

A knowledge-intensive approach to process similarity calculation
Stefania Montani a, Giorgio Leonardi a,⇑, Silvana Quaglini b, Anna Cavallini c, Giuseppe Micieli c on
behalf of the Stroke Unit Network (SUN) collaborating centers
a DISIT, Computer Science Institute, Università del Piemonte Orientale, Viale T. Michel 11, 15121
Alessandria, Italy b Department of Electrical, Computer and Biomedical Engineering, Università di
Pavia, Via Ferrata 1, I-27100 Pavia, Italy c Istituto di Ricovero e Cura a Carattere Scientifico
Fondazione ‘‘C. Mondino’’, Via Mondino 2, I-27100 Pavia, Italy

Article history:
Available online 24 January 2015

Keywords:
Process comparison
Graph edit distance
Process mining
Stroke management Process model comparison and similar processes retrieval are key issues to
be addressed in many real world situations, and particularly relevant ones in some applications
(e.g., in medicine), where similarity quantification can be exploited in a quality assessment
perspective.
Most of the process comparison techniques described in the literature suffer from two main
limitations: (1) they adopt a purely syntactic (vs. semantic) approach in process activity
comparison, and/ or (2) they ignore complex control flow information (i.e., other than sequence).
These limitations oversimplify the problem, and make the results of similarity-based process
retrieval less reliable, especially when domain knowledge is available, and can be adopted to
quantify activity or control flow construct differences.
In this paper, we aim at overcoming both limitations, by introducing a framework which allows to
extract the actual process model from the available process execution traces, through process
mining techniques, and then to compare (mined) process models, by relying on a novel distance
measure.
The novel distance measure, which represents the main contribution of this paper, is able to
address issues (1) and (2) above, since: (1) it provides a semantic, knowledge-intensive approach
to process activity comparison, by making use of domain knowledge; (2) it explicitly takes into
account complex control flow constructs (such as AND and XOR splits/joins), thus fully considering
the different semantic meaning of control flow connections in a reliable way.
The positive impact of the framework in practice has been tested in stroke management, where
our approach has outperformed a state-of-the art literature metric on a real world event log,
providing results that were closer to those of a human expert. Experiments in other domains are
foreseen in the future.

1. Introduction

Corresponding author. Tel.: +39 0131 360340.
E-mail addresses: stefania.montani@unipmn.it (S. Montani), giorgio.leonardi@ unipmn.it (G.
Leonardi), silvana.quaglini@unipv.it (S. Quaglini), anna.cavallini@ mondino.it (A. Cavallini),
giuseppe.micieli@mondino.it (G. Micieli).

Process model comparison is a key issue to be addressed in many real world situations. For
example, when two companies are merged, process engineers need to compare processes
originating from the two companies, in order to analyze their possible overlaps, and to identify
areas for consolidation. Moreover, large companies build over time huge process model
repositories, which serve as a knowledge base for their ongoing process management/
enhancement efforts. Before adding a new process model to the repository, process engineers
have to check that a similar model does not already exist, in order to prevent duplication.
Particularly interesting is the case of medical process model comparison, where similarity
quantification can be exploited in a quality assessment perspective. Indeed, the process model
actually implemented at a given healthcare organization can be compared to the existing
reference clinical guideline, e.g., to check conformance, or to understand the level of adaptation
to local constraints that may have been required. As a matter of fact, the existence of local
resource constraints may lead to differences between the models implemented at different
hospitals, even when referring to the treatment of the same disease (and to the same guideline). A
quantification of these differences (and maybe a ranking of the hospitals derived from it) can be
exploited for several purposes, like, e.g., auditing purposes, performance evaluation and funding
distribution.
Various process model comparison techniques are described in the literature (see Section 4).
However, most of them suffer from two main limitations:
1. they adopt a purely syntactic approach in process activity comparison, ignoring the
semantics of the activities being compared, often referring just to their names: activities with a
different name are considered as not matching, while they could share very similar characteristics
(e.g., have the same goal);
2. they ignore complex control flow information (other thansequence): in this way, a
construct with, e.g., two parallel activities, can be matched to a construct involving the same
activities, but in mutual exclusion.
Issues (1) and (2) above correspond to a strong simplification of the process model semantic
meaning, and may lead to unreliable results in process comparison. This can be really
unacceptable in many real world domains, like the already mentioned medical ones, where
physicians and hospital managers need to guarantee the highest quality of service to patients.
In this paper, we aim at overcoming the limitations outlined above, by introducing a framework
which allows to mine the actual process model from the available process execution traces, and
then to compare (mined) process models.
While the framework, in its current version, relies on already published process mining techniques
to extract the process model from traces, process comparison exploits a novel distance measure,
which represents the main contribution of the paper.
Our distance measure is very innovative with respect to available literature approaches (see
detailed discussion in Section 4). Indeed, it is able to address issues (1) and (2) above, since:
1. it provides a semantic approach to process activity comparison, by making use of domain
knowledge. Indeed, it rates two activities as very similar, if they are connected through semantic
(i.e., ontological) relations. Specifically, the metric can be properly adapted to operate with
different knowledge representation formalisms (e.g., taxonomy vs. semantic network with
different characteristics). Very interestingly, it also exploits all the information that can be
extracted through process mining (e.g., temporal information), always in a semantic and
knowledge-intensive perspective;
2. it explicitly takes into account complex control flow constructs (such as AND and XOR
splits/joins – also called gateway nodes henceforth), thus considering the different semantic
meaning of control flow connections in a reliable way.

Fully exploiting the semantics of process models in comparison and similarity quantification along
the lines illustrated above represents a major development with respect to the literature in the
field, as extensively discussed in Section 4. Such a development is likely to provide a significant
impact in supporting the expert’s work in quality assessment, particularly in those applications
where domain knowledge is rich and well consolidated, as is often the case in medicine (Basu,
Archer, & Mukherjee, 2012).
Indeed, the positive impact of the framework in practice has already been tested in stroke
management (see Section 3), where our approach has outperformed a state-of-the-art metric (La
Rosa, Dumas, Uba, & Dijkman, 2013) on a real world event log, providing results that were closer
to those of a human expert.
The paper is organized as follows. Section 2 provides the details of our methodological approach.
Section 3 showcases experimental results. Section 4 compares our contribution to related works.
Section 5 illustrates our conclusions and future research directions.
2. Methods
As stated in the Introduction, our framework first extracts the actual process model from the
execution traces, and then performs process model comparison by means of a novel metric. The
methodological techniques supporting the first step (process mining) are briefly presented in
subSection 2.1, while subSection 2.2 is devoted to the detailed description of our metric, which
represents the main contribution of this paper.
2.1. Mining process models
Process mining describes a family of a posteriori analysis techniques (Van der Aalst et al., 2003)
exploiting the information recorded in process execution trace repositories (also called event
logs), to extract process related information (e.g., process models). Typically, these approaches
assume that it is possible to sequentially record events such that each event refers to an activity
(i.e., a well defined step in the process) and is related to a particular process instance.
Furthermore, some mining techniques use additional information such as the timestamp of the
event, or data elements recorded with the event.
Traditionally, process mining has been focusing on discovery, i.e., deriving process models and
execution properties from event logs. It is important to mention that, in discovery, there is no a
priori model, but, based on logs, some model, e.g., a Petri Net, is constructed. However, process
mining is not limited to process models (i.e., control flow), and recent process mining techniques
are more and more focusing on other perspectives, e.g., the organisational perspective, the
performance perspective or the data perspective. Moreover, as well stated in the Process Mining
Manifesto (IEEE Taskforce on Process Mining, 2011), process mining also supports conformance
analysis and process enhancement. In this paper, however, we only deal with the process
perspective.
In our work, we are currently relying on mining algorithms available within ProM (Van Dongen,
Alves De Medeiros, Verbeek, Weijters, & Van der Aalst, 2005), an open source tool which supports
a wide variety of process mining and data mining techniques.
In particular, we have mainly exploited ProM’s heuristic miner (Weijters, Van der Aalst, & de
Medeiros, 2006) for mining the process models. Heuristic miner takes in input the event log, and
considers the order of the events within every single process instance execution. The time stamp
of an activity is used to calculate this ordering. Heuristics miner can be used to express the main
behavior registered in a log. Some abstract information, such as the presence of composite tasks
(i.e., tasks semantically related to their constituent activities by means of the ‘‘part-of’’ relation),
cannot be derived by heuristic miner, that will only build a model including ground (i.e., not
further decomposable) activities. On the other hand, it can mine the presence of short distance
and long distance dependencies (i.e., direct or indirect sequence of activities), and information

about parallelism, with a certain reliability degree (see also Section 2.2). The output of the mining
process is provided as a graph, also called ‘‘dependency graph’’, where nodes represent activities,
and arcs represent control flow information.
We have chosen to rely on heuristic miner because it is known to be tolerant to noise, a problem
that may affect many real world event logs (e.g., in medicine sometimes the logging may be
incomplete). Moreover, heuristic miner labels the output graph edges with several mined
information, that we are explicitly considering in process comparison (such as reliability, see
Section 2.2). The output of heuristic miner can also be automatically converted into a Petri Net,
making its semantics very clear (clearer with respect to the output of other miners).
It is however worth noting that our approach also works with different choices of the mining
algorithm: as an example, in Section 3 we will present some results obtained with ProM’s
multiphase miner (Van Dongen & Van der Aalst, 2004).
2.2. Calculating process similarity
Since mined process models are represented in the form of graphs, we define a distance based on
the notion of graph edit distance (Bunke, 1997). Such a notion calculates the minimal cost of
transforming one graph into another by applying edit operations, i.e., insertions/deletions and
substitutions of nodes, and insertions/deletions of edges. While string edit distance looks for an
alignment that minimizes the cost of transforming one string into another by means of edit
operations, in graph edit distance we have to look for a mapping. A mapping is a function that
matches (possibly by substituting) nodes to nodes, and edges to edges. Unmatched nodes/edges
have to be deleted (or, dually, inserted in the other graph). Among all possible mappings, we will
select the one that leads to the minimal cost, having properly quantified the cost of every type of
edit operation. We provide a normalized version of the approach in Bunke (1997).
With respect to the available literature approaches (see Section 4 for an extensive comparison),
we have introduced two novel
contributions:
1. we operate in a knowledge-intensive way in calculating the cost of activity node
substitution (see dt contribution in f subn, Definition 3 below). Most literature approaches simply
use an overlap distance to provide the cost of node substitution (i.e., 0 if the nodes are identical, 1
otherwise; see Becker & Laue (2012)). Some others (Dijkman, Dumas, & Garca-Banuelos, 2009)
exploit string edit distance on node names. On the other hand, we adopt a more semantic
approach, in which domain knowledge is exploited. We allow for the use of different metrics to
calculate the cost of activity node substitution, on the basis of the available knowledge
representation formalisms. We also add a cost contribution related to edge substitution (f sube in
Definition 3 below), able to exploit information learned through process mining. Namely, at the
moment we consider: (i) the reliability of a given edge (learned by heuristic miner) – see Definition
1 below, (ii) the percentage of traces that cross a given edge in the mined model (learned, e.g., by
some mining algorithms in ProM) – see Definition 2 below, and (iii) statistics about the temporal
duration of a given edge. As for item (iii), we have directly calculated the mean and the standard
deviation of the temporal duration of edges, by referring to the content of the event log.
Different/additional information learned by a miner could be introduced as well in the future;
2. we consider complex control flow information (i.e., other than sequence) between the
mined process activities. This information, in our approach, is made explicit in the form of gateway
nodes (e.g., AND joins/splits) in the graph. In extending graph edit distance, we only map activity
nodes to activity nodes, and gateway nodes to gateway nodes. Our metric is then able to explicitly
take into account the cost of gateway node substitution (see dg in f subn, Definition 3 below). In
this way, we consider the different semantic meanings of control flow connections.

Formally, the following definitions apply:
Definition 1 (Reliability). The reliability of the edge ei assessing that activity a directly follows
activity b in sequence (i.e., ei is an arc from b to a) is calculated as Weijters et al. (2006):
ja > bj jb > aj
relðeiÞ ¼
ja > bj þ jb > aj þ 1
where ja > bj is the number of occurrences in which activity a directly follows activity b in the
event log, and jb > aj is the number of occurrences in which activity b directly follows activity a.
A negative reliability value means that we must conclude that the opposite pattern holds, i.e.,
activity b follows activity a. Indeed, the reliability of a relationship (e.g., activity a follows activity
b) is not only influenced by the number of occurrences of this pattern in the logs, but is also
(negatively) determined by the number of occurrences of the opposite pattern (b follows a).
However, edges with a negative reliability do not appear in the output graph (due to threshold
mechanisms and proper heuristics (Weijters et al., 2006), that rule them out). Therefore, we deal
with reliability values 2 ð0; 1Þ.
Definition 2 (Percentage of traces). The percentage of traces that crossed edge ei, assessing that
activity a directly follows activity b in sequence, is calculated as:
ja > bjt
ptðeiÞ ¼ jALLTRACEj
where ja > bjt is the number of traces in which activity a directly follows activity b in the event log,
and jALLTRACEj is the total number of available traces in the event log.
With this definition, the percentage of traces 2 ½0; 1.
Definition 3 (Extended Graph Edit Distance). Let G1 ¼ ðN1; E1Þ and G2 ¼ ðN2; E2Þ be two graphs,
where Ei and Ni represent the sets of edges and nodes of graph Gi. Let jNij and jEij be the number
of nodes and edges of graph Gi. Let M be a partial injective mapping (see Dijkman et al. (2009))
that maps nodes in N1 to nodes in N2 and let subn; sube; skipn and skipe be the sets of
substituted nodes, substituted edges, inserted or deleted nodes and inserted or deleted edges
with respect to M. In particular, a substituted edge connects a pair of substituted nodes in M. The
fraction of inserted or deleted nodes, denoted f skipn, the fraction of inserted or deleted edges,
denoted f skipe, and the average distance of substituted nodes, denoted f subn, are defined as
follows:
jskipnj
f skipn ¼ jN1j þ jN2j where jskipnj is the number of inserted or deleted nodes;
jskipej f skipe ¼ jE1j þ jE2j where jskipej is the number of inserted or deleted edges;
2 Pn;m2MAdtðn;mÞ þ Px;y2MGdgðx;yÞ f subn ¼
jsubnj
where MA represents the set of mapped activity nodes in the mapping M; MG represents the set
of mapped gateway nodes in M; dtðn; mÞ is the distance between two activity nodes m and n in

MA, and dgðx; yÞ is the distance between two gateway nodes x and y in MG.
The average distance of substituted edges f sube is defined as follows:
2 Pðn1;n2Þ;ðm1;m2Þ2Mðjrelðe1Þ relðe2Þj þ jptðe1Þ ptðe2Þj þ jmtðe1Þ mtðe2Þj þ jstðe1Þ
stðe2ÞjÞ
f sube ¼

4 jsubej
where edge e1 (connecting node n1 to node m1) and edge e2 (connecting node n2 to node m2)
are two substituted edges in M; relðeiÞ is the reliability of edge ei (see Definition 1); ptðeiÞ is the

percentage of traces that crossed edge ei (see Definition 2); mtðeiÞ and stðeiÞ are statistical
values (mean and standard deviation of the elapsed times) calculated over all the occurrences of
the mi > ni pattern in the traces, and normalized in ½0; 1 dividing by the duration of the longest mi
> ni pattern in the log. If one of these parameters is unavailable (e.g., reliability is unavailable
because heuristic miner was not used), its contribution is simply set to 0. Different/additional
parameters learned by a miner could be considered as well in f sube in the future.
The extended graph edit distance induced by the mapping M is:
wskipnfskipnþwskipefskipeþwsubnf subnþwsubef sube extedit ¼ wskipnþwskipeþwsubnþwsube
where wsubn; wsube; wskipn and wskipe are proper weights
2 ½0; 1.
The extended graph edit distance of two graphs is the minimal possible distance induced by a
mapping between these graphs.
The distance dtðn; mÞ between two activity nodes m and n in MA (see Definition 3) is a proper
knowledge-intensive distance definition, to be chosen on the basis of the available knowledge
representation formalism in the domain at hand. In our experiments, we could rely on a complete,
goal-based domain taxonomy on stroke management activities (see Section 3), and adopted
Palmer’s taxonomic distance (Palmer & Wu, 1995) for calculating dt. Other distance definitions can
be relied upon if domain knowledge is available as a semantic network with different
characteristics. As an example, the metric in Chiabrando, Likavec, Lombardi, Picardi, and
Theseider-Dupré (2011) can be relied upon when dealing with an incomplete ontology, or with a
ontology containing many dense sub-ontologies. Our framework is modular and easily adaptable
to this end.
To calculate the distance dgðx; yÞ between two gateway nodes x and y we proceed as follows:
1. if x and y are nodes of different types (i.e., a XOR and an AND), their distance is set to 1;
2. if x and y are of the same type (e.g., two ANDs), we have to calculate the difference
between: (a) the incoming gateway nodes;
(b) the incoming activity nodes;
(c) the outgoing gateway nodes;(d) the outgoing activity nodes.
As regards item 2. (b), let S1 be the sequence of incoming activity nodes of the first gateway node
x; let S2 be the sequence for the second gateway node y. Without loss of generality, suppose that
S2 is not longer than S1. In order to compare S1 ad S2, we try all possible permutations in the
order of the activity nodes in S2, and take the one that leads to the minimal distance with respect
to S1. The distance between the two sequences is the average of the distance between single
elements (i.e., pairs of activities), over the length of the longest sequence. The distance between a
pair of activities is calculated exploiting the knowledge-intensive approach and the distance dt
described above. Every activity in S1

that cannot be mapped to any activity in S2 (because S1 is longer than S2) contributes with a
distance of 1.
Item 2. (d) works analogously.
Items 2. (a) and 2. (c) are simpler: identical incoming (respectively, outgoing) gateway nodes in the
two sequences (e.g., two ANDs) provide a contribution of 0; different gateway nodes (i.e., an AND
and a XOR) provide a contribution of 1. As above, we then calculate the average over the length of
the longest sequence of gateway nodes. This procedure is obviously a simplification, since
incoming gateway nodes may have other gateway nodes in input as well, but we do not consider
this (recursive) information. Similar considerations hold for outgoing gateway nodes. This choice
was motivated by computational complexity issues, but could be reconsidered in the future.

The four contributions are then combined as a weighted average dgðx; yÞ in Definition 3 (in which,
at the moment, we are setting all the weights to 1, but the choice can of course be differently set
in other domains/experiments).
It can be easily verified that our metric, being an extension of the edit distance, preserves the
metric properties of non-negativity, identity of indiscernibles, and symmetry. Some versions of the
normalized edit distance may fail the triangle inequality in a few very specific experimental
situations (see Marzal & Vidal (1993)), but the problem can be tackled, as discussed in Yujian and
Bo (2007). Moreover, as clearly stated in Becker and Laue (2012), triangle inequality is not
considered to be essential for measuring process distance.
To find the mapping that leads to the minimal distance we resort to a greedy approach, in order to
contain computational costs. It can be shown that the algorithm works in cubic time on the
number of nodes of the larger graph (Dijkman et al., 2009). As is well known, a greedy algorithm is
an algorithm that follows the problem-solving heuristic of making the locally optimal choice at
each stage, with the hope of finding a global optimum. A greedy strategy does not in general
produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions
that approximate a global optimal solution in a reasonable time.
3. Results
In this section, we will present our experiments. SubSection 3.1 will introduce the testbed we
realized for testing our approach. SubSection 3.2 will then provide the details of the application
domain, the available data, and the results.
3.1. The experimental testbed
We have realized a testbed, which easily allows to set up different experimental configurations.
Within the testbed, it is possible to select different mining algorithms (e.g., different miners
available in ProM, or obtained from other sources, or implemented from scratch) and different
similarity metrics.
Since not all the miners are supposed to provide their output in the same format, our testbed
includes a translation module, that produces an XML output, specifying node and edge properties
in an interoperable way. It is worth noting that not even the different ProM miners provide the
same output format. Specifically, they can export output graphs in the DOT language, but the type
of information, and the way it is coded, may differ from miner to miner. For instance, typically
gateway nodes are not explicit in the heuristic miner output graph, but control flow information is
provided by means of some node parameters. On the other hand, multi-phase miner provides
explicit gateway nodes. It is therefore necessary to translate the output formats in a common
format to guarantee interoperability, and XML represent a natural solution to this end.
The translation module exploits a java class, which is a parser (e.g., a parser of a DOT file in the
case of ProM miners). All the parsers must implement a java interface, which establishes the
parser structure. It is therefore easy to add a new parser (for a new miner), because the interface
already provides the declarations of the methods to be implemented.
The output XML file contains elements (nodes and edges), and their associated attributes, such as
node type (activity or gateway), node information and edge information (e.g., edge input nodes,
edge output nodes, reliability, percentage of traces). By means of this translation, we then always
make gateway nodes explicit, as required by our metric. Some attributes are optional (e.g., edge
reliability, calculated by heuristic miner, may be not provided by other miners).
The testbed also includes a loading module, that loads two XML files (describing the two processes
to be compared) into the data structure (an hash table) used for graph mapping and distance
calculation. At this stage, the test is fully independent of the exploited miner.
The testbed allows to choose a proper similarity metric (e.g., the distance described in this paper,
the distance in La Rosa et al. (2013), or another distance defined by users). Not necessarily the

distance must use all the node or edge parameters provided by the miner (i.e., some XML
attributes may be ignored in graph comparison).
In our experiments (see Section 3.2), we have tested four different configurations: (a) heuristic
miner + the new distance described in this paper; (b) heuristic miner + the distance in La Rosa et
al. (2013), (c) multi-phase miner + the new distance described in this paper; (d) multi-phase miner
+ the distance in La Rosa et al. (2013).
ProM’s multi-phase miner (Van Dongen & Van der Aalst, 2004) provides in output an Event-driven
Process Chain (EPC), i.e., a graph that contains three types of nodes: activities, gateway nodes,
events. Events describe the situation before/after the execution of an activity; they do not provide
additional information about the process control flow. We have therefore ignored events in
distance calculation. By means of the testbed translation module, the EPCs have been converted
into standard XML files, as described above.
The distance in La Rosa et al. (2013) has been chosen because it is one of the very few literature
contributions (see Section 4) that somehow considers gateway nodes (but not domain knowledge,
nor additional mined information reported on edges) in graph comparison.
Results are provided in the next section.
3.2. Testing the framework in stroke management
We have applied our framework to stroke management processes.
A stroke is the rapidly developing loss of brain function(s) due to disturbance in the blood supply
to the brain. This can be due to ischemia (lack of glucose and oxygen supply) caused by a
thrombosis or embolism, or to a hemorrhage. As a result, the

affected area of the brain is unable to function, leading to inability to move one or more limbs on
one side of the body, inability to understand or formulate speech, or inability to see one side of
the visual field. A stroke is a medical emergency and can cause permanent neurological damage,
complications, and death. It is the leading cause of adult disability in the United States and Europe
and the number two cause of death worldwide.
In our experiments, we could rely on a database of 9929 traces, collected at 16 stroke units of the
Stroke Unit Network (SUN) of Regione Lombardia, Italy (Micieli, Cavallini, Quaglini, Fontana, &
Duè, 2010). Such stroke units are all equipped with similar human and instrumental resources. The
number of traces varies from 266 to 1149. Traces are composed of 13 activities on average. Data
refer to the period 2009–2012.
We also could exploit domain knowledge, in the form of a taxonomy of stroke management
activities. In such a taxonomy, classes are defined on the basis of their goal. In our distance
calculation (contribution dt in f subn, see Definition 3), Palmer’s taxonomic distance was exploited
(Palmer & Wu, 1995). This distance allows us to exploit the hierarchical structure, since the
distance between two activities is set to the normalized number of arcs on the path between the
two activities themselves in the taxonomy. The underlying idea is that two different activities are
more or less distant on the basis of their goal.
We asked a stroke management expert other than our medical co-authors (i.e., Dr. I. Canavero,
see Acknowledgments) to provide a ranking of the SUN stroke units (see Table 1, column 2), on
the basis of the quality of service they provide. The top level unit will be referred as H0 in the
experiments. The expert identified 5 hospitals (H1–H5) with a high similarity level with respect to
H0; 5 hospitals (H6–H10) with a medium similarity level with respect to H0; and 5 hospitals (H11–
H15) with a low similarity level with respect to H0. The ordering of the hospitals within one
specific similarity level is not very relevant. It is instead important to distinguish between different
similarity levels.

The medical expert also provided the following values for distance weights: wsubn ¼ 1; wsube ¼
0:2; wskipn ¼ 1; wskipe ¼ 0:6. The rationale behind this choice is the following: in stroke
management, for most of the processes, activities are more important than their sequential
connection, therefore a node substitution (see wsubn) or deletion (see wskipn) have the highest
weights. Edge deletion (see wskipe) is more important than edge substitution (see wsube),
because a change in the activity execution sequence must still be strongly penalized (even if not as
strongly as a change in the activities themselves). The penalty for edge substitution is the lowest,
because it refers to situations in which the activity sequence is identical in the models; only,
information (e.g., reliabilities or times) associated to the edges at hand may be different. It is
important to take into account these differences, but they do not impact as much as a change in
the model control flow.
It is however worth noting that a sensitivity analysis can be conducted to automate weight setting,
when expert knowledge is not available.
As explained in Section 3.1, thanks to our testbed we were able to set up four different
experimental configurations. Namely, we could mine the process models according to heuristic
miner, and to multi-phase miner. We then ordered the two available process model sets with
respect to H0, resorting to the new distance defined in this paper (see Section 2.2), and to the
distance in La Rosa et al. (2013), globally obtaining four rankings. Results are shown in Table 1.
Column 1, in Table 1, shows the levels of similarity with respect

to the reference hospital. Column 2 shows the ranking according to the human medical expert;
columns 3 and 4 show the results obtained by mining the process models by means of heuristic
Table 1
Ordering of 15 hospitals, with respect to a given query model. Correct positions in the rankings
with respect to the expert’s qualitative similarity levels are highlighted in bold.
Similarity Medical expert ranking New dist. heuristic LaRosa dist. heuristic New dist.
M-phase LaRosa dist. M-phase
High H1 H14 H14 H9 H14
High H2 H3 H3 H2 H3
High H3 H2 H9 H3 H1
High H4 H1 H1 H1 H7
High H5 H11 H12 H11 H8
Medium H6 H10 H6 H12 H5
Medium H7 H4 H11 H7 H6
Medium H8 H7 H10 H4 H13
Medium H9 H9 H2 H10 H11
Medium H10 H6 H4 H15 H2
Low H11 H8 H13 H8 H10
Low H12 H12 H8 H13 H15
Low H13 H15 H15 H6 H4
Low H14 H13 H7 H14 H12
Low H15 H5 H5 H5 H9

miner, relying on the distance defined in this paper and on the one defined by La Rosa et al.
(2013), respectively. Similarly, columns 5 and 6 show the results obtained by mining the process
models by means of multi-phase miner.
When exploiting heuristic miner, the distance defined in this paper correctly rates three process
models in the high similarity group (60%), four process models in the medium similarity group

(80%), and three process models in the low similarity group (60%, column 3). The distance in La
Rosa et al. (2013), on the other hand, correctly rates only two process models in every group (40%,
column 4).
When exploiting multi-phase miner, the distance defined in this paper correctly rates three
process models in the high similarity group (60%), two process models in the medium similarity
group (40%), and two process models in the low similarity group (40%, column 5). The distance in
La Rosa et al. (2013), correctly rates only two process models in the high similarity group (40%),
one process model in the medium similarity group (20%), and two process models in the low
similarity group (40%, column 6).
Thus, our distance produces results that are closer to the qualitative ranking provided by the
human expert. Very interestingly, this situation holds both when relying on heuristic miner, and
when relying on multi-phase miner. However, our metric works particularly well when adopting
heuristic miner, probably because it mines more information (e.g., reliability), that is later
exploited by the metric. These data are simply unavailable when using multi-phase miner,
therefore in this last case distance calculation is less knowledge-intensive.
In conclusion, our knowledge-intensive approach to distance calculation has proved to be able to
provide a high quality process model comparison in practice. As such, it could be confidently used
for comparing medical processes in a quality evaluation perspective, at least when comparing
hospitals that are equipped with similar resources, as it was the case in our experiments.
4. Related work
Similarity-based graph comparison is a very active research area, which is giving birth to different
methodological approaches and software tools. Graph databases, like, e.g., HypergraphDB
(Iordanov, 2010) and DEX (Martínez-Bazan, Gómez-Villamor, & Escale-Claveras, 2011), are gaining
popularity, for working in emerging linked data such as social network data and biological data.
However, in this section we will focus on contributions that are more closely related to graph
similarity in process/workflow management research.
As stated in Dijkman, Dumas, Van Dongen, Kaarik, and Mendling (2011), Becker and Laue (2012),
three classes of similarity metrics can be considered to deal with process model comparisons: (i)
node matching similarity, which compares the labels attached to process model nodes; (ii)
structural similarity, which compares node labels, as well as graph topology; (iii) behavioral
similarity, which compares node labels, as well as the behavioral/ causal relations captured in the
process models.
While class (i) somehow oversimplifies the problem, class (iii) requires causal information, which
we do not currently mine. Indeed, our work is related to class (ii). Therefore, in the following we
will focus on structural similarity approaches.
The goal of comparing objects with a complex structure (i.e., graphs) entails the definition of a
nontrivial notion of distance. The issue of providing a proper graph distance definition has been
afforded in the literature, following three main directions, i.e.,:
1. relying on a local notion of similarity (two subgraphs are similarif their neighboring nodes
are similar), as in the similarity flooding algorithm (Melnik, Garcia-Molina, & Rahm, 2002);
2. relying on subgraph isomorphism, e.g., to find maximum common sub-graphs (Valiente,
2002), and
3. adapting the edit distance notion to graphs (Bunke, 1997).
We are currently following direction (3), but directions (1) and (2) could be considered in our
future work for comparison.
The SAI toolkit (Kendall-Morwick & Leake, 2011) is transversal with respect to the three directions
(1)–(3) outlined above, since it is a framework for workflow representation and comparison that
allows different similarity measures to be used.

The work in Madhusudan, Zhao, and Marshall (2004), on the other hand, describes an approach
specifically related to direction (1). In Madhusudan et al. (2004), a retrieval system for supporting
incremental workflow modeling is presented. The system proposes a similarity-based reuse of
workflow templates using a planner that employs an inexact graph matching algorithm based on
similarity flooding. For computing similarities, the algorithm relies on the idea that elements of
two distinct graphs are similar, when their adjacent elements are similar. The algorithm
propagates the similarity from a node to its respective neighbors based on the topology in the two
graphs. However, edge similarity is not considered.
The work in Kapetanakis, Petridis, Knight, Ma, and Bacon (2010) belongs to direction (2), as it
exploits a maximum common subgraph approach for similarity-based process retrieval, in a
retrieval system for supporting business process monitoring. Interestingly, the metric in
Kapetanakis et al. (2010) takes into account temporal information, since it combines a
contribution related to activity similarity, and a contribution related to delays between activities.
The approach in Goderis, Li, and Goble (2006) relies on graph isomorphism (direction (2)) for
retrieving scientific workflows (e.g., pipelines for bioinformatics experiments). Unlike business
workflows, scientific workflows have a strong focus on the data flow, typically restricting the
control flow to a partial ordering of the tasks. The work in Ma, Zhang, and Lu (2014) focuses on
data oriented workflows as well. It defines a formal structure called Time Dependency Graph
(TDG), and exploits it as a representation model of data oriented workflows with variable time
constraints. A distance measure is proposed for computing workflow similarity by their
normalization matrices, established based on their TDGs. The peculiarity of data oriented
workflows, however, make these contributions less closely related to our approach.
The works following direction (3), on the other hand, extend the notion of graph edit distance
(Bunke, 1997), which calculates the minimal cost of transforming one graph into another, by
applying insertions/deletions and substitutions of nodes, and insertions/ deletions of edges.
The work in Minor, Tartakovski, Schmalen, and Bergmann (2008) makes use of a normalized
version of the graph edit distance. The approach is used to support workflow modification in an
agile workflow system, and takes into account control flow information as well as activity
information. However, Minor et al. (2008) only makes use of syntactical information in the
definition of the edit operation costs. Moreover, the work is limited to considering (small) changes
with respect to a running process instance.
The work in Kunze and Weske (2011) relies on graph edit distance, and exploits string edit distance
on node names to determine the cost of node substitutions. The work in Li, Reichert, and
Wombacher (2008) encapsulates a set of edit operations into the so-called ‘‘high-level change
operations’’, and measures distance on the basis of the number of high-level change operations
needed to transform one graph into another. The work in Bae, Caverlee, Liu, and Yan (2006)
transforms a graph into an ordered tree, and then exploits tree edit distance.
With respect to Minor et al. (2008), Kunze and Weske (2011), Li et al. (2008) and Bae et al. (2006),
we make use of semantic information in activity comparison. We also make explicit use of the
information mined/learned from the data in the mapped edges contribution.
The use of semantic information in similarity calculation is a very active research area in text
understanding, where several approaches have been proposed (see the survey in Sánchez, Batet,
Isern, & Valls (2012)), that compute the information content of concepts from the knowledge
provided by ontologies; the work in Sánchez and Batet (2013), for example, proposes a similarity
measure that considers multiple ontologies in an integrated way.
In the field of business process management, process semantics have been exploited in the
literature to accomplish various tasks. The work in Jung (2009), for instance, proposes a
framework based on aligning business ontologies for integrating heterogeneous business

processes, in order to provide efficient collaboration (i.e., communication and sharing) between
them.
However, these contributions are only loosely related to our work.
Focusing more specifically on our research problem, the use of semantic information in structured
process model comparison and retrieval is proposed in Bergmann and Gil (2014), a system working
on workflows represented as semantically labeled graphs. The work in Bergmann and Gil (2014)
adopts a graph edit distancebased approach, which is particularly suitable for scientific workflows.
The paper proposes to use a metric in which the similarity between two mapped nodes or arcs
makes explicit use of their semantic description. However, the framework is presented in a
general, high-level way, and the specific costs of edit operations are not provided. With respect to
our work, Bergmann and Gil (2014) is much more focused on the data flow, which was not
considered in our current application. As already observed, this makes this work less related to
ours.
The closest works with respect to our approach are Dijkman et al. (2009) and La Rosa et al. (2013)
(which extends Dijkman et al. (2009)). Specifically, Dijkman et al. (2009) provides a normalized
version of the graph edit distance (Bunke, 1997) for comparing business process models, and
defines syntactical edit operation costs for activity node substitution, activity node
insertion/deletion, and edge insertion/deletion.
With respect to Dijkman et al. (2009), we have introduced several novel contributions:
(a) we have moved towards a more semantic and knowledgeintensive approach in activity
node substitutions, by allowing the exploitation of domain knowledge. The work in Dijkman et al.
(2009), on the other end, relies on edit distance between activity node names;
(b) always in the knowledge-intensive perspective, we have explicitly considered edge
substitutions, which was disregarded in Dijkman et al. (2009). Indeed, some miners label edges
with information that can be relevant in graph comparison. Moreover, statistical temporal
information can be mined from the event log. All these data are exploited in
our metric;
(c) the work in Dijkman et al. (2009) does not take into account control flow elements other
than sequence, so that gateway nodes are not represented in the graph, and not used in distance
calculation. On the contrary, we have considered this issue as well in our contribution.
The work in La Rosa et al. (2013) extends the work in Dijkman et al. (2009) specifically by dealing
with issue (c) (but not with (a) and (b)): indeed, the authors explicitly represent gateway nodes, in
order to describe, e.g., parallelism and mutual exclusion. With respect to our approach, La Rosa et
al. (2013) simplifies the treatment of incoming/outgoing activity nodes with respect to a gateway
node: in comparing two gateway nodes, it only calculates the fraction of their incoming
(respectively, outgoing) activity nodes that were mapped; it does not consider the cost of their
substitution, i.e., how similar this mapped activity nodes are. On the other hand, we explicitly use
domain knowledge in this phase of distance calculation as well, as described in Section 2.2. The
work in La Rosa et al. (2013) also considers activity nodes that are connected to the gateway node
at hand indirectly, i.e., through a path of nodes that can also include gateway nodes. On the
contrary, we limit our comparison to incoming/outgoing activity nodes that are directly connected
to the gateway node we want to examine. In La Rosa et al. (2013) incoming/outgoing gateway
nodes are completely disregarded.
Despite these differences, La Rosa et al. (2013) is still the closest literature contribution with
respect to our work. This justifies the choice of comparing our results to the ones that can be
obtained by the metric in La Rosa et al. (2013), on the stroke dataset (see Section 3). As observed,
our metric outperformed the one in La Rosa et al. (2013), probably thanks to the use of domain
knowledge and edge information (including temporal information). Indeed, when domain

knowledge is available, rich and well consolidated, as is often the case in medicine, its exploitation
can surely improve the quality of any automated support to the expert’s work – including process
comparison (see e.g., Basu et al. (2012)). Moreover, time is a very important parameter in medical
application, particularly when referring to emergency medicine, as it is in the case of stroke.
Most of the approaches following directions (1)–(3) above typically suffer from problems related
to their high computational complexity, which is sometimes mitigated by resorting to greedy
techniques (see, e.g., Dijkman et al. (2009), and our own approach). To avoid these problems,
however, some previous works have investigated structureless workflow retrieval, where
workflow representation is a plain textual description, a set of tags (Goderis et al., 2006), or a set
of abstract workflow features (Bergmann, Freßmann, Maximini, Maximini, & Sauer, 2006).
Recently, a probabilistic similarity model for workflow execution paths was also proposed (Becker,
Bergener, Breuker, & Räckers, 2011). Other approaches have suggested the use of a two-step
procedure, which combines an initial and comparatively inexpensive retrieval step, to winnow the
instances to be considered, with a more expensive strategy that ranks the remaining instances (as
in the well-known MAC/FAC system (Forbus, Gentner, & Law, 1995)) (KendallMorwick & Leake,
2011, 2012). In Bergmann and Gil (2014), some procedures for non-exhaustive search, based on
the A⁄ algorithm, are provided. More work on computational performances will be considered in
our future research as well.
5. Discussion, conclusions and future work
In this paper, we have described a novel framework for process mining and process comparison.
The main research contribution of our work is represented by the novel metric we have defined to
support process comparison. The strength of such a metric is twofold. First, it provides a semantic
approach to process activity comparison, by making use of domain knowledge. In detail, it
calculates activity similarity on the basis of activity connections through semantic (i.e., ontological)
relations in the available domain knowledge representation formalism. Interestingly, it also
exploits all the information that can be extracted through process mining (e.g., temporal
information), always in a semantic and knowledge-intensive perspective. As a second
development from the methodological viewpoint, our metric explicitly takes into account complex
control flow constructs (such as AND and XOR splits/joins), often ignored or oversimplified in
available literature contributions.
Practical implications of the adoption of the new metric in process similarity calculation are
basically related to an increase in the reliability of results. Indeed, out metric fully captures the
semantic meaning of process activities and of their connections, and process semantics are
explicitly resorted to in difference quantification. A reliable comparison is of course the first step
towards a reliable conformance checking activity, a reliable performance evaluation, or a reliable
analysis of local adaptation needs. This impact is particularly significant in medical domains, where
patient’s health is addressed, and best practices must be correctly identified.
Indeed, the positive impact of the framework in practice has already been tested in stroke
management (see Section 3), where experimental results have favored our contribution, in
comparison to the distance definition reported in La Rosa et al. (2013), the most similar already
published work with respect to our approach. Indeed our metric, that could take advantage of
domain knowledge, in the form of a taxonomy, outperformed the work in La Rosa et al. (2013) on
a real world stroke management event log, and provided results that were closer to those of a
human expert. This held both when relying on heuristic miner to learn process models, and when
relying on multi-phase miner. However, our metric worked particularly well when adopting
heuristic miner, probably because it mines more information, that are simply unavailable when
using multi-phase miner; therefore in this last case distance calculation is less knowledge-
intensive.

We believe that our metric could therefore be confidently used for comparing medical processes
in a quality evaluation perspective. However, our framework is modular enough to be adapted and
tested in very different application domains, and when dealing with different knowledge
representation formalisms; we would like to plan further experiments in different applications in
the near future.
Besides this experimental future work, we plan to address more theoretical and technological
issues as well. Indeed, in its current implementation, our framework still suffers from some
limitations, that need to be addressed. Specifically:
 currently, we have mainly focused on defining a proper metric, able to overcome the limitations
encountered in the process comparison literature; as for the process mining step, we just
exploited some of available mining algorithms (chosen among the most ‘‘popular’’ miners in
ProM). In the future, we would like to test different process mining algorithms as well, to increase
the practical applicability of our approach. The availability of the testbed described in Section 3.1
will make these additional experiments easily configurable. Notably, the exploitation of a different
algorithm might impact on distance calculation: adjustments may be required, in order to take
into account specific outputs that were not provided by heuristic miner or multiphase miner;
 as a further methodological enhancement in the process mining step, we would also like to define
a novel mining approach ourselves, able to directly take into account temporal information (see,
e.g., Burattin & Sperduti (2010)), and to improve model precision, reducing the number of mined
paths that do not correspond to any trace in the log (Canensi, Montani, Leonardi, & Terenziani,
2014). We believe that a greater model precision will enhance the reliability of adopting the whole
framework
in practice, especially in the medical field;
 from a more technological point of view, we plan to integrate our distance calculation as a plug-in
in the ProM 6 environment. This will allow us to make our work available to the process mining
community, facilitating the collection of feedback from other users, and the testing also in very
different application domains.
We believe that these enhancements could represent a relevant added value in our work, by
making process comparison even more versatile, reliable and useful in practice.
Acknowledgments
We would like to thank Dr. I. Canavero for her independent work in the experimental phase.
This research is partially supported by the GINSENG Project, Compagnia di San Paolo.
References
Bae, J., Caverlee, J., Liu, L., & Yan, H. (2006). Process mining by measuring process block similarity.
In Proceedings of the 2006 international conference on business process management workshops
BPM’06 (pp. 141–152). Berlin, Heidelberg: Springer-Verlag.

Basu, R., Archer, N., & Mukherjee, B. (2012). Intelligent decision support in healthcare. Analytics,
Jan–Feb 2012, 33–38.
Becker, J., Bergener, P., Breuker, D., & Räckers, M. (2011). On measures of behavioral distance
between business processes. In Proceedings Wirtschaftsinformatik (pp. 665–674).
Becker, M., & Laue, R. (2012). A comparative survey of business process similarity measures.
Computers in Industry, 63, 148–167.
Bergmann, R., Freßmann, A., Maximini, K., Maximini, R., & Sauer, T. (2006). Casebased support for
collaborative business. In Advances in case-based reasoning. In T. Roth-Berghofer, M. Gker, & H.
Gvenir (Eds.). Lecture notes in computer science (Vol. 4106, pp. 519–533). Berlin Heidelberg:
Springer.

Bergmann, R., & Gil, Y. (2014). Similarity assessment and efficient retrieval of semantic workflows.
Information Systems, 40, 115–127.
Bunke, H. (1997). On a relation between graph edit distance and maximum common subgraph.
Pattern Recognition Letters, 18(8), 689–694.
Burattin, A., & Sperduti, A. (2010). Heuristics miner for time intervals. In ESANN 2010, 18th
European symposium on artificial neural networks, Bruges, Belgium, April 28–30 (pp. 41–46).
Canensi, L., Montani, S., Leonardi, G., & Terenziani, P. (2014). Chapman: A context aware process
miner. In Proceedings of workshop on synergies between case-based reasoning and data mining,
international conference on case based reasoning, September 9 (pp. 202–212).
Chiabrando, E., Likavec, S., Lombardi, I., Picardi, C., & Theseider-Dupré, D. (2011). Semantic
similarity in heterogeneous ontologies. In P. D. Bra & K. Grønbæk (Eds.), HT’11, Proceedings of the
22nd ACM conference on hypertext and hypermedia, Eindhoven, The Netherlands, June 6–9 (pp.
153–160). ACM.
Dijkman, R., Dumas, M., & Garca-Banuelos, R. (2009). Graph matching algorithms for business
process model similarity search. In Proceedings of the 7th international conference on business
process management BPM’09 (pp. 48–63). Berlin, Heidelberg: Springer-Verlag.
Dijkman, R., Dumas, M., Van Dongen, B., Kaarik, R., & Mendling, J. (2011). Similarity of business
process models: metrics and evaluation. Information Systems, 36, 498–516.
Forbus, K. D., Gentner, D., & Law, K. (1995). Mac/fac: A model of similarity-based retrieval.
Cognitive Science, 19, 141–205.
Goderis, A., Li, P., & Goble, C. A. (2006). Workflow discovery: The problem, a case study from e-
science and a graph-based solution. In Proceedings of international conference on web services,
ICWS’06, September 18–22 (pp. 312–319).
IEEE Taskforce on Process Mining (2011). Process mining manifesto. Retrieved from
<http://www.win.tue.nl/ieeetfpm>. (last accessed on 4/11/2013).
Iordanov, B. (2010). Hypergraphdb: A generalized graph database. In Web-Age information
management. In H. Shen, J. Pei, M. zsu, L. Zou, J. Lu, & T.-W. Ling, et al. (Eds.). Lecture notes in
computer science (Vol. 6185, pp. 25–36). Berlin Heidelberg: Springer.
Jung, J. (2009). Semantic business process integration based on ontology alignment. Expert
Systems with Applications, 36, 11013–11020.
Kapetanakis, S., Petridis, M., Knight, B., Ma, J., & Bacon, L. (2010). A case based reasoning
approach for the monitoring of business workflows. In Case-based reasoning. Research and
development. In I. Bichindaritz & S. Montani (Eds.). Lecture notes in computer science (Vol. 6176,
pp. 390–405). Berlin Heidelberg: Springer.
Kendall-Morwick, J., & Leake, D. (2011). A toolkit for representation and retrieval of structured
cases. In B. Diaz-Agudo & A. Cordier (Eds.), Proceedings of the ICCBR 2011 workshop on process-
oriented case-based reasoning, PO-CBR’11, September 12–15 (pp. 111–120). University of
Greenwich.
Kendall-Morwick, J., & Leake, D. (2012). On tuning two-phase retrieval for structured cases. In L.
Lamontagne & J. A. Recio-García (Eds.), Proceedings of the ICCBR 2012 workshop on process-
oriented case-based reasoning, PO-CBR’12, September 3–6 (pp. 25–34). University of Lyon.
Kunze, M., & Weske, M. (2011). Metric trees for efficient similarity search in large process model
repositories. In Business process management workshops. In M. zur Muehlen & J. Su (Eds.).
Lecture notes in business information processing (Vol. 66, pp. 535–546). Berlin Heidelberg:
Springer.
La Rosa, M., Dumas, M., Uba, R., & Dijkman, R. (2013). Business process model merging: An
approach to business process consolidation. ACM Transactions on Software Engineering and
Methodology, 22, 937–948.

Li, C., Reichert, M., & Wombacher, A. (2008). On measuring process model similarity based on
high-level change operations. In Conceptual modeling – ER 2008. In Q. Li, S. Spaccapietra, E. Yu, &
A. Oliv (Eds.). Lecture notes in computer science (Vol. 5231, pp. 248–264). Berlin Heidelberg:
Springer.
Madhusudan, T., Zhao, J., & Marshall, B. (2004). A case-based reasoning framework for workflow
model management. Data and Knowledge Engineering, 50, 87–115.
Martínez-Bazan, N., Gómez-Villamor, S., & Escale-Claveras, F. (2011). Dex: A highperformance
graph database management system. In IEEE 27th international conference on data engineering
workshops, ICDEW’11, April 11–16 (pp. 124–127).
Marzal, A., & Vidal, E. (1993). Computation of normalized edit distance and applications. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 15, 926–932.
Ma, Y., Zhang, X., & Lu, K. (2014). A graph distance based metric for data oriented workflow
retrieval with variable time constraints. Expert Systems with Applications, 41, 1377–1388.
Melnik, S., Garcia-Molina, H., & Rahm, E. (2002). Similarity flooding: A versatile graph matching
algorithm and its application to schema matching. In Proceedings of 18th international conference
on data engineering, February 26– March 1 (pp. 117–128).
Micieli, G., Cavallini, A., Quaglini, S., Fontana, G., & Duè, M. (2010). The Lombardia stroke unit
registry: 1-Year experience of a web-based hospital stroke registry. Neurological Sciences, 31(5),
555–564.
Minor, M., Tartakovski, A., Schmalen, D., & Bergmann, R. (2008). Agile workflow technology and
case-based change reuse for long-term processes. International Journal of Intelligent Information
Technologies, 4, 80–98.
Palmer, M., & Wu, Z. (1995). Verb semantics for english-chinese translation. Machine Translation,
10, 59–92.
Sánchez, D., & Batet, M. (2013). A semantic similarity method based on information content
exploiting multiple ontologies. Expert Systems with Applications, 40, 1393–1399.
Sánchez, D., Batet, M., Isern, D., & Valls, A. (2012). Ontology-based semantic similarity: A new
feature-based approach. Expert Systems with Applications, 39, 7718–7728.
Valiente, G. (2002). Algorithms on trees and graphs. Berlin: Springer.
Van der Aalst, W., Van Dongen, B., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. (2003).
Workflow mining: A survey of issues and approaches. Data and Knowledge Engineering, 47, 237–
267.
Van Dongen, B., Alves De Medeiros, A., Verbeek, H., Weijters, A., & Van der Aalst, W. (2005). The
prom framework: A new era in process mining tool support. In Applications and theory of petri
nets 2005. In G. Ciardo & P. Darondeau (Eds.). Lecture notes in computer science (Vol. 3536, pp.
444–454). Berlin Heidelberg: Springer.
Van Dongen, B., & Van der Aalst, W. (2004). Multi-phase process mining: Building instance graphs.
In Conceptual modeling ER 2004. In P. Atzeni, W. Chu, H. Lu, S. Zhou, & T.-W. Ling (Eds.). Lecture
notes in computer science (Vol. 3288, pp. 362–376). Berlin Heidelberg: Springer.
Weijters, A., Van der Aalst, W., & de Medeiros, A. A. (2006). Process mining with the heuristic
miner algorithm, WP 166. Eindhoven University of Technology, Eindhoven.
Yujian, L., & Bo, L. (2007). A normalized Levenshtein distance metric. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 29, 1091–1095.

