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Stroke management Process model comparison and similar processes retrieval are key issues to 
be addressed in many real world situations, and particularly relevant ones in some applications 
(e.g., in medicine), where similarity quantification can be exploited in a quality assessment 
perspective. 
Most of the process comparison techniques described in the literature suffer from two main 
limitations: (1) they adopt a purely syntactic (vs. semantic) approach in process activity 
comparison, and/ or (2) they ignore complex control flow information (i.e., other than sequence). 
These limitations oversimplify the problem, and make the results of similarity-based process 
retrieval less reliable, especially when domain knowledge is available, and can be adopted to 
quantify activity or control flow construct differences. 
In this paper, we aim at overcoming both limitations, by introducing a framework which allows to 
extract the actual process model from the available process execution traces, through process 
mining techniques, and then to compare (mined) process models, by relying on a novel distance 
measure. 
The novel distance measure, which represents the main contribution of this paper, is able to 
address issues (1) and (2) above, since: (1) it provides a semantic, knowledge-intensive approach 
to process activity comparison, by making use of domain knowledge; (2) it explicitly takes into 
account complex control flow constructs (such as AND and XOR splits/joins), thus fully considering 
the different semantic meaning of control flow connections in a reliable way. 
The positive impact of the framework in practice has been tested in stroke management, where 
our approach has outperformed a state-of-the art literature metric on a real world event log, 
providing results that were closer to those of a human expert. Experiments in other domains are 
foreseen in the future. 
  
1. Introduction 
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Process model comparison is a key issue to be addressed in many real world situations. For 
example, when two companies are merged, process engineers need to compare processes 
originating from the two companies, in order to analyze their possible overlaps, and to identify 
areas for consolidation. Moreover, large companies build over time huge process model 
repositories, which serve as a knowledge base for their ongoing process management/ 
enhancement efforts. Before adding a new process model to the repository, process engineers 
have to check that a similar model does not already exist, in order to prevent duplication. 
Particularly interesting is the case of medical process model comparison, where similarity 
quantification can be exploited in a quality assessment perspective. Indeed, the process model 
actually implemented at a given healthcare organization can be compared to the existing 
reference clinical guideline, e.g., to check conformance, or to understand the level of adaptation 
to local constraints that may have been required. As a matter of fact, the existence of local 
resource constraints may lead to differences between the models implemented at different 
hospitals, even when referring to the treatment of the same disease (and to the same guideline). A 
quantification of these differences (and maybe a ranking of the hospitals derived from it) can be 
exploited for several purposes, like, e.g., auditing purposes, performance evaluation and funding 
distribution. 
Various process model comparison techniques are described in the literature (see Section 4). 
However, most of them suffer from two main limitations: 
1. they adopt a purely syntactic approach in process activity comparison, ignoring the 
semantics of the activities being compared, often referring just to their names: activities with a 
different name are considered as not matching, while they could share very similar characteristics 
(e.g., have the same goal); 
2. they ignore complex control flow information (other thansequence): in this way, a 
construct with, e.g., two parallel activities, can be matched to a construct involving the same 
activities, but in mutual exclusion. 
Issues (1) and (2) above correspond to a strong simplification of the process model semantic 
meaning, and may lead to unreliable results in process comparison. This can be really 
unacceptable in many real world domains, like the already mentioned medical ones, where 
physicians and hospital managers need to guarantee the highest quality of service to patients. 
In this paper, we aim at overcoming the limitations outlined above, by introducing a framework 
which allows to mine the actual process model from the available process execution traces, and 
then to compare (mined) process models. 
While the framework, in its current version, relies on already published process mining techniques 
to extract the process model from traces, process comparison exploits a novel distance measure, 
which represents the main contribution of the paper. 
Our distance measure is very innovative with respect to available literature approaches (see 
detailed discussion in Section 4). Indeed, it is able to address issues (1) and (2) above, since: 
1. it provides a semantic approach to process activity comparison, by making use of domain 
knowledge. Indeed, it rates two activities as very similar, if they are connected through semantic 
(i.e., ontological) relations. Specifically, the metric can be properly adapted to operate with 
different knowledge representation formalisms (e.g., taxonomy vs. semantic network with 
different characteristics). Very interestingly, it also exploits all the information that can be 
extracted through process mining (e.g., temporal information), always in a semantic and 
knowledge-intensive perspective; 
2. it explicitly takes into account complex control flow constructs (such as AND and XOR 
splits/joins – also called gateway nodes henceforth), thus considering the different semantic 
meaning of control flow connections in a reliable way. 



Fully exploiting the semantics of process models in comparison and similarity quantification along 
the lines illustrated above represents a major development with respect to the literature in the 
field, as extensively discussed in Section 4. Such a development is likely to provide a significant 
impact in supporting the expert’s work in quality assessment, particularly in those applications 
where domain knowledge is rich and well consolidated, as is often the case in medicine (Basu, 
Archer, & Mukherjee, 2012). 
Indeed, the positive impact of the framework in practice has already been tested in stroke 
management (see Section 3), where our approach has outperformed a state-of-the-art metric (La 
Rosa, Dumas, Uba, & Dijkman, 2013) on a real world event log, providing results that were closer 
to those of a human expert. 
The paper is organized as follows. Section 2 provides the details of our methodological approach. 
Section 3 showcases experimental results. Section 4 compares our contribution to related works. 
Section 5 illustrates our conclusions and future research directions. 
2. Methods 
As stated in the Introduction, our framework first extracts the actual process model from the 
execution traces, and then performs process model comparison by means of a novel metric. The 
methodological techniques supporting the first step (process mining) are briefly presented in 
subSection 2.1, while subSection 2.2 is devoted to the detailed description of our metric, which 
represents the main contribution of this paper. 
2.1. Mining process models 
Process mining describes a family of a posteriori analysis techniques (Van der Aalst et al., 2003) 
exploiting the information recorded in process execution trace repositories (also called event 
logs), to extract process related information (e.g., process models). Typically, these approaches 
assume that it is possible to sequentially record events such that each event refers to an activity 
(i.e., a well defined step in the process) and is related to a particular process instance. 
Furthermore, some mining techniques use additional information such as the timestamp of the 
event, or data elements recorded with the event. 
Traditionally, process mining has been focusing on discovery, i.e., deriving process models and 
execution properties from event logs. It is important to mention that, in discovery, there is no a 
priori model, but, based on logs, some model, e.g., a Petri Net, is constructed. However, process 
mining is not limited to process models (i.e., control flow), and recent process mining techniques 
are more and more focusing on other perspectives, e.g., the organisational perspective, the 
performance perspective or the data perspective. Moreover, as well stated in the Process Mining 
Manifesto (IEEE Taskforce on Process Mining, 2011), process mining also supports conformance 
analysis and process enhancement. In this paper, however, we only deal with the process 
perspective. 
In our work, we are currently relying on mining algorithms available within ProM (Van Dongen, 
Alves De Medeiros, Verbeek, Weijters, & Van der Aalst, 2005), an open source tool which supports 
a wide variety of process mining and data mining techniques. 
In particular, we have mainly exploited ProM’s heuristic miner (Weijters, Van der Aalst, & de 
Medeiros, 2006) for mining the process models. Heuristic miner takes in input the event log, and 
considers the order of the events within every single process instance execution. The time stamp 
of an activity is used to calculate this ordering. Heuristics miner can be used to express the main 
behavior registered in a log. Some abstract information, such as the presence of composite tasks 
(i.e., tasks semantically related to their constituent activities by means of the ‘‘part-of’’ relation), 
cannot be derived by heuristic miner, that will only build a model including ground (i.e., not 
further decomposable) activities. On the other hand, it can mine the presence of short distance 
and long distance dependencies (i.e., direct or indirect sequence of activities), and information 



about parallelism, with a certain reliability degree (see also Section 2.2). The output of the mining 
process is provided as a graph, also called ‘‘dependency graph’’, where nodes represent activities, 
and arcs represent control flow information. 
We have chosen to rely on heuristic miner because it is known to be tolerant to noise, a problem 
that may affect many real world event logs (e.g., in medicine sometimes the logging may be 
incomplete). Moreover, heuristic miner labels the output graph edges with several mined 
information, that we are explicitly considering in process comparison (such as reliability, see 
Section 2.2). The output of heuristic miner can also be automatically converted into a Petri Net, 
making its semantics very clear (clearer with respect to the output of other miners). 
It is however worth noting that our approach also works with different choices of the mining 
algorithm: as an example, in Section 3 we will present some results obtained with ProM’s 
multiphase miner (Van Dongen & Van der Aalst, 2004). 
2.2. Calculating process similarity 
Since mined process models are represented in the form of graphs, we define a distance based on 
the notion of graph edit distance (Bunke, 1997). Such a notion calculates the minimal cost of 
transforming one graph into another by applying edit operations, i.e., insertions/deletions and 
substitutions of nodes, and insertions/deletions of edges. While string edit distance looks for an 
alignment that minimizes the cost of transforming one string into another by means of edit 
operations, in graph edit distance we have to look for a mapping. A mapping is a function that 
matches (possibly by substituting) nodes to nodes, and edges to edges. Unmatched nodes/edges 
have to be deleted (or, dually, inserted in the other graph). Among all possible mappings, we will 
select the one that leads to the minimal cost, having properly quantified the cost of every type of 
edit operation. We provide a normalized version of the approach in Bunke (1997). 
With respect to the available literature approaches (see Section 4 for an extensive comparison), 
we have introduced two novel 
contributions: 
1. we operate in a knowledge-intensive way in calculating the cost of activity node 
substitution (see dt contribution in f subn, Definition 3 below). Most literature approaches simply 
use an overlap distance to provide the cost of node substitution (i.e., 0 if the nodes are identical, 1 
otherwise; see Becker & Laue (2012)). Some others (Dijkman, Dumas, & Garca-Banuelos, 2009) 
exploit string edit distance on node names. On the other hand, we adopt a more semantic 
approach, in which domain knowledge is exploited.  We allow for the use of different metrics to 
calculate the cost of activity node substitution, on the basis of the available knowledge 
representation formalisms. We also add a cost contribution related to edge substitution (f sube in 
Definition 3 below), able to exploit information learned through process mining. Namely, at the 
moment we consider: (i) the reliability of a given edge (learned by heuristic miner) – see Definition 
1 below, (ii) the percentage of traces that cross a given edge in the mined model (learned, e.g., by 
some mining algorithms in ProM) – see Definition 2 below, and (iii) statistics about the temporal 
duration of a given edge. As for item (iii), we have directly calculated the mean and the standard 
deviation of the temporal duration of edges, by referring to the content of the event log. 
Different/additional information learned by a miner could be introduced as well in the future; 
2. we consider complex control flow information (i.e., other than sequence) between the 
mined process activities. This information, in our approach, is made explicit in the form of gateway 
nodes (e.g., AND joins/splits) in the graph. In extending graph edit distance, we only map activity 
nodes to activity nodes, and gateway nodes to gateway nodes. Our metric is then able to explicitly 
take into account the cost of gateway node substitution (see dg in f subn, Definition 3 below). In 
this way, we consider the different semantic meanings of control flow connections. 
  



Formally, the following definitions apply: 
Definition 1 (Reliability). The reliability of the edge ei assessing that activity a directly follows 
activity b in sequence (i.e., ei is an arc from b to a) is calculated as Weijters et al. (2006): 
ja > bj  jb > aj 
relðeiÞ ¼   
ja > bj þ jb > aj þ 1 
where ja > bj is the number of occurrences in which activity a directly follows activity b in the 
event log, and jb > aj is the number of occurrences in which activity b directly follows activity a. 
A negative reliability value means that we must conclude that the opposite pattern holds, i.e., 
activity b follows activity a. Indeed, the reliability of a relationship (e.g., activity a follows activity 
b) is not only influenced by the number of occurrences of this pattern in the logs, but is also 
(negatively) determined by the number of occurrences of the opposite pattern (b follows a). 
However, edges with a negative reliability do not appear in the output graph (due to threshold 
mechanisms and proper heuristics (Weijters et al., 2006), that rule them out). Therefore, we deal 
with reliability values 2 ð0; 1Þ. 
Definition 2 (Percentage of traces). The percentage of traces that crossed edge ei, assessing that 
activity a directly follows activity b in sequence, is calculated as: 
ja > bjt 
ptðeiÞ ¼  jALLTRACEj 
where ja > bjt is the number of traces in which activity a directly follows activity b in the event log, 
and jALLTRACEj is the total number of available traces in the event log. 
With this definition, the percentage of traces 2 ½0; 1. 
Definition 3 (Extended Graph Edit Distance). Let G1 ¼ ðN1; E1Þ and G2 ¼ ðN2; E2Þ be two graphs, 
where Ei and Ni represent the sets of edges and nodes of graph Gi. Let jNij and jEij be the number 
of nodes and edges of graph Gi. Let M be a partial injective mapping (see Dijkman et al. (2009)) 
that maps nodes in N1 to nodes in N2 and let subn; sube; skipn and skipe be the sets of 
substituted nodes, substituted edges, inserted or deleted nodes and inserted or deleted edges 
with respect to M. In particular, a substituted edge connects a pair of substituted nodes in M. The 
fraction of inserted or deleted nodes, denoted f skipn, the fraction of inserted or deleted edges, 
denoted f skipe, and the average distance of substituted nodes, denoted f subn, are defined as 
follows: 
jskipnj 
f skipn ¼  jN1j þ jN2j where jskipnj is the number of inserted or deleted nodes; 
jskipej f skipe ¼  jE1j þ jE2j where jskipej is the number of inserted or deleted edges; 
2  Pn;m2MAdtðn;mÞ þ Px;y2MGdgðx;yÞ f subn ¼   
jsubnj 
where MA represents the set of mapped activity nodes in the mapping M; MG represents the set 
of mapped gateway nodes in M; dtðn; mÞ is the distance between two activity nodes m and n in 
  
MA, and dgðx; yÞ is the distance between two gateway nodes x and y in MG. 
The average distance of substituted edges f sube is defined as follows: 
2  Pðn1;n2Þ;ðm1;m2Þ2Mðjrelðe1Þ  relðe2Þj þ jptðe1Þ  ptðe2Þj þ jmtðe1Þ  mtðe2Þj þ jstðe1Þ  
stðe2ÞjÞ 
f sube ¼ 
  
4  jsubej 
where edge e1 (connecting node n1 to node m1) and edge e2 (connecting node n2 to node m2) 
are two substituted edges in M; relðeiÞ is the reliability of edge ei (see Definition 1); ptðeiÞ is the 



percentage of traces that crossed edge ei (see Definition 2); mtðeiÞ and stðeiÞ are statistical 
values (mean and standard deviation of the elapsed times) calculated over all the occurrences of 
the mi > ni pattern in the traces, and normalized in ½0; 1 dividing by the duration of the longest mi 
> ni pattern in the log. If one of these parameters is unavailable (e.g., reliability is unavailable 
because heuristic miner was not used), its contribution is simply set to 0. Different/additional 
parameters learned by a miner could be considered as well in f sube in the future. 
The extended graph edit distance induced by the mapping M is: 
wskipnfskipnþwskipefskipeþwsubnf subnþwsubef sube extedit ¼ wskipnþwskipeþwsubnþwsube 
where wsubn; wsube; wskipn and wskipe are proper weights 
2 ½0; 1. 
The extended graph edit distance of two graphs is the minimal possible distance induced by a 
mapping between these graphs. 
The distance dtðn; mÞ between two activity nodes m and n in MA (see Definition 3) is a proper 
knowledge-intensive distance definition, to be chosen on the basis of the available knowledge 
representation formalism in the domain at hand. In our experiments, we could rely on a complete, 
goal-based domain taxonomy on stroke management activities (see Section 3), and adopted 
Palmer’s taxonomic distance (Palmer & Wu, 1995) for calculating dt. Other distance definitions can 
be relied upon if domain knowledge is available as a semantic network with different 
characteristics. As an example, the metric in Chiabrando, Likavec, Lombardi, Picardi, and 
Theseider-Dupré (2011) can be relied upon when dealing with an incomplete ontology, or with a 
ontology containing many dense sub-ontologies. Our framework is modular and easily adaptable 
to this end. 
To calculate the distance dgðx; yÞ between two gateway nodes x and y we proceed as follows: 
1. if x and y are nodes of different types (i.e., a XOR and an AND), their distance is set to 1; 
2. if x and y are of the same type (e.g., two ANDs), we have to calculate the difference 
between: (a) the incoming gateway nodes; 
(b) the incoming activity nodes; 
(c) the outgoing gateway nodes;(d) the outgoing activity nodes. 
As regards item 2. (b), let S1 be the sequence of incoming activity nodes of the first gateway node 
x; let S2 be the sequence for the second gateway node y. Without loss of generality, suppose that 
S2 is not longer than S1. In order to compare S1 ad S2, we try all possible permutations in the 
order of the activity nodes in S2, and take the one that leads to the minimal distance with respect 
to S1. The distance between the two sequences is the average of the distance between single 
elements (i.e., pairs of activities), over the length of the longest sequence. The distance between a 
pair of activities is calculated exploiting the knowledge-intensive approach and the distance dt 
described above. Every activity in S1 
  
that cannot be mapped to any activity in S2 (because S1 is longer than S2) contributes with a 
distance of 1. 
Item 2. (d) works analogously. 
Items 2. (a) and 2. (c) are simpler: identical incoming (respectively, outgoing) gateway nodes in the 
two sequences (e.g., two ANDs) provide a contribution of 0; different gateway nodes (i.e., an AND 
and a XOR) provide a contribution of 1. As above, we then calculate the average over the length of 
the longest sequence of gateway nodes. This procedure is obviously a simplification, since 
incoming gateway nodes may have other gateway nodes in input as well, but we do not consider 
this (recursive) information. Similar considerations hold for outgoing gateway nodes. This choice 
was motivated by computational complexity issues, but could be reconsidered in the future. 



The four contributions are then combined as a weighted average dgðx; yÞ in Definition 3 (in which, 
at the moment, we are setting all the weights to 1, but the choice can of course be differently set 
in other domains/experiments). 
It can be easily verified that our metric, being an extension of the edit distance, preserves the 
metric properties of non-negativity, identity of indiscernibles, and symmetry. Some versions of the 
normalized edit distance may fail the triangle inequality in a few very specific experimental 
situations (see Marzal & Vidal (1993)), but the problem can be tackled, as discussed in Yujian and 
Bo (2007). Moreover, as clearly stated in Becker and Laue (2012), triangle inequality is not 
considered to be essential for measuring process distance. 
To find the mapping that leads to the minimal distance we resort to a greedy approach, in order to 
contain computational costs. It can be shown that the algorithm works in cubic time on the 
number of nodes of the larger graph (Dijkman et al., 2009). As is well known, a greedy algorithm is 
an algorithm that follows the problem-solving heuristic of making the locally optimal choice at 
each stage, with the hope of finding a global optimum. A greedy strategy does not in general 
produce an optimal solution, but nonetheless a greedy heuristic may yield locally optimal solutions 
that approximate a global optimal solution in a reasonable time. 
3. Results 
In this section, we will present our experiments. SubSection 3.1 will introduce the testbed we 
realized for testing our approach. SubSection 3.2 will then provide the details of the application 
domain, the available data, and the results. 
3.1. The experimental testbed 
We have realized a testbed, which easily allows to set up different experimental configurations. 
Within the testbed, it is possible to select different mining algorithms (e.g., different miners 
available in ProM, or obtained from other sources, or implemented from scratch) and different 
similarity metrics. 
Since not all the miners are supposed to provide their output in the same format, our testbed 
includes a translation module, that produces an XML output, specifying node and edge properties 
in an interoperable way. It is worth noting that not even the different ProM miners provide the 
same output format. Specifically, they can export output graphs in the DOT language, but the type 
of information, and the way it is coded, may differ from miner to miner. For instance, typically 
gateway nodes are not explicit in the heuristic miner output graph,  but control flow information is 
provided by means of some node parameters. On the other hand, multi-phase miner provides 
explicit gateway nodes. It is therefore necessary to translate the output formats in a common 
format to guarantee interoperability, and XML represent a natural solution to this end. 
The translation module exploits a java class, which is a parser (e.g., a parser of a DOT file in the 
case of ProM miners). All the parsers must implement a java interface, which establishes the 
parser structure. It is therefore easy to add a new parser (for a new miner), because the interface 
already provides the declarations of the methods to be implemented. 
The output XML file contains elements (nodes and edges), and their associated attributes, such as 
node type (activity or gateway), node information and edge information (e.g., edge input nodes, 
edge output nodes, reliability, percentage of traces). By means of this translation, we then always 
make gateway nodes explicit, as required by our metric. Some attributes are optional (e.g., edge 
reliability, calculated by heuristic miner, may be not provided by other miners). 
The testbed also includes a loading module, that loads two XML files (describing the two processes 
to be compared) into the data structure (an hash table) used for graph mapping and distance 
calculation. At this stage, the test is fully independent of the exploited miner. 
The testbed allows to choose a proper similarity metric (e.g., the distance described in this paper, 
the distance in La Rosa et al. (2013), or another distance defined by users). Not necessarily the 



distance must use all the node or edge parameters provided by the miner (i.e., some XML 
attributes may be ignored in graph comparison). 
In our experiments (see Section 3.2), we have tested four different configurations: (a) heuristic 
miner + the new distance described in this paper; (b) heuristic miner + the distance in La Rosa et 
al. (2013), (c) multi-phase miner + the new distance described in this paper; (d) multi-phase miner 
+ the distance in La Rosa et al. (2013). 
ProM’s multi-phase miner (Van Dongen & Van der Aalst, 2004) provides in output an Event-driven 
Process Chain (EPC), i.e., a graph that contains three types of nodes: activities, gateway nodes, 
events. Events describe the situation before/after the execution of an activity; they do not provide 
additional information about the process control flow. We have therefore ignored events in 
distance calculation. By means of the testbed translation module, the EPCs have been converted 
into standard XML files, as described above. 
The distance in La Rosa et al. (2013) has been chosen because it is one of the very few literature 
contributions (see Section 4) that somehow considers gateway nodes (but not domain knowledge, 
nor additional mined information reported on edges) in graph comparison. 
Results are provided in the next section. 
3.2. Testing the framework in stroke management 
We have applied our framework to stroke management processes. 
A stroke is the rapidly developing loss of brain function(s) due to disturbance in the blood supply 
to the brain. This can be due to ischemia (lack of glucose and oxygen supply) caused by a 
thrombosis or embolism, or to a hemorrhage. As a result, the 
  
affected area of the brain is unable to function, leading to inability to move one or more limbs on 
one side of the body, inability to understand or formulate speech, or inability to see one side of 
the visual field. A stroke is a medical emergency and can cause permanent neurological damage, 
complications, and death. It is the leading cause of adult disability in the United States and Europe 
and the number two cause of death worldwide. 
In our experiments, we could rely on a database of 9929 traces, collected at 16 stroke units of the 
Stroke Unit Network (SUN) of Regione Lombardia, Italy (Micieli, Cavallini, Quaglini, Fontana, & 
Duè, 2010). Such stroke units are all equipped with similar human and instrumental resources. The 
number of traces varies from 266 to 1149. Traces are composed of 13 activities on average. Data 
refer to the period 2009–2012. 
We also could exploit domain knowledge, in the form of a taxonomy of stroke management 
activities. In such a taxonomy, classes are defined on the basis of their goal. In our distance 
calculation (contribution dt in f subn, see Definition 3), Palmer’s taxonomic distance was exploited 
(Palmer & Wu, 1995). This distance allows us to exploit the hierarchical structure, since the 
distance between two activities is set to the normalized number of arcs on the path between the 
two activities themselves in the taxonomy. The underlying idea is that two different activities are 
more or less distant on the basis of their goal. 
We asked a stroke management expert other than our medical co-authors (i.e., Dr. I. Canavero, 
see Acknowledgments) to provide a ranking of the SUN stroke units (see Table 1, column 2), on 
the basis of the quality of service they provide. The top level unit will be referred as H0 in the 
experiments. The expert identified 5 hospitals (H1–H5) with a high similarity level with respect to 
H0; 5 hospitals (H6–H10) with a medium similarity level with respect to H0; and 5 hospitals (H11–
H15) with a low similarity level with respect to H0. The ordering of the hospitals within one 
specific similarity level is not very relevant. It is instead important to distinguish between different 
similarity levels. 



The medical expert also provided the following values for distance weights: wsubn ¼ 1; wsube ¼ 
0:2; wskipn ¼ 1; wskipe ¼ 0:6. The rationale behind this choice is the following: in stroke 
management, for most of the processes, activities are more important than their sequential 
connection, therefore a node substitution (see wsubn) or deletion (see wskipn) have the highest 
weights. Edge deletion (see wskipe) is more important than edge substitution (see wsube), 
because a change in the activity execution sequence must still be strongly penalized (even if not as 
strongly as a change in the activities themselves). The penalty for edge substitution is the lowest, 
because it refers to situations in which the activity sequence is identical in the models; only, 
information (e.g., reliabilities or times) associated to the edges at hand may be different. It is 
important to take into account these differences, but they do not impact as much as a change in 
the model control flow. 
It is however worth noting that a sensitivity analysis can be conducted to automate weight setting, 
when expert knowledge is not available. 
As explained in Section 3.1, thanks to our testbed we were able to set up four different 
experimental configurations. Namely, we could mine the process models according to heuristic 
miner, and to multi-phase miner. We then ordered the two available process model sets with 
respect to H0, resorting to the new distance defined in this paper (see Section 2.2), and to the 
distance in La Rosa et al. (2013), globally obtaining four rankings. Results are shown in Table 1. 
Column 1, in Table 1, shows the levels of similarity with respect 
  
to the reference hospital. Column 2 shows the ranking according to the human medical expert; 
columns 3 and 4 show the results obtained by mining the process models by means of heuristic 
Table 1 
Ordering of 15 hospitals, with respect to a given query model. Correct positions in the rankings 
with respect to the expert’s qualitative similarity levels are highlighted in bold. 
Similarity Medical expert ranking New dist. heuristic LaRosa dist. heuristic New dist. 
M-phase LaRosa dist. M-phase 
High H1 H14 H14 H9 H14 
High H2 H3 H3 H2 H3 
High H3 H2 H9 H3 H1 
High H4 H1 H1 H1 H7 
High H5 H11 H12 H11 H8 
Medium H6 H10 H6 H12 H5 
Medium H7 H4 H11 H7 H6 
Medium H8 H7 H10 H4 H13 
Medium H9 H9 H2 H10 H11 
Medium H10 H6 H4 H15 H2 
Low H11 H8 H13 H8 H10 
Low H12 H12 H8 H13 H15 
Low H13 H15 H15 H6 H4 
Low H14 H13 H7 H14 H12 
Low H15 H5 H5 H5 H9 
  
miner, relying on the distance defined in this paper and on the one defined by La Rosa et al. 
(2013), respectively. Similarly, columns 5 and 6 show the results obtained by mining the process 
models by means of multi-phase miner. 
When exploiting heuristic miner, the distance defined in this paper correctly rates three process 
models in the high similarity group (60%), four process models in the medium similarity group 



(80%), and three process models in the low similarity group (60%, column 3). The distance in La 
Rosa et al. (2013), on the other hand, correctly rates only two process models in every group (40%, 
column 4). 
When exploiting multi-phase miner, the distance defined in this paper correctly rates three 
process models in the high similarity group (60%), two process models in the medium similarity 
group (40%), and two process models in the low similarity group (40%, column 5). The distance in 
La Rosa et al. (2013), correctly rates only two process models in the high similarity group (40%), 
one process model in the medium similarity group (20%), and two process models in the low 
similarity group (40%, column 6). 
Thus, our distance produces results that are closer to the qualitative ranking provided by the 
human expert. Very interestingly, this situation holds both when relying on heuristic miner, and 
when relying on multi-phase miner. However, our metric works particularly well when adopting 
heuristic miner, probably because it mines more information (e.g., reliability), that is later 
exploited by the metric. These data are simply unavailable when using multi-phase miner, 
therefore in this last case distance calculation is less knowledge-intensive. 
In conclusion, our knowledge-intensive approach to distance calculation has proved to be able to 
provide a high quality process model comparison in practice. As such, it could be confidently used 
for comparing medical processes in a quality evaluation perspective, at least when comparing 
hospitals that are equipped with similar resources, as it was the case in our experiments. 
4. Related work 
Similarity-based graph comparison is a very active research area, which is giving birth to different 
methodological approaches and software tools. Graph databases, like, e.g., HypergraphDB 
(Iordanov, 2010) and DEX (Martínez-Bazan, Gómez-Villamor, & Escale-Claveras, 2011), are gaining 
popularity, for working in emerging linked data such as social network data and biological data. 
However, in this section we will focus on contributions that are more closely related to graph 
similarity in process/workflow management research. 
As stated in Dijkman, Dumas, Van Dongen, Kaarik, and Mendling (2011), Becker and Laue (2012), 
three classes of similarity metrics can be considered to deal with process model comparisons: (i) 
node matching similarity, which compares the labels attached to process model nodes; (ii) 
structural similarity, which compares node labels, as well as graph topology; (iii) behavioral 
similarity, which compares node labels, as well as the behavioral/ causal relations captured in the 
process models. 
While class (i) somehow oversimplifies the problem, class (iii) requires causal information, which 
we do not currently mine. Indeed, our work is related to class (ii). Therefore, in the following we 
will focus on structural similarity approaches. 
The goal of comparing objects with a complex structure (i.e., graphs) entails the definition of a 
nontrivial notion of distance. The issue of providing a proper graph distance definition has been 
afforded in the literature, following three main directions, i.e.,: 
1. relying on a local notion of similarity (two subgraphs are similarif their neighboring nodes 
are similar), as in the similarity flooding algorithm (Melnik, Garcia-Molina, & Rahm, 2002); 
2. relying on subgraph isomorphism, e.g., to find maximum common sub-graphs (Valiente, 
2002), and 
3. adapting the edit distance notion to graphs (Bunke, 1997). 
We are currently following direction (3), but directions (1) and (2) could be considered in our 
future work for comparison. 
The SAI toolkit (Kendall-Morwick & Leake, 2011) is transversal with respect to the three directions 
(1)–(3) outlined above, since it is a framework for workflow representation and comparison that 
allows different similarity measures to be used. 



The work in Madhusudan, Zhao, and Marshall (2004), on the other hand, describes an approach 
specifically related to direction (1). In Madhusudan et al. (2004), a retrieval system for supporting 
incremental workflow modeling is presented. The system proposes a similarity-based reuse of 
workflow templates using a planner that employs an inexact graph matching algorithm based on 
similarity flooding. For computing similarities, the algorithm relies on the idea that elements of 
two distinct graphs are similar, when their adjacent elements are similar. The algorithm 
propagates the similarity from a node to its respective neighbors based on the topology in the two 
graphs. However, edge similarity is not considered. 
The work in Kapetanakis, Petridis, Knight, Ma, and Bacon (2010) belongs to direction (2), as it 
exploits a maximum common subgraph approach for similarity-based process retrieval, in a 
retrieval system for supporting business process monitoring. Interestingly, the metric in 
Kapetanakis et al. (2010) takes into account temporal information, since it combines a 
contribution related to activity similarity, and a contribution related to delays between activities. 
The approach in Goderis, Li, and Goble (2006) relies on graph isomorphism (direction (2)) for 
retrieving scientific workflows (e.g., pipelines for bioinformatics experiments). Unlike business 
workflows, scientific workflows have a strong focus on the data flow, typically restricting the 
control flow to a partial ordering of the tasks. The work in Ma, Zhang, and Lu (2014) focuses on 
data oriented workflows as well. It defines a formal structure called Time Dependency Graph 
(TDG), and exploits it as a representation model of data oriented workflows with variable time 
constraints. A distance measure is proposed for computing workflow similarity by their 
normalization matrices, established based on their TDGs. The peculiarity of data oriented 
workflows, however, make these contributions less closely related to our approach. 
The works following direction (3), on the other hand, extend the notion of graph edit distance 
(Bunke, 1997), which calculates the minimal cost of transforming one graph into another, by 
applying insertions/deletions and substitutions of nodes, and insertions/ deletions of edges. 
The work in Minor, Tartakovski, Schmalen, and Bergmann (2008) makes use of a normalized 
version of the graph edit distance. The approach is used to support workflow modification in an 
agile workflow system, and takes into account control flow information as well as activity 
information. However, Minor et al. (2008) only makes use of syntactical information in the 
definition of the edit operation costs. Moreover, the work is limited to considering (small) changes 
with respect to a running process instance. 
The work in Kunze and Weske (2011) relies on graph edit distance, and exploits string edit distance 
on node names to determine the cost of node substitutions. The work in Li, Reichert, and 
Wombacher (2008) encapsulates a set of edit operations into the so-called ‘‘high-level change 
operations’’, and measures distance on the basis of the number of high-level change operations 
needed to transform one graph into another. The work in Bae, Caverlee, Liu, and Yan (2006) 
transforms a graph into an ordered tree, and then exploits tree edit distance. 
With respect to Minor et al. (2008), Kunze and Weske (2011), Li et al. (2008) and Bae et al. (2006), 
we make use of semantic information in activity comparison. We also make explicit use of the 
information mined/learned from the data in the mapped edges contribution. 
The use of semantic information in similarity calculation is a very active research area in text 
understanding, where several approaches have been proposed (see the survey in Sánchez, Batet, 
Isern, & Valls (2012)), that compute the information content of concepts from the knowledge 
provided by ontologies; the work in Sánchez and Batet (2013), for example, proposes a similarity 
measure that considers multiple ontologies in an integrated way. 
In the field of business process management, process semantics have been exploited in the 
literature to accomplish various tasks. The work in Jung (2009), for instance, proposes a 
framework based on aligning business ontologies for integrating heterogeneous business 



processes, in order to provide efficient collaboration (i.e., communication and sharing) between 
them. 
However, these contributions are only loosely related to our work. 
Focusing more specifically on our research problem, the use of semantic information in structured 
process model comparison and retrieval is proposed in Bergmann and Gil (2014), a system working 
on workflows represented as semantically labeled graphs. The work in Bergmann and Gil (2014) 
adopts a graph edit distancebased approach, which is particularly suitable for scientific workflows. 
The paper proposes to use a metric in which the similarity between two mapped nodes or arcs 
makes explicit use of their semantic description. However, the framework is presented in a 
general, high-level way, and the specific costs of edit operations are not provided. With respect to 
our work, Bergmann and Gil (2014) is much more focused on the data flow, which was not 
considered in our current application. As already observed, this makes this work less related to 
ours. 
The closest works with respect to our approach are Dijkman et al. (2009) and La Rosa et al. (2013) 
(which extends Dijkman et al. (2009)). Specifically, Dijkman et al. (2009) provides a normalized 
version of the graph edit distance (Bunke, 1997) for comparing business process models, and 
defines syntactical edit operation costs for activity node substitution, activity node 
insertion/deletion, and edge insertion/deletion. 
With respect to Dijkman et al. (2009), we have introduced several novel contributions: 
(a) we have moved towards a more semantic and knowledgeintensive approach in activity 
node substitutions, by allowing the exploitation of domain knowledge. The work in Dijkman et al. 
(2009), on the other end, relies on edit distance between activity node names; 
(b) always in the knowledge-intensive perspective, we have explicitly considered edge 
substitutions, which was disregarded in Dijkman et al. (2009). Indeed, some miners label edges 
with information that can be relevant in graph comparison. Moreover, statistical temporal 
information can be mined from the event log. All these data are exploited in 
our metric; 
(c) the work in Dijkman et al. (2009) does not take into account control flow elements other 
than sequence, so that gateway nodes are not represented in the graph, and not used in distance 
calculation. On the contrary, we have considered this issue as well in our contribution. 
The work in La Rosa et al. (2013) extends the work in Dijkman et al. (2009) specifically by dealing 
with issue (c) (but not with (a) and (b)): indeed, the authors explicitly represent gateway nodes, in 
order to describe, e.g., parallelism and mutual exclusion. With respect to our approach, La Rosa et 
al. (2013) simplifies the treatment of incoming/outgoing activity nodes with respect to a gateway 
node: in comparing two gateway nodes, it only calculates the fraction of their incoming 
(respectively, outgoing) activity nodes that were mapped; it does not consider the cost of their 
substitution, i.e., how similar this mapped activity nodes are. On the other hand, we explicitly use 
domain knowledge in this phase of distance calculation as well, as described in Section 2.2. The 
work in La Rosa et al. (2013) also considers activity nodes that are connected to the gateway node 
at hand indirectly, i.e., through a path of nodes that can also include gateway nodes. On the 
contrary, we limit our comparison to incoming/outgoing activity nodes that are directly connected 
to the gateway node we want to examine. In La Rosa et al. (2013) incoming/outgoing gateway 
nodes are completely disregarded. 
Despite these differences, La Rosa et al. (2013) is still the closest literature contribution with 
respect to our work. This justifies the choice of comparing our results to the ones that can be 
obtained by the metric in La Rosa et al. (2013), on the stroke dataset (see Section 3). As observed, 
our metric outperformed the one in La Rosa et al. (2013), probably thanks to the use of domain 
knowledge and edge information (including temporal information). Indeed, when domain 



knowledge is available, rich and well consolidated, as is often the case in medicine, its exploitation 
can surely improve the quality of any automated support to the expert’s work – including process 
comparison (see e.g., Basu et al. (2012)). Moreover, time is a very important parameter in medical 
application, particularly when referring to emergency medicine, as it is in the case of stroke. 
Most of the approaches following directions (1)–(3) above typically suffer from problems related 
to their high computational complexity, which is sometimes mitigated by resorting to greedy 
techniques (see, e.g., Dijkman et al. (2009), and our own approach). To avoid these problems, 
however, some previous works have investigated structureless workflow retrieval, where 
workflow representation is a plain textual description, a set of tags (Goderis et al., 2006), or a set 
of abstract workflow features (Bergmann, Freßmann, Maximini, Maximini, & Sauer, 2006). 
Recently, a probabilistic similarity model for workflow execution paths was also proposed (Becker, 
Bergener, Breuker, & Räckers, 2011). Other approaches have suggested the use of a two-step 
procedure, which combines an initial and comparatively inexpensive retrieval step, to winnow the 
instances to be considered, with a more expensive strategy that ranks the remaining instances (as 
in the well-known MAC/FAC system (Forbus, Gentner, & Law, 1995)) (KendallMorwick & Leake, 
2011, 2012). In Bergmann and Gil (2014), some procedures for non-exhaustive search, based on 
the A⁄ algorithm, are provided. More work on computational performances will be considered in 
our future research as well. 
5. Discussion, conclusions and future work 
In this paper, we have described a novel framework for process mining and process comparison. 
The main research contribution of our work is represented by the novel metric we have defined to 
support process comparison. The strength of such a metric is twofold. First, it provides a semantic 
approach to process activity comparison, by making use of domain knowledge. In detail, it 
calculates activity similarity on the basis of activity connections through semantic (i.e., ontological) 
relations in the available domain knowledge representation formalism. Interestingly, it also 
exploits all the information that can be extracted through process mining (e.g., temporal 
information), always in a semantic and knowledge-intensive perspective. As a second 
development from the methodological viewpoint, our metric explicitly takes into account complex 
control flow constructs (such as AND and XOR splits/joins), often ignored or oversimplified in 
available literature contributions. 
Practical implications of the adoption of the new metric in process similarity calculation are 
basically related to an increase in the reliability of results. Indeed, out metric fully captures the 
semantic meaning of process activities and of their connections, and process semantics are 
explicitly resorted to in difference quantification. A reliable comparison is of course the first step 
towards a reliable conformance checking activity, a reliable performance evaluation, or a reliable 
analysis of local adaptation needs. This impact is particularly significant in medical domains, where 
patient’s health is addressed, and best practices must be correctly identified. 
Indeed, the positive impact of the framework in practice has already been tested in stroke 
management (see Section 3), where experimental results have favored our contribution, in 
comparison to the distance definition reported in La Rosa et al. (2013), the most similar already 
published work with respect to our approach. Indeed our metric, that could take advantage of 
domain knowledge, in the form of a taxonomy, outperformed the work in La Rosa et al. (2013) on 
a real world stroke management event log, and provided results that were closer to those of a 
human expert. This held both when relying on heuristic miner to learn process models, and when 
relying on multi-phase miner. However, our metric worked particularly well when adopting 
heuristic miner, probably because it mines more information, that are simply unavailable when 
using multi-phase miner; therefore in this last case distance calculation is less knowledge-
intensive. 



We believe that our metric could therefore be confidently used for comparing medical processes 
in a quality evaluation perspective. However, our framework is modular enough to be adapted and 
tested in very different application domains, and when dealing with different knowledge 
representation formalisms; we would like to plan further experiments in different applications in 
the near future. 
Besides this experimental future work, we plan to address more theoretical and technological 
issues as well. Indeed, in its current implementation, our framework still suffers from some 
limitations, that need to be addressed. Specifically: 
 currently, we have mainly focused on defining a proper metric, able to overcome the limitations 
encountered in the process comparison literature; as for the process mining step, we just 
exploited some of available mining algorithms (chosen among the most ‘‘popular’’ miners in 
ProM). In the future, we would like to test different process mining algorithms as well, to increase 
the practical applicability of our approach. The availability of the testbed described in Section 3.1 
will make these additional experiments easily configurable. Notably, the exploitation of a different 
algorithm might impact on distance calculation: adjustments may be required, in order to take 
into account specific outputs that were not provided by heuristic miner or multiphase miner; 
 as a further methodological enhancement in the process mining step, we would also like to define 
a novel mining approach ourselves, able to directly take into account temporal information (see, 
e.g., Burattin & Sperduti (2010)), and to improve model precision, reducing the number of mined 
paths that do not correspond to any trace in the log (Canensi, Montani, Leonardi, & Terenziani, 
2014). We believe that a greater model precision will enhance the reliability of adopting the whole 
framework 
in practice, especially in the medical field; 
 from a more technological point of view, we plan to integrate our distance calculation as a plug-in 
in the ProM 6 environment. This will allow us to make our work available to the process mining 
community, facilitating the collection of feedback from other users, and the testing also in very 
different application domains. 
We believe that these enhancements could represent a relevant added value in our work, by 
making process comparison even more versatile, reliable and useful in practice. 
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