appendix, we show how to compute the expansion
of the Dirac delta distribution in terms of the eigenfunctions
of the operator L defined in (3.4) in an efficient way, as
presented e.g. in Chap. 7 of Ref. [44]. These expansions
can be found in Sec. 4.11 of [30], but the computation
presented there involves convoluted and old-fashioned
methods.
We present the computation of the expansion (4.6) in

eigenfunctions of L which satisfy Robin boundary con-
ditions when ν ∈ ð0; 1Þ. The others can be obtained in a
similar way.
First, we compute Green’s function Gðz; z0; λÞ associated

with the Sturm-Liouville problem (3.4), which satisfies

ðL ⊗ I − λÞG ¼ ðI ⊗ L − λÞG ¼ δðz − z0Þ;

and appropriate boundary conditions at z ¼ 0 and z0 ¼ 0, if
necessary. This can be done as follows. For z < z0,
Gðz; z0; λÞ is the solution of the homogeneous equation
in the first entry, uðz; λÞ, satisfying the boundary condition
at z ¼ 0, whereas for z > z0, Gðz; z0; λÞ is the solution of the
homogeneous equation, vðz; λÞ, which is L2ðz0;∞Þ for
some z0 > 0 and for some λ ∈ C. Then, ensuring continuity
at z ¼ z0, one has

Gðz; z0; λÞ ¼ N λuðz<; λÞvðz>; λÞ;

where z< ≐ minfz; z0g and z> ≐ maxfz; z0g. The jump
condition,

d
dz

Gðz; z0; λÞ
���
z¼z0þ

−
d
dz

Gðz; z0; λÞ
���
z¼z0−

¼ −1;

fixes the normalization constant

N λ ¼ −
1

Wz½uð·; λÞ; vð·; λÞ�
:

Green’s function can also be obtained as an expansion in
terms of the eigenfunctions of L which satisfy the same
boundary conditions. If the operator L only had a point
spectrum with real eigenvalues λn and corresponding
eigenfunctions ψn, it is easy to show that Gðz; z0; λÞ would
be written as

Gðz; z0; λÞ ¼ −
X
n

ψnðzÞψnðz0Þ
λ − λn

:

As a function of the complex parameter λ, G has simple
poles at λ ¼ λn and corresponding residues −ψnðzÞψnðz0Þ.
Hence, one can write

−
1

2πi

Z
C∞

dλGðz; z0; λÞ ¼
X
n

ψnðzÞψnðz0Þ ¼ δðz − z0Þ;

where C∞ is an infinitely large circle in the λ plane and the
integral is taken counterclockwise. If there is also a
continuous spectrum (as it happens in our case), Green’s
function has a branch cut and the integral above, besides the
sum of the residues at the eigenvalues, includes a branch-
cut integral over a portion of the real axis,

−
1

2πi

Z
C∞

dλGðz; z0; λÞ

¼
X
n

ψnðzÞψnðz0Þ þ
Z

dλψλðzÞψλðz0Þ

¼ δðz − z0Þ: ðC1Þ

Equation (C1) allows us to obtain the expansion of the delta
distribution in terms of the eigenfunctions of L by perform-
ing the integral of Green’s function G, which we obtained
above, over the spectral parameter λ.
In the case at hand, we obtain the expansion in terms

of eigenfunctions of the operator L defined in (3.4)
when ν ∈ ð0; 1Þ, satisfying the boundary conditions
(3.10). The solution of the homogeneous equation satisfy-
ing the boundary condition at z ¼ 0 may be written as

uðz; λÞ ¼ ffiffiffi
z

p ½cJνð
ffiffiffi
λ

p
zÞ − λνJ−νð

ffiffiffi
λ

p
zÞ�, whereas vðz; λÞ ¼ffiffiffi

z
p

Hð1Þ
ν ð ffiffiffi

λ
p

zÞ is in L2ðz0;∞Þ for any z0 > 0 if λ ∉ ½0;∞Þ.
Thus, Green’s function is given by

Gðz;z0;λÞ

¼−
iπ
2

ffiffiffiffiffi
z<

p ½cJνð
ffiffiffi
λ

p
z<Þ−λνJ−νð

ffiffiffi
λ

p
z<Þ� ffiffiffiffiffi

z>
p

Hð1Þ
ν ð ffiffiffi

λ
p

z>Þ
c−e−iπνλν

;
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with λ ∉ ½0;∞Þ for all c ∈ R and additionally with λ ≠ −c1=ν if c > 0, which is a pole of G. This is the negative eigenvalue
in the spectrum with corresponding bound state eigenfunction of the form

ffiffiffi
z

p
Kνðc1=ð2νÞzÞ.

Consider first the case c < 0, for which there is no point spectrum and the continuous spectrum is ½0;∞Þ. Then,

δðz − z0Þ ¼ −
1

2πi

Z
C∞

dλGðz; z0; λÞ

¼ 1

2πi

Z
∞

0

djλj lim
ϵ→0þ

½Gðz; z0; jλj þ iϵÞ − Gðz; z0; jλj − iϵÞ�

¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

djλj ½cJνð
ffiffiffiffiffijλjp
zÞ − jλjνJ−νð

ffiffiffiffiffijλjp
zÞ�½cJνð

ffiffiffiffiffijλjp
z0Þ − jλjνJ−νð

ffiffiffiffiffijλjp
z0Þ�

c2 − 2cjλjν cosðπνÞ þ jλj2ν

¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

dqq
½cJνðqzÞ − q2νJ−νðqzÞ�½cJνðqz0Þ − q2νJ−νðqz0Þ�

c2 − 2cq2ν cosðπνÞ þ q4ν
;

which is Eq. (4.6).
Finally, for c > 0 besides the continuous spectrum ½0;∞Þ there is the eigenvalue −c1=ν; hence, according to (C1), one

adds an extra term,

δðz − z0Þ ¼
ffiffiffiffiffiffi
zz0

p Z
∞

0

dqq
½cJνðqzÞ − q2νJ−νðqzÞ�½cJνðqz0Þ − q2νJ−νðqz0Þ�

c2 − 2cq2ν cosðπνÞ þ q4ν
þ 2

ffiffiffiffiffiffi
zz0

p
c1=ν

sinðπνÞ
πν

Kνðc1=ð2νÞzÞKνðc1=ð2νÞz0Þ:

[1] M. Benini, C. Dappiaggi, and T.-P. Hack, Int. J. Mod. Phys.
A 28, 1330023 (2013).

[2] R. Brunetti, C. Dappiaggi, K. Fredenhagen, and J.
Yngvason, Advances in Algebraic Quantum Field Theory
(Springer-Verlag, Berlin, 2015).

[3] B. S. Kay and R. M. Wald, Phys. Rep. 207, 49 (1991).
[4] I. Khavkine and V. Moretti, in Advances in Algebraic

Quantum Field Theory, edited by R. Brunetti et al.
(Springer, New York, 2015), Chap. 5.

[5] B. Allen, Phys. Rev. D 32, 3136 (1985).
[6] T. S. Bunch and P. C. W. Davies, Proc. R. Soc. A 360, 117

(1978).
[7] C. Dappiaggi, V. Moretti, and N. Pinamonti, Adv. Theor.

Math. Phys. 15, 355 (2011).
[8] C. Gérard, arXiv:1608.06739.
[9] K. Sanders, Lett. Math. Phys. 105, 575 (2015).

[10] K. Them and M. Brum, Classical Quantum Gravity 30,
235035 (2013).

[11] C. Dappiaggi, V. Moretti, and N. Pinamonti, Commun.
Math. Phys. 285, 1129 (2009).

[12] C. Dappiaggi, V. Moretti, and N. Pinamonti, J. Math. Phys.
(N.Y.) 50, 062304 (2009).

[13] H. Olbermann, Classical Quantum Gravity 24, 5011 (2007).
[14] C. Dappiaggi, G. Nosari, and N. Pinamonti, Math. Phys.

Anal. Geom. 19, 12 (2016).
[15] S. Hawking and G. Ellis, The Large Scale Structure of

Space-Time (Cambridge University Press, Cambridge,
England, 1973).

[16] M. Ammon and J. Erdmenger, Gauge/Gravity Duality:
Foundations and Applications (Cambridge University
Press, Cambridge, England, 2015).

[17] B. S. Kay, Rev. Math. Phys. SI 1, 167 (1992).
[18] S. J. Avis, C. J. Isham, and D. Storey, Phys. Rev. D 18, 3565

(1978).
[19] B. Allen and T. Jacobson, Commun. Math. Phys. 103, 669

(1986).
[20] C. J. C. Burges, D. Z. Freedman, S. Davis, and G.W.

Gibbons, Ann. Phys. (N.Y.) 167, 285 (1986).
[21] C. Kent and E. Winstanley, Phys. Rev. D 91, 044044 (2015).
[22] A. Belokogne, A. Folacci, and J. Queva, Phys. Rev. D 94,

105028 (2016).
[23] A. Ishibashi and R. M.Wald, Classical Quantum Gravity 21,

2981 (2004).
[24] J. Zahn, arXiv:1512.05512.
[25] C. Kent, Ph.D. thesis, University of Sheffield, 2013.
[26] R. M. Wald, General Relativity 1st ed. (The University of

Chicago Press, Chicago, 1984).
[27] A. Zettl, Sturm-Liouville Theory (American Mathematical

Society, Providence, RI, 2005).
[28] P. Breitenlohner and D. Z. Freedman, Ann. Phys. (N.Y.)

144, 249 (1982).
[29] H. Weyl, Math. Ann. 68, 220 (1910).
[30] E. C. Titchmarsh, Eigenfunction Expansions 2nd ed.

(Oxford University Press, New York, 1962), Part I.
[31] U. H. Danielsson, E. Keski-Vakkuri, and M. Kruczenski,

J. High Energy Phys. 01 (1999) 002.

CLAUDIO DAPPIAGGI and HUGO R. C. FERREIRA PHYSICAL REVIEW D 94, 125016 (2016)

125016-18

http://dx.doi.org/10.1142/S0217751X13300238
http://dx.doi.org/10.1142/S0217751X13300238
http://dx.doi.org/10.1016/0370-1573(91)90015-E
http://dx.doi.org/10.1103/PhysRevD.32.3136
http://dx.doi.org/10.1098/rspa.1978.0060
http://dx.doi.org/10.1098/rspa.1978.0060
http://dx.doi.org/10.4310/ATMP.2011.v15.n2.a4
http://dx.doi.org/10.4310/ATMP.2011.v15.n2.a4
http://arXiv.org/abs/1608.06739
http://dx.doi.org/10.1007/s11005-015-0745-2
http://dx.doi.org/10.1088/0264-9381/30/23/235035
http://dx.doi.org/10.1088/0264-9381/30/23/235035
http://dx.doi.org/10.1007/s00220-008-0653-8
http://dx.doi.org/10.1007/s00220-008-0653-8
http://dx.doi.org/10.1063/1.3122770
http://dx.doi.org/10.1063/1.3122770
http://dx.doi.org/10.1088/0264-9381/24/20/007
http://dx.doi.org/10.1007/s11040-016-9216-y
http://dx.doi.org/10.1007/s11040-016-9216-y
http://dx.doi.org/10.1103/PhysRevD.18.3565
http://dx.doi.org/10.1103/PhysRevD.18.3565
http://dx.doi.org/10.1007/BF01211169
http://dx.doi.org/10.1007/BF01211169
http://dx.doi.org/10.1016/0003-4916(86)90203-4
http://dx.doi.org/10.1103/PhysRevD.91.044044
http://dx.doi.org/10.1103/PhysRevD.94.105028
http://dx.doi.org/10.1103/PhysRevD.94.105028
http://dx.doi.org/10.1088/0264-9381/21/12/012
http://dx.doi.org/10.1088/0264-9381/21/12/012
http://arXiv.org/abs/1512.05512
http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://dx.doi.org/10.1016/0003-4916(82)90116-6
http://dx.doi.org/10.1007/BF01474161
http://dx.doi.org/10.1088/1126-6708/1999/01/002


[32] S. A. Fulling and S. N. M. Ruijsenaars, Phys. Rep. 152, 135
(1987).

[33] K. Kirsten and J. Garriga, Phys. Rev. D 48, 567 (1993).
[34] N. N. Lebedev, Special Functions and Their Applications

(Dover Publications, New York, 1972).
[35] Y. Decanini and A. Folacci, Phys. Rev. D 78, 044025

(2008).
[36] M. J. Radzikowski, Commun. Math. Phys. 179, 529 (1996).
[37] M. J. Radzikowski, Commun. Math. Phys. 180, 1 (1996).
[38] C. Dappiaggi and H. R. C. Ferreira (to be published).
[39] A. Vasy, Anal. PDE 5, 81 (2012).

[40] M. Wrochna, arXiv:1612.01203.
[41] R. Brunetti, K. Fredenhagen, and S. Hollands, J. High

Energy Phys. 05 (2005) 063.
[42] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals,

Series and Products 7th ed. (Academic Press, New York,
2007).

[43] F. Olver, NIST Handbook of Mathematical Functions
(Cambridge University Press, Cambridge, England, 2010).

[44] I. Stakgold and M. Holst, Green’s Functions and Boundary
Value Problems 3rd ed. (John Wiley & Sons, New York,
2011).

HADAMARD STATES FOR A SCALAR FIELD IN ANTI–… PHYSICAL REVIEW D 94, 125016 (2016)

125016-19

http://dx.doi.org/10.1016/0370-1573(87)90136-0
http://dx.doi.org/10.1016/0370-1573(87)90136-0
http://dx.doi.org/10.1103/PhysRevD.48.567
http://dx.doi.org/10.1103/PhysRevD.78.044025
http://dx.doi.org/10.1103/PhysRevD.78.044025
http://dx.doi.org/10.1007/BF02100096
http://dx.doi.org/10.1007/BF02101180
http://dx.doi.org/10.2140/apde.2012.5.81
http://arXiv.org/abs/1612.01203
http://dx.doi.org/10.1088/1126-6708/2005/05/063
http://dx.doi.org/10.1088/1126-6708/2005/05/063

