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Abstract

Inspired by ideas taken from the machine learning literature, new regularization techniques have been recently introduced in linear system
identification. In particular, all the adopted estimators solve a regularized least squares problem, differing in the nature of the penalty term
assigned to the impulse response. Popular choices include atomic and nuclear norms (applied to Hankel matrices) as well as norms induced
by the so called stable spline kernels. In this paper, a comparative study of estimators based on these different types of regularizers is
reported. Our findings reveal that stable spline kernels outperform approaches based on atomic and nuclear norms since they suitably embed
information on impulse response stability and smoothness. This point is illustrated using the Bayesian interpretation of regularization.
We also design a new class of regularizers defined by “integral” versions of stable spline/TC kernels. Under quite realistic experimental
conditions, the new estimators outperform classical prediction error methods also when the latter are equipped with an oracle for model
order selection.

Key words: linear system identification; kernel-based regularization; atomic and nuclear norms; Hankel operator; Lasso; Bayesian
interpretation of regularization; Gaussian processes; reproducing kernel Hilbert spaces

1 Introduction

Prediction error methods (PEM) are a classical tool for re-
constructing the impulse response of a linear system starting
from input-output measurements [32]. In the simplest sce-
nario, one postulates a single model structure, e.g. a rational
transfer function which depends on an unknown parame-
ter vector g of known dimension. If the model contains the
“true” system, and the noise source is Gaussian, estimation
of g by PEM enjoys optimal asymptotic properties. In par-

1 This paper was not presented at any IFAC meeting. Corre-
sponding author Gianluigi Pillonetto Ph. +390498277607. This
research has been partially supported by the MIUR FIRB project
RBFR12M3AC-Learning meets time: a new computational ap-
proach to learning in dynamic systems, by the Progetto di Ate-
neo CPDA147754/14-New statistical learning approach for multi-
agents adaptive estimation and coverage control, by the Linnaeus
Center CADICS, funded by the Swedish Research Council, and
the ERC advanced grant LEARN, no 287381, funded by the Eu-
ropean Research Council and by a research grant for junior re-
searchers funded by Swedish Research Council (VR), under con-
tract 2014-5894.

ticular, this estimator can not be outperformed by any other
unbiased estimator as the number of measurements goes to
infinity.
However, in real applications, not only the number of mea-
surements is always finite but also model complexity is typ-
ically unknown. This means that different model structures
need to be introduced, e.g. rational transfer functions of dif-
ferent order. Each of them has to be fitted to data by PEM
and then compared resorting e.g. to validation techniques
(cross validation) or complexity criteria such as Akaike’s
criterion (AIC) [3, 20]. Recent studies have however illus-
trated some limitations of this approach. For instance, when
the data set size and/or the signal to noise ratio is not so
large, it can return models with a non satisfactory prediction
power on new data [41].
The above issues have motivated the development of an al-
ternative route to system identification based on regulariza-
tion techniques. The starting point is the use of high-order
FIR models in combination with penalty terms (regulariz-
ers) on the impulse response g. In particular, an important
class of estimators solves a convex optimization problem of
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the form
argmin

g
V (g)+ γJ(g), γ ≥ 0.

Above, V is the so-called loss function that depends also on
the input-output measurements and measures the adherence
to experimental data. It is often given by the sum of squared
residuals (the choice also adopted in this paper), leading to
regularized least squares (ReLS). The term J is instead the
regularizer which typically includes smoothness information
on g. Finally, the positive scalar γ is the regularization pa-
rameter which has to suitably balance V and J. In practice,
it is always unknown and has to be determined from data.
An important advantage of ReLS over classical PEM is that
the difficult model order determination can be replaced by
estimation of few regularization variables. For instance, the
stable spline estimator introduced in [40] depends only on
two parameters: the regularization parameter γ and another
one which enters J by determining how fast g is expected
to decay to zero. Such variables can be determined e.g. by
cross validation [20], Cp statistics [28, subsection 7.4] or
marginal likelihood optimization [33, 34], an approach re-
cently proved to be much effective [13,36,40]. In particular,
in the spirit of Stein’s effect [30], a carefully tuned regular-
ization can much reduce the variance of the estimates just
introducing a small bias in the identification process. Hence,
the mean squared error of the estimator can turn out infe-
rior than that achieved by PEM [13,40]. However, to obtain
this, the choice of J is crucial since it has a major effect on
the quality of impulse response reconstruction. It is thus of
interest to investigate and compare the performance of dif-
ferent regularizers recently proposed in the system identifi-
cation literature.
A recent regularization approach relies on the so called nu-
clear norms. The nuclear norm (or trace norm) of a matrix is
the sum of its singular values. Being the convex envelope of
the rank function on the spectral ball, it has been often used
as a convex surrogate of the rank function [22]. In particu-
lar, since the McMillan degree (minimum realization order)
of a discrete time time-invariant system coincides with the
rank of the Hankel operator constructed from the impulse
response coefficients, it is tempting to set J to the nuclear
norm of the Hankel operator associated with the impulse
response g. In this way, output data are described while en-
couraging a low McMillan degree, see [27, 31, 35, 50] and
also [29, 49] for extensions of this idea for estimation e.g.
of Box-Jenkins models.
Atomic norms have been also adopted as regularizers for sys-
tem identification in the last years [10]. The function to be
reconstructed is described as the sum of a (possibly infinite)
number of basis functions, dubbed atoms. The penalty J is
then given by the atomic norm defined, under some tech-
nical conditions, by the convex hull of the atomic set. For
instance, the convex hull of one-sparse vectors of unit Eu-
clidean norm leads to the `1 norm which enjoys important
recovery properties [19], being also related to the popular
LASSO procedure [52].
A motivation underlying the use of the atomic norm is that,
in some sense, it represents the best convex penalty when
the function is sum of few atoms. Successful applications in

signal processing and machine vision regard estimation of
sparse vectors and low-rank matrices [2, 9, 18]. This tech-
nique has been recently introduced also in the system identi-
fication scenario in [48] exploiting low-order rational trans-
fer functions as atomic set, see also [44, 45] for other ap-
proaches that use the `1 penalty.
Other recent system identification techniques exploit penalty
terms induced by kernel functions [6,47], which have to cap-
ture the expected features of the unknown function. In partic-
ular, the works [13,39,40] have proposed a class of kernels
for system identification, including stable spline (SS)/tuned-
correlated (TC), which encodes information on smoothness
and exponential stability of g, see also [12, 15] for other
insights on the stable spline kernel structure and new con-
structions via orthonormal basis functions.

The goal of this paper is to compare the performance of
ReLS equipped with atomic, nuclear or kernel-based norms
via numerical studies. For this purpose, we will perform a
Monte Carlo experiment where at every run the true system
is a different rational transfer function randomly chosen by
a MATLAB generator. The system input and the signal to
noise ratio also varies from run to run, thus leading to a large
variety of system identification problems. The results reveal
that, in many cases, atomic and nuclear norms lead to un-
satisfactory impulse response estimates. The drawbacks of
these approaches are explained through the Bayesian inter-
pretation of regularization, where different J are seen as dif-
ferent a priori probability density functions (pdf) assigned
to g. This interpretation explains why the current implemen-
tations of atomic and nuclear norms fail in capturing impor-
tant characteristics of stable dynamic systems. As far as the
nuclear norm is concerned, when used in conjunction with a
FIR model of order m, we shall see that it essentially corre-
sponds to modeling the impulse response coefficients gt as a
non stationary white noise process with a variance roughly
decaying as 1/t for t < m/2 and increasing as 1/(m− t) for
t > m/2. This means that the prior underlying this approach
does not embed any information on impulse response stabil-
ity and smoothness, two key features to achieve good mean
squared error properties [41]. As for ReLS equipped with the
atomic norm described in [48], we will see that it suffers of
the limitations of the LASSO procedure recently discussed
in [4].

The results from the same Monte Carlo study will also show
that estimators based on stable kernels outperform ReLS re-
lying on atomic and Hankel nuclear norms. Furthermore,
we will design a new class of regularizers induced by “in-
tegral” versions of stable spline kernels. This will lead to
novel ReLS approaches for system identification that may
outperform also the classical PEM equipped with an oracle
for model complexity selection (the oracle selects the best
model order exploiting information on the true system).

The paper is so organized. Section 2 reports the problem
statement while in Section 3 we briefly review the ReLS es-
timators based on the Hankel nuclear norm and the atomic
norm. Section 4 gives insights about limitations of the tech-

2



niques described in Section 3 using the Bayesian interpreta-
tion of regularization. In Section 5 we briefly review stable
spline kernels introduced in [38, 40], also introducing the
concepts of stable spline atomic set. In Section 6, new inte-
gral versions of stable spline kernels are introduced and used
to define novel ReLS estimators for linear system identifi-
cation. All of the estimators are then tested via Monte Carlo
studies in Section 7. Conclusions end the paper while some
mathematical details are gathered in Appendix.

2 Problem statement

We use u(t) and y(t) to denote, respectively, the input and
the noisy output of a SISO system observed at time instant
t. For convenience of notation we shall also use the notation
yi := y(ti). The measurement model we consider is of the
Output-Error (OE) type:

yi = (g⊗u)i + ei, i = 1, . . . ,N (2.1)

where g is the system impulse response, (g⊗ u)i denotes
the convolution in discrete time between g and u evaluated
at ti. Finally, ei are independent Gaussian noises of constant
variance σ

2. The results could be straightforwardly extended
to non stationary noises and/or ARMAX/BJ type structures.
Our problem is to estimate the impulse response g assuming
the input u is (deterministic and) known and having collected
the measurements Y = [y1 . . . yN ]

T .

Remark 2.1 In the sequel, we will discuss regularized esti-
mators based on IIR (infinite impulse response) or FIR (fi-
nite impulse response) models for g and equipped with a
regularizer J(g). In the IIR case, following the well known
concept of BIBO stability, J is said to include the stabil-
ity constraint if it embeds the constraint ∑

∞

t=1 |gt |< ∞. FIR
models are already structurally stable. However, also in this
case we will often use expressions as lack of stability con-
straint to mean that J does not include the information that
impulse response is expected to decay to zero as a function
of the time lag. In particular, this concept will be formalized
in Bayesian terms.

3 ReLS based on Hankel nuclear/atomic norms

In this section we describe two ReLS approaches which use
as regularizer J either the Hankel nuclear norm or a version
of the atomic norm that can be approximated by the `1 norm.

3.1 Regularization via Hankel nuclear norm

We introduce a regularizer based on the Hankel nuclear
norm. Recall that the nuclear norm of a matrix A is the sum
of its singular values, i.e.

‖A‖∗ = ∑
i

σi(A).

The motivation underlying the use of this type of penalty for
system identification stems from the fact that the minimum
realization order (also known as McMillan degree) of a dis-
crete time LTI system coincides with the rank of the Hankel
operator H(g) constructed from the impulse response coef-
ficients gt , i.e.

H(g) =


g1 g2 g3 · · ·
g2 g3 g4 · · ·
g3 g4 g5 · · ·
...

...
...

. . .

 . (3.1)

Then, as described e.g. in [27,35], an estimator trading data
fit with low McMillan degree can be obtained by solving

argmin
g

N

∑
i=1

(yi− (g⊗u)i)
2 + γ‖H(g)‖∗ (3.2)

3.2 Regularization via atomic norm

A different, but related regularization approach to linear
system identification, called the atomic norm regularization
approach, was recently suggested in [48]. It describes the
model using “atoms” and defines a model complexity mea-
sure in terms of the “atomic norm”. This complexity mea-
sure is then used for regularization.

Let C be the complex plane and D = {w ∈ C , |w|< 1} and
consider below the discrete-time case. A simplistic account
of the idea is as follows: Given a set of “atoms”, Gw(z),w ∈
D (which can be interpreted as basis functions for the model
transfer function), we can construct a linear model via linear
combinations of the atoms. For a concrete feeling of the
concept, think of the atoms as normalized first order system
with pole (possibly complex) denoted by w ∈D , so

Gw(z) =
1−|w|2

z−w
. (3.3)

The transfer function of any linear system can be written as
a finite or countable linear combination of these atoms:

G(z) = ∑
k

akGwk
(z), wk ∈D . (3.4)

The atomic norm of this system is defined as

‖G(z)‖A = inf

{
∑

wk∈D
|ak| : (3.4) holds

}
. (3.5)

It has been proved in [48] that the atomic norm well approx-
imates the Hankel nuclear norm of G(z), thus motivating its
use in system identification.
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For computational reasons, a finite number of atoms Gwk
(z),

k = 1, · · · , p are selected. If Gwk
(z) is selected and wk ∈ C ,

then Gw∗k
(z) shall be also within the selected p atoms where

w∗k is the complex conjugate of wk. Let the impulse response
of Gwk

(z) be ρwk
and denote

hwk
(i) = (ρwk

⊗u)i

Then, recalling (3.4), the fit between the measured output
and the model is

N

∑
i=1

(
yi−

p

∑
k=1

akhwk
(i)

)2

and, if a is the vector with k-th component ak, the atomic
norm regularized estimate becomes the LASSO like

â = argmin
a

N

∑
i=1

(
yi−

p

∑
k=1

akhwk
(i)

)2

+ γ

p

∑
k=1
|ak|. (3.6)

4 Bayesian interpretation of regularization: the Hankel
nuclear norm and the atomic norm case

Every ReLS estimator

argmin
g

N

∑
i=1

(yi− (g⊗u)i)
2 + γJ(g) (4.1)

can be given a simple interpretation in Bayesian terms.
To simplify the exposition, assume that the measurements
model (2.1) can be written as a FIR of order m. Then, abus-
ing notation, we use g to denote the (column) vector con-
taining the impulse response coefficients g1, . . . ,gm. More
specifically, assume that g is a random vector with pdf

p(g) ∝ exp
(
−J(g)

2λ

)
(4.2)

where “∝” stands for “proportional to” while λ is a positive
scale factor. Assume also that Y is corrupted by additive zero
mean white Gaussian noise, independent of g, of variance
σ

2, i.e.

p(Y |g) ∝ exp

(
−∑

N
i=1 (yi− (g⊗u)i)

2

2σ
2

)
.

By the Bayes rule, the posterior of g is the product of the
likelihood and the prior, i.e. p(g|Y ) ∝ p(Y |g)p(g), so that

− log p(g|Y ) = ∑
N
i=1 (yi− (g⊗u)i)

2

2σ
2 +

J(g)
2λ

+Const.

Hence, setting γ = σ
2/λ , one can conclude that ReLS (4.1)

can be always seen as a maximum a posteriori (MAP) esti-
mator.

The estimator (4.1) obtained from this Bayesian perspective
will perform well only provided the density p(g), defined
through (4.2), succeeds in capturing the essential features
and possibly prior knowledge on the underlying dynamical
system. In particular the prior should privilege stable and
possibly smooth impulse responses. Now, it is of interest to
elucidate the shape of the priors underlying the two ReLS
approaches introduced in the previous section.

4.1 The Hankel nuclear norm case

According to the previous Bayesian interpretation of regu-
larization, the nuclear norm regularizer

J(g) = ∑
i

σi(H) (4.3)

is associated with the prior

pH(g) ∝ exp
(
−∑i σi(H)

2λ

)
.

Now, we would like to understand how well pH describes
typical features of an impulse response.

By symmetry, it is easy to assess that g is zero-mean but then
a simple closed form expression for the distribution of its
components gt is not available. In Appendix 9.1 we describe
a Markov chain Monte Carlo (MCMC) scheme to efficiently
sample from pH [24], also exploiting a closed form approx-
imation of pH . Fig. 1 reports some results extracted from
a chain of length 1e6 setting 2λ = 1,g ∈ R99,H ∈ R50×50.
The left panel shows the standard deviations of the impulse
response coefficients gt (solid line) while the right panel
displays information on the correlation between the com-
ponents of g. The outcomes show that, under pH , the im-
pulse response coefficients gt are (approximately) uncorre-
lated and with bathtub variance. This suggests that the prior
associated with the Hankel nuclear norm provides a weakly
informative guess when searching for stable and smooth
impulse responses. This analysis also shows that even an
apparently reasonable regularizer could be associated to a
meaningless prior distribution.

Remark 4.1 Lack of stability, manifesting itself in the fact
that the impulse response prior variance does not decay to
zero as a function of the lag index t, should not come as
a surprise. In fact, for any fixed m and any given “stable”
partial impulse response {gt}

m
t=1, it is always possible to find

an unstable impulse response {ht}
m
t=1 with the same Hankel

nuclear norm. A simple example goes as follows: consider
the (finite) Hankel matrix Hm(g) built with the first m impulse
response coefficients of gt = cat−1b and the matrix Hm(h)

4



built with ht = am−1c
( 1

a

)t−1
b. It is simple to check that

Hm(g) can be obtained from Hm(h) by reversing the order
of rows and columns and thus ‖Hm(h)‖∗ = ‖Hm(g)‖∗.

Remark 4.2 In [13], the problem of selecting a quadratic
penalty for the reconstruction of stable exponentials was
investigated under a deterministic framework. It has been
shown that favorable mean squared error (MSE) proper-
ties can be obtained letting the diagonal (and off-diagonal)
elements of the kernel (covariance) matrix decay exponen-
tially to zero (as the entry number increases). In the Hankel
case, it is shown in Appendix 9.1 that one approximately has
Var(gt) ∝ t−1 for the first impulse response coefficients and
Var(gt) ∝ (m− t+1)−1 for the last ones (recall that m is the
order of the adopted FIR). So, the Hankel regularizer does
not include exponential dynamics, a key point to well trade-
off bias and variance. Note also from the particular profile
of Var(gt) that the choice of m has an important influence
on the structure of the Hankel regularizer.

4.2 The atomic norm case

It has been shown in [48] that, restricting to {gt}t∈Z+ ∈ `2,
the atomic norm (3.6) is equivalent to the Hankel nuclear
norm. For this equivalence to extend to the “finite” nuclear
norm (4.3) the size of the Hankel matrix (3.1) (and thus
the truncation index m) needs to grow to infinity. Note that
the restriction {gt}t∈Z+ ∈ `2 is critical since, as we have
seen, for any finite m the Hankel nuclear norm does not
include a “stability” constraint. The situation is different with
the atomic norm as any finite sum of (stable) atoms (3.4)
will always result in a stable impulse response. Yet the `1
penalty on the coefficients in (3.6) (see also (4.4) below) may
introduce severe bias. More insights are discussed below.
Let gt = ∑

p
j=1 a jρ j(t). In view of (3.6), the atomic norm

regularizer

J(g) =
p

∑
j=1
|a j| (4.4)

amounts to a Bayesian prior

pAN(g) ∝ exp

(
−

∑
p
j=1 |a j|
2λ

)

so that the unknown parameters a j are Laplace distributed
independent random variables, all having the same variance.
As in the case of LASSO, the solutions of (3.6) enjoy some
sparsity properties meaning that, when γ increases, more
and more elements of vector a are forced to zero. This may
seem an appealing property but the results may fail to meet
the expectations. In fact, the `1 penalty may introduce an
excessive penalty on some large coefficients a j to obtain
sparsity, as documented in the Statistics literature [21, 56]
and also recently demonstrated and discussed in [4]. In par-
ticular, assume that the true impulse response g is the sum
of a finite number of atoms. For a large enough value of
γ , all the a j which do not contribute to g will go to zero

but the linear penalty in (3.6) will still yield to biased es-
timates of the other expansion coefficients, so that the re-
sulting estimate is oversmoothed (biased). An example of
this phenomenon is illustrated in Fig. 2 (left panel) which
reports the results obtained via a Monte Carlo study where
the impulse response g is fixed while different noise and in-
put realizations are generated at every run, in the same way
as described in Section 7. The estimates of g are obtained
by (3.6) using 300 input-output samples, with γ chosen by
an oracle. The latter has access to the true g and selects the
regularization parameter which minimizes the mean squared
error (the concept of oracle-based estimation is further de-
tailed in subsection 7.2). Under a Bayesian viewpoint, the
estimator suffers from the equal probability assigned to all
the atomic functions so that the oracle can select few atoms
only assuming that the prior variance (which is proportional
to λ ) is quite low. Obviously, this introduces a bias. It is
worth asking if the adoption of different atoms and an un-
equal weighting on their expansion coefficients may be a
remedy. We explore this issue in the next section.

5 Stable spline kernels and atoms

In the first part of this section we review the stable spline
kernel, comparing its features with the prior induced by
the Hankel nuclear norm discussed in section 4.1. We then
compare the structure of the stable spline estimator with the
atomic approach of section 4.2, also introducing the concept
of stable spline atoms.

5.1 Stable spline kernels

According to its stochastic interpretation, we have seen that
every ReLS can be seen as a Bayesian estimator. In particu-
lar, each quadratic penalty can be obtained modeling the im-
pulse response as a particular (zero-mean) Gaussian process.
This implies that fixing the covariance (kernel) is equivalent
to fixing the quadratic regularizer.
In system identification the kernel should include informa-
tion on smoothness and exponential stability of the impulse
response g. One choice suggested in the literature is the so
called first-order Stable Spline kernel [38], also called TC
in [13]. Letting E denote expectation, for t = 1,2, . . . and
s = 1,2, . . . it is defined by

K(s, t) = E[gsgt ] ∝ α
max(s,t), 0≤ α < 1, (5.1)

while it is null elsewhere. The second-order version was
proposed in [40]. It is given by

α
s+t

α
max(s,t)

2
− α

3max(s,t)

6
, 0≤ α < 1 (5.2)

and leads to smoother impulse response realizations. Notice
that both kernels are parametrized by α which is interpreted
as an unknown hyperparameter.
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Fig. 1. Prior induced by the Hankel Nuclear Norm: the impulse response coefficients are contained in the vector g ∈ R99, modeled as
a random vector with probability density function pH(g) ∝ exp(−‖H(g)‖∗). Here, ‖ · ‖∗ is the nuclear norm while H(g) is the Hankel
matrix (3.1) of size 50× 50. Left: standard deviations of the impulse response coefficients gt reconstructed by MCMC (solid line) and
approximated using the prior (9.1,9.2) (dashed line) derived in Appendix. The figure also displays the standard deviations of gt when g
is a Gaussian random vector with stable spline covariance (5.1) for two different values of α (dashdot lines). Right: 50-th row of the
matrix containing the correlation coefficients returned by the MATLAB command corrcoef(M) where each row of the 1e6×99 matrix
M contains one MCMC realization of g under the Hankel prior pH(g) ∝ exp(−‖H(g)‖∗).
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Fig. 2. Monte Carlo experiment with a fixed impulse response: true impulse response (thick line) and mean±standard deviation (dashed
line, computed after 100 runs) of the estimators At+Or (left) and iTS (implemented as described in subsection 7.2). Recall that, differently
from iTS, At+Or is not implementable in practice since γ is tuned using the true impulse response.

The left panel of Fig. 1 reports the standard deviations of a
random vector g whose covariance is the sampled version of
(5.1) with α set to 0.8 and 0.9 respectively (dashdot lines).
Differently from the bathtub prior induced by the Hankel
nuclear norm (solid line), the stable spline kernel describes
system dynamics which go exponentially to zero. Further,
the hyperparameter α enhances model flexibility since it
permits to tune the decay rate.

Also, while nonstationary white noise underlies the Hankel
prior (see the right panel of Fig. 1), (5.1) introduces cor-
relation among the impulse response coefficients, hence in-
cluding information on impulse response smoothness. This
is important to have good MSE properties as discussed in
Remark 4.2. With the same remark in mind, note also that,

differently from the Hankel nuclear norm case, the stable
spline prior shape is independent of the selected FIR order,
thus making its effect on the estimation process more trans-
parent. If m is increased e.g. to 2m, the statistics of the first
m impulse response coefficients remain the same.

5.2 Stable spline atoms and regularizer

Let g be a discrete-time Gaussian stochastic process with co-
variance proportional to the stable spline kernel (5.1). Then,
the following proposition characterizes the architecture of
the minimum variance estimator of g given the measure-
ments (2.1).
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Proposition 5.1 Let

yi = (g⊗u)i + ei, i = 1, . . . ,N

where ei are all mutually independent, Gaussian, with zero-
mean and variance σ

2. Assume also that g is a zero-mean
Gaussian and causal process, independent of the noise, with
covariance

E[gsgt ] = λα
max(s,t) (5.3)

with λ a positive scale factor. Then, one has

α
max(s,t) =

∞

∑
j=1

ζ jρ j(s)ρ j(t) (5.4)

where

ρ j(t) =
√

2sin

 α
t√
ζ j

 , ζ j =
1

( jπ−π/2)2 (5.5)

and

E [gt |Y ] =
∞

∑
j=1

â jρ j(t) (5.6)

where

â = argmin
a

N

∑
i=1

(
yi−

∞

∑
j=1

hi ja j

)2

+ γ

∞

∑
j=1

a2
j

ζ j
(5.7)

with

hi j = (ρ j⊗u)i, γ =
σ

2

λ
.

Finally, the estimate admits also the closed-form expression

E [gt |Y ] =
N

∑
i=1

ĉi(K(·, t)⊗u(·))i (5.8)

where ĉi are the components of the vector ĉ

ĉ := (A+ γIN)
−1 Y (5.9)

with

Ai j =
∞

∑
t=1

u( j− t)

(
∞

∑
k=1

u(i− k)K(t,k)

)
(5.10)

�

The result above leads to the following comments:

• when the stable spline prior (5.1) is used, according to
(5.6), the impulse response estimate is searched in the
subspace spanned by the functions ρ j given by (5.5).
It is then natural to call

Aα =

{
sin
(

πα
t

2

)
,sin

(
3πα

t

2

)
,sin

(
5πα

t

2

)
, ..

}
the (first-order) stable spline atomic set. Such a set

is parametrized by the positive scalar α which mea-
sures the distance from instability. Note also that the
stable spline atoms ρ j are ordered in such a way that
their energy content at high frequencies increases as
j augments and that their structure is much different
w.r.t. that adopted in [10] and reported in (3.3);

• atomic norms are typically designed in such a way as to
assign the same penalty to each expansion coefficient
a j. Instead, according to (5.7,5.5), given g=∑

∞

j=1 a jρ j,
the (first-order) stable spline estimator uses the stable
spline regularizer

J(g) =
∞

∑
j=1

a2
j

ζ j
(5.11)

where ζ j are weights decaying to zero. The expansion
coefficients a j are thus constrained to decay to zero at a
rate which guarantees both impulse response regularity
and system stability. Hence, penalizing high-frequency
components, also by adjusting γ , the stable spline reg-
ularizer may privilege more parsimonious models 1 ,
possibly leading to estimators which better trade bias
and variance;

• the first step in the design of atomic-norm based es-
timators is the selection of the atomic set whose con-
vex hull then defines the regularizer. In our stochastic
framework, both of these steps are condensed in the
choice of the covariance (kernel). Indeed, the kernel
encodes both the atoms ρ j and the regularizer, defined
by ζ j. This subsumes modeling and computational ad-
vantages: one needs neither to choose the number of
atoms to be used (the kernel includes an infinite num-
ber of basis functions ρ j so that no truncation affects
the impulse response representation) nor store any ba-
sis function in memory. In fact, the estimate (5.8) can
be computed using the kernel just inverting a matrix, as
shown in (5.9). This feature is related to what is called
the kernel trick in the machine learning literature [47].

6 Integral versions of stable spline kernels

When the stable spline kernel is used, we have seen from
(5.5) that the atoms ρ j depend on a single parameter α

which establishes the decay rate of the eigenfunctions. Fol-
lowing also [11], a way to further enrich the hypothesis

1 Note that, when using the approach proposed in [48], the atoms
reported in (3.6) contain the term 1− |w|2 which implicitly pe-
nalises basis functions close to the unit circle. However, no penalty
is assigned to high-frequency impulse response components.
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space, making it more flexible, is to exploit different values
of α . However, differently from [11], our aim is the syn-
thesis of a new kernel (in closed form) able to “contain” an
infinite number of different decay rates, but which remains
function only of a finite number of hyperparameters. In our
Bayesian framework, we can obtain this by modeling the
impulse response g as the sum of i.i.d. stochastic processes
whose stable spline kernels differ in the value of α . In par-
ticular, let us introduce two hyperparameters: αm, related to
the fastest system pole, and αM , connected with the slow-
est dynamics. Then, we can consider p values αi satisfying
αm ≤ α1 < α2 < .. . < αp ≤ αM and equally spaced with
step ∆α , then building the kernel

∆α

p

∑
i=1

α
max(s,t)
i (6.1)

which induces the richer atomic set

A[αm,αM ]=

sin

 α
t
i√
ζ j

 , j = 1,2, . . . and i = 1,2, . . . , p


(6.2)

where we still have ζ j =
1

( jπ−π/2)2 . Letting p → ∞, so

that ∆α → 0 in (6.1), the sum becomes the integral∫ αM
αm

α
max(s,t)dα which leads to the new first-order integral

stable spline kernel called iTC and reported in Table 1. The
same procedure can be repeated starting from (5.2) obtain-
ing the second-order integral stable spline kernel, called
iSS in Table 1.
Finally, these two kernels iTC and iSS can be summed up,
obtaining the kernel dubbed iTS in Table 1. This kernel thus
synthetizes an infinite number of atoms that not only have
different decay rates α ∈ [αm,αM] but also two different
smoothness levels.

We can now introduce estimators based on the different reg-
ularization matrices P which are function of the hyperpa-
rameter vector η as reported in Table 1. The estimators have
the same structure as documented in [40] and [13]. In par-
ticular, assuming a high order FIR, it is useful to rewrite the
measurements model (2.1) as

Y = Φg+E (6.3)

Here, as in section 4, g now denotes the m-dimensional
vector whose components are the impulse response coeffi-
cients while the regression matrix Φ is defined by the in-
put samples. Then, the noise variance σ

2 is estimated from
the residuals obtained by fitting g via least squares. The hy-
perparameter vector is instead determined through marginal
likelihood optimization [36], i.e.

η̂ = argmax
η

Y T
Σ
−1
η Y + logdet

(
Ση

)
(6.4)

where Ση = ΦPΦ
T +σ

2IN . Finally, the impulse response

TC Pk j(η) = λα
max(k, j);

λ ≥ 0, 0≤ α < 1, η = [λ ,α]

SS Pk j(η) = λ

(
α

k+ j+max(k, j)

2
− α

3max(k, j)

6

)
λ ≥ 0, 0≤ α < 1, η = [λ ,α]

iTC Pk j(η) = λ
α

max(k, j)+1
M −α

max(k, j)+1
m

max(k, j)+1
λ ≥ 0, 0≤ αm ≤ αM < 1; η = [λ ,αm,αM ]

iSS Pk j(η) =
λα

k+ j+max(k, j)+1
M

2(k+ j+max(k, j)+1)
−

λα
3max(k, j)+1
M

18max(k, j)+6

− λα
k+ j+max(k, j)+1
m

2(k+ j+max(k, j)+1)
+

λα
3max(k, j)+1
m

18max(k, j)+6
λ ≥ 0, 0≤ αm ≤ αM < 1; η = [λ ,αm,αM ]

iTS Pk j(η) = λ
α

max(k, j)+1
M −α

max(k, j)+1
m

max(k, j)+1

+
λα

k+ j+max(k, j)+1
M

2(k+ j+max(k, j)+1)
−

λα
3max(k, j)+1
M

18max(k, j)+6

− λα
k+ j+max(k, j)+1
m

2(k+ j+max(k, j)+1)
+

λα
3max(k, j)+1
m

18max(k, j)+6
λ ≥ 0, 0≤ αm ≤ αM < 1; η = [λ ,αm,αM ]

Table 1
List of (k, j) entries of different regularization matrices P built
using Stable Kernels

estimate is the solution of

argmin
g
‖Y −Φg‖2 +gT P−1g

(note that J(g) has become gT P−1g above), which is given
by

ĝ = PΦ
T

Σ
−1
η Y (6.5)

with η set to its estimate η̂ .

7 Simulated data: Monte Carlo studies

7.1 Data sets and performance index

We compare different estimators for discrete-time system
identification. To this aim, we resort to two Monte Carlo
studies whose implementation details are the same as de-
scribed in Section 7.2 of [41]. Here, we just recall that each
Monte Carlo consists of 1000 runs. At each run, g is defined
by a different rational transfer function, given by the ratio
of two polynomials of the same order (varying from 1 to
30), randomly obtained by a Matlab generator. The system,
initially at rest, is fed with an input obtained by filtering a
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Fig. 3. Monte Carlo experiment: boxplots of the fits using 300 (left panel) or 1000 (right panel) input-output samples. Recall that At+Or,
Hank+Or and Oe+Or are not implementable in practice since they exploit the knowledge of the true impulse response to tune model
complexity.

Atomic Hankel At+Or Hank+Or Oe+Or iTS

N = 300 4.5 31.9 59.5 63.7 64.8 65.1

N = 1000 39.2 63.3 67.1 73.7 72.6 72.9

Table 2
Monte Carlo experiment: average fit achieved by PEM equipped with oracle (Oe+Or), ReLS based on Atomic norms (Atomic and
At+Or), Hankel nuclear norms (Hankel and Hank+Or) and the new estimator based on the stable kernel iTS, using 300 or 1000 input-
output samples. Recall that At+Or, Hank+Or and Oe+Or are not implementable in practice since they exploit the knowledge of the true
impulse response to tune model complexity.
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Fig. 4. Monte Carlo experiment: boxplots of the fits returned by ReLS equipped with different stable kernels using 300 (left panel) or
1000 (right panel) input-output samples. All the estimators are implementable in practice.

iTS iTC iSS TC SS

N = 300 65.1 64.8 64.4 63.2 62.3

N = 1000 72.9 72.7 71.6 70.6 69.2

Table 3
Monte Carlo experiment: average fit returned by ReLS equipped with different stable kernels using 300 or 1000 input-output samples.
All the estimators are implementable in practice.

9



Oe+Or iTS

0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

Fits (N=300)

Oe+Or iTS

0  

10 

20 

30 

40 

50 

60 

70 

80 

90 

100

Fits (N=1000)

Fig. 5. Monte Carlo experiment using a different system generator: boxplots of the fits achieved by Oe+Or and iTS using 300 (left
panel) or 1000 (right panel) input-output samples.

zero mean unit variance white Gaussian noise through a 2nd
order rational transfer function which also varies from run
to run. Output data are corrupted by a white Gaussian noise,
with the SNR (ratio between the variance of the noiseless
output and the noise) randomly drawn at every run in the
interval [1,10]. The first and the second Monte Carlo study
differ in the number N of available input-output measure-
ment, equal to 300 or 1000, respectively.
Given an estimator ĝ, its performance index is evaluated
computing the fit measures

F j = 100×

(
1− ‖g

j− ĝ j‖
‖g j‖

)
, j = 1, . . . ,1000 (7.1)

where g j and ĝ j are the true and the estimated impulse
response at the j-th run.

7.2 Estimators compared via the Monte Carlo study

Oe+Or All the impulse response estimators introduced so
far depend on an unknown parameter vector, denoted by η ,
which controls model complexity. For instance, in all the
regularized techniques η contains at least the regularization
parameter γ . When using PEM, η instead represents the
order of different model structures. For instance, consider
the use of rational transfer functions for discrete-time system
identification. Then, η is the degree of the polynomials B(z)
and A(z) composing the transfer function given, in the z-
transfer domain, by

G(z) =
B(z)
A(z)

(7.2)

Hereby, ĝ is said to be an oracle-based estimator if, having
access to the true impulse response g, it determines model
complexity by maximizing the fit measure (7.1) w.r.t. η .
Note that such an impulse response estimator is never im-
plementable in practice since the true impulse response g is
not available. This identification procedure is however use-
ful since it provides a performance reference. In particular,

Oe+Or denotes the following PEM procedure. First, the
Matlab function Oe.m is used to fit the model structures
(7.2) to data for η = 1, . . . ,30 (the information that system
was initially at rest is given to the estimator). Then, among
the 30 impulse response estimates obtained, Oe+Or returns
that maximizing (7.1).
Hankel,Hank+Or We have implemented two variants of the
estimator (3.2) based on the Hankel nuclear norm adopting
a FIR model of order m = 99 with the size of the Hankel
matrix H(g) equal to 50× 50. In the first version, dubbed
Hankel, the regularization parameter is estimated via cross
validation. Data are divided into an identification and vali-
dation data set of equal size. For every value of γ in the grid
defined by the MATLAB command logspace(-5,4,50),
the solution (3.2) is obtained from the identification data us-
ing the software CVX [25,26]. The regularization parameter
γ̂ is the one leading to the best prediction on the validation
set according to a quadratic fit criterion. Finally, the impulse
response estimate is achieved by solving (3.2) using γ = γ̂

and all the available data. The second version of the estima-
tor exploits an oracle which, at every run, selects the value
of γ in the set logspace(-5,4,50) which maximizes the
fit (7.1).
Atomic,At+Or Two types of atomic estimators (3.6) have
been implemented. In both the variants, the atomic set is
defined by the poles wk = αe

√
−1β and their complex con-

jugate w∗k where, using a MATLAB notation, α and β take
values on the two grids [0.02:0.02:0.98 0.99 0.999]
and [0 π/50:π/50:π], respectively. Optimization (3.6) is
then performed constraining each couple of expansions co-
efficients ak related to complex conjugate poles to be equal
and real. 2 The first estimator, dubbed Atomic, obtains at
each Monte Carlo run the value of the regularization pa-
rameter via 10-fold cross validation. It has been imple-
mented exploiting the MATLAB software package glmnet
[23], providing the information on system initial conditions

2 We have also implemented the estimator (3.6) equipped with a
different atomic set given by discrete-time Laguerre basis functions
[54]. Results (not shown) are similar to those described in the
sequel obtained adopting (3.3).
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and input delay. We have also used the MATLAB com-
mands options.lambda=logspace(-5,4,100) to de-
fine the grid where the regularization parameter is searched
and options.intr=0 to specify that the relation between
g and the system output is linear (and not affine). The sec-
ond estimator, dubbed At+Or, is implemented in the same
way, except that the regularization parameter is selected by
the oracle.
TC,SS,iTC,iSS,iTS These are the estimators (6.5) equipped
with the stable kernels described in Section 6, with the di-
mension of g set to m = 100 and the hyperparameter vector
η estimated via marginal likelihood optimization (6.4). Note
that all of these estimators are implementable in practice

7.3 Results

Boxplots of the fits achieved by Atomic, At+Or, Hankel,
Hank+Or, Oe+Or and iTS in the two Monte Carlo studies
are displayed in the left and right panel of Fig. 3. Table 2
also shows the average fits.
It is apparent that the fits of Hankel are significantly smaller
than those returned by Oe+Or. The more so in the first ex-
periment where the average fit of Hankel is 31.9 while that
of Oe+Or is 64.8. Instead, the performance of Hank+Or (γ is
chosen by the oracle) is virtually identical to that of Oe+Or.
As for Atomic, its performance is not satisfactory, inferior
than that of Hankel. Only using the oracle-based estimator
At+Or, the performance becomes comparable with that of
Oe+Or. Instead, the integral prior iTS largely outperforms
the other regularized system identification approaches pro-
posed in the literature. Remarkably, its performance is very
close or also superior to that of the oracle-based approaches.
For instance, in the two experiments iTS provides average
fits equal to 65.1 and 72.9 whereas Oe+Or return 64.8 and
72.6.
The beneficial effect of the unequal weighting on the ex-
pansion coefficients is evident also reconsidering Fig. 2: iTS
(right panel, results with γ estimated via marginal likelihood)
outperforms At+Or (left panel, results with γ estimated by
the oracle).
Finally, Fig. 4 and Table 3 permit to compare the perfor-
mance of all the ReLS approaches equipped with the stable
kernels. As a matter of fact, all the estimators perform well,
revealing the importance of informing the estimation pro-
cess of system stability. Notice also that iTS provides the
best results, pointing out benefits of integral versions of sta-
ble kernels.

7.4 Use of a different system generator

The random generator adopted so far defines challenging
systems, with poles often located at high frequencies. How-
ever, a visual inspection reveals that the average number
of significant Hankel singular values is rather small, being
around 10. A consequence is that the mean order selected
by Oe+Or is around 5. We have thus found of interest to
repeat the experiment adopting a different “higher-order”
generator. The rational transfer function order is now fixed

to 30 and the poles are selected iterating the following pro-
cedure at every Monte Carlo run: With equal probability a
real or a couple of complex conjugate poles is added to the
denominator until its order reaches 30. In the case of a real
pole, it is randomly drawn from a uniform distribution on
[−0.95,0.95], while the absolute values and phases of the
complex conjugate pairs are independent random variables
uniform on [0,0.95] and [0,π], respectively. The zeros are
then selected in the same way except that their absolute val-
ues are drawn in the interval [0,2].
Boxplots of the fit values are reported in Fig. 5, restricting
the comparison to Oe+Or and iTS. Remarkably, the advan-
tage of iTS over Oe+Or increases: its average fit is 65.3 vs
59.3 when N = 300 and 76.7 vs 73.3 when N = 1000. This
can be explained considering that, on average, Oe+Or now
selects models of order 13 and this may further undermine
optimal asymptotic properties of PEM under correct order
specification. In addition, such an estimator has now to hinge
on higher-dimensional non convex problems, possibly more
prone to local minima. Under these circumstances, ReLS
equipped with empirical Bayes can be especially useful, see
also [36, 37] for insights on marginal likelihood effective-
ness in controlling model complexity.

8 Real data: temperature prediction

To test the algorithms on real data we have also considered
thermodynamic modeling of buildings. We placed sensors
in two rooms of a small two-floor residential building of
about 80 m2 and 200 m3; the sensors have been placed only
on one floor (approximately 40 m2) and their location is
approximately shown in Fig. 6 (top panel). The larger room
is the living room while the smaller is the kitchen. The
experimental data was collected through a wireless sensor
network made of 8 Tmote-Sky nodes produced by Moteiv
Inc, each of them is provided with a temperature sensor.
The building was inhabited during the measurement period,
which lasted for 8 days starting from February 24th, 2011;
samples were taken every 5 minutes. The heating system
was controlled by a thermostat; the reference temperature
was manually set every day depending upon occupancy and
other needs. The location of the 8 sensors was as follows:

• Node #1 (label 137 in Fig. 6) was above a cabinet (2.5
meters high).

• Node #2 (label 111) was above a sideboard, about 1.8
meters high, close to thermoconvector.

• Node #3 (label 139) was above a cabinet (2.5 meters
high).

• Node #4 (label 140) was placed on a bookshelf (1.5
meters high).

• Node #5 (label 141) was placed outside.
• Node #6 (label 153) was placed above the stove (2

meters high).
• Node #7 (label 156) was placed in the middle of the

room, hanging from the ceiling (about 2 meters high).
• Node #8 (label 160) was placed above one radiator and

was meant to provide a proxy of water temperature in
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Fig. 6. Nodes location (top) and measured temperatures during the
first 40 hours (bottom).

the heating system.

This gives a total of 8 temperature profiles. A preliminary
inspection of the measured signals, reported in Fig. 6 (bot-
tom panel) reveals the high level of collinearity which is
well-known to complicate the estimation process in System
Identification [7, 32, 51].
We only consider Multiple Input-Single Output (MISO)
models, with the temperature from the first node as output
(yi) and the other 7 temperatures as inputs (u j

i , j = 1, ..,7).
We leave identification of a full Multiple Input-Multiple
Output (MIMO) model for future investigation. We split
the available data into 2 parts; the first Nid = 1000 tem-
perature samples are the identification data while the last
Ntest = 1500 are used for test purposes. The notation ytest

identifies the test data. Note that Nid = 1000, with 5 minute
sampling times, corresponds to around ' 80 hours; this is
a rather small time interval and, as such, models based on
these data cannot capture seasonal variations. Consequently,
in our experiments we assume a “stationary” environment
and normalize the data so as to have zero mean and unit
variance before identification is performed.
We envision that model predictive based methodologies,
(see [8] and the recent papers [55], [43], [17]), may be
effective for these applications and, as such, we evaluate
our new estimators based on their ability to predict future
data. The predictive power of the model is measured for

k-step-ahead prediction on test data, as the fit:

F k := 100×

1−

√
∑

Ntest
i=k (ytest

i − ŷi|i−k)
2√

∑
Ntest
i=k (ytest

i )2

 . (8.1)

Identification has been performed using ARMAX+Or, Han-
kel and iTS. More specifically, ARMAX+Or exploits AR-
MAX models formed by polynomials of the same order. It
has access to the test set and selects that model order which
maximizes ∑

100
k=1 F k. In particular, it turns out that setting

the order to 7 provides the best average fit on an horizon of
length around 8 hours.
As for the two regularized estimators, consider ARX models
of the form yi = (g1⊗y)i+∑

7
j=1(g

j+1⊗u j)i+ei, where the
{g j} are the 8 unknown one-step ahead predictor impulse
responses. Then, both Hankel and iTS assume the form

argmin
gi

N

∑
i=1

(
yi− (g1⊗ y)i−

7

∑
j=1

(g j+1⊗u j)i

)2

+γ

8

∑
j=1

J(g j),

differing only in the adopted J. Both these estimators are
then implemented in the same way described in the previous
section.
The three estimators are compared using as performance
indexes F k defined in (8.1). The results are reported in Fig.
7 (left panel): similarly to what happened using simulated
data, the performance of ARMAX+Or and iTS is similar
and superior than that of Hankel. Sample trajectories of one-
hour-ahead test data prediction obtained by iTS anzd Hankel
are also visible in Fig. 7 (right panel).

9 Conclusions

The results of this paper highlight the importance of
Bayesian interpretation of ReLS for system identification.
In particular, the Bayesian framework offers transparent
guidelines for selecting regularizers that capture crucial
system features. Another use regards the assessment of
existing regularizers: for instance, the drawbacks of the
Hankel nuclear norm have been linked to the adoption of
a Bayesian prior which models the impulse response as a
nonstationary white noise.
Similar drawbacks affect also other recent approaches that
model the impulse response as the superimposition of a
large set of atoms, employing an atomic norm as regular-
izer. In the literature, it has been argued that any reasonable
penalty function should be constant on the set of atoms [10].
Actually, this can result in penalty functions with poor ca-
pability of controlling model complexity, thus leading to
estimators with large variance. Indeed, if the number of
atoms to be included tends to infinity, all of them being
e.g. of unit `1 norm, any regularizer including smoothness
and system stability can not assign the same penalty to the

12



0 2 4 6 8
70

75

80

85

90

95

Hours ahead

P
re

d
ic

ti
o

n
 f

it

 

 

ARMAX+Or

iTS

Hankel

0 10 20 30 40

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Hours

T
e

m
p

e
ra

tu
re

 C
 (

d
e

v
ia

ti
o

n
 f

ro
m

 m
e

a
n

)

One−hour ahead prediction

 

 

Test data

iTS

Hankel

Fig. 7. Test set prediction fit F k as defined in (8.1) (left) and 1-hour ahead test set prediction (right). Recall that ARMAX+Or is not
implementable in practice since it exploits the knowledge of the test set to tune model complexity.

atoms. Including smoothness and stability constraints in the
estimation process, e.g. using stable spline kernels, instead
leads to a kind of regularizer whose weights are non uni-
form. Advantages are confirmed by the simulation studies:
in the Monte Carlo experiments the family of regularizers
induced by stable kernels, including the three novel covari-
ances iTC, iSS and iTS, performs systematically better than
other nuclear and atomic techniques.
In conclusion, we also stress that, even if drawbacks of the
Hankel norm have been here illustrated, this does not mean
that such regularizer can not be useful for system identi-
fication. For example, the MIMO case has not been well
investigated yet and there can be also cases where large
magnitude corruptions or un-modelled dynamics can be well
described by Hankel or weighted Hankel norms [35, 46].
An interesting perspective is also the design of estimators
that combine stable kernels and atomic norms. Preliminary
work on this can be found in [14, 42].

Appendix

9.1 Hankel nuclear norm prior: approximation and
MCMC reconstruction

Our aim is to design an MCMC scheme able to reconstruct
in sampled form the prior

pH(g) ∝ exp
(
−∑i σi(H)

2λ

)
associated to the Hankel nuclear norm regularizer. The key
point is the definition of a proposal density leading to an
efficient Metropolis-Hastings update, e.g. see [24]. For these
purposes, it is useful to introduce the novel regularizer

J(g) = ∑
i

σ
2
i (H).

According to the Bayesian interpretation of regularization,
the associated prior is

p̃H(g) ∝ exp

(
−∑i σ

2
i (H)

2λ

)
(9.1)

= exp

(
− tr(HHT )

2λ

)
.

where tr(HHT ) is the trace of HHT . The last equality, to-
gether with simple calculations, leads to the following result.

Proposition 9.1 Let g∈Rm and H ∈Rp×p, where m= 2p−
1. If g is a random vector with pdf p̃H(g), then all the gt are
independent and Gaussian. In particular, one has

gt ∼

 N
(

0, λ

t

)
if 16 t 6 m+1

2

N
(

0, λ

m−t+1

)
if m+1

2 < t 6 m
(9.2)

�

Thus, p̃H describes the impulse response coefficients as
white noise whose variance first decreases until t = m+1

2 ,
and then increases, a stochastic process whose realizations
are hardly similar to those of a stable system. Note also that
the choice of the dimension m of g has an important influ-
ence on the prior shape as the minimum value is reached
for t = m+1

2 .
Coming back to the original Hankel prior, we have ex-
ploited the prior p̃H to generate a Markov chain converging
to pH(g) ∝ exp

(
−∑i σi(H)

2λ

)
setting 2λ = 1,g ∈ R99,H ∈

R50×50. In particular, results displayed in Fig. 1 and dis-
cussed in subsection 4.1, have been obtained generating a
chain of length 1e6 by a random walk Metropolis scheme.
More specifically, when the state chain is gk, the pro-
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posed sample is generated as hk+1 = gk +αsk, where all
the sk are i.i.d. random vectors drawn from p̃H while
the scale factor α is set to 0.3. Then, with probability
min

(
1, pH(h

k+1)/pH(g
k)
)

the Markov chain state gk+1 is

set to hk+1, otherwise gk+1 = gk. The left panel of Fig. 1
also shows the standard deviations of the impulse response
coefficients gt under the approximated prior p̃H character-
ized by (9.1) (dashed line, scaled so that the variances of
g1 under p̃H and pH are equal). The similarity between p̃H
and pH confirms that the bad performance of the nuclear
norm regularizer is due to a prior which shares the same
flaws pointed out by (9.2).

9.2 Proof of Proposition 5.1

We start discussing the functional nature of the problem
(5.7), then obtaining its Bayesian interpretation. Just for a
while, it is useful to reason in continuous-time and introduce
the following Sobolev space [1] of functions h : [0,1]→ R

S =

{
h : h(0) = 0, h abs. cont.,

∫ 1

0
ḣ2(t)dt < ∞

}

with (squared) norm ‖h‖2
S =

∫ 1
0 ḣ(t)2dt. It is well known

that this is a RKHS with reproducing kernel which coincides
with the covariance of the Brownian motion and is given,
for t,s≥ 0 by

S(s, t) = min(s, t) = 2
∞

∑
j=1

ζ j sin

 t√
ζ j

sin

 s√
ζ j


(9.3)

where ζ j =
1

( jπ−π/2)2 . Combining (9.3) and Theorem 4 on

pag. 37 of [16], S can be also expressed as

S =

h | h(t) =
∞

∑
j=1

h j
√

2sin

 t√
ζ j

 t ∈ [0,1],
∞

∑
j=1

h2
j

ζ j
< ∞.


(9.4)

Now, note that min(α t ,αs)=α
max(t,s). Then, still using (9.3)

we obtain

α
max(s,t) = 2

∞

∑
j=1

ζ j sin

 α
t√
ζ j

sin

 α
s√
ζ j

 , (9.5)

which coincides with (5.4) when t and s are restricted to the
set of natural numbers N. Hence, the results contained on
pag. 351 of [5] on the RKHSs derived by sampling kernels
allow us to conclude that the RKHS induced by the stable
spline kernel with domain on N×N is

H =

g | g(t) =
∞

∑
j=1

g j
√

2sin

 α
t√
ζ j

 t ∈ N,
∞

∑
j=1

g2
j

ζ j
< ∞.


(9.6)

with ‖g‖2 = min{g j}∑
∞

j=1
g2

j
ζ j

s.t. g = ∑
∞

j=1 g j
√

2sin
(

t√
ζ j

)
.

In view of the RKHS connection, the solution of (5.7) can
be now obtained by the representer theorem for system iden-
tification. More specifically, Theorem 3 on pag. 671 of [41]
and the connection between Bayes estimation of Gaussian
processes reported in Sections 1.4 and 1.5 of [53] lead to
(5.8) and this completes the proof.
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