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Abstract This paper investigates the dependence risk and the optimal resource allo-
cation of the underlying assets of a long-term natural gas contract through pair-vine
copulas and portfolio optimization methods with respect to five risk measures. This
analysis takes inspiration from the current situation of the European gas market where
both long-term contracts and hub spot prices are applied. The fall of the European
natural gas demand combined with the increase of US shale gas exports and the Liq-
uefied Natural Gas availability have led to a reduction of the gas spot prices in Europe.
Oil-indexed long-term gas contracts failed to promptly adjust their positions imply-
ing significant losses for European gas mid-streamers that asked for a re-negotiation
of their existing contracts. With the aim of analyzing this situation and determining
whether oil-indexation can still be the solution for the European market we consider
both spot gas prices traded at the hub and oil-based commodities as underlying of the
LTCs. The portfolio optimization results converge in some commodities.
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1 Introduction

Natural gas can be sold either through long-term contracts or at spot price at market
hubs. Long-term contracts have been historically introduced to allow for risk sharing
between gas producers and mid-streamers, which respectively face price and volume
risks. These contracts have been traditionally concluded over long periods (typically
20 years or more) and are characterized by quantity and price clauses. The Take or
Pay (TOP) quantity clause obligates the buyer to take a certain quantity of natural
gas or to pay for it. The Price Indexation (PI) clause relates the price at which gas
is bought to some index on the market that has been traditionally represented by the
price of crude and oil-products. The price clause provides producers with some price
stability and reduction of revenue volatility, which are indispensable for ensuring
investments in new infrastructures which are very expensive. Moreover, the quantity
and price clauses also allow for hedging the mid-streamers’ volume risk (see Abada
et al., 2017). The hub pricing approach was firstly introduced in the nineties in the
US and in the UK and it is now developing in Europe. In this system, natural gas is
traded, every day, on a spot market that determines prices and volume on the short
term. International natural gas market is organized in different ways depending on
the considered areas. North America is essentially organized on the basis of Henry
Hub spot market. The price on this market is currently very low, at about 3$/MBtu,1

because of the development of unconventional (shale) gas. The Henry Hub is the
best-known of all natural gas trading points. It is both a physical distribution hub for
pipeline gas and a pricing point, since it is the basis of spot market trading and of
futures trading on the New York Mercantile Exchange (NYMEX).

On the other side, Asia is mainly supplied by Liquefied Natural Gas (LNG) that
is traded through expensive long-term contracts. The Asian LNG long-term contracts
has been set on the basis of the average of Japanese customs-cleared crude oil price
that is the Japan Crude Cocktail (JCC). After the Fukushima disaster, Japan has sig-
nificantly increased its imports of LNG, mainly supplied by Australia, Malaysia and
Qatar through long-term contracts (see GIIGNL, 2018). Spot deals exist, but they are
bilateral as, up to now, there is no hub in Asia in contrast with America and Europe.
Some experts advocate a move from the current system of long-term contracts to hub-
pricing system (e.g IEA, 2013). Singapore has proposed itself as a possible gas hub
for Asia as well as Tokyo and Shanghai (see Xunpeng, 2016).

Except for the UK, Europe is still dominated by long-term contracts, though spot
markets are growing and are expected to develop further. In the UK, gas is largely
traded at the National Balancing Point (NBP) spot market. NBP is in operation since
the late 1990s and is the longest-established spot-traded natural gas market in Europe.
It is characterized by high liquidity2 and the resulting spot price is widely used as
an indicator for European wholesale gas market. In continental Europe, Zeebrugge
(ZEE) and the Title Transfer Facility (TTF), respectively located in Belgium and
in the Netherlands, are the two dominant spot market places and many others are
emerging (see Melling, 2010).

1 See http://www.eia.gov/dnav/ng/hist/rngwhhdd.htm
2 The liquidity of a gas hub can be defined as the ratio between the total volume of trade on the hub and

the volume of gas consumed in the area served by the hub.
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The coexistence of long-term contracts and hub-pricing systems on the European
market implies that the natural gas is traded at two different prices on the same mar-
ket. Depending on the conditions, spot price can be higher or lower than long-term
contractual gas, implying possibly difficult situations for companies loaded with high
TOP gas price against the low spot prices. This is what happened in the last years in
Europe, where the combined effects of the increase of the US shale gas exports, the
reduction of European gas demand due to the economic crisis, and the increased
availability of uncommitted LNG from Qatar led to a new supply/demand balance
that was reflected into low gas prices at the European hubs. On the other side, oil-
indexed long-term gas contracts failed to promptly adjust their positions implying
significant losses for European gas mid-streamers what were committed by the TOP
clause to buy quantities of gas higher than those required at higher prices. As a conse-
quence, European mid-streamers have re-negotiationed the long-term gas contracts to
make them more flexible and closer to spot gas prices. These re-negotiations have re-
sulted into a decline of oil-indexation and hub-linked pricing has rapidly become the
basis for an increasing number of transactions in the UK and in the Northern Western
Europe (see Franza, 2014; Kanai, 2011; Stern and Rogers, 2014; Yafimava, 2014).
As indicated by Chyong (2015), leading gas suppliers, such as Statoil, GasTerra,
Sonatrach and Gazprom, have been forced to modify their LTC price and volume
in Europe. However, these gas suppliers have assumed different attitudes: Gazprom
and Sonatrach has defended oil indexation and has offered retroactive discounts on
existing contracts by introducing either limited degree of spot indexation or reduced
minimum TOP provisions. On the other side, GasTerra and Statoil have behaved in
a more flexible way, by conceding more spot indexation in their contracts. However,
oil is still accounting for the 95% of price formation within the European Community
against the 30% of price formation within the UK (see Theisen, 2014). This shows
that oil-indexed contract prices still exercises a strong influence over gas prices in
Europe. The reliability of prices set on spot markets is one of the main reasons used
by the opponents of the spot indexation for LTCs (see Frisch, 2010). Liquidity, trans-
parency, and the ability to attract a significant number of market players are necessary
for a hub to become a price maker (see Heather, 2012). For the time being, the NBP
and TTF are the only two hubs in Europe with sufficient liquidity (see Heather and
Petrovich, 2017).

From these evidence, it turns out that the role of the European spot gas markets
and their impacts on LTCs are becoming extremely important issues. In this paper,
we focus on LTCs renegotiation as asked by the mid-streamers. We investigate this
topic using a combination of vine copulas and portfolio optimization models that are
well-known and widely applied approaches in the financial literature. We adopt these
relatively standard methodologies on purpose because we want to obtain results that
are not biased by the adopted methodology. Our analysis is structured as follows: we
estimate, via Pair-Copula Constructions, the dependence risk structure across the un-
derlyings of a long-term natural gas contract. In order to reflect the above mentioned
European hybrid pricing system, based on the symbiotic coexistence of oil-indexed
contracts and gas-indexed hub prices, we consider the prices of oil based products and
natural gas traded at the hub as component of the gas pricing formula. (see Section
3.1 for more details). We then combine vine copula models and classical portfolio op-
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timization methods to construct the optimal underlying portfolio, applying different
performance measures. Copula models represent a suitable tool to this scope. In par-
ticular, copula is a function that combines marginal distributions to form multivariate
distributions. The application of copulas is very popular in several fields, like finance,
insurance, financial economics and econometrics (see e.g. Cherubini et al., 2004; Du-
rante and Sempi, 2015; Genest et al. 2009; Malevergne et al., 2006; Krzemienowski
et al. 2016, Vaz de Melo Mendes, 2010). Nowadays, the modeling of stochastic de-
pendence via copulas has led to an increasing attention also in the commodity market
(see e.g. Accioly and Aiube, 2008; Aloui et al., 2013; Czado et al., 2011; Grégoire et
al. 2008; Jäschke, 2014; Lu et al., 2014; Reboredo, 2011; Wen et al., 2012; Wu et al.,
2012).

While there is a wide range of possible alternative copula functions for the bi-
variate case, in the multivariate setting the use of families different from Normal and
Student-t is rather scarce, due to computational and theoretical limitations (see e.g.
Joe, 1997 and Nelsen, 1999). For this reason, in order to represent a multivariate
copula with suitable sets of bivariate copulas, Joe (1996) introduced the Pair-Copula
Construction (PCC) approach, later discussed in detail by Aas et al., 2009; Bedford
and Cooke, 2001, 2002; and Kurowicka and Cooke, 2006. A collection of poten-
tially different bivariate copulas is used to construct the joint distribution of interest
via PCCs, allowing to represent different types and strengths of dependence in an
easy way. PCCs constitute a flexible and very appealing tool for financial analysis,
(see e.g. Allen et al, 2013; Brechmann and Czado, 2013; Dalla Valle et al., 2016;
Dißmann et al., 2013). The vine copula models considered for the analysis of the
portfolio’s dependence risk overcome the restrictive and deterministic features of the
bivariate copulas and traditional measures of correlation, due to their suitability in
capturing the non-normality, tail dependence and volatility clustering of assets re-
turns. Recently Arreola (2014) and Travkin (2013) show how the vine copula ap-
proach can be appropriately used to investigate the dependence structure among the
different components of energy portfolio as well as to derive implications for port-
folio risk management. In this paper, we investigate via Pair-Copula Constructions,
the dependence risk structure across the underlying assets of Long-Term Contracts
(LTCs) on natural gas. We define the optimal portfolio composition under different
performance measures. Whereas the literature that uses copulas in portfolio optimiza-
tion is wide and rich, to the best of our knowledge there are no existing studies which
combine these two methodologies to determine the optimal composition of the assets
commonly used to price the gas LTCs. In doing this, we consider both the tradi-
tional oil-based commodities and spot gas prices to address the debate over oil/spot
indexation related to the re-negotiation of European LTCs. Our results confirms the
effectiveness of the hybrid pricing system currently existing in the continent, but in-
dicates that oil should still play an important role in the definition of the price of the
LTCs.

The remainder of this paper is organized as follows: Section 2 briefly presents the
PCC and the vine copulae; Section 3 provides the data analysis and introduces the pair
vine copula that we use in our study; Section 4 overviews the optimization portfolio
problems that we solve to estimate the risk of the optimal portfolio of the underlying
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assets of LTCs, and illustrates the results of our analysis. Finally, concluding remarks
are given in Section 5.

2 PCC approach and vine copulas

PCC is a multivariate copula constructed by using only bivariate copula or pair-
copulae as building blocks. All copulae involved in the decomposition may be se-
lected freely among the wide range of bivariate copulae family that are capable of
modeling joint distribution with different characteristics. Hence, PCC allows high
flexibility in representing complex structures of dependence among multivariate data.
It is based on the decomposition of a d-dimensional joint density function f(x1, . . . , xd)
of the random vector X = (X1, . . . Xd), as a product of conditional densities:

f(x1, . . . , xd) = fd(xd)× fd−1|d (xd−1 |xd )× · · · × f1|2···d (x1 |x2 · · · , xd) . (1)

Each term in (1) can be decomposed using Sklar theorem (See Sklar, 1959) to express
the conditional density for a generic element xj conditioned on the d-dimensional
vector v as in (2):

fxj |v (xj |v ) = cxj ,vl|v−l
(Fxj |v−l

(xj |v−l ), Fvl|v−l
(vl |v−l )× fxj |v−l

(xj |v−l ),
(2)

where vl is an arbitrary component of v, v−l denotes the (d− 1) dimensional vector
without vl, cxj ,vl |v−l (·, ·) is the conditional pair copula density and Fxj |v−l

(· |· ) is
the conditional distribution of xj given v−l. More precisely, for every j, Joe (1996)
proves that:

Fxj |v (xj |v ) =
∂Cxj ,vl |v−l

(Fxj |v−l
(xj |v−l ), Fvl|v−l

(vl |v−l ) |θ )
∂Fvl|v−l

(vl |v−l )
, (3)

where the bivariate copula function is specified by Cxj ,vl |v−l
, with parameters θ. In

working with copula models a function h(x, v,Θ) can be defined in order to represent
the conditional distribution function when x and v are uniform, i.e. f(x) = f(v) = 1,
F (x) = x and F (v) = v. The h-function can be calculated as follows:

h(x, v,Θ) = F (x|v) = ∂Cx,v(x, v,Θ)

∂v
, (4)

where the second parameter of h(x, v,Θ) always corresponds to the conditioning
variable and Θ denotes the set of parameters for the copula of the joint distribu-
tion function of x and v. For high-dimensional distributions the number of possi-
ble pair-copulae constructions is manifold. In order to organize them, the Bedford
and Cook(2001, 2002) have introduced a graphical model denoted regular vines that
depict multivariate copulas built up using a cascade of bivariate copulas (or pair-
copulas). This allows to understand which conditional specifications are used to de-
scribe the joint distribution. A regular vine V (d) on d variables is a nested set of trees
Ti where i = 1, ..., d − 1 . In particular the first tree has d nodes and d − 1 edges
that represents the pair-copula densities between the nodes. While, the j trees have
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d + 1 − j nodes deriving from the edges of tree j − 1 and d − j edges that are the
conditional pair-copula densities. Moreover the proximity condition states that if the
nodes of tree j + 1 are connected by an edge, than the corresponding edges in tree
j share a common node. According to Kurowicka and Cooke (2006) the joint of a
random vector X = (X1, . . . Xd) following an R-vine distribution can be written as:

f(x1, . . . , xd) =

[
d∏

k=1

fk(xk)

]
·
[

d−1∏
i=1

∏
e∈Ei

cj(e),k(e)|D(e)(F (xj(e)|xD(e)), F (xk(e)|xD(e)))

]
.

(5)

with node set N := {N1, . . . , Nd−1} and edge set E := {E1, . . . , Ed−1} . Each
parameter e = j(e), k(e)|D(e) is an edge, while cj(e),k(e)|D(e) represents a bivariate
conditional density copula. j(e) and k(e) are the conditioned nodes and D(e) is the
conditioning set. The union {j(e),k(e),D(e)} is called constraint set. The right part
of equation 5 which involves d(d − 1)/2 bivariate copula densities, is called an R-
vine copula. Special classes of R-vines are Canonical vines (C-vines) and Drawable
vines (D-vines). A C-vine is a regular vine where each tree Ti has a unique node
that is connected to d − i edges; while a D-vine is a regular vine where each node
is connected to no more than two other nodes. Each tree in a C-vine is a star with
one unique node that connects to all other nodes, whereas a D-vine is represented by
line trees. In a C-vine, at the first root node at level 1 of the nested set of trees, the
key variable presents the highest correlation value in regard to the other variables and
governs the dependence structure among the others. Intuitively, we use a C-vine to
describe a scenario where one variable dominates the others, whereas in the D-vines
we do not assume the existence of a particular node dominating the dependencies.

More precisely, the joint density function f(x1, · · · , xn) of a C-vine of dimen-
sion d takes the following form :

f(x1, . . . , xd) =

=

d∏
k=1

fk(xk)·
d−1∏
i=1

d−i∏
j=1

ci,i+j|1,...,i−1(F (xi|x1, . . . , xi−1), F (xi+j |x1, . . . , xi−1)|θi,i+j|1,...,i−1).

(6)

In a similar way, the joint density function of a D-vine is given by:

f(x1, . . . , xd) =

=
d∏

k=1

fk(xk)·
d−1∏
i=1

d−i∏
j=1

cj,j+i|j+1,...,j+i−1(F (xj |xj+1, . . . , xj+i−1), F (xj+i|xj+1, . . . , xj+i−1)|θj,j+i|j+1,...,j+i−1).

(7)

Differently from C-vines and D-vine the joint density function of the R-vine can
vary significantly according to the statistical feature of the multivariate distribution
being modeled. For this reason, Morales-Napoles (2011) and Dißmann (2010) pro-
posed an efficient method for storing the indices of the pair-copula. It relies on the
specification of a lower triangular matrix M = (mi,j |i, j = 1, ..., d) ∈ {0, ..., d}dxd,
whose diagonal entries mi,i are the nodes 1, ..., d of the first tree. Each row from the
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Table 1 Basic statistics of log return time series referred to the period January 4, 2012 - July 24, 2014

Mean Max Min Std. Dev Skewness Kurtosis
Brent -0.01% 6.57% -5.67% 1.26% -0.068 2.063
Gasoil -0.01% 5.08% -3.11% 1.06% 0.049 1.077
JetF -0.01% 5.05% -3.98% 1.03% 0.075 1.599
Naphtha 0.00% 5.27% -7.72% 1.30% -0.440 3.654
Lsfo -0.02% 3.54% -6.80% 1.13% -0.758 4.551
Gas NBP -0.04% 9.10% -7.69% 1.59% 0.294 3.620
Gas HenryHub 0.04% 13.27% -11.93% 2.78% 0.290 2.342

bottom up represents a tree. The conditioned sets of a node are determined by a diag-
onal entry and the corresponding column entry of the row under consideration, while
the the column entries below this row provides the conditioning set. Corresponding
copula types can also be stored in matrices similar to M (see Section 3.2 for more
details).

3 Data and dependence structure

3.1 Data analysis

With the aim of analyzing the re-negotiation of the European LTCs, we consider both
the oil-based commodities traditionally used to determine the LTCs price and the
main spot gas prices traded at the hub.

In particular the historical daily prices of the following assets have been taken into
account: Crude Ice Brent DTD, Gasoil NWECIF, Jet Fuel NWECIF, Naphtha NWE-
CIF, Lsfo 1% NWECIF, Gas NBP 1stMonth, Gas HenryHub 1stMonth. The label
“NWE” stands for the reference market “North West Europe”, while “CIF” indicates
the “Cost, Insurance and Freight” that are the costs included in the prices. For the
sake of simplicity, in the rest of the paper, we denote the seven time series as follows:
“Brent”, “Gasoil”, “JetF”, “Naphtha”, “Lsfo”, “Gas NBP” and “Gas HenryHub”.

We analyze the period from the 4th of January 2012 to the 24th of July 2014 for a
total of 647 observations. The first five time series, referred to oil and its by-products,
are spot prices. The last two series, respectively referred to the natural gas traded at
the NBP and Henry Hub spot markets, are the first month future prices that can be
considered as good proxy of the gas spot prices. Data are provided by Datastream
Thomson Reuters and all the numerical computations are run in R 3.3.2.

For each historical daily price time series, we construct the log returns and we
report the basic statistics in 1. There is evidence of negative skewness and significant
excess kurtosis.

Figure 1 shows the log returns, the 30-days horizon rolling standard deviation on
log returns, and the volatility associated with the Gas NBP time series. In particular,
figure 2b shows the volatility clustering, namely “large changes tend to be followed
by large changes, of either sign, and small changes tend to be followed by small
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changes”, as observed by Mandelbrot, 1963 (for the other series, see Figures 5-10 in
Appendix A).

INSERT FIGURE 1
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log

returns (b), and volatility (c) associated to the Gas NBP time series.

The volatility clustering is confirmed also by the sample autocorrelation function
(ACF) of the squared mean adjusted log returns (see left hand side of Figures 17-19
in Appendix A). In addition, we observe that all log return series are stationary with
respect to the ADF (Dickey and Fuller, 1981) and the PP tests (Phillips et al. 1988).
The series are also stationary compared to the KPSS test (Kwiatkowski et al., 1992)
with the exception of the Gas NBP log return series. The KPSS is negligible for the
latter since only the ACF plot of the differentiated series shows the presence of unit
root.

Table 2 Unit root test results

P-Value Brent Gasoil JetF Naphtha Lsfo Gas NBP Gas HenryHub
ADF < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
PP < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
KPSS > 0.1 > 0.1 > 0.1 > 0.1 > 0.1 0.013 > 0.1

For modeling the volatility of the series, we test several GARCH models and,
for each one, we select the best model according to the significance of parameters,
the log-likelihood value and the information criteria. In the case of extreme market
events, dummy variables associated to these events have been used to model volatility
spikes. Every series is filtered using a TGARCH model with a skewed-t distribution
for innovations that allows to capture the asymmetry in volatility (i.e. the leverage ef-
fect). ARMA models have been used to compensate for autocorrelation, modeling the
conditional mean where needed. Table 3 reports the results of the ARMA-GARCH
fitting procedure. The application of the Ljung-Box test on both standardized resid-
uals standardized squared residuals shows the absence of series correlation and the
ARCH-LM test (see Fisher and Gallagher, 2012) confirms the adequacy of the ARCH
processes. The ACF and the Partial ACF (PACF) of both the log return series and the
corresponding residuals are reported in Figures 11-13 and 14-16 in Appendix A. This
indicates that there is no evidence of autocorrelation at any lag.

The reduction of the volatility after fitting the ARMA-GARCH models is con-
firmed by the ACF of both the squared mean adjusted log return series and of the
squared mean adjusted residuals reported in Figures 17-19 in Appendix A.

3.2 Pair-Copula Constructions

Using the probability integral transformation on the standardized residuals we obtain
copula u-data. In order to avoid the misspecification of the margins that may lead
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Table 3 P-value of the ARMA GARCH models. The relative statistics are reported in parentheses.
WLB=Weighted Ljung-Box Test, WALM= Weighted Arch LM Test. S.R= Standardized Residuals. S.S.R=
Standardized Squared Residuals

Series Brent Gasoil JetF Naphtha Lsfo Gas NBP Gas HenryHub
GARCH Model TGARCH(1,2) TGARCH(1,1) TGARCH(2,0) TGARCH(1,2) TGARCH(1,2) TGARCH(1,1) TGARCH(1,1)
ARMA Model ARFIMA(1,0,1) ARFIMA(0,0,0) ARFIMA (0,0,0) ARFIMA(9,0,0) ARFIMA(14,0,0) ARFIMA(17,0,0) ARFIMA(13,0,0)

WLB Test

Lag[1] 0,9995 0,9401 0,7433 0.9692 0.8531 0.8179 0.7959

on S.R.

(4.364e-07) (0.005655) (0.1073) (0.001495) (0.03427) (0.05303) (0.0669)

Lag[2*(p+q)+(p+q)-1] 1 0.9908 0.9089 1 1 1 1
(1.093) (0.008741) (0.1175) (6.642716) (10.24734) (18.76113) (7.8402)

Lag[4*(p+q)+(p+q)-1] 0.6123 0.83 0.533 0.9993 0,9974 0.7594 1
(4.330) (1.1283) (2.3745) (12.9167) (24.0307) (39.0382) (16.8326)

WLB Test

Lag[1] 0.2416 0.5683 0.8934 0.8808 0.6537 0.2902 0.3185

on S.S.R.

(1.371) (0.3256) (0.01796) (0.02248) (0.2013) (1.119) (0.995)

Lag[2*(p+q)+(p+q)-1] 0.1808 0.9592 0.9904 0.6261 0.286 0.5591 0.225
(6.604) (0.4904) (0.22823) (3.32382) (5.5291) (2.257) (4.245)

Lag[4*(p+q)+(p+q)-1] 0.2619 0.9871 0.8128 0.4987 0.3085 0.7089 0.3887
(9.213) (0.9792) (2.66476) (7.05544) (8.7125) (3.298) (5.285)

WALM Tests

ARCH Lag[4] 0.1355 0.8308 0.7293 0.3062 0.1477 0.1866 0.5247
(2.228) (0.04564) (0.1198) (1.047) (2.096) (1.745) (0.4047)

ARCH Lag[6] 0.3469 0.9045 0.9347 0.5359 0.1811 0.5012 0.8632
(2.750) (0.42836) (0.3207) (1.802) (4.078) (1.868) (0.5685)

ARCH Lag[8] 0.4318 0.9521 0.856 0.6851 0.2384 0.7118 0.9105
(3.637) (0.73775) (1.3236) (2.279) (5.100) (2.026) (1.0185)

to the bias of the copula parameter estimates, we perform the Berkowitz test on the
u-data. The outcome of this test does not indicate evidence against the uniform (0,1).

Table 4 Kendall’s τ correlation between u-data

Brent.u Gasoil.u JetF.u Naphtha.u Lsfo.u Gas NBP.u Gas HenryHub.u
Brent.u 1.0000 0.6037 0.6002 0.3143 0.2750 0.0851 0.0213
Gasoil.u 0.6037 1.0000 0.7805 0.2887 0.2608 0.0847 0.0341
JetF.u 0.6002 0.7805 1.0000 0.2797 0.2524 0.0863 0.0408
Naphtha.u 0.3143 0.2887 0.2797 1.0000 0.2976 0.1004 -0.0428
Lsfo.u 0.2750 0.2608 0.2524 0.2976 1.0000 0.0990 -0.0025
Gas NBP.u 0.0851 0.0847 0.0863 0.1004 0.0990 1.0000 0.0111
Gas HenryHub.u 0.0213 0.0341 0.0408 -0.0428 -0.0025 0.0111 1.0000

Table 4 reports the pair-wise Kendall’s τ correlation between the series. This
allow us to construct the vine copula models using the maximum spanning tree al-
gorithm described in Czado et al. (2012). Note that if the strength of dependence is
rather small, a good start of a bivariate data analysis is an independent test based on
Kendall’s τ correlation measure (see Genest and Favre, 2007) In the following, we
estimate and analyze three different vine structures, namely C-vine, D-vine, R-vine
together with the multivariate Gaussian copula. Note that the latter can be represented
as any R-vine with Gaussian pair-copulas, where the parameters are determined by
the associated partial correlation (see Czado, 2010). The R package by Schepsmeier
et al. (2018) has been used for the analysis conducted in this section.

INSERT Figure 2
CAPTION: First tree of the C-vine with a 5% confidence level. The letters

reported between the root nodes indicate the type of the bivariate copulas used
to model the dependence, while the numbers refer to the corresponding

Kendall’s τ correlation.

The C-vine copula model is the first vine used to account for the dependence
structure. The application of the Kendall’s τ independence test, with a confidence
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level of 5%, underlines the independence of the pair Gasoil-Gas HenryHub series as
shown in the firstC-vine tree of Figure 2. Akaike Information Criterion and Bayesian
Information Criterion tests are used to select copulas. First, all available copulas are
fitted with Maximum Likelihood Estimation (MLE). Then, the criteria are computed
for all available copula families and the family with the minimum value is chosen.

The parameters of the PCC can be evaluated using any multivariate copula es-
timator such as the maximum pseudo likelihood (MPL) estimator or the inference
function for margins (IFM). However the computational effort increases exponen-
tially with the dimension. Therefore the sequential method proposed by Aas et al,
2009, is used to estimate the parameters level by level. The selected copulas in the
first tree are estimated using the MLE method. To calculate the observations (i.e con-
ditional distributions functions) of the second C-vine tree we used the H-functions
(see (4) in Section 2). This procedure is iterated tree by tree. After having fitted all
the trees, a joint MLE is provided in order to improve the estimation. This proce-
dure requires the observations to be independent over time, in fact the PCC has been
fitted on the standardized residuals obtained by filtering the original series with the
ARMA-TGARCH models previously described.

In a straightforward way, we can represent theC-vine copula density factorization
using the specification matrix M , while the T matrix is the copula type matrix where
each row corresponds to a specific tree and each number denotes the type of pair-
copula family.3

M =


7
6 6
5 5 5
4 4 4 4
3 3 3 3 3
2 2 2 2 2 2
1 1 1 1 1 1 1



T =


0
0 5
5 5 2
0 0 1 1
0 0 13 2 2
0 3 1 14 2 2


We recall that Gaussian and Student-t copulas accounts for a symmetric tail de-

pendence. In particular, Gaussian copula is designed to model the dependence in
the center of the joint distributions, while the Student-t copula is both lower and
upper-tail dependent. Student-t copula allows for joint extreme events either in both
bivariate tails or none of them. Moreover, Frank copula models the dependence in the
centre of distribution, i.e. strong dependence in non-extreme scenarios. With respect
to the bivariate Gaussian, Frank copula can account for the non linearity in the center
of the joint distribution, while the first one only focuses on linear dependence rela-
tionship. Finally, Clayton copula is only lower-tail dependent and is characterized by

3 Copula family type: 0 = Independence copula; 1 = Gaussian copula; 2 = Student-t copula (t-copula);
3 = Clayton copula; 5 = Frank copula; 13 = rotated Clayton copula (180 degrees); 14 = rotated Gumbel
copula (180 degrees); 16= Rotated Joe copula (180 degrees);
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the asymmetric correlation. Together with the 180◦ rotated Joe and Gumbel is ade-
quate to model greater dependence in the negative tail. The 180◦rotated Clayton is
suitable to model dependence in the positive tail.

The D-vine structure is reported in Figure 3. The results of the independence test
based on the Kendall’s τ correlation measure with a 5% confidence level points out
the independence of the pair Gas NPB-Gas HenryHub as shown in the first tree of the
D-vine structure in figure 3. In the following the specification matrix M and copula
type matrix T are reported for the D-vine structure.

INSERT FIGURE 3
CAPTION: First tree of the D-vine with a 5% confidence level. The letters

reported between the root nodes indicate the type of the bivariate copulas used
to model the dependence, while the numbers refer to the corresponding

Kendall’s τ correlation.

M =


7
1 6
2 1 5
3 2 1 4
4 3 2 1 3
5 4 3 2 1 2
6 5 4 3 2 1 1



T =


3
0 5
0 0 1
0 0 2 0
0 0 5 5 2
0 1 2 1 2 2


INSERT FIGURE 4

CAPTION: First tree of the R-vine with a 5% confidence level. The letters
reported between the root nodes indicate the type of the bivariate copulas used

to model the dependence, while the numbers refer to the corresponding
Kendall’s τ correlation.

Finally, the R-vine structure is reported in Figure 4, while the respective specifi-
cation matrix M and copula type matrix T are as follows.

M =


7
6 1
5 6 2
1 5 6 3
2 4 5 6 5
3 3 4 5 6 4
4 2 3 4 4 6 6



T =


0
0 0
0 0 0
0 1 0 0
1 1 16 2 0
1 2 1 2 2 0
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The multivariate Gaussian copula is often used for modeling multivariate data, as-
suming a linear dependence structure and no tail dependencies. The corresponding T
and M matrix representation is straightforward and its derivation is left to the reader.
For model comparison, a commonly used goodness-of-fit (gof) measure is the value
of the log-likelihood of the estimated copula models. This is reported in Table 5. We
notice that the values of the three vine models are higher than the one obtained with
the multivariate Gaussian copula by up to 178 points.

Table 5 Log-likelihood of the estimated copula models

C-vine D-vine R-vine Gaussian
Log-likelihood 1336 1321 1328 1158

Others classical comparison measures are AIC and BIC criteria that take into
account the model complexity. Looking at the values reported in Table 6, we observe
again that vine models outperform the multivariate Gaussian copula by up to 332
and 298 points for AIC and BIC, respectively. C-vine and D-vine are preferred in
terms of AIC, while R-vine is preferred in terms of BIC due to its lower number of
parameters.

Table 6 AIC and BIC of the estimated copula models

C-vine D-vine R-vine Gaussian
AIC -2632 -2632 -2626 -2300
BIC -2547 -2531 -2563 -2265

Moreover, the comparison of the three T matrices of the considered vine struc-
tures provides additional information on tail dependence. More specifically, about
5-30% of the selected pair-copulas have either lower or upper tail dependence, i.e
Clayton, Gumbel and Joe, while 20-25% have both upper and lower tail dependence
modeled with a Student’s t copula. Furthermore, tail dependence is significant since
the coefficient calculated from the estimated pair-copula is on average greater than
0.2. Vine-copula structures are strongly preferred in terms of log-likelihood, AIC,
BIC with respect to the multivariate Gaussian copula. Moreover, C-vine, D-vine and
R-vine account for the significance estimated tail dependence. For these reasons, we
decide to exclude the multivariate Gaussian copula from further analysis.
As an additional step, we run the ECP and ECP2 gof tests on the three selected vine
structures. These are non-parametric tests based on the Cramer-von Mises (CvM) and
Kolmogorov-Smirnov (KS) test statistics (see Schepsmeier, 2014 for more details on
the tests). The resulting p-values are reported in Table 7. None of the structures can
be rejected at a 5% significance level, i.e all of them fit the data quite well. As sug-
gested by Gaupp et al. (2017), future developments of improved goodness-of-fit tests
are needed to help distinguishing between alternative structuring approaches.

We also perform the likelihood ratio tests by Vuong (1989) and Clarke (2007)
to select the structure that better accounts for the dependence among the assets. The
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Table 7 Goodness-of-fit test on C-vine, D-vine and R-vine with bootstrap repetition rate x = 200.

ECP (CvM) ECP (KS) ECP2 (CvM) ECP2 (KS)

D-vine p=0.49 p=0.93 p=1 p=0.94
ts=1.43 ts=0.61 ts=0.01 ts=0.61

C-vine p=0.42 p=0.78 p=1 p=0.84
ts=1.47 ts=0.68 ts=0.01 ts=0.68

R-vine p=0.33 p=0.38 p=1 p=0.97
ts=1.53 ts=4.91 ts=0.01 ts=0.50

results for each possible couple of vine structures are reported in Table 8 and Table
9. These show that, in almost all cases, no decision among the models is possible, i.e
the null hypothesis that both models are statistically equivalent cannot be rejected.
The only exception is represented by the result of the Clark test where the R-vine is
preferred to the C-vine.

Table 8 Vuong test results at level α = 5%

Statistic Statistic Akaike Statistic Schwarz P-Value P-Value Akaike P-Value Schwarz
D-vine VS C-vine 1.121 1.637 2.791 0.262 0.201 0.005
R-vine VS C-vine -1.094 -0.413 1.107 0.273 0.679 0.267
R-vine VS D-vine -1.641 -1.416 -0.911 0.100 0.156 0.361

Table 9 Clark test results

Statistic Statistic Akaike Statistic Schwarz P-Value P-Value Akaike P-Value Schwarz
D-vine VS C-vine 306 311 320 0.181 0.345 0.813
R-vine VS C-vine 293 302 329 0.018 0.098 0.694
R-vine VS D-vine 312 317 338 0.387 0.637 0.270

4 The optimal composition of long-term natural gas contract

4.1 Optimization portfolio problems

In the following, we summarize the optimization portfolio problems that we solve to
compute the optimal weights of each underlying asset of a long-term natural gas con-
tract under the minimum portfolio risk. We consider five well-known risk measures
that are represented by Variance, Mean Absolute Deviation (MAD), MiniMax, Con-
ditional Value-at-Risk (CVaR), and Conditional Drawdown at Risk (CDaR). We sim-
ulate the portfolio returns based on the dependence structures specified in the C-vine
and D-vine models described above and estimate the risk of the seven-dimensional
long-term natural gas contract. We assume to have M assets (m = 1, ...,M ) and T
time periods (t = 1, ..., T ). Recall that, in our analysis, the assets are represented by
the seven time series indicated in Section 3.1. More precisely, we denote with wm the
weights associated to each asset m of the portfolio; rt,m the return of each asset m
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in time period t; µm the average return of asset m that is µm = 1
T

∑T
t=1 rt,m and µp

the portfolio target return. The mean variance (EV) nonlinear optimization problem
(see Markowitz, 1952) is the following:

min
w

1

T

T∑
t=1

(
M∑

m=1

wm(rt,m − µm)

)2

(8a)

s.t. (8b)
M∑

m=1

wmµm = µp (8c)

M∑
m=1

wm = 1 (8d)

wm ≥ 0 ∀j = 1, · · · ,M. (8e)

This optimization problem aims at minimizing portfolio variance (8a) under the port-
folio target return (8c), assuming that the sum of the asset weights has to be equal to
one (8d) and the non-negativity of weights wm (8e).

We then consider the portfolio optimization model that is based on the MAD risk
measure (see Konno et Al., 1993):

min
w

1

T

T∑
t=1

∣∣∣∣∣
M∑

m=1

(rt,m − µm)wm

∣∣∣∣∣ (9a)

s.t. (9b)
M∑

m=1

wmµm = µp (9c)

M∑
m=1

wm = 1 (9d)

wm ≥ 0 ∀m = 1, · · · ,M. (9e)

Problem (9a)-(9e) can be transformed in the following linear optimization prob-
lem:
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minw,y
1

T

T∑
t=1

yt (10a)

s.t. (10b)∣∣∣∣∣
M∑

m=1

(rt,m − µm)wm

∣∣∣∣∣ ≤ yt (10c)

M∑
m=1

wmµm = µp (10d)

M∑
m=1

wm = 1 (10e)

wm ≥ 0 ∀m = 1, · · · ,M. (10f)

The MiniMax model proposed by Young (1998) aims at maximizing the mini-
mum return Lp, namely minimizing the maximum loss, defined as:

Lp = min
t

(
M∑

m=1

wmrt,m

)
∀t = 1, .., T.

On the basis of this assumption, the model is formulated as follows:

max
Lp,w

Lp (11a)

s.t. (11b)
M∑

m=1

wmrt,m − Lp ≥ 0 ∀t = 1, .., T (11c)

M∑
m=1

wmµm = µp (11d)

M∑
m=1

wm = 1 (11e)

wm ≥ 0 ∀m = 1, · · · ,M. (11f)

Following Rockafellar and Uryasev (2000), the portfolio optimization problem
with respect to the CVaR measure can defined as follows:
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min
w,d,v

1

(1− α)T

T∑
t=1

dt + v (12a)

s.t. (12b)
M∑

m=1

wmrt,m + v ≥ −dt ∀t = 1, .., T (12c)

M∑
m=1

wmµm = µp (12d)

M∑
m=1

wm = 1 (12e)

wm ≥ 0 ∀m = 1, · · · ,M (12f)
dt ≥ 0 ∀t = 1, · · · , T. (12g)

where v represents the VaR, (1−α) is the coverage rate and dt is the deviation value
below the VaR.

Following Chekhlov et al. (2005), the CDaR optimization problem is as follows:

min
w,u,v,z

1

(1− α)T

T∑
t=1

zt + v (13a)

s.t. (13b)
M∑

m=1

wmrt,m + ut − ut−1 ≥ 0, u0 = 0 ∀t = 1, .., T (13c)

zt − ut + v ≥ 0 ∀t = 1, .., T (13d)
M∑

m=1

wmµm = µp (13e)

M∑
m=1

wm = 1 · · · ,M (13f)

wm ≥ 0 ∀m = 1, · · · ,M (13g)
zt ≥ 0 ∀t = 1, · · · , T (13h)
ut ≥ 0 ∀t = 1, · · · , T (13i)

(13j)

where z is an auxiliary vector of variables of the conditional drawdowns, u is the
auxiliary vector of variables used to model the cumulative returns and v represents
the Drawdown Risk at the quantile (1− α).
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4.2 Results

In our analysis, we combine pair-vine copula models and portfolio optimization meth-
ods to define the optimal allocation of the underlying assets of a long-term natural gas
contract. The integration of the PCC into the portfolio optimization allows to capture
the complete multivariate dependence risk structure across the considered assets. As
mentioned in Section 3.2, the PCC exploits the relationship between the pair-copula
family and the corresponding Kendall’s τ to compute the correlations coefficients
among the assets. This methodology does not constraint the returns to be normal, but
it captures the asymmetry and nonlinear dependence among the commodities. For
each of five risk measures (EV, MAD, MiniMax, CVaR, and CDaR) we minimize the
portfolio risk by fixing the same target return µp for the three structures. Tables 10,
11 and 12 report the optimal assets allocation for C-vine, D-vine and R-vine struc-
tures, respectively. These weights can be interpreted as the proportions to attribute
to the different underlyings of the long-term natural gas contract, according to the
minimum risk optimal portfolio.

Table 10 Optimal weights for long-term natural gas portfolio C-vine

EV MAD MiniMax CVaR CDaR
Brent 0.13 0.14 0.26 0.13 0.38
Gasoil 0.06 0.06
JetF 0.11 0.17 0.07 0.17 0.62
Naphtha 0.17 0.16 0.12 0.18
Lsfo 0.31 0.31 0.27 0.30
Gas NBP 0.12 0.13 0.18 0.13
Gas HenryHub 0.09 0.09 0.04 0.09
Min Risk 0.01% 0.03% 0.12% 0.07% 5.32%

Table 11 Optimal weights for long-term natural gas portfolio D-vine

EV MAD MiniMax CVaR CDaR
Brent 0.16 0.17 0.26 0.17 0.14
Gasoil 0.06
JetF 0.11 0.17 0.18
Naphtha 0.16 0.16 0.16 0.19
Lsfo 0.29 0.28 0.58 0.28 0.41
Gas NBP 0.13 0.14 0.16 0.13 0.19
Gas HenryHub 0.09 0.08 0.09 0.07
Min Risk 0.01% 0.03% 0.14% 0.07% 3.67%

The analysis of the optimal asset allocation shows that, in general, there is a con-
vergence in the weight of the same asset within the same risk measure among the
three structures. This is in line with the findings of Section 3.2, where it is shown that
all the three structures are appropriate for modeling the considered series.
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Table 12 Optimal weights for long-term natural gas portfolio R-vine

EV MAD MiniMax CVaR CDaR
Brent 0.16 0.16 0.03 0.17 0.27
Gasoil 0.06 0.59
JetF 0.12 0.19 0.31 0.17
Naphtha 0.14 0.14 0.24 0.14
Lsfo 0.31 0.29 0.26 0.29
Gas NBP 0.13 0.13 0.04 0.14 0.01
Gas HenryHub 0.09 0.09 0.11 0.09 0.14
Min Risk 0.01% 0.03% 0.13% 0.07% 4.59%

The combination of vine copula models with optimization methods leads to optimal
portfolios with total risk close to zero.

By focusing on the single risk measure, we analyze the optimal asset allocation
in the three structures. We first observe that the optimal asset allocation in the three
vine copula models is very similar when applying the EV, MAD, and CVaR risk mea-
sures (compare Tables 10-12). In addition, these three risk measures lead to optimal
portfolios with equal risk when analyzing the same risk measure. There is also a sim-
ilar portfolio composition when comparing the aforementioned three risk measures
within the same vine structure. Starting from the EV, the resulting portfolio is the
one with the minimum risk. All assets are considered with Lsfo constituting approxi-
mately 30% of the portfolio, followed by Naphtha, Brent and Gas NBP. Gasoil plays
instead a marginal role. This is registered in all the three vine copula models con-
sidered. A similar composition results by applying MAD and CVaR risk measures to
the three structures. Lsfo is still the asset with the highest weight followed by Jetf,
Naphtha and Brent; Gasoil is not included among the optimal underlyings.

The application of MiniMax and CDaR risk measures generates divergences in
the components of the optimal portfolio compared to what obtained with the EV,
MAD, and CVaR risk measures. A similar behavior for these risk measures is also
observed in Bekiros et al. (2015). We recall that MiniMax considers the maximum
loss in the portfolio, while CDaR takes into account a number of draw down events in
the historical return distribution. Both measures are sensible to large losses occurring
with low probability, which may differ in the simulated distributions of the three
structures. The MiniMax portfolio includes Lsfo, Brent and Gas NBP with different
weights in the three structures. In the CDaR portfolio, Brent is the only common
underlying among the three structures that show also a significance difference in the
total risk.

Table 13 re-elaborates the information provided by Tables 10-12 in order to better
quantify the impact of oil-based commodities and spot gases within the optimal port-
folios. In particular, the values denoted as “Oil-based commodities" are determined
by summing up the optimal weights assigned to Brent, Gasoil, JetF, Naphtha, and
Lsfo, while the terms “Spot Gases" results from the sum of the optimal weights of
Gas NBP and Gas HenryHub.

It is worth noting that, when the EV, MAD and CVaR measures are applied, there
is a perfect convergence in the composition of the optimal portfolios resulting from
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Table 13 Oil and gas composition of the optimal portfolios

Copula Asset EV MAD MiniMax CVaR CDaR

C-vine Oil-based commodities 0.78 0.78 0.78 0.78 1.00
Spot Gases 0.22 0.22 0.22 0.22 0.00

D-vine Oil-based commodities 0.78 0.78 0.84 0.78 0.74
Spot Gases 0.22 0.22 0.16 0.22 0.26

R-vine Oil-based commodities 0.78 0.78 0.85 0.78 0.85
Spot Gases 0.22 0.22 0.15 0.22 0.15

the three structures: 78% is constituted by oil-based commodities and the remaining
22% is represented by gas traded on spot markets. On the contrary, the MiniMax
and CDaR risk measures lead to optimal portfolios that differ in the three vine cop-
ula models, even though the oil-based underlyings still cover the larger share. This
confirms the results discussed above.

A synthesis of the portfolio optimization indicates that oil-based commodities,
such as Lsfo, Brent, Jetf, and Naphtha, appear to be fundamental picks in our asset
allocation, together with the Gas NBP. This is an evidence of the important role still
played by the oil-indexation in the long-term gas contracts. The influence of oil-
based commodities in gas contracts is measured and included in our analysis through
the pair-copulas. However, the choice of Gas NBP and Gas HenryHub gases, that
together, on average, account for more that 20% of the optimal portfolio, reflects the
fact that the re-negotiation policy advocated by mid-streamers in Europe is possible
(see Franza, 2014).

5 Conclusions

This analysis takes inspiration from the current situation of the European natural gas
market where both long-term contracts and hub spot price systems are applied. The
fall of the European gas demand combined with the increase of the US shale gas ex-
ports and the rise of LNG availability on international markets have led to a reduction
of the gas-hub prices in Europe. On the other side, oil-indexed long-term gas contracts
failed to promptly adjust their positions implying significant losses for European gas
mid-streamers that asked for a re-negotiation of their existing contracts and obtained
new contracts linked also to hub spot prices. The debate over the necessity of the
oil-indexed pricing is still ongoing and the main issue is that in the early days of the
European gas industry this was the only option to mitigate the risk of launching such
a highly capital expensive industry. The supporters of the gas-indexation state that
nowadays the gas industry is mature enough and for this reason hub-based pricing
reflects the true supply and demand dynamics in natural gas market. This paper in-
vestigates the dependence risk and the optimal resource allocation of the underlying
assets of a long-term natural gas contract through pair-vine copulas and portfolio op-
timization methods with respect to five risk measures (EV, MAD, MiniMax, CVaR,
and CDaR). In order to address the above mentioned debate both spot gas and oil
commodities are included as underlyings. The usage of the PCC allows modeling the
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conditional dependence structure, overcoming the drawbacks of the mean-variance
Markowitz optimization, including normally distributed returns and linear correla-
tion among the assets of the same portfolio. The results of our simulations suggest
that the weight allocation across portfolios obtained by implementing different vine
structures, in almost all cases, converge within the same risk measure. A general find-
ing is that oil commodities still cover the largest share of the optimal portfolios, but
spot gas are also included. This suggests that European LTCs will most likely remain
indexed to oil-based commodities. In other words, both spot gas and oil-based com-
modities can be included among the underlyings of long-term gas contract, but the
latter will still exercise a major impact. This is a crucial point because increasing the
share of spot gas in LTCs would artificially make long-term prices closer to hub price
levels. From an economic perspective, this can leave room to a spiral mechanism of
downward price adjustment to hub prices that are, in turns, influenced by long-term
contract prices.

Acknowledgements

The work of the third author was supported by MIUR, Italy, PRIN MISURA 2010RHAHPL.

References

1. Aas, K., C. Czado, A. Frigessi and H. Bakken (2009) “Pair-copula constructions of multiple depen-
dence”. Insurance: Mathematics and Economics, 44:182-198.

2. Abada, I., A. Ehrenmann and Y. Smeers (2017) ‘Modeling Gas Markets with Endogenous Long-Term
Contracts”. Operations Research, 65(4): 856-877.

3. Accioly, R.M.S. and F.A.L. Aiube (2008) “Analysis of crude oil and gasoline prices through copulas”.
Cadernos do IME- Série Estatìstica, 24:5-28.

4. Allen, D.E., M.A. Ashraf, M. McAleer, R.J. Powell and A.K. Singh (2013) “Financial dependence
analysis: applications of vine copulas”. Statistica Neerlandica, 67:403–435.

5. Aloui, R., M.S. Ben Aïssa and D.K. Nguyen (2013) “Conditional dependence structure between oil
prices and exchange rates: a copula-garch approach”. Journal of International Money and Finance,
32:719-738.

6. Arreola Hernandez, J. (2014) “Are oil and gas stocks from the Australian market riskier than coal and
uranium stocks? Dependence risk analysis and portfolio optimization”. Energy Economics, 45:528-
536.

7. Bedford T. and R.M. Cooke (2001) “Probability density decomposition for conditionally dependent
random variables modeled by vines”. Annals of Mathematics and Artificial Intelligence, 32:245-268.

8. Bedford T. and R.M. Cooke (2002) “vines- a new graphical model for dependent random variables”.
Annals of Statistics, 30:1031-1068.

9. Bekiros, S., Hernandez, J. A., Hammoudeh, S., Nguyen, D. K. (2015) “Multivariate dependence risk
and portfolio optimization: An application to mining stock portfolios.”. Resources Policy, 46, 1-11.

10. Brechmann E.C. and C. Czado (2013) “Risk management with high-dimensional vine copulas: an
analysis of the Euro Stoxx 50”. Stat. Risk Model, 30:307-342.

11. Chekhlov A., S. Uryasev and M. Zabarankin (2005) “Drawdown measure in portfolio optimization”.
International Journal of Theoretical and Applied Finance, 8:13-58.

12. Cherubini U., E. Luciano and W. Vecchiato (2004) Copula Methods in Finance.. John Wiley: London.
13. Clarke, K. A. (2007). “A Simple Distribution-Free Test for Nonnested Model Selection”. Political

Analysis 15, 347-363.
14. Chyong C-K. (2015). “Markets and long-term contracts: The case of Russian gas supplies to Europe"

EPRG Working Paper, 1524.



Title Suppressed Due to Excessive Length 21

15. Czado, Claudia (2010) “Pair-copula constructions of multivariate copulas.”. Copula theory and its
applications, Springer, Berlin, Heidelberg, 2010. 93-109.

16. Czado C., F. Gärtner and A. Min (2011) “Analysis of Australian Electricity Loads using Joint
Bayesian Inference of D-vines with Autoregressive Margins”.
In Kurowicka, D., Joe. H.(Ed) Dependence Modeling: vine Copula Handbook, 265-280, World Sci-
entific, London.

17. Czado C., U. Schepsmeier and A. Min (2012) “Maximum likelihood estimation of mixed C-vines
with application to exchange rates”. Statistical Modelling, 12(3):229-255.

18. Dalla Valle L. , M.E. De Giuli, C. Tarantola and C. Manelli (2016) “Default probability estimation
via pair-copula constructions”. European Journal of Operational Research, 249:298-311.

19. Dickey, D. and W. Fuller (1981) “Likelihood Ratio Statistics for Autoregressive Time Series with a
Unit Root”. Econometrica, 49:1057-1072.

20. Dißmann, J., E. Brechmann, C. Czado and D. Kurowicka (2013) “Selecting and estimating regular
vine copulae and application to financial returns”. Computational Statistics & Data Analysis, 59:52-
69.

21. Durante, F. and C. Sempi (2015) Principles of copula theory. Chapman and Hall/CRC: London
22. Fisher, T.J. and O. Gallagher C.M. (2012) “New weighted portmanteau statistics for time series

goodness of fit testing”. Journal of the American Statistical Association, 107(498):777–787.
23. Franza, L. (2014) “Long-term gas import contracts in Europe”. CIEP paper, 8. Avail-

able at http://www.clingendaelenergy.com/inc/upload/files/Ciep_paper_
2014-08_web_1.pdf.

24. Frisch, M. (2010) “Current European gas pricing problems: solutions based on price review and price
reopener provisions.”. International energy law and policy research paper series, No 3

25. Gaupp, F., Pflug, G., Hochrainer-Stigler, S., Hall, J., Dadson, S. (2017) “Dependency of crop produc-
tion between global breadbaskets: a copula approach for the assessment of global and regional risk
pools.”. Risk Analysis, 37(11), 2212-2228.

26. Genest, C. and A.C. Favre (2007) “Everything You Always Wanted to Know about Copula Modeling
but Were Afraid to Ask”. Journal of Hydrologic Engineering, 12:347–368.

27. Genest, C. M. Gendron and M. Bourdeau-Brien (2009) “The Advent of Copulas in Finance”. The
European Journal of Finance, 15:609-618.

28. GIIGNL (2018) “The LNG industry”. Available at https://giignl.org/publications#
webform-client-form-1161

29. Grégoire, V., C. Genest and M. Gendron (2008) “Using copulas to model price dependencies in
energy markets.” Energy Risk, 5:58-64.

30. Heather, P. (2012) “Continental European Gas Hubs: Are they fit for purpose?.” NG: Oxford Institute
for Energy Studies. 63.

31. Heather P, B. Petrovich (2017). “European traded gas hubs: an updated analysis on liquidity, maturity
and barriers to market integration". The Oxford Institute for Energy Studies paper-Energy Insight, 13.

32. IEA (International Energy Agency), (2013) Developing a Natural Gas Trading Hub in
Asia-Obstacles and Opportunities. Available https://www.iea.org/publications/
freepublications/publication/AsianGasHub_FINAL_WEB.pdf.

33. Jäschke S. (2014). “Estimation of risk measures in energy portfolios using modern copula techniques.”
Computational Statistics and Data Analysis, 76:359-376.

34. Joe, H. (1996) “Families of m-variate distributions with given margins and m(m-1)/2 bivariate depen-
dence parameters.” IMS lecture notes, 76: 359-376.

35. Joe, H. (1997). “Multivariate model and dependence concepts”. Monographs on Statistics an Applied
Probability, 73, Chapman, Hall, London.

36. Kanai, M. (2011) “Decoupling the Oil and the Gas Prices”. IFRI papers. Available at http://www.
ifri.org/sites/default/files/atoms/files/noteenergiemiharukanai.
pdf.

37. Konno, H., Shirakawa, H., and Yamazaki, H. (1993). “A mean-absolute deviation-skewness portfolio
optimization models.” Annals of Operations Research, 45(1), 205-220.

38. Konoplyanik, A.A. (2010). “Evolution of Gas Pricing in Continental Europe: Mod-
ernization of Indexation Formulas Versus Gas to Gas Competition.” , University of
Dundee, International Energy Law and Policy Research Paper Series, 01. Available at
http://www.konoplyanik.ru/ru/publications/articles/465_Evolution_
of_Gas_Pricing_in_Continental_Europe.pdf

39. Krzemienowski A and Szymczyk S. (2016). “Portfolio optimization with a copula-based extension of
conditional value-at-risk.” Annals of Operations Research, 237.1-2 (2016): 219-236.



22 E. Allevi et al.

40. Kwiatkowski, D., P.C.B. Phillips, P. Schmidt and Y. Shin, (1992). “Testing the Null Hypothesis of
Stationarity Against the Alternative of a UnitRoot” Journal of Econometrics, 54:159-178.

41. Kurowicka, D. and R. Cooke (2006). “Uncertainty analysis with high dimensional dependence mod-
elling”. Wiley: Chichester.

42. Lu, X.F., K.K. Lai and L. Liang (2014). “Portfolio value-at-risk estimation in energy futures markets
with time-varying copula-GARCH model” Annals of Operations Research, 219: 333-357.

43. Malevergne, Y. and D. Sornette (2006). “Extreme financial risks: From dependence to risk manage-
ment”. Berlin: Springer-Verlag.

44. Mandelbrot, B.B. (1963). “The Variation of Certain Speculative Prices.” The Journal of Business,
36:394-419.

45. Melling, A.J (2010). “Natural gas pricing and its future-Europe ad the battleground.” Carnegie
Endowment for international peace. Available at http://carnegieendowment.org/files/
gas_pricing_europe.pdf

46. Morales-Napoles, O. (2010). “Counting vines” Dependence modeling: vine copula handbook, 189-
218.

47. Nelsen, R.B. (1999). “An introduction to copulas. Lecture Notes in Statistics, 139”. Springer-Verlag:
New York.

48. Phillips, P.C.B. and P. Perron (1988). “Testing for Unit Roots in Time Series Regression’.’ Biometrika,
75:335-346.

49. Reboredo, J.C. (2011). “How do crude oil prices co-move?: A copula approach.” Energy Economics,
33:95-113.

50. Rockafellar, R.T. and S. Uryasev (2000). “ Optimization of conditional value-at-risk” Journal of risk,
2:21-42.

51. Sklar, M. (1959). “Fonctions de répartition á ndimensions et leurs marges”. Publications de l’Institut
de Statistique de l’Université de Paris, 8:229-231.

52. Stern, J. and H.V. Rogers (2014). “The Dynamics of a Liberalised European Gas Market: Key deter-
minants of hub prices, and roles and risks of major players.” The Oxford Institute for Energy Stud-
ies, 94. Available at http://www.oxfordenergy.org/wpcms/wp-content/uploads/
2014/12/NG-94.pdf.

53. Schepsmeier, Ulf (2014). “Efficient goodness-of-fit tests in multi-dimensional vine copula models”.
ArXiv:1309.5808.

54. Schepsmeier, Ulf, and Claudia Czado (2016). “Dependence modelling with regular vine copula mod-
els: a case-study for car crash simulation data.” Journal of the Royal Statistical Society: Series C
(Applied Statistics), 65(3): 415-429.

55. Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Nagler, T., Erhardt, T. (2018). “vineCop-
ula: statistical inference of vine copulas, 2018.” Available at https://CRAN.R-project.org/
package=vineCopula.

56. Theisen (2014). “Natural Gas Pricing in the EU: From Oil-indexation to a Hybrid Pricing Sys-
tem.” Regional Centre for Energy Policy Research. Available at http://rekk.hu/downloads/
projects/2014_rekk_natural\%20gas\%20pricing.pdf.

57. Vaz de Melo Mendes, B., M. Mendes Semeraro and R.P. Camara Leal (2010). “Pair-copulas modeling
in finance”. Financial Market and Portfolio Management, 24:193-213.

58. Vuong, Q.H. (1989). “Ratio tests for model selection and non-nested hypotheses”. Econometrica,
57:307-333.

59. Wen, X., Y. Wei and D. Huang (2012). “Measuring contagion between energy market and stock
market during financial crisis: a copula approach”. Energy Economics, 34:1435-1446.

60. Wu, C.C., H. Chung and Y.H. Chang (2012). “The economic value of co-movement between oil price
and exchange rate using copula-based GARCH models”. Energy Economics, 34:270-282.

61. Xunpeng, S. (2016). “Gas and LNG pricing and trading hub in East Asia: An introduction”. Natural
Gas Industry B, 3:352-356.

62. Yafimava, K. (2014). “Outlook for the Long Term Contracts in a Globalizing Market (focus on Eu-
rope)” Presentation available at http://www.unece.org/fileadmin/DAM/energy/se/
pp/geg/gif5_19Jan2015/s1_1_Yafimava.pdf

63. Young, M.R. (1998). “A minimax portfolio selection rule with linear programming solution”. Man-
agement science, 44:673-683.



Title Suppressed Due to Excessive Length 23

A Appendix: additional results

INSERT FIGURE 5
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log returns (b), and volatility

(c) associated to the Brent series.

INSERT FIGURE 6
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log returns (b), and volatility

(c) associated to the Gasoil series.

INSERT FIGURE 7
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log returns (b), and volatility

(c) associated to the JetF series.

INSERT FIGURE 8
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log returns (b), and volatility

(c) associated to the Naphtha series.

INSERT FIGURE 9
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log returns (b), and volatility

(c) associated to the Lsfo series.

INSERT FIGURE 10
CAPTION: Log returns (a), 30-days horizon rolling standard deviation on log returns (b), and volatility

(c) associated to the Gas HenryHub series.

INSERT FIGURE 11
CAPTION: ACF and PACF of Gas Nbp log return series.

INSERT FIGURE 12
CAPTION: ACF and PACF of Brent (a), Gasoil (b), and JetF (c) log return series.

INSERT FIGURE 13
CAPTION: ACF and PACF of Naphtha (a), Lsfo (b), and Gas HenryHub (c) log return series.

INSERT FIGURE 14
CAPTION: ACF and PACF of Gas Nbp residuals.

INSERT FIGURE 15
CAPTION: ACF and PACF of Brent (a), Gasoil (b), and JetF (c) residuals.

INSERT FIGURE 16
CAPTION: ACF and PACF of Naphtha (a), Lsfo (b), and Gas HenryHub (c) residuals.

INSERT FIGURE 17
CAPTION: ACF of the squared mean adjusted log return series and ACF of the squared mean adjusted

residuals of Gas Nbp log return series.

INSERT FIGURE 18
CAPTION: ACF of the squared mean adjusted log return series and ACF of the squared mean adjusted

residuals of Brent (a), Gasoil (b), and JetF (c) log return series.

INSERT FIGURE 19
CAPTION: ACF of the squared mean adjusted log return series and ACF of the squared mean adjusted

residuals of Naphtha (a), Lsfo (b), and Gas HenryHub (c) log return series.


