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Abstract

In the context of Smart Monitoring and Fault Detection and Isolation in industrial systems, the aim of Predictive
Maintenance technologies is to predict the happening of process or equipment faults. In order for a Predictive Main-
tenance technology to be effective, its predictions have to be both accurate and timely for taking strategic decisions
on maintenance scheduling, in a cost-minimization perspective. A number of Predictive Maintenance technologies are
based on the use of ”health factors”, quantitative indicators associated with the equipment wear that exhibit a monotone
evolution. In real industrial environment, such indicators are usually affected by measurement noise and non-uniform
sampling time. In this work we present a methodology, formulated as a stochastic filtering problem, to optimally predict
the evolution of the aforementioned health factors based on noisy and irregularly sampled observations. In particular,
a hidden Gamma process model is proposed to capture the nonnegativity and nonnegativity of the derivative of the
health factor. As such filtering problem is not amenable to a closed form solution, a numerical Monte Carlo approach
based on particle filtering is here employed. An adaptive parameter identification procedure is proposed to achieve the
best trade-off between promptness and low noise sensitivity. Furthermore, a methodology to identify the risk function
associated to the observed equipment based on previous maintenance data is proposed. The present study is motivated
and tested on a real industrial Predictive Maintenance problem in semiconductor manufacturing, with reference to a dry
etching equipment.

Keywords: Decision Support System, Gamma Distribution, Industry 4.0, Monte Carlo Methods, Particle Filters,
Predictive Maintenance, Prognostic and Health Management, Semiconductor Manufacturing

1. Introduction

Advanced monitoring is a fundamental activity in the
Industry 4.0 scenario to implement control, maintenance,
quality, reliability, and safety policies [1, 2, 3]. In particu-
lar, Fault Detection and Isolation (FDI) [3] and Predictive
Maintenance (PdM) [4] technologies have proliferated in
the past recent years for diagnosis and prognosis of pro-
cess/tool failures [5]. While the aim of such technologies is
similar and partly overlapped, PdM technologies are more
focused on prognosis. Prognosis can be defined as the ca-
pability to provide early detection of the precursor and/or
incipient fault condition of a component, and to design
tools for managing and predicting the progression of such
fault condition to component failure [6]. Given their goal,
PdM technologies are typically applied to failures that are
associated with wear and usage of the system/process [7],
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or, more generally, to failures that can be predicted in ad-
vance [8, 9]. Examples of such type of faults are the break-
ing of the source in ion-implantation processes in semicon-
ductor manufacturing [7], the flute wear in cutting tool
equipment [10], and the lifespan of lithium-ion batteries
[11].

In this work we focus on the so-called ’Health Fac-
tors’ (HFs), an important concept in prognostic1. HFs
are quantitative indexes used to define the current sta-
tus of a tool/process and to assess the future statuses of
the system under exam (or of one of its components/sub-
systems), and its Remaining Useful Life (RUL) [14, 16, 17],
so that strategic decisions regarding maintenance schedul-
ing and dynamic sampling plans can be taken [4]. Be-
ing in direct relationship with wear, usage or stress of an
equipment/component or system, HFs generally have a
monotone evolution. A HF can be of very different na-
ture: in its simplest form, HFs can be observable param-

1Health Factors are also indicated as ’Component Health’ [5],
’State of Health’/’Health State’ [12, 13] or as ’Health Indicators’
[10, 14] by different authors and they are closely in relation with the
concept of ’degradation data’ [15].
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eters that, thanks to specific domain expertise, can be as-
sociated with equipment/process health status. Example
of health factors as quantities that are directly related to
system health, such as the thermal index of a polymeric
material [18], the scar width in sliding metal wear [19], and
the temperature difference in semiconductor manufactur-
ing epitaxy processes [20]. HFs can also be the output of
Soft Sensor modules [21, 22], where the status health is im-
possible/costly to be monitored. Moreover, HFs can be the
residual of first principle FDI models [23]. In fact, in many
practical examples [1, 17, 23, 24], residuals have a mono-
tonic behaviour and threshold-based policies to mainte-
nance management are implemented on such quantities.
HFs are therefore relevant quantities in both model-based
[24, 25, 26] and model-free [1, 3, 27, 28] prognostic ap-
proaches.

In the present paper, the problem of designing a HF
for Predictive Maintenance (PdM) purposes is considered
[7, 29, 30]. In particular, the issue of assessing the probabi-
lity distribution of the HF future values given its past mea-
surements is addressed, under the following assumptions:
(i) the HF is monotonically increasing; (ii) its measure-
ments are subject to random noise that may conceal its
monotonic nature; (iii) measurements are non-uniformly
sampled over time. The aforementioned features are typi-
cal traits of HF signals [17, 20, 31, 32, 33], but they are gen-
erally not simultaneously accounted for in the related liter-
ature. Non-stochastic models (see [12] for a broad review
on RUL estimation) for HFs have been presented in litera-
ture, as well as inspection and intervention approaches for
increasing maintenance actions effectiveness and decreas-
ing the associated costs. However, such methodologies are
well suited for noise-free scenarios and, given the aforemen-
tioned assumptions on the HF signals, it is here proposed
to adopt a stochastic filtering paradigm [34]. With the
proposed approach, the HF is treated as a stochastic pro-
cess, with the possibility to combine prior knowledge on
the HF with statistical information regarding the observed
noisy data. A simple approach to deal with the problem
at hand is provided by the Wiener and Kalman predictors
[20, 35, 36, 37], which are statistically optimal for linear
Gaussian models. However, such classical approaches may
be considered suboptimal for signals with the character-
istics given in assumptions (i)-(iii). As a matter of fact,
far from being Gaussian, the HF derivative is in this work
considered to be a nonnegative random variable.

Given such premises, a framework for HF filtering and
prediction based on the Gamma distribution is here pro-
posed. PdM applications employing Gamma distributions
has been developed since the 1970s [38], especially in me-
chanical and civil engineering applications [39, 40, 41] and,
recently, in industrial environments [42]. Indeed, if the
HF is modeled as the sum of Gamma distributed random
variables, such sum is still Gamma distributed, with the
advantage that convenient estimation and prediction algo-
rithms can be derived. Given that in real-world industrial
applications HFs are usually observed with noise, the ap-

proach proposed in this work considers the HF as a mono-
tonic Gamma process (with time-varying shape parame-
ter) corrupted by Gaussian noise (hidden-Gamma model).
Such assumptions lead to the lack of closed-form solutions
for the estimation of model parameters in the proposed
approach. However, it will be shown that the prediction
problem can be efficiently solved by resorting to particle fil-
tering methods [43, 44, 45], employing Monte Carlo (MC)
simulations to derive the target posterior distributions. Fi-
nally, a recursive procedure to estimate the time-varying
shape parameter is proposed. Such procedure allows to
optimize a trade-off between the need for promptness and
noise insensitivity/outlier rejection.

The paper is organized as follows. In Section 2 the
hidden-Gamma model is presented. In Section 3.1 the
principles of Particle Filtering (PF) are briefly summa-
rized and adapted to Gamma processes. In Section 4 an
adaptive recursive scheme for estimation of monotone HFs
is presented. Section 5 is dedicated to the definition and
estimation of an appropriate Risk Function for the pro-
posed model. In Section 6 some experimental results on
synthetic datasets are reported, whereas in Section 7 a real
PdM semiconductor manufacturing problem related to dry
etching is tackled. 2

2. The Hidden Gamma Process

2.1. Gamma Probability Distribution

The most notable property of Gamma distributions is
their non-negative support. We consider a random vari-
able x with Gamma distribution Γ(a, θ), where a is the
shape parameter and θ is the scale factor. The first two
statistical moments of x are E[x] = aθ and V ar[x] = aθ2

and the probability density function (PDF) is p(x) =
xa−1e−

x
θ

Γ(a)θa . Gamma distributed random variables enjoy the

following property:
Property 1 (Infinite Divisibility): if x1 ∼ Γ(a1, θ) and

x2 ∼ Γ(a2, θ), then the sum x = x1 + x2 has a Gamma
distribution with shape a1 + a2 and scale factor θ.

The shape of the Gamma probability distribution for
different values of a and θ is shown in Figure 1.

2.2. The Hidden-Gamma Model

In the following, the HF is denoted by x(·). Measure-
ments x(t1), x(t2), . . . , x(tk) are available for time instants
t1 ≤ t2 ≤ . . . ≤ tk. We indicate with t0 ≤ t1 the ini-
tial time instant, and with tk+1 ≥ tk the instant points in
which predictions of the HF are desired.

In the following, we adopt a Bayesian paradigm by as-
signing to {xj , j = 1, . . . , k + 1} a joint prior distribution.

2The present work is an extended version of [46]. Additional
material concerns implementation details, the derivation of a risk
function associated with the maintenance operation, and the use of
synthetic data to better assess performance of the algorithms.
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Figure 1: Gamma probability distributions for different values of a
and θ.

As stated in Section 1, the HF is associated with equip-
ment/process degradation, therefore the prior information
on the HF can be formalized as follows:

• HF takes non negative values: xj ≥ 0,∀ 0 ≤ j ≤ k+1;

• HF has non negative increments: ∆xj ≥ 0, ∀ k, 1 ≤
j ≤ k + 1, where ∆xj := xj − xj−1;

• ∆xj is positively correlated with the length of tj −
tj−1.

The previous characteristics for the HF are captured by
the following stochastic model:

Assumption 1. The HF evolution is governed by the fol-
lowing equation

xj+1 = xj + wj+1, j = 1, . . . , k (1)

where x0 ∼ Γ(a0, θ) and wj ∼ Γ(α(tj− tj−1), θ). It is sup-
posed that wj are mutually independent random variables,
also independent from x0. �

It is straightforward to see from Eq. (1) that both the
HF and its increments are non negative. Moreover, thanks
to Property 1, it can be seen that E[x(tj)] = (a0 + αtj)θ,
which means that it is expected that the HF is linearly
increasing with time.

Remark 1: the discrete-time model described in (1)
can be obtained by sampling the continuous-time Gamma
process x(t) that satisfies

dx(t) = x(t)dt+ dw(t), t ≥ t0, (2)

where x(t0) ∼ Γ(a0, θ) and dw(t) is a Wiener process with
dw(t) ∼ Γ(αdt, θ). Equation (2) can be obtained thanks
to Property 1. Such formulation allow us to estimate the
HF for the generic time instant t 6= tj . �

If {xj} were noiseless, the estimation of the unknown
parameters {a0, α, θ}, that specify the distribution of the

future values of the HF, could be performed for example
via maximum likelihood estimation (MLE). In such case,
the posterior expectation can be employed as point pre-
dictor

x̂k+1 := E[xk+1|xk] = xk +E[wk+1] = xk +αθ(tk+1 − tk).

Moreover, the knowledge of the distribution of wk+1 allows
to define confidence intervals for the HF. Such confidence
intervals could be exploited in a PdM perspective, by com-
puting the probability of exceeding predefined thresholds
associated with a maintenance action.

Unfortunately, in real world scenario, HFs are usually
affected by measurement noise. For this reason, a mea-
surement equation is added to the model (1):

Assumption 2. The HF is observed through the noisy
measures

yj = xj + vj , j = 1, . . . , k (3)

where vj ∼ N (0, σ2) (Gaussian distribution with 0 mean
and standard deviation σ) is independent from the initial
value x0 and {wj}.

The stochastic process yk is named here a hidden Gamma
process (HGP). Given the presence of the measurement
noise vj in (3), there is no guarantee that the sequence
{yj} is monotonic. In the following, it is assumed that
a0, α, θ are known, as they can be estimated by MLE even
in presence of noise. The formulation of the filtering prob-
lem is then the following:

Problem 1. Given the available measures Yk = {yj , j =
1, . . . , k} and Assumptions 1-2, compute the posterior
PDF p(xk+1|Yk).

Since p(xk+1|xk, xk−1, . . .) = p(xk+1|xk), the HGP de-
fined in (1) is a first-order Markov process. Then, Problem
1 can be approached by looking for a recursive solution
where p(xk+1|Yk) is computed by updating p(xk|Yk−1),
once the measure yk is available. In the noisy conditions
we are considering in this work, such solution must be de-
rived with numerical MC techniques like PF.

3. Particle Filtering of Gamma Processes

3.1. Basics of Particle Filtering

PFs or Sequential Monte Carlo methods are numeri-
cal approaches that allow to approximate intractable or
complex distributions by employing discrete distributions
whose statistical moments and confidence intervals can be
easily calculated. PFs exploits the generations of N ran-
dom variables, named particles, to approximate the un-
known stochastic process posterior. A basic PF algorithm
for a hidden state-space system as the one given by (1)-
(3) is provided here3 (a graphical representation of the PF
procedure is depicted in Fig. 2):
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Algorithm 1: Particle Filter (PF) algorithm

1. Set k = 0
2. Particles x

(j)
0 , j = 1, . . . , N are drawn from the

initial distribution p(x0)

3. Weights w
(j)
0 = p(x0 = x

(j)
0 ), j = 1, . . . , N are

computed
4. Update k = k + 1
5. From a suitable proposal distribution

G(x
(j)
k |x

(j)
k−1), N particles x

(j)
k , j = 1, . . . , N are

sampled
6. The weights

w
(j)
k = w

(j)
k−1

L(yk;x
(j)
k )p(x

(j)
k ;x

(j)
k−1)

G(x
(j)
k |x

(j)
k−1)

(4)

are adjusted, where L is a likelihood function
defined by the measurement model (3) and the
known statistics of vj , while the state-transition

probability p(x
(j)
k ;x

(j)
k−1) is specified by the

state-space model (1)
7. The weights are normalized in order to sum to 1
8. p(xk|Yk) is approximated by

p(xk|Yk) ≈
N∑
j=1

w
(j)
k δ(xk − xjk), (5)

a discrete distribution with support points

x
(j)
k , j = 1, . . . , N , where δ(·) is the Dirac delta

measure. 9. Go to Step 4.
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Figure 2: A graphical representation of the PF procedure. At time
instant k, the prior state distribution, represented by the blue solid
curve, is approximated by the N particles (black dots). The posterior
distribution arises from the interplay between the prior distribution
and the observation likelihood, represented by the red dashed curve,
generated by the noisy observation (the red circle).

Figure 3: HGP-based predictions (represented by the shaded areas)
in three different future time instants for a synthetic HF. Thanks to
the monotonic nature of the HGP model, the prediction uncertainty
grows with time only in one direction. By computing the integral of
the red shaded areas it is possible, for fixed thresholds, to estimate
the threshold-crossing probability at different future time instants.

Beside the selection of the number of particles N , the
most important design choice of the PF procedure is the

selection of G. The simplest choice is to set G(x
(j)
k |x

(j)
k−1) =

p(x
(j)
k ;x

(j)
k−1), so that only L is required in (4). Notably,

with this choice, yk has no influence on Step 5 of the proce-
dure, reducing in general the robustness of the estimates.
A possible alternative is to use a G that considers a prelim-
inary approximation of p(xk|Yk−1); this can be achieved,
for example, by means of a Kalman Filter (KF) approach
[48].

A second critical design issue in the PF procedure is
the resampling step [49]. If a large number of parti-
cles have their respective weights with very small values

w
(j)
k �

1
N , it is necessary that such particles are discarded

and re-sampled from the distribution p(xk|Yk−1). This is
done in order to allow the uninformative particles to con-
tribute again to the estimation. Many resampling strate-
gies have computational cost O(N), however less resource-
demanding approaches for resampling can be implemented
[50].

3.2. Adaptation to Gamma Processes

A possible issue affecting the PF problem for system (1)-
(3) is related to the nonnegativity of quantities wj . Such
issue is related to the fact that an overestimation of the
lower limit of the distribution of xk will propagate to all
estimates xi with i > k. In such case, lower limits of xi
will be overestimated as well, leading to the accumulation
of one-sided errors. This issue is formally described in the
following proposition.

Proposition 1. If, for some k, the posterior distribution
p(xk|Yk−1) is approximated by a representation with dis-
crete support, the lower limit of the support of p(xk+1|Yk)
is greater or equal to that of p(xk|Yk−1).

3We refer the interested readers to [47] or [45] for more details on
PF.
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Filtering result: comparison between no smoothing (W=1) and smoothing with W=5
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Figure 4: State estimations with different lag values. It can be ap-
preciated how larger values of lag are associated with higher stability
in presence of outliers.

For a proof of Proposition 1, we refer the interested read-
ers to [46]. A possible way to mitigate the aforementioned
propagation error is to employ a fixed-lag smoother [47],
where p(xk+1|Yk+W ) is taken as the basis for future up-
dates instead of p(xk+1|Yk), p(xk+1|Yk+W ) (the integer W
denotes a fixed window size). With this approach, the
smoothed p(xk+1|Yk+W ) is generally more accurate and
prone to overestimating the lower limit of the distribution,
thanks to the increased availability of information.

The fixed-lag smoother can be derived as follows. The
augmented state vector x̃j := [xj xj+1 . . . xj+W ]′ is in-
troduced and, similarly, w̃j , ṽj , ỹj . By exploiting (1)-(3)
it is possible to obtain

x̃j+1 = x̃j + w̃j (6)

ỹj = x̃j + ṽj (7)

The augmented-state model described by equations (6)-
(7) allows more robustness in the PF approach. In Fig.
4 an example with a synthetic HF is illustrated. It can
be observed that larger lag sizes allow enhanced estima-
tion stability (even in presence of outliers) and prevent
systematic bias.

A final design guideline for the Hidden Gamma Process-
PF regards resampling. Conditional resampling has been
here implemented to make less likely for a particle to be
sampled depending on its distance from the critical edge.
While this procedure can lead to the creation of zones
where particles are rarely resampled, a mitigated risk of
error propagation is achieved.

4. Regularized Adaptive Filtering

The a-priori knowledge on the HF increment from tj−1

to tj is expressed by the statistics E[wj ] = α(tj − tj−1)θ
and V ar[wj ] = α(tj − tj−1): the higher the α, the higher
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Figure 5: Expected value (red line) and confidence limits (blue lines)
corresponding with different choices of α(t) (from top-left, in clock-
wise order) constant, linear increasing, linear decreasing and peri-
odic.

the expected size of the increments. In real world indus-
trial cases, variations in HF may happen quite suddenly
with a steep rise of x(t) after flat steady-state behavior
(see the application case discussed in Section 7). For this
reason, a time-varying shape factor α = α(t) is used here
(see Fig. 5), that must be estimated as well by the PF.
Considering the discrete-time nature of (1)-(3), the shape
factor can be denoted as αj = α(tj), and the following
hypothesis can be made:

Assumption 3. The shape factor αj evolves according to

αj+1 = αj + δj , j = 1, . . . , k (8)

where δj ∼ N (0, λ2) is independent of x0, {wj} and {vj}.

In this perspective, the hyper-parameter λ2 can be
tuned to modify the variability of αj . Indeed, large val-
ues of λ2 lead to quickly varying αj and promptly reactive
adapting PF. On the other hand, small values of λ2 can
improve the noise sensitivity at the price of a less respon-
sive PF.

A maximum a posteriori (MAP) estimate for αk is
adopted based on a moving window approach. If α̃j :=

[αjαj+1 . . . αj+W ]′, the MAP estimate ˆ̃αk is

ˆ̃αk = arg max
α̃k

p(α̃k|ỹk, xk−W , αk−W+1) where

p(α̃k|ỹk, xk−W , αk−W ) ∝ p(ỹk|α̃k, xk−W )p(α̃k|αk−W )
(9)

with xk−W and αk−W set to be equivalent to their point
estimates at previous iteration.

Given that the conditional distributions of ỹk and
α̃k in (9) are Gaussian, the logposterior L =
log(p(α̃k|ỹk, xk−W , αk−W )) is defined (up to a constant)
as
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L = SSR+
1

λ2
R (10)

where SSR and R are respectively the sum of squared
residuals and the sum of squares of δj , j = k −W, . . . , k.
Equation (10) is typical of regularization methods [51]
where a trade off choice between accuracy in fitting the
training data and complexity of the estimated function
has to be made. In regularization methods, the following
family of penalty terms is usually considered:

R =

W−1∑
i=0

|δk−i|q . (11)

For q = 2, the well-known Ridge Regression (RR) [52] is
obtain. The advantage of RR is that it admits a closed-
form solution. For q = 1, a LASSO-type [53, 54] regular-
ization is obtained instead. LASSO provides sparse solu-
tions, an important property that makes LASSO the first
choice in many applications over RR, even at the price of
not admitting a closed-form solution. Values of q larger
than 1 can also be adopted; for instance, q ∈]1, 2[ leads
to a penalization region similar to the Elastic Net [55].
The computational cost of this operation for k > W is
O(W 2k) for q = 1 and O(W 3 +W 2k) for q = 2; optimized
approaches [56] are now available for the less frequent case
k < W .

Remark 2: The discrete-time model with time-varying
αk can still be interpreted as the sampled-data version of
the continuous time model with time-varying α(t). In fact,
p(x(tj+1)|x(tj)) in (2) depends on the mean value of α(t)
in the interval [tj , tj+1], and not on its evolution inside
the interval. From Property 1, wj = x(tj+1) − x(tj) is
Gamma distributed, that is, wj ∼ Γ(ᾱj , θ) where ᾱj :=∫ tj+1

tj
α(t)dt. Then, by setting αj := 1

tj+1−tj

∫ tj+1

tj
α(t)dt it

follows that wj ∼ Γ(αj(tj+1− tj), θ) and the discrete-time
increment model is obtained. �

4.1. Implementation notes

The HGP-PF approach proposed in this work can be
summarized (for the sequences {tj , yj}, j = 1, . . . , k) as:

1. Initial parameter are selected: the process noise-
related quantities θ and α0, initial state distribution
P (x0), measurements noise variance σ2, the PF design
parameters N , W and λ2.

2. For j = 1, . . . , k:
(a) If (j ≥ W ), α̃j is updated by solving the regu-

larization problem (Section 4);
(b) p(x̃j |Yj) is approximated;

3. Predictions and confidence intervals are computed us-
ing the newest estimation;

It can be shown, given that p(xk+1|xk) is Gamma dis-
tributed [46], that p(xk+1|Yk) is a continuous mixture of
Gamma distributions. Therefore p(xk+1|Yk) will be ap-
proximated by a finite mixture of Gamma distributions
since the PF provides an approximation of p(xk|Yk) with
discrete support (see Eq. 5).
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Figure 6: Representation of a risk function: thanks to the proper-
ties of the proposed methodology, it is possible to assess the risk of
crossing the threshold H(t) at a generic future time instant.

5. Risk Function Evaluation

Once a prediction of the future probability distribution
of an observed HF is available, it can be compared with
a maintenance threshold to compute and evaluate a risk
function (RF) [57] associated with the maintenance op-
eration (Figure 6). Such a maintenance threshold may
be given from process/equipment operating conditions, or
inferred from historical, noisy HF data, and it can be
time/usage-dependent. In the following, a RF is formally
defined and motivated in a maintenance optimization per-
spective. Furthermore, resorting to supervised classifica-
tion theory, a method to estimate the maintenance thresh-
old from historical maintenance data is also presented.

5.1. RF definition

Let ptkτ := p(x(tk+τ)|Yk), τ > 0 be the predicted distri-
bution of the observed health factor at time instant tk+τ .
According to the paradigm established in the previous sec-
tions, pτ is a mixture of Gamma distributions such that

ptkτ (x) =

N∑
i=1

wiωi(x, τ) (12)

ωi(x, τ) =

{
(x− xi)ταk e−(x−xi)/θ

Γ(ταk)θταk x ≥ xi
0 x < xi

where
∑N
i=1 wi = 1 and Γ(·) is the gamma function. Fur-

thermore, let H(t) be a continuous real function with
nonnegative codomain representing the time-dependent
threshold for the analyzed HF. It follows that the proba-
bility of exceeding the threshold H at time instant tk + τ
is
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It is to be noted that the optimal order of the class separation, p, can
be determined by means of Generalized Cross Validation (GCV).

p(x(tk + τ) > H(tk + τ)|Yk) = 1−
∫ H(tk+τ)

0

pτ (x)dx

= 1−
N∑
i=1

wi

∫ H(tk+τ)

0

ωi(x, τ)dx

By observing that∫ H(tk+τ)

0

ωi(x, τ)dx =
γ(ταk, (H(tk + τ)− xi)/θ)

Γ(ταk)

where γ(·, ·) is the incomplete lower Gamma function, it
is possible to compute the risk function

Rtk(τ) := 1−
N∑
i=1

wi
γ(ταk, (H(tk + τ)− xi)/θ)

Γ(ταk)
(13)

The risk function R(t) depends on the choice of the
threshold function H(t). Such choice can be done either
by exploiting experts knowledge (for instance, a threshold
beyond which the machine is known to malfunction) or by
analysing historical maintenance data. In the next subsec-
tion, classification theory is employed in order to estimate
the optimal threshold when such data are available.

5.2. Threshold Estimation

Let D be a set of Nm maintenance operations

D = {Ti ∈ R, yi ∈ R, si ∈ {−1, 1}}Nmi=1

where Ti is the duration of the i-th production cycle (main-
tenance to maintenance) and yi is the last observed HF

measurement. Furthermore, let si be an indicator of the
effectiveness of the i-th maintenance cycle. Since it is not
possible to know what the status is of the maintained com-
ponent before its replacement, two situations can occur.
Let si = −1 conventionally represent an early replacement
(the component is still functional when replaced) and let
si = 1 represent a belated replacement (component re-
placed after it has broken).

To derive the threshold function H(t) from D, a Sup-
port Vector Machine (SVM) approach is hereby proposed.
SVM techniques allow to find an optimal nonlinear sepa-
ration between two categories of data points (if such cat-
egories are separable) or, in the soft-margin version, to
produce an optimal robust (with respect to data mislabel-
ing) classification. In the following, the focus is set on the
estimation of a H(t) represented by a p-th degree poly-
nomial function of t. Let t̃i = [ti, t

2
i , . . . , t

p
i ] be the

polynomial span of ti up to the p-th degree. Furthermore,
let z̃i = [yi t̃i]

′ ∈ Rp+1.
The problem of estimating H, according to SVM soft-

margin theory, can then be seen as the research of a param-
eter vector c̃, defined as c̃ = [c(y), c(t1), c(t2), . . . , c(tp)]′

that solves the following problem.

Problem 2. Find
min
c̃,ξ,b

max
µ,β

J

where the cost function J is defined as

J =
1

2
||c̃||2 +

Nm∑
i=1

[(C − βi)ξi − µi(si(c̃′z̃i − b)− 1 + ξi)]

under the constraints µi ≥ 0, βi ≥ 0. C is a tuning param-
eter that can be selected by means of Generalized Cross
Validation (GCV).

Problem 2 is the standard representation of the SVM
problem with soft margin. Its solution can be obtained
by means of a Sequential Minimal Optimization (SMO)
approach [58].

The optimal separating hyperplane resulting from the
solution of Problem 2 (Figure 7) satisfies the condition

b+ c(y)y +

p∑
i=1

c(ti)ti = 0

The threshold function H(t) is then obtained as

H(t) = −
p∑
i=1

c(ti)

w(y)
ti − b

c(y)
(14)

By combining (13) and (14), the risk function is then

Rtk(τ) = 1− (15)

N∑
i=1

wi
γ(ταk,−(

∑p
i=1

c(ti)

c(y)
(tk + τ)i + b

c(y)
+ xi)/θ)

Γ(ταk)
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5.3. Use of RF for Maintenance Optimization

The main goal of a maintenance management system is
the minimization of the costs associated with failures and
maintenance operations. The cost of maintenance oper-
ations can be associated with the cost of several factors,
such as spare parts, equipment/production downtime, staff
performing the interventions, scrap products due to the re-
qualification of the system (a post-maintenance phase in
which the process needs to run before being ’stable’ or
within the production standards). At first glance, mini-
mizing the number of interventions seems to be the natu-
ral approach to minimize the aforementioned costs. How-
ever, Run-to-Failure (R2F) policies, where maintenances
are performed only after a failure has happened, are gen-
erally deprecated because the costs related to unexpected
failures can be very high. The trade-off between early-
stage maintenances (and associated unexploited lifetime
UL of the system) and unexpected breaks UB can be opti-
mized by using corresponding agglomerated costs (respec-
tively cUL and cUB) and the proposed RF. Furthermore,
in the proposed approach, reliable predictions can be ob-
tained over given time frames, a relevant feature in appli-
cations where timeliness is a critical issue, such as when
interventions have to be planned in advance or the mon-
itoring of RF and re-scheduling can be guaranteed only
with a fixed time delay.

6. Simulation Results

To test the proposed methodology, synthetic datasets
representing HFs have been created. The generic dataset
D has a total ofN time series, the i-th time series is defined
as

Si =
{
{tj , xj}nij=1, {tj , yj}

ni
j=1, τi

}
= {[Tni Xni ], [Tni Yni ], τi} ,

where τi indicates the time instant when the i-th HF
crosses a predefined threshold H.

The accuracy of the prediction at a time instant τi−∆t
is used to assess the performance of the proposed PdM al-
gorithm. The initial filter parameters are chosen via like-
lihood maximization. A truncated multivariate Normal
distribution is used as proposal distribution, that is then
sampled through a Gibbs sampler [59]. A Kalman Filter
is used to obtain the non-truncated Normal distribution.
Although the use of the Kalman filter is justified by model
linearity, an Unscented Kalman Filter can also be used
[60].

6.1. Sigmoid Data

A first synthetic dataset D(1) of N = 100 time series
has been generated as follows: for each time series the
time domain is T = [0, 1, . . . , 1500], while the i-th HF at
time t is

xi(t) =
10

1 + e−ai(t−bi)
,

Figure 8: [Sigmoid Data] On the left panel a set of 5 time series from
D(1) is shown. The red line (–) represents the maintenance threshold
H = 8. On the right panel an histogram of {τi}100i=1 with H = 8.

Experiment Name Kalman HGP-PF

Sigmoid Data 0.843 0.784
Sigmoid Data with Discontinuities 1.211 1.063
Industrial Data 2.471 2.118

Table 1: Filtering performances of the considered approaches in
terms of RMSE.

where ai ∼ U(0.005, 0.02), a uniform distribution of sup-
port [0.005, 0.02], and bi ∼ U(750, 1000). Gaussian noise
v ∼ N (0, 1) is then added to the HF. A set of 5 time series
belonging to D(1) is reported in Fig. 8. For this study a
fixed maintenance threshold has been set to H = 8.

The proposed HGP-PF is compared with a KF-based
approach. The KF employed in this Section, and also in
the experimental work detailed in Section 7 is formulated
as follows. The following linear state-space model is con-
sidered:

zj+1 = Azj +Gv′j (16)

yj = Czj + w′j , (17)

where zj = [xj . . . xj−nO ] is a state vector that contains the
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Figure 9: [Sigmoid Data] Averaged Risk Functions associated with
different prediction approach and different prediction horizons.
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estimated present and past values of the HF, v′j ∼ N (0, Q)
is the model error, and w′j ∼ N (0, R) is the measurement
error. v′j and w′j are supposed to be uncorrelated. Matrices
A,C and G are estimated using the N4SID algorithm [61],
while the model order nO is chosen according to the Akaike
Information Criterion [62]. The Kalman predictor for the
1-step ahead prediction has the classical formulation

ẑj+1|j = Aẑj +Kj

[
yj − Cẑj|j−1

]
, (18)

Kj = APj|j−1C
′ [CPj|j−1C

′ +R
]−1

, (19)

where Pj|j−1 is the variance matrix of the prediction error
ẑj+1|j − zj+1 and it is updated through the discrete Ric-
cati equation. The tuning of Q and R has been done by
computing a test on the residuals correlation

REQ,R(σ) = E [eQ,R(j)eQ,R(j + σ)] , (20)

with eQ,R(j) = yj − Cẑj|j where the estimation ẑj|j de-
pends on the choice of Q and R. A grid search on different
set of values of Q and R has been performed to minimize
maxσ>0 |REQ,R(σ)|. The multiple-step ahead prediction
that can be easily derived by exploiting 16-18 [20].

In Table 1 the filtering performances of the proposed
HGP-PF are reported, and compared to that of a KF-
based approach in terms of RMSE. As for prediction ac-
curacy, averaged Risk Functions are reported in Fig. 9 for
2 cases, a 50-step and 100-step ahead predictions. Risk
Functions are aligned with respect to the time instant of
the fault τ and compared with a ideal function that pro-
vides

Rideal(t) =

{
1 if t > τ
0 otherwise

The HGP-PF beats the KF both in terms of RMSE and
in PdM accuracy. In particular, it can be appreciated in
Fig. 9 how the PF of the HGP-PF is qualitatively closer
to Rideal(·) than that of the KF.

6.2. Sigmoid Data with Discontinuities

A sigmoid dataset with discontinuities D(2) (with N =
100 time series and support T = [0, 1, . . . , 1500], as before)
has been generated as follows: The i-th HF at time t is

xi(t) =
10

1 + e−ai(t−bi)
+ 0.6ci,

where ai ∼ U(0.005, 0.02), bi ∼ U(750, 1000) and ci ∼
B(0.01, 1) is a binomial distribution with 1 trial and 0.01
success probability. Gaussian noise v ∼ N (0, 1) is then
added to the HF. A set of 5 time series in D(2) is reported
in Fig. 10. A fixed maintenance threshold has been set to
H = 14. All of the N generated HFs exceed H in T . In
Fig. 11 the averaged Risk Functions of PF and Kalman
Filter fot the 50-step and 100-step ahead predictions are
reported. RMSE performance is given in Table 1. In this
case, too, the HGP-PF ouperforms the KF both in terms
of RMSE and in PdM accuracy.

Figure 10: [Sigmoid Data with Discontinuities] On the left panel a
set of 5 time series from D(1) is depicted. The red line (–) represents
the maintenance threshold H = 14. On the right panel an histogram
of {τi}100i=1 with H = 14.
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Figure 11: [Sigmoid Data with Discontinuities] Averaged Risk Func-
tions associated with different prediction approach and different pre-
diction horizons.
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Figure 12: Anonymized helium flow data and an example of fixed
control limit (FCL). It can be noticed the observation noise (possibly
resulting in outliers), as well as the time-varying behavior of the
signal.

7. Application to predictive maintenance of a dry
etching equipment for semiconductor manufac-
turing

Maintenance optimization strategies based on HFs are
receiving increasing attention in the field of semiconductor
manufacturing [17, 20]. In this Section, the HPG-PF ap-
proach developed in the present paper is tested on a PdM
problem related to a dry etching equipment. Etching is
a fundamental step in semiconductor fabrication that is
employed to chemically remove layers from the wafer sur-
face. In some etching tools, the wafer is held on a Electro-
static Chuck (ESC) thanks to electrostatic charge, while
a backside helium flow cools down the wafer and prevents
problems during the unloading of the product [63]. Dur-
ing this operation, the quartz parts around the ESC (and
the ESC itself) undergo the action of aggressive plasma,
causing a wearing out that affects both wafer quality and
process stability. The intensity of the helium flow intensity
in the etching equipment, represented in Fig. 12, reflects
the wear of the ESC and can be considered a HF for the
degradation problem at hand. The helium flow exhibits a
monotonically increasing trend (masked by noise) and it is
common practice that, in a Condition-based Maintenance
fashion, when a given threshold is exceeded, maintenance
operations take place, including the (expensive) replace-
ment of several components. Predicting future values of
the HF is fundamental to timely schedule maintenance ac-
tions and minimize the trade-off between unnecessary re-
placements and unexpected breaks. For such reasons, sta-
bility and reliability of the predictions are primary needs in
the problem at hand, as in general for HF signal employed
in PdM.

To test the proposed methodology, a dataset consisting
of 17 complete helium flow readings (from maintenance to
maintenance) is employed as benchmark. The i-th test
series is defined as

Si =
{
{tj , yj}nij=1, t̄i

}
, i = 1, . . . , 17

where τi is the actual time instant at which a maintenance
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e
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u
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w

Figure 13: [Industrial Data] Filtering and prediction of the signal
presented in Fig. 12.

operation has taken place, and {tj , yj}nij=1 are the related
helium flow readings. Specifically, the accuracy of the pre-
diction at a time t̄i−∆t is used to assess the performance
of the proposed algorithm.

In Table 1 the filtering performances of the proposed
HGP-PF and of a KF in terms of RMSE are reported. As
in the simulation studies of previous section, the HGP-PF
outperforms the KF. Fig. 13 reports filtering and predic-
tion results based on the data of Fig. 12. In Fig. 3, the
predictions distributions are represented with grey and red
areas if they are below or above the FCL, respectively. Fig.
14 shows the estimated risk (i.e., the threshold-crossing
probability) at time instant t̄i −∆t for the actual failure
time t̄i (i.e., R(t̄i) computed with all the available infor-
mation at time instant t̄i − ∆t). Rather unsurprisingly,
the best performances are obtained with the smallest ∆t,
namely, 100 working hours (left panel of Figure 14). In
this case, only 3 out of 17 estimated risks are below 50%,
and only one below 40%. When ∆t is increased to 200
working hours (central panel of Figure 14), the increased
uncertainty does not allow to obtain optimal results. For
∆t = 250 working hours (right panel of Figure 14) the
phenomenon is even more evident, as the distribution of
the risk function assessment is almost flat.

From an operational point of view, the most important
feature of the proposed methodology is its capability to
precisely assess the fault event probability when the life-
cycle of the equipment is coming to an end, thus allowing
to schedule an early maintenance operation. With respect
to this requirement, the performances presented in Figure
14 are satisfactory. The experimental results presented
in this section show that the choice of a proper predic-
tion range is crucial: Indeed, a long range would result
in almost uninformative predictions, while a short range
would yield extremely precise predictions when the opti-
mal time to adjust the maintenance schedule is already
passed. Such trade-off between precision and timeliness is
consistent with the characteristics of proposed prediction
paradigm.

Finally, the HGP-PF based and KF based PdM policies
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Figure 14: [Industrial] Risk function assessments for the experimental dataset.
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Figure 15: [Industrial Data] Optimal value of J for the various main-
tenance strategies as a function of the ratio of the costs cUL

cUB
(averaged

results over 100 Monte Carlo simulations).

have been tested versus a simulated Preventive Mainte-
nance (PvM) tool. PvM is a really popular approach to
maintenance that triggers actions based on the amount of
time passed from previous maintenance. Here the PvM
tool has been simulated by computing a risk factor RPvM

on a different set D0 of N0 time series from the same di-
stributions of D as follows

RPvM(t) =

∑N0

i=i Θ(τi − t)
N0

%, (21)

where Θ(·) is the Heaviside step function. Observe that the
Risk Function (21) is computed on the training data and
does not depend on current sensor readings. Let ρUB be
the percentage of unexpected breaks and ρUl the number
of unexploited runs. In Fig. 15 the overall costs J =
cUBρUB + cULρUL are reported, over a range of different
values of the ratio cUL

cUB
, for the different policies. It can be

appreciated how PdM approaches are generally superior
to PvM and PF outperfoms the Kalman Filtering-based
PdM policy.

To better highlight the trade-off between prediction ac-
curacy and timeliness of the proposed HGP-PF approach,

Maintenance Policy cUL/cUB = 25 cUL/cUB = 40
PdM HGP-PF ∆t = 25 11.13 13.25
PdM HGP-PF ∆t = 50 15.81 19.75
PdM HGP-PF ∆t = 75 17.34 22.43
PdM HGP-PF ∆t = 100 20.14 26.29
PdM HGP-PF ∆t = 150 23.49 30.71
PdM HGP-PF ∆t = 200 26.56 38.31
PdM HGP-PF ∆t = 250 27.12 39.12
PvM 24.84 37.81

Table 2: [Industrial Data] HGP-PF-based PdM and PvM perfor-
mances in terms of overall cost J for fixed values of the ratio cUL

cUB
.

performances for fixed values of the ratio cUL
cUB

and differ-
ent values of ∆t for the HGP-PF PdM-based and for the
PvM-based maintenance management policy. are reported
in Table 2. It can be noticed that, for ∆t = 200 and
∆t = 250, the PvM-based policy is more effective than
the HGP-PF PdM-based one. It can also be appreciated
that, as expected, the more timely a prediction is, the
lower the performance is in terms of costs associate with
unexpected breaks and unexploited lifetime. However, in
a cost-minimization perspective such lower performance
could be justified in some real world example by the cost
savings associated with timely maintenance planning.

Conclusions and Discussion

In this work, a hidden Gamma process particle-filter ap-
proach for health factor has been presented. The proposed
approach is well suited for real-world industrial health fac-
tors, characterized by monotonic behavior and observed
through irregularly sampled and noisy measurements. The
proposed approach provides predictions based on a Par-
ticle Filter that employs Monte Carlo simulation to ap-
proximate the health factor posterior distribution from the
aforementioned data. To account for changes in variability
of the health factor, an adaptive filtering scheme, based on
a regularization approach, has also been proposed. Fur-
thermore, the definition and generation of a proper risk
function associated with the model has been discussed.
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The proposed approach has been tested on both synthetic
data and experimental data coming from a semiconductor
manufacturing application. In both cases, the new ap-
proach has proved to ensure better performance with re-
spect to those based on Kalman Filtering when applied to
the definition of Predictive Maintenance policies. Further-
more, the possibility of calculating the future distribution
of the health factor can be used to obtain a quantitative
assessment of failure risks.

In Fault Detection and Isolation, model robustness and
reliability are crucial issues [64, 65]. For this reason, many
data-driven approaches, thanks to their simple forms and
limited requirements in terms of design and engineering
efforts, have become more and more popular both in in-
dustry and academia [66]. One of the main advantages of
the approach proposed in this work is that it only relies
on the simple model assumption that the Health Factor
and its increments are nonnegative. As shown in Sec-
tion 1, such assumption is common and realistic in most
industrial/real-world scenarios.

Beside robustness and reliability, current research in
Fault Detection and Isolation and Predictive Maintenance
is dedicated to the derivation of multi-component, incip-
ient faults [67], and model-free solutions. In the present
work the latter 2 aspects have been addressed, while multi-
component problems have not been explored. In fact, in
complex, real-world industrial scenarios processes are de-
scribed by a large number of variables that can be re-
lated to a given fault. For this reason, many works on
multi-dimensional diagnosis have been presented in the
past recent years [66, 68, 3]. However, in terms of prog-
nosis, the focus of the proposed approach, Health Factors
can be traced back to a single variable/quantity, identi-
fied through experience/domain expertise, the output of
multi-dimensional Soft Sensor, or the residual of a Fault
Detection & Identification multi-dimensional procedure.
One aspect that has not been tackled in this work and
may be subject of future research activities is the case of
multiple fault problems that may be associated with mul-
tiple Health Factors. While the Hidden-Gamma Process-
Particle Filter procedure can still be applied in such cases
(prognostic for each Health Factor can be run in parallel
by different instances of the proposed approach), a jointly
risk function has to be considered to implement Predictive
Maintenance policies considering multiple faults.
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