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Abstract

Offshore structure design requires a reliable definition of the wave loads. With climate change, extreme wave events

pose significant concerns in coastal and ocean engineering. Moreover, these events are expected to increase in

frequency and severity. Waves have the potential to inflict extensive damage on offshore and coastal structures,

leading to human and economic losses. The research community has underlined the importance of understanding

wave action on an offshore structure. This study aims to analyse wave generation, propagation and structure interac-

tion using Lagrangian particle methods. Multiple models will be utilised and developed to simulate various scenarios:

from the generation regular waves in a channel to the modelling of nonlinear wave interacting with floating structures.

Sommario

I carichi generati dalle onde sulle strutture offshore necessitano di una corretta definizione. I cambiamenti climatici

aumentano la probabilità di eventi estremi, questi rappresentano una grave preoccupazione per tutte quelle strutture

inserite nel contesto marittimo, dalle navi ai parchi eolici. Onde di grande dimensioni possono causare gravi danni

oltre che alle strutture, anche al personale tecnico. Inoltre possono essere cause di gravi perdite economiche.

Questo lavoro propone di analizzare la generazione, propagazione e interazione di onde con strutture utilizzando

metodi numerici Lagrangiani particellari. Diversi modelli sono stati studiati e sviluppati applicandoli a una grande

varietà di casi studio: dalla generazione di onde regolari in canale alla modellazione dell’interazione di onde non

lineari con strutture flottanti.
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1

Introduction

The marine environment is highly complex and demanding, introducing many challenges in the field of offshore

engineering. The population of marine structures has significantly increased and is expected to continue growing.

Marine structures encompass a wide array of constructions found in the sea, ranging from large vessels to offshore

wind farms and oil rigs. Concurrently, the marine environment is rapidly evolving, with sea conditions deteriorating

due to climate change. This includes rising mean sea levels, increased mean wave heights, and more frequent

extreme wave events. Consequently, existing marine structures require thorough assessment to ensure the safety

of both the structure and its operators. Moreover, newly designed structures necessitate accurate definition of wave

loads.

Wave loads are typically assessed using empirical methods, often overlooking the loads generated by extreme

waves. Achieving a precise definition of wave load requires scaled experimental models. However, such experi-

mental campaigns are costly and require a minimum scale to avoid inaccuracies. Additionally, any changes to the

experimental setup can be prohibitively expensive and may necessitate a complete redesign. Numerical simula-

tions can complement laboratory experiments and, once validated, can guide the design of offshore structures and

experimental campaigns.

In this study, we explore the potential of modelling wave loads using Lagrangian particle methods. Various models

are developed and validated across a range of scenarios. Lagrangian particle methods hold significant appeal due

to their ability to accurately reproduce large domain deformations and fragmentation (e.g., wave breaking), as well

as strong velocity and pressure gradients (e.g., wave-structure impact).

The work starts with a discussion on the role of mathematical models in engineering. The governing equations of

fluid dynamics (Navier-Stokes equations) are introduced, with analytical solutions achievable only for relatively simple

cases. To obtain the solution for engineering problems of practical interest, these equations must be discretized and

solved using approximate numerical techniques. The approaches utilised in this study are presented and analysed.

The first approach discussed is Smoothed Particle Hydrodynamics (SPH), a Lagrangian particle-based method

relying on the kernel approximation of field functions. A comprehensive overview of the method is provided, covering

both fundamental principles and advanced features. The second approach, the Particle Finite Element Method

(PFEM), also a Lagrangian particle-based method, combines the advantages of particle methods with the positive

features of using computational grids. A remeshing technique based on Delaunay triangulation is introduced to

model large domain deformations. Additionally, the Simulating WAves Nearshore (SWAN) model, which solves the

spectral balance equation for the action density spectrum, is presented for hindcasting and forecasting sea waves in

coastal contexts.

Then, the work illustrates the fundamental aspects of free surface waves, beginning with a bibliographic overview.

The small wave theory (Airy) and analytical solutions of boundary value problems are discussed, followed by topics

such as dispersion equations and dynamic pressure in regular waves. The generation of waves in a channel is

explored, including the presentation of transfer functions for different wavemaker types, with a focus on piston type

wavemakers. The study delves into non-linear waves, particularly solitary waves, and introduces the focusing wave

theory before discussing short-term wave analysis of random sea states, including the definition of directional wave

spectra.
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Subsequently, these models are applied for the analysis of problems of practical interests, from the definition of

wind-generated wave conditions, to the wave propagation toward the shore and the impact with rigid structures. The

first study focuses on wave hindcasting in a portion of the Mediterranean Sea using the SWAN model, generating

waves from wind forecast data and modelling main physical processes of wave generation and transformation.

Validation against field measurements from a wave measurement station is performed across a large sea area

utilizing digital terrain models. Then, modeling regular wave generation in a two-dimensional channel using the

SPHERA v9.0.0 is carried out. Non negligible wave height and velocity dissipation prompted the introduction of a

renormalisation technique on the kernel derivative. Results are detailed in a conference paper titled: “SPH Simulation

of Water Waves and Impact with a Rigid Offshore Structure in a 2D Flume". Subsequent investigation involves non-

linear wave impact with a fixed box-shaped structure, highlighting the advantages of modeling both water and air.

The development of a new strategy for modeling multi-phase flows with high density ratio is addressed, focusing on

water-air simulations and using as primary computational variable the mass rather rather than density. The paper

titled: “Wave generation and wave-structure impact modeling with WCSPH" features the simulation of multi-phase

dam breaks and the validation of the single-phase formulation, albeit with noted numerical aberrations i.e. tensile

instability and particle clusters.

The PFEM model demonstrates promising applications, addressing regular, non-linear, and solitary waves. This

research runs parallel to the development of the SPH model, culminating in a comprehensive comparison between

the two Lagrangian methods. Results are compared and validated against experimental data, providing a detailed

comparison across various scenarios. This comparison is detailed in the publication titled: “Lagrangian particle-

based simulation of waves: a comparison of SPH and PFEM approaches".

The research, thus far, has primarily focused on wave impacts with fixed structures. However, floating structures

are of great concern in the marine environment. The study shifts focus to a floating structure moored with cables

to the seabed, necessitating a 3D simulation to account for tridimensional effects. An SPH model (SPHinXsys) is

coupled with a multi-body model (Simbody) to simulate fluid impact, structure displacement (based on hydrodynamic

forces) and cable tension. Validation of the model accurately reproduces structure movement and impact pressures,

as reported in the paper titled: “3D SPH analysis of focused waves interacting with a floating structure".

The development of the multiphase model, derived from SPHERA v9.0.0 (RSE SpA), allows overcoming those

issues identified in the initial formulation. This involves the introduction of new numerical schemes, notably a particle

shifting technique, aimed at preventing non-physical movement of the free surface. The introduction of an adaptive

method, relying on a newly introduced particle identification method based on the determinant of the particle concen-

tration matrix, ensures accurate simulation of multiphase flows with high density ratios. Early results demonstrate

promising applications, with ongoing improvements discussed.

The objective of this work is to develop, apply and validate Lagrangian particle methods illustrated in this thesis,

to the modeling of wave generation, propagation and wave-structure interaction. The main scientific contributions of

this work are:

• Development of the kernel gradient normalization (KGN) with the introduction of a threshold value for the

application of KGN in the momentum balance equation for reduction of numerical dissipation in slow dynamic

flows maintaining numerical stability during rapidly varying flows, such as wave-structure impacts.

• Development of a novel formulation of weakly compressible smoothed particle hydrodynamics (SPH) for han-

dling fluids with high density ratio. Furthermore, computationally efficient diffusive terms are introduced in the

continuity equation instead of pressure smoothing.

• A particle shifting technique based on Fick’s law is developed, featuring a novel free surface identification pro-

cedure to prevent non-physical movement of the free surface. This technique also includes interface treatment

using Riemann solvers.

• For the first time, a comparison between the SPH method and the PFEM method for modeling waves and

wave-structure impacts is presented, highlighting advantages and drawbacks of each method.

2
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• For the first time, development of an SPH model coupled with a multi-body dynamic model, for the simulation of

a freak wave impact and interaction with a complex three-dimensional floating structure moored with tendons,

analyzing both kinematic and dynamic aspects.

All the author’s contributions to the codes development, as illustrated in this thesis, are traced on GitHub.
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2

Introduction to mathematical modelling

Role of Numerical Methods

In the pre-computer era, solving complex problems relied on two main methods. The first was the traditional

theoretical approach, which often required approximations and assumptions. However, these theoretical solutions

frequently failed to fully capture physical phenomena, leading to the necessity for experimental campaigns to be

conducted. These campaigns resulted in the development of empirical formulas. However, the empirical descriptions

derived from such campaigns were limited in validity to the specific cases investigated. Conducting experiments was

costly due to the high precision required, time-consuming due to the large amount of data needed, and often subject

to scale effects that couldn’t be disregarded. Achieving a minimum scale reduction to obtain reliable data was not

always feasible.

In contrast, numerical methods emerged as a cheaper alternative to experimental campaigns, offering greater

versatility by enabling rapid and cost-effective adjustments to setups. They have the potential to model a wide range

of physical phenomena and eliminate many of the assumptions inherent in analytical descriptions.

However, employing numerical methods requires model calibration and validation. They are typically considered

as complementary tools to experimental models, rather than standalone instruments of investigation [1, 2].

2.1 Grid Based and Mesh-less Methods

A mathematical model might interpret a real physical problem. The model is a collection of governing equations

(ordinary or partial differential equations PDE) with need of initial or/and boundary conditions. If analytical description

cannot be obtained, the computational domain and the governing equations must be discretized and solved in

approximate way using numerical techniques.

2.1.1 Grid Based Methods

Continuum mechanics analysis can be conducted using two alternative approaches: Lagrangian and Eulerian. These

two approaches are mathematically related.

In the Lagrangian framework the time rate of change of physical quantities is evaluated in a frame of reference

moving with the material continuum adopting the total time derivative D
Dt (also known as the material derivative),

which can be expressed through the linear combination of the local derivative ∂
∂t and the convective derivative

ui
∂

∂xi
, describing the Eulerian framework. In Equation (2.1), F represents a generic field function, and the Einstein

convention is applied on the right-hand side, where a repeated index implies summation over that index.

DF

Dt
=
∂F

∂t
+ ui

∂F

∂xi
(2.1)
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Lagrangian Approach describes the physical properties of a material particle within a reference frame moving with

the particle itself. Computationally, the grid attached to the continuum follows its deformation without any mass flux

between adjacent cells. This material continuum deformation implies relative motion between mesh nodes, which

can result in distortion of mesh cells, potentially causing numerical issues [2].

Here is a list of features for the Lagrangian approach:

6 Lack of convective term in the governing equation.

6 Easy tracking of field variables over time.

6 Mesh adapts to irregular and complex geometries, describing free or moving boundaries and material inter-

faces.

6 Grid points only needed inside the continuum.

: Large deformation of the continuum and high mesh distortion can disrupt numerical accuracy.

: Adaptive mesh rezoning is used to control mesh distortion, introducing high computational effort.

Eulerian Approach describes any physical property of a material continuum within a space-fixed frame of refer-

ence. Computationally, a fixed grid is generated in both space and time, with no deformation occurring and mass flux

between adjacent cells. Large deformation in the object does not affect the grid, thus avoiding numerical problems.

Eulerian methods are commonly used in Computational Fluid Dynamics (CFD) simulations where flow of continuum

dominates [3, 2].

Here are the characteristics of the Eulerian approach:

: Convective transport must be estimated, influencing the time stepping.

: Tracking the time history of field variables at a fixed material point is complex.

: Cumbersome numerical mapping is required to model complex geometries, making accurate location of free

or moving boundaries and material interfaces difficult.

: Computational grids must anticipate where the fluid can move, resulting in large grids.

6 Continuum deformation does not induce mesh distortion nor affect the numerical solution.

6 Adaptive mesh behaviour is not necessary.

These two approaches can be combined arbitrarily to obtain Lagrangian-Eulerian formulations, offering compu-

tational advantages. However, description of these methods falls beyond the scope of this brief introduction to the

basics of numerical modelling.

2.1.2 Mesh-free Methods

In mesh-free methods, the continuum is discretised using a set of arbitrarily distributed nodes that have no physical

connection between them. Each node represents a material continuum. Considering the scale of the problem,

each node represents an arbitrary volume that is large enough to neglect the effects of microscopic disorder yet

small enough to disregard macroscopic heterogeneity. This enables to describe the physical properties by means of

continuous functions of space and time.

2.1.3 Comparison Between Methods

The methods provide distinct approaches, with each being better suited to specific applications.

Key advantages of mesh-free methods include:

6 Ability to handle large deformations of the continuum.

6 Direct acquisition of particle tracking and physical quantities from the governing equations.

6 Straightforward tracking of free and moving surfaces.
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2.2 Derivation of the Navier-Stokes Equations

The governing equations for a Newtonian fluid are the Navier-Stokes equations. When applied in real engineering

applications, some assumptions are made to simplify their formulation. Figure 2.1 illustrates the schematics of a

control volume and the fluxes involved in the problem. From this scheme, two equations are derived: the mass

balance equation, also known as the continuity equation, and the momentum balance equation, also known as the

motion equation.

Figure 2.1: Two-dimensional infinitesimal control volume element and its mass fluxes.

Mass Balance Equation This equation is derived from the principle of mass conservation. It states that the time

rate of mass change within an infinitesimal control volume must balance the net mass flux through its boundaries.

Considering a control volume with constant boundaries as depicted in Fig. 2.1, the mass balance equation asserts

that the difference between inward and outward fluxes of specific mass through the volume W must equal the time

rate of density.

∂Ä
∂t +

∂Äuj

∂xj
= 0 or

∂Ä
∂t + uj

∂Ä
∂xj

+ Ä
∂uj

∂xj
= 0

(2.2)

Equation (2.2) is written according to the Eulerian approach. Applying relation (2.1) yields the Lagrangian formu-

lation.

DÄ

Dt
+ Ä

∂uj
∂xj

= 0 or
DÄ

Dt
= −Ä∇ · u (2.3)

Momentum Balance Equation Newton’s second law states that within an inertial frame of reference, the vector

sum of forces F on a material point equals the mass m times its acceleration a: F = ma. Applying this law to a

material fluid particle of volume dW , the overall external force F, such as surface forces and volume forces, acting

on the particle must equal the material derivative of the linear momentum, defined as the product of mass m = ÄdW

times velocity u.

D(uÄdW )

Dt
= F (2.4)

The external force F include body forces, pressure forces, and viscous forces. The time rate of change of the

linear momentum equals the resultant force acting on it. Using Gauss’s theorem, the equation of motion, represented

in Eulerian form, is derived:

∂ui
∂t

+ uj
∂ui
∂xj

= −1

Ä

∂(p+ Ägx3)

∂xi
+

1

Ä

∂Äij
∂xj

for i = 1, 2, 3 (2.5)
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The second term on the right-hand side of (2.5) is the viscous stress acting on on the surface of the particle. The

balance on surface stresses is depicted in Fig. 2.2, considering a three-dimensional control volume.

Figure 2.2: Stress components on the surface of a cubic infinitesimal element for translational equilibrium in x1

direction.

In a Newtonian Fluid, the rheological behaviour linearly relates the viscous stress tensor Äij to the components

of the strain rate tensor εij , the proportional factor µ being the dynamic viscosity.

Äij = µ

[
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

¶ij

]
(2.6)

The right-hand side shows the deviatoric part of the strain rate tensor. When (2.6) is substituted into (2.2), the

momentum balance for Newtonian fluid is obtained.

∂ui

∂t + uj
∂ui

∂xj
= − 1

Ä
∂(p+Ägx3)

∂xi
+ µ

Ä

[
∂

∂xj

∂ui

∂xj
+ 1

3
∂

∂xj

∂uj

∂xi

]
for i = 1, 2, 3

or

Du

Dt = − 1
Ä∇(p+ Ägx3) +

µ
Ä

[
∇2u+ 1

3∇(∇ · u)
] (2.7)

The ratio µ/Ä represents the kinematic viscosity, typically denoted by ¿.

2.3 The Smoothed Particle Hydrodynamics Method

Smoothed Particle Hydrodynamics (SPH) is a mesh-free Lagrangian method used to describe field functions through

integral representation and particle approximation. Initially developed for studying astrophysical problems [4, 5], SPH

has since been extended to model various continuum problems, including free surface flows [6] and impact and

penetration into solids [7].

2.3.1 Basics of SPH Method

Figure 2.3 illustrates the continuum discretised according to the SPH particle approximation, consisting of a set of

particles arbitrarily distributed in space.

A field variable ϱ(r), such as mass or velocity, is defined in the spatial domain Ω. The spatial position of each par-

ticle, represented by the position vector r, influences the variable. Equation (2.8) defines the integral representation

of a field function.

ϱ(r) =

∫

Ω

¶(r− r′)ϱ(r′) dΩr′ (2.8)

8
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Figure 2.3: Discretization and distribution of a field variable within the domain.

In Figure 2.3, dΩr′ represents the elementary volume surrounding the computational particle identified by the

position vector r′, and ¶(r− r′) is the Dirac delta function.

¶(r′ − r) =





0, if r′ < r− ε
2

1
ε , if r− ε

2 < r′ < r+ ε
2

0, if r′ > r+ ε
2

(2.9)

The Dirac delta function lacks some mathematical features such as continuity and differentiability. To address

this, various mathematical formulations known as kernel functions Φ have been proposed. Kernels depend on the

relative distance between particles r = |r−r′| and are defined over a compact support Ψ(»h). The compact support

extension is proportional through the constant » to the smoothing length. The choice of the smoothing function is

crucial for the accuracy of the method and depends on the problem being investigated [8]. Here, we introduce two

widespread kernel functions: the Gaussian kernel (2.10) and the cubic spline kernel (2.11).

Φ(r, h) =
1

(Ãh2)
n
2

exp−
r2

h2 (2.10)

The Gaussian kernel (2.10) is continuous and differentiable to any orders. It approaches rapidly to zero, it is not

compactly supported but for numerical computation purposes can be treated as it is. The radius of the support may

increase significantly for high-order derivatives to assure the compact requirement.

Φ(r, h) =





Cn

hn

(
1− 3

2 r̃
2 + 3

4 r̃
3
)
, 0 f r̃ f 1

Cn

hn

(
1
4 (2− r̃)3

)
, 1 f r̃ f 2

0, otherwise

(2.11)

Where r̃ = r/h is the non-dimensional radius and Cn is the normalisation factor assuming different values

depending on the problem dimension n.

Cn =





2
3 n = 1

10
7Ã n = 2

1
Ã n = 3

The cubic spline kernel (2.11) has a narrow support while resembling the Gaussian. The second derivative is

linear, therefore less smooth and can lead to numerical issues while dealing with high particle disorder.

Once introduced the kernel function, equation (2.8) becomes (2.12) which is the integral or kernel approximation

of a field variable.

ïϱ(r)ð =
∫

Ω

Φ(r, h)ϱ(r′) dΩr′ (2.12)

9
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Properties of Kernel All kernel functions used in fluid dynamics share common features.

The partition of unity principle dictates that within the compact support, the integral of the kernel function must

be unity:

∫

Ω

Φ(|r− r′|, h) dΩr′ = 1 (2.13)

This condition ensures normalization.

As the smoothing length tends to zero, the kernel function approaches the Dirac delta function:

lim
h→0

Φ(r− r′, h) = ¶(r− r′) (2.14)

The kernel function, as defined in equation (2.15), is zero when the distance between particles exceeds a certain

threshold:

Φ(r− r′, h) = 0 if |r− r′| g »Ç (2.15)

The kernel function is a central function of r = |r− r′|, which ensures that the gradient between two particles is

independent of the computational particle:

∇rΦ(r− r′, h) =
∂Φ

∂r

(r− r′)

|r− r′| = −∇r′Φ(r
′ − r, h) (2.16)

The subscript on the gradient symbol indicates the computational particle where the gradient is evaluated.

Kernel Approximation of a Function Derivative Equation (2.12) demonstrates how to compute the gradient of a

field function by substituting the function with its gradient:

ï∇r · ϱ(r)ð =
∫

Ω

[∇r · ϱ(r′)]Φ(r, h) dΩr′ (2.17)

Considering the identity (2.18):

[∇ · ϱ]Φ = ∇ · [ϱΦ]− ϱ · [∇Φ] (2.18)

Substituting into (2.16) and applying the divergence theorem:

ï∇ · ϱ(r)ð =
∫

∂Ω

ϱ(r′)Φ(r, h) · n dS

−
∫

Ω

ϱ(r′) · [∇r′Φ(r, h)] dΩr′

(2.19)

The first integral on the right-hand side is evaluated on the boundary ∂Ω. If the compact support of the kernel

Φ lies entirely within the domain Ω (as depicted in Fig. 2.4), the integral must be zero according to (2.15). Hence,

using (2.16):

ï∇ · ϱ(r)ð =
∫

Ψ(»h)

ϱ(r′) · [∇Φ(r, h)] dΩr′ (2.20)

Here, the differential operator acts on the smoothing function Φ rather than on the field variable ϱ.

Particle Approximation of a Function and its Derivative The particle approximation (2.21) allows us to obtain

the integral kernel approximation in discrete form for a material point (i-th) within the discretised continuum.

ïϱ(ri)ð ∼=
N∑

j=1

ϱ(rj)
mj

Äj
Φ(rij , h) (2.21)

In (2.21), the index j refers to the j-th neighbouring particle, each of which is within the compact support of the

kernel centered on particle i. The j-th particle has a volume of ∆Wj = mj/Äj within the influence domain of particle

i (ΩI ). The distance between particles is denoted by rij = |ri − rj |.

10
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Figure 2.4: Representation of a kernel (smoothing) function.

The particle approximation states that a generic function ϱ for the i-th material point is estimated as the weighted

sum of values assumed by ϱ at neighbouring particles j, within the compact support, the smoothing function being

the weight. Particles closer to the i-th particle exert more influence on ϱ.

Similarly, the derivative is evaluated as:

ï∇ · ϱ(ri)ð =
N∑

j=1

mj

Äj
ϱ(rj) · ∇Φ(rij , h) (2.22)

From equations (2.21) and (2.22), the distinct feature of SPH as a mesh-free method is evident. The particle

approximation enables the estimation of ϱ without the need for a topological link or connection between material

points.

The following properties of the particle approximation are useful developing the balance equations:

ïϱ1 + ϱ2ð = ïϱ1ð+ ïϱ2ð
ïbϱ1ð = bïϱ1ð
ïϱ1ϱ2ð = ïϱ1ðïϱ2ð

(2.23)

Here, b is a real constant. The first and second equations in (2.23) state that the kernel approximation ïð is a

linear operator.

Further identities can be derived:

Ä∇ · ϱ = ∇ · (Äϱ)− ϱ · ∇Ä
∇·ϱ
Ä = ϱ

Äq · ∇( 1
Ä1−q ) +

1
Ä2−q∇ · ( ϱ

Äq−1 )
(2.24)

These alternative mathematical formulations of the derivative of the generic ϱ function can be obtained by apply-

ing the particle approximation on each side of equation (2.24), and remembering the linear properties in equations

(2.23). From equation (2.22), it follows:

Äiï∇ · ϱ(ri)ð =
∑N

j=1mj [ϱ(rj)− ϱ(ri)] · ∇Φ(rij , h)
1
Äi
ï∇ · ϱ(ri)ð =

∑N
j=1mj [

ϱ(rj)
Äq
j

1

Ä2−q
i

− ϱ(ri)
Äq
i

1

Ä2−q
j

] · ∇Φ(rij , h) (2.25)

SPH Discretization of Governing Equations The SPH discrete form of the balance equations is obtained by

applying the integral representation of a function. The mass balance equation (2.3) in Lagrangian form for mediated

quantities is:

〈DÄ
Dt

〉
i
= −

N∑

j=1

mj(uj − ui) · ∇Φij (2.26)

Here, Φij = Φ(rij , h) and the relative velocity between particles (uj − ui) = uij . The SPH approximation is

obtained for an inviscid fluid, i.e., µ = 0, taking into account the second equation in (2.25) with q = 2:

〈Du

Dt

〉
i
= −

N∑

j=1

mj

( pi
Ä2i

+
pj
Ä2j

)
∇Φij + g (2.27)
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By deriving (2.27) from (2.7), the kernel approximation of ïÄgzði is substituted by the gravity acceleration vector

g.

Weakly Compressible Fluid The weakly compressible fluid hypothesis is valid as long as the local variations from

the reference value of density Äi remain small enough (on the order of one per cent) [8]. This hypothesis allows

for the decoupling of the governing equations and the adoption of a larger time step in the numerical solution. The

Courant-Friedrichs-Lewy condition for explicit integration must be satisfied: ∆t(cs + u)/h f CCFL ∈ [0 ÷ 1]. For a

single-phase physical system, the adopted state equation is:

p

pi
= K

( Ä
Äi

)µ
− 1 (2.28)

The weakly compressible hypothesis implies that the Mach number must be small enough. According to [6], the

following condition must be satisfied, where u is the characteristic velocity modulus of the problem and cs is the

artificial sound velocity of the fluid:

Ma =
u

cs
∼= 0.1 (2.29)

The characteristic flow velocity u is given by Torricelli’s velocity
√
2gz for some surface problems, where g is the

modulus of the gravitational acceleration and z is a representative reference height.

2.3.2 Advanced Numerical Aspects

In this section, is provided a brief overview of some advanced numerical aspects. For detailed aspects one is referred

to the related publications.

Artificial Viscosity Artificial viscosity is used to obtain numerical stability. It is an additive term to the momen-

tum balance equation (2.27), enabling the simulation of shock wavefronts and impact problems. This approach is

based on the Von Neumann-Richtmyer artificial viscosity, which converts kinetic energy into heat during sudden

compression of the continuum. Monaghan (1989) proposes the following formulation, which also prevents particle

penetration:

Φij =





−³M0.5(csi+csj)κij+´Mκ
2
ij

0.5(Äi−Äj)
if uij · rij < 0

0 if uij · rij > 0
(2.30)

Here, csi and csj are the artificial sound velocities of the i-th and j-th particles; ³M and ´M are coefficients

(typically ´M = 0); and κij is defined as:

κij =
huij · rij

x2ij + (0.1h)2
(2.31)

It’s important to note that in (2.31), the dependency on the viscous stress is introduced due to the term xij , which

corresponds to to the inter particle spacing length scale [8].

Tensile Instability Large volume deformations in SPH are straightforward, but some numerical issues can affect

the results. As particles are going to be subjected to traction stress, tensile instability causes the exponential growth

of particle velocities for small perturbations. This problem has been carefully investigated, and references such as

Dyka & Ingel (1995), Morris (1996), Monaghan (2000), and Colagrossi (2004) offer detailed discussions [8].

Correction of Kernel In free-surface flows, particles near the free-moving boundary are characterised by kernel

truncation due to the lack of neighbouring particles (see Fig. 2.5). As the validity of Eq. (2.13) decreases, a correction

to the smoothing function is required:

Φ̃ij = ΦijAij (1 +Bij |ri − rj |) (2.32)

12
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Figure 2.5: Particle near the boundary and kernel truncation.

Here, the constants Aij and Bij can be evaluated by imposing a correctly interpolated velocity:

ui =

N∑

j=1

ujΦ̃ij∆Wj (2.33)

By considering a Taylor series expansion (first-order truncation) around the i-th point of the velocity field:

uj = ui +
dui

dxij
xij + · · · (2.34)

A second-order approximation is valid with the substitution of (2.34) into (2.33). The velocity field is evaluated

only in relation to the i-th material point:

ui = ui

N∑

j=1

Φ̃ij∆Wj +
dui

dxij

N∑

j=1

xijΦ̃ij∆Wj (2.35)

This identity implies:

∑N
j=1 Φ̃ij∆Wj = 1∑N
j=1 xijΦ̃ij∆Wj = 0

(2.36)

Shepard (1968) proposes an interpolation technique where the corrected form is assumed to be constant. From

equations (2.36) and (2.32), one may derive:

A−1
ij =

∑N
j=1 Φij∆Wj

Φ̃ij =
Φij∑

N
j=1

Φij∆Wj

(2.37)

Other types of smoothing function correction, such as using the kernel’s gradient, have been proposed, e.g.,

Bonet & Lok (1999) [9]. During computation with increased particle disorder, the smoothing approximation could be

inaccurate. Falappi (2006) [10] investigated the influence of particle disorder on the interpolation of a quadratic field

function. The error between the analytic solution and the interpolated one (both functions and derivatives) is higher

near the boundary of the computational domain. This problem can be mitigated with the adoption of Eq. (2.37) [8].

Neighbouring Particle Search Identifying which particles surround the computational particle is crucial for ac-

curately estimating field functions. Neighbouring particles of a computational particle are those that fall within the

interaction domain defined by the smoothing length (»Ç). Since particles lack a topological connection, the set of

neighbouring particles changes over time. Therefore, the computational particle requires continuous searching to

identify its neighbours. The cell-linked list algorithm, proposed by Liu & Liu (2007), is widely adopted to maintain a

constant smoothing length.

Figure 2.6 illustrates a mesh over the computational domain. All particles are assigned to their respective cells

through a linked list. The search for neighbouring particles of the i-th particle is restricted to the mesh cells near the

one in which the i-th particle is located. In a squared mesh with a side length equal to the kernel radius, only nine

cells (in 2D) are investigated for neighbouring search [8].
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Figure 2.6: Linked List Algorithm.

Boundary Conditions In astrophysics, no boundary conditions exist, but in fluid mechanics, boundary conditions

are essential, especially regarding the interaction of the fluid with solids, which is the focus of many fluid mechanics

studies. Several approaches are employed:

◦ Boundary Forces: This technique, stemming from studies on intermolecular repulsive forces, was proposed

by Lennard-Jones, further developed by Monaghan & Koss (2000).

◦ Ghost Particles: Introduced by Libersky et al. (1993), this method involves simulating the boundary by

creating particles that mirror those in the domain within a thin layer extending beyond the boundary. Pressure

and velocity are properly assigned.

◦ Semi-Analytic Integral: Boundary contribution to each term of the balance equations is computed by solving

an integral which is extended to the portion of the interaction domain of a computational particle beyond the

boundary, as proposed by Di Monaco et al. (2007). Pressure and velocity are assigned, and the boundary is

assumed to be continuous.

2.4 Basics of the Particle Finite Element Method

The Particle Finite Element Method (PFEM), briefly PFEM, is the second Lagrangian particle method utilised during

my PhD. Since its inception in the early works [11, 12], PFEM has been employed to study complex fluid dynamics

problems, particularly those involving continuous interface changes and fluid-structure interaction with free surfaces,

where intricate contact problems arise.

The fundamental concept of PFEM is to amalgamate the advantages of particle methods and finite element

methods. A computational mesh is generated over an array of particles, facilitating the finite element solution of the

Lagrangian governing equations. To accommodate large deformations of the domain, this method relies on a fast

and efficient remeshing technique [13].

Figure 2.7: Delaunay triangulation process. a) array of nodes, b) Voronoi diagram, c) Delaunay triangulation [13].

In PFEM, particle positions (and consequently the mesh) are continuously updated in a Lagrangian fashion ac-

cording to the solution of the governing equations. To ensure good discretisation quality for problems involving large

deformations, the mesh is continuously rebuilt. This is achieved by erasing all elements of the previous (distorted)

mesh while retaining the nodes. The new mesh is then constructed over this distribution of nodes using the Delaunay

triangulation, as illustrated in Figure 2.7 [14]. The Alpha-Shape method (Figure 2.8) is employed to remove mesh

elements that exceed a critical radius. The main steps of the PFEM remeshing procedure are summarized below:
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1. At each remeshing step:

2. Erase the elements of the previous mesh while retaining the nodes.

3. Create a Delaunay triangulation.

4. Perform an Alpha-Shape check to reconstruct the boundaries.

The Delaunay triangulation ensures good element quality for a given cloud of nodes, while the Alpha-Shape

method enables the recovery of the physical contours of the computational domain with high accuracy. The outcome

is a high-quality mesh ready for use in the finite element method (FEM) solution of subsequent computational steps.

Further details about the PFEM remeshing procedure and its implications on the PFEM solution can be found in [15].

Figure 2.8: Alpha-shape method [13].

Figure 2.9 depicts the PFEM remeshing steps, including the array of nodes, Delaunay triangulation, and Alpha-

Shape method. The image showcases the impact of a water jet on a wall, demonstrating rapid and significant domain

deformation.

Figure 2.9: PFEM remeshing. Left: array of nodes, middle: Delaunay triangulation, right: Alpha-shape method [13].

While this remeshing technique offers several advantages, such as the ability to model flows with high domain

deformation while maintaining good mesh quality, it also presents some disadvantages. These include the potential

for inducing artificial changes in topology and the significant concern of mass conservation loss. Additionally, it incurs

additional computational costs and results in the loss of elemental information stored at Gauss points because FEM

structures must be constantly rebuilt [13].

2.4.1 Finite Element Method Discretisation

The PFEM formulation used is the velocity-pressure solver for Newtonian fluids as presented in [16]. Linear inter-

polation is employed for both velocity and pressure unknowns. Finite Calculus (FIC) stabilisation [16] is utilised to

mitigate spurious oscillations resulting from the non-fulfillment of the inf-sup condition [17]. The governing equations

of a Newtonian fluid are discretised according to the standard Galerkin Finite Element Method (FEM). Consider-

ing a computational domain divided into Ne finite elements with n nodes, linear triangles (n = 3) are considered

for 2D problems. Linear shape functions Ne
i of the element e are defined for both velocity and pressure at each

node i [18, 19, 20]. Following the variational equation approach in [16], the mass balance and momentum balance

equations for a Newtonian fluid can be expressed in matrix form as:

M i ˙̄u+Kū+Qp̄ = f (2.38)

M1 ˙̄p+M2 ¨̄p+QT ū+ (L+M j)p̄ = fp (2.39)

Here, M i is the mass matrix, K is the viscous matrix, Q is the gradient matrix, f represents external forces,

M1 is the bulk matrix, and SÄ encompasses all terms arising from the FIC stabilisation procedure. The vectors ū
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and p̄ contain nodal velocities and pressures, respectively. The notation ˙̄a denotes the first material derivative of

vector ā. The tensors of Eqs. (2.38) and (2.39) are defined as follows:

M e
0ij =

∫
Ωe ÄN

e
i NjIdΩ

Ke
ij =

∫
Ωe B

eT
i DBeT

j dΩ

Qe
ij =

∫
Ωe B

eT
i mNe

j dΩ

Me
1ij =

∫
Ωe

1
kN

e
i N

e
j dΩ

Me
2ij =

∫
Ωe

Ä
c2N

e
i N

e
j dΩ

Me
bij =

∫
Ωe

2Ä
hn
Ne

i N
e
j dΓ

Le
ij =

∫
Ωe Ä(∇TNe

i )∇Ne
j dΩ

fei =
∫
Ωe N

e
i bdΩ+

∫
Γt
Ne

i tdΩ

fepi =
∫
Γt ÄN

e
i [Äu̇n − 2

hn
(2µϵn − tn)]dΓ−

∫
Ωe Ä∇TNe

i bdΩ

The integrals are defined over the element domain Ωe or at the boundary Γt. The sub-index n refers to the

normal component, and the mesh size is denoted as h. The stabilisation parameter Ä arising from the FIC procedure

is defined as:

Ä =

(
8µ

h2
+

2Ä

¶

)−1

(2.40)

where h and ¶ represent characteristic space and time lengths, respectively. The tensors introduced in the mass

balance and momentum balance equations are listed below:

• D = µ




4/3 −2/3 0

−2/3 4/3 0

0 0 2




• Be
i =




∂Ni

∂x 0

0 ∂Ni

∂y
∂Ni

∂y
∂Ni

∂x




• N e
i = Ne

i I

• ∇ =
(

∂
∂x ,

∂
∂y

)T

• m = [1, 1, 0]
T

For the full mathematical development of the discretised equations, the reader is referred to [16].

2.4.2 PFEM Solution Scheme

At each time step [nt; n+1t] of duration ∆t, the linear momentum and mass balance equations are iteratively solved

for the nodal velocities and pressures. The main steps of this implicit PFEM scheme are summarised below:

1. At each nonlinear iteration i:

2. Compute the nodal velocities ūi+1

3. Update the nodal coordinates: n+1x̄i+1

4. Compute the nodal pressures p̄i+1

5. Check for convergence:
∥ūi+1−ū

i∥
∥nū∥ f eu,

∥p̄i+1−p̄
i∥

∥np̄∥ f ep, where eu and ep represent prescribed error norms

for velocities and pressures.

6. If condition 4 is not fulfilled, return to step 1 with i← i+ 1.
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2.5 SWAN Model

The SWAN model, introduced by Booij et al. [21], allows computing the propagation ov waves near shore by solv-

ing the wave action balance equation with sources and sinks. The spectral action balance equation in Cartesian

coordinates, as defined by Hasselmann et al. [22], is expressed as:

∂

∂t
(N) +

∂

∂x
(cxN) +

∂

∂y
(cyN) +

∂

∂¹
(c¹N) +

∂

∂Ã
(cÃN) =

Sin/out

Ã
(2.41)

When hydrodynamic currents are taken into account, the energy spectrum S may vary while the wave action

density spectrum N remains constant [23]. Here, N represents the ratio of energy S to the relative frequency Ã,

which is the frequency evaluated in a frame of reference moving with the current. The terms contributing to the local

time rate of change of N include propagation in geographical space, refraction, and frequency shifting induced by

bottom variations and current. The right-hand side of Equation 2.41 encompasses the source/sink term incorporating

effects of generation, dissipation, and wave-wave nonlinear interactions.

2.5.1 Coordinates

SWAN operates in either a Cartesian coordinate system or a spherical coordinate system, corresponding to a flat

plane or a spherical portion of the Earth. In the input and output of SWAN, the direction of wind and waves can be

defined according to either:

• Cartesian convention: the direction to which the vector points, measured counterclockwise from the positive

x-axis (in degrees), or

• Nautical convention: the direction from which the wind or waves come, measured clockwise from geographic

North.

Figure 2.10: Coordinate system.

2.5.2 Grids

Spatial grids in SWAN can be structured or unstructured. Structured grids may be rectilinear (uniform or rectangular)

or curvilinear, always consisting of quadrilaterals with four grid cells meeting at each internal grid point. Unstructured

grids, on the other hand, may have an arbitrary number of cells meeting at each internal point, usually between 4

and 10. In SWAN, only triangular meshes can be used for unstructured grids.

Spatial grids defined by the user include:

• A computational spatial grid for SWAN computations.

• Spatial input grid(s) for bottom, current field, water level, bottom friction, and wind, if spatially variable.

• Spatial output grid(s) for desired SWAN output.

For inputs like wind and bottom friction, uniform values are used if they are constant over the area of interest.

17



Introduction to mathematical modelling

Spatial Grids

The spatial resolution for input grids should be chosen to appropriately resolve spatial details relevant for analysis,

such as bathymetry, currents, bottom friction, and wind. Often, characteristic spatial scales of wind waves propagat-

ing from deep to shallow waters vary significantly, necessitating local mesh refinement near the coast. This can be

achieved traditionally through nesting, computing waves first on a coarse grid for a larger region and then on a finer

grid for a smaller region.

Computational Spectral Grid

The computational spectral grid is defined by the user, specifying a minimum and maximum frequency and a log-

arithmic frequency resolution (e.g., ∆f = 0.1f ). The lowest frequency value must be somewhat smaller than 0.7

times the lowest peak frequency expected, while the highest frequency value should be at least 2.5 to 3 times the

highest peak frequency expected. In directional space, the default range is 360◦, but a limited directional range can

be specified for computational efficiency.

2.5.3 Boundary Condition

In SWAN, land absorbs all incoming wave energy, while water boundaries where no wave conditions are imposed

are assumed to allow waves to freely enter or leave the area. These boundaries should be sufficiently far from the

area of interest to minimize computational errors.

Figure 2.11: SWAN boundary condition [3].

2.5.4 Physical Processes

SWAN incorporates various physical processes that influence wave energy, including generation, dissipation, and

energy shift. These processes include:

• Wind input (I, II, and III generation modes)

• Whitecapping (steepness-induced wave-breaking)

• Depth-induced wave breaking in shallow water

• Bottom friction

• Dissipation due to vegetation, mud, or turbulence

18
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• Obstacle transmission

• Nonlinear wave-wave interactions (quadruplets and triads)

• Wave-induced set-up

To assess the relevance of a specific physical process, SWAN computations can be performed both with and

without the process, using standard values chosen within SWAN.
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Introduction to free surface waves

3.1 Basics of Linear Free Surface Wave Problems

Airy wave theory, also known as linear wave theory, mathematically describes small free surface waves. A wave is

represented by a harmonic function (3.1) [24].

¸(x, t) = a cos(kx− Ét) (3.1)

Here, a is the wave amplitude, k = 2Ã
L is the wavenumber related to the inverse of the wave length to the

wavelength L, É is the angular frequency, c = É
k = L

T is the phase velocity, and H = 2a is the wave height.

3.1.1 Boundary Value Problem

Analytical solution of small free surface waves can be obtained by solving the boundary value problem. This means

determining the solution to the set of partial differential equations that satisfies the conditions at the bounbdary

of the computational domain. To complete the system of equations, particular conditions must be imposed at the

boundaries.

Figure 3.1: Boundary value problem scheme [3].

The assumptions of the problem include an incompressible and inviscid fluid (negligible viscous effects), barotropic

flow, state equation is independent from temperature, conservative body forces, and irrotational flow at theinitial time.

These assumptions, combined with Kelvin’s theorem, imply that the velocity field remains irrotational. Hence, the

velocity field can be described by its potential ϕ(x, z, t).
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u = ∇ϕ(x, z, t) (3.2)

where ϕ must satisfy the Laplace equation:

∇2ϕ = 0 (3.3)

The assumption of conservative body forces allows expressing the body force field as the gradient of the gravi-

tational scalar potential φ(x, z, t) = −gz. Thus, the generalized formulation of Bernoulli equation for unsteady flow

is:

∂ϕ

∂t
+

1

2

[(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
]
+ gz +

p

Ä
= 0 (3.4)

To find the solution, the conditions on the boundaries are required. Assuming the bottom is impermeable, the

normal component of the velocity must be zero, resulting in the first kinematic condition (KBBC).

∂ϕ

∂x

∂h

∂x
+
∂ϕ

∂y

∂h

∂y
+
∂ϕ

∂z
= 0 at z = −h (3.5)

The kinematic free-surface boundary condition (KFSBC).

∂ϕ

∂x

∂¸

∂x
+
∂ϕ

∂y

∂¸

∂y
+
∂¸

∂t
=
∂ϕ

∂z
at z = ¸(x, t) (3.6)

The surface elevation ¸(x, t) is unknown a priori, and Bernoulli’s equation for unsteady potential flow is introduced

as dynamic free surface boundary condition (DFSBC). The pressure above the free surface is considered constant

and equal to zero.

∂ϕ

∂t
+

1

2

[(
∂ϕ

∂x

)2

+

(
∂ϕ

∂y

)2

+

(
∂ϕ

∂z

)2
]
+ gz = 0 at z = ¸(x, t) (3.7)

Additional conditions on the lateral boundaries may vary to suit the peculiarities of the problem. For the con-

sidered problem, where a free surface cylindrical wave propagates along the x-direction, no motion occurs in the

y-direction. The velocity field potential depends only on time and the coordinates x and z. The free surface profile

is a function only of time and the coordinate x. For waves that are periodic in time and space, the conditions are

expressed as periodic conditions (LBCs).

ϕ(x, z, t) = ϕ(x+ L, z, t)

ϕ(x, z, t) = ϕ(x, z, t+ T )
(3.8)

3.1.2 Solution of the Linearized Boundary Value Problem (LBVP)

The problem is linearised from a BVP representing cylindrical periodic water waves of small amplitude. If H is the

wave height, linear waves are characterised by:

H

L
j 1,

H

h
j 1, u, w, ¸ j 1 (3.9)

This assumption allows eliminating non-linear terms in the system of partial differential equations defined above,

and the solution can be found at the undisturbed free surface. The general solution of the Laplace equation is:

ϕ =
gH

2É

cosh(k(h+ z))

cosh(kh)
sin(kx− Ét) (3.10)

The solution for the free surface elevation is:

¸ =
H

2
cos(kx− Ét) (3.11)
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Equation (3.11) represents the free surface progressive wave propagating in the x-direction with the celerity given

by

c =
É

k
=
L

T
(3.12)

3.1.3 Dispersion Equation

Solutions of ϕ and ¸ for the the LBVP are substituted into the linear kinematic free surface boundary condition

(LKFSBC):

∂¸

∂t
− ∂ϕ

∂z
= 0 at z = 0 (3.13)

This substitution yields the dispersion equation:

É2 = gk tanh(kh) (3.14)

Equation 3.14 relates the wave characteristics k and omega for a given water depth h. By substituting the celerity

(3.12) into the dispersion equation (3.14), we obtain:

c2 =
g

k
tanh(kh) (3.15)

Differentiating by k (3.15) and applying the definition of wave celerity allows us to differentiate by k (3.14):

dc

dk
= −1

2

c

k
(1−G)

dÉ

dk
≡ d(ck)

dk
= c+

dc

dk
k

(3.16)

Combining the two equations in (3.16), we obtain (3.17). From the definition of wave celerity, c can be derived by

É, resulting in (3.18).

dÉ

dk
= c

(
1 +G

2

)
(3.17)

dc

dÉ
≡ d(É/k)

É
=

1

k
− É

k2
dk

dÉ
= − c

É

1−G
1 +G

(3.18)

In the previous equations, the quantity G has been introduced:

G =
2kh

sinh(2kh)
(3.19)

If x = kh, G assumes values between zero and one, respectively G = 1 as x → 0 and G = 0 as x → ∞.

Therefore:

dc

dÉ
f 0 (3.20)

In Fig. 3.2, x = kh; from (3.20), it follows that for 0 < x < Ã
10 , or equivalently h

L < 1
20 , wave celerity is

independent of the wave frequency. In this case, the waves are considered in shallow water, and c =
√
gh. When

x > Ã, or equivalently h
L > 1

2 , this is the case of deep water, where tanh(x) can be approximated with 1, giving

the expression of celerity ci = g
2ÃT . When Ã

10 < x < Ã, or equivalently 1
20 < h

L < 1
2 , waves are found to be in

intermediate water, and thus the dispersion equation must be solved in the general form.
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Figure 3.2: Hyperbolic Functions [3].

3.1.4 Dynamic Pressure

The pressure beneath the free surface of linear waves deviates from hydrostatic distribution and can be analysed

using the linearised Bernoulli equation:

∂ϕ

∂t
+ gz +

p

Ä
= 0 (3.21)

The excess pressure, therefore, is:

¶p ≡ Ägz + p = −Ä∂ϕ
∂t

(3.22)

By substituting the definition of velocity potential (3.10) into (3.22), the dynamic pressure becomes:

¶p = Ägz¸(x,t)Kp(z) (3.23)

This dynamic pressure is dependent on the free surface elevation ¸ and the pressure response factor Kp(z). For

a given water depth h:

Kp(z) =
cosh[k(h+ z)]

cosh(kh)
f 1 (3.24)

Observing the behaviour of cosh(x) in Fig. 3.2: Kp(z) = 1 if z = 0 and Kp(z) =
1

cosh(kh) if z = −h. The pressure

field is composed of hydrostatic pressure Ägh and dynamic pressure ¶p, so it can be expressed as:

p = Äg(¸(x,t)Kp(z) − z) (3.25)

3.1.5 Velocity Profiles

The velocity components on the vertical profile are obtained by the partial derivatives of the velocity potential:

u(x, z, t) =
∂ϕ

∂x
=
ag

É
k
cosh(k(h+ z))

cosh(kh)
cos(kxp − Ét) (3.26)
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Figure 3.3: Pressure field [3].

w(x, z, t) =
∂ϕ

∂z
=
ag

É
k
sinh(k(h+ z))

cosh(kh)
sin(kxp − Ét) (3.27)

Each particle follows a closed trajectory around a mean position (xi, yi). Integrating the velocity components

over time at the mean particle position, the following particle trajectories are distinguished in Fig. 3.4.

Figure 3.4: Particle paths under waves in different water depths [3].

Starting from one crest, the subsequent node (Node 1) is found at a distance of T
4 , the following point is the

trough, found at a distance of T
2 , and the last point of interest is the subsequent node (Node 2), found at a distance

of 3T
4 . The velocity profiles under the free water surface at these four situations are characterised by:

• Crest: Maximum positive velocity distribution along x and zero along z.

• Node 1: Maximum negative velocity distribution along z and zero along x.

• Trough: Maximum negative velocity distribution along x and zero along z.

• Node 2: Maximum positive velocity distribution along z and zero along x.

3.1.6 Wave Energy

Wave Specific Energy The total energy is the sum of kinetic Ek and potential energy Ep. The specific energy is

the average of the two components over the wavelength L and the period T .
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E = Ep + Ek

E =
1

LT

(∫ x+L

x

∫ t+T

t

Äg

2
(h+ ¸)2 dx dt+

∫ 0

−h

∫ x+L

x

∫ t+T

t

Ä

2
(u2 + w2) dx dz dt

)

E =
1

8
ÄgH2

(3.28)

Wave Energy Flux The flux is associated with the rate of energy transfer through a fixed vertical surface, extending

from the bottom to the free surface and with a unitary width in the transversal direction.

Ef =
1

T

∫ 0

−h

∫ t+T

t

[
p+

Ä

2
(u2 + w2)

]
u dt dz (3.29)

Equation (3.29) represents the energy flux, which after some mathematical developments is found to be the

product of wave energy E (3.28) and the group celerity cg (the rate at which wave energy propagates).

Ef = Ecg (3.30)

The group celerity is related to phase celerity

cg =
c

2
(1 +G) =




c if kh→ 0

c
2 if kh→∞

(3.31)

Figure 3.5: Wave groups [3].

3.2 Biésel Transfer Functions

In 1951, F. Biésel presented analytical solutions for the generation of regular waves in a flume [25]. The transfer

function, given a specific wavemaker, links the displacement of the wavemaker to the wave amplitude law.

In Fig. 3.6, the following elements can be identified:

• e(z, t): Displacement of the wave paddle along x

• S(z): Stroke of the wave paddle

• ¸(x, t): Surface elevation

• H : Wave height far from the wave maker
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Figure 3.6: Piston-type wave maker.

• h: Water depth (assumed to be constant)

Assuming a piston-type wave paddle, is displaced with a sine law (3.32), where É = 2Ã/T .

e(z, t) =
S(z)

2
sin(Ét) (3.32)

The solution is a linear combination of the decoupled solutions that satisfy the free surface boundary conditions.

The velocity potential (3.33) and free surface are:

ϕ(x, z, t) = −É
k
ci cosh(k(z + h)) sin(Ét− kx)

−
∞∑

n=1

cn
É

kn
cos(kn(z + h)) exp−knx cos (Ét)

(3.33)

¸(x, t) = ci sinh(kh) cos(Ét− kx)

+

∞∑

n=1

cn sin(knh) exp
−knx sin(Ét)

(3.34)

The first term at the right-hand side of equations (3.33) and (3.34) represents the far-field solution (long distance

from the wavemaker), and the second term represents the near-field solution. The near-field term, representing the

standing waves, decreases with distance from the paddle. Within a distance of 1 or 2 wavelengths, the near-field

term is smaller than 1% of the solution, and therefore, it can be neglected. Considering the wavemaker displacement

law (3.32) [26].

Figure 3.7: General wave maker.

Eq. (3.35) shows the coefficient ci has a similar expression referring to the far-field solution.

ci =
2É

gk

Si

sinh(2kh) + 2kh
·
[
sinh(kh) +

1− cosh(kh)

k(h+ l)

]
(3.35)

At the dispersion relation É2 = gk tanh(kh) and considering the ratio between H = 2c and Si:
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H

Si
=

4 sinh(kh)

sinh(kh) + 2kh
·
[
sinh(kh) +

1− cosh(kh)

k(h+ l)

]
(3.36)

For a piston-type wavemaker, as l→∞, the final Biésel transfer law is obtained.

H

Si
=

4 sinh2(kh)

sinh(kh) + 2kh
(3.37)

Given an appropriate distance from the paddle, the numerical solution must be very close to the analytic curve

(3.37) for the problem [8].

3.3 Solitary Waves

Solitary waves, also known as waves of translation, were studied first by by John Scott Russell in 1834 [27]. These

waves are characterised by the following properties:

• Stable waves

• Can travel large distances without flattening or steepening

• Speed is a function of the wave size, width, and the water depth

• Unlike normal waves, they will never merge; i.e., a small wave is overtaken by a large one

• If a wave is too big for the depth of water, it splits into two components: one big and one small

In a flume, these waves are generated by a single push of a piston-type wavemaker. The velocity of the wave-

maker can be expressed by a time-dependent polynomial function:

u = at4 + bt3 + ct2 + dt+ e (3.38)

where t is the time variable and a, b, c, d, and e are real constants.

3.4 Rogue Waves and Focused Wave Theory

Freak or rogue waves are among the most dangerous phenomena at sea. These waves are characterised by a

wave height that exceeds the expected height according to the prevailing sea state [28]. Their formation is random

and they appear arbitrarily in ocean areas with various depths [29]. Tridimensional wave focusing, among other

factors, contributes to the formation of these waves [30]. Field measurements show enormous heights, such as the

Draupner wave with a height of 18.49 m [31]. The focusing wave theory [32] is presented. In the defined frequency

spectrum, characterised by a minimum frequency fmin (Hz) and maximum frequency fmax (Hz), Nw small amplitude

linear waves are considered. Usually, their amplitude ai is constant and through superposition, they produce a rogue

wave at a specific focusing time tf and spatial position yf .

¸(y, t) =

Nw∑

i=1

ai cos[ki(y − yf )− 2Ãfi(t− tf )] (3.39)

According to the focusing wave theory, Eq. (3.39) describes the free surface evolution. The subscript i refers to

the i-th linear wave component, ki is the wave number (according to the linear dispersion equation). The linear trans-

fer function for the piston-type wavemaker is employed (Eq. (3.37)) [25]. The boundary condition to the wavemaker

is imposed prescribing the position ¶, velocity u, and acceleration a.





¶ =
∑N

i
1
2Si cos(−kiyf − Éi(t− tf ))

u =
∑N

i
1
2SiÉi sin(−kiyf − Éi(t− tf ))

a =
∑N

i − 1
2SiÉ

2
i cos(−kiyf − Éi(t− tf ))

(3.40)

Where Éi = 2Ãfi is the angular frequency of the i-th regular wave component.
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3.5 Spectral Analysis

Some functions or signals, generically called µ, can be composed of an infinite sum of harmonics. If the Fourier

series of µ exists, the Fourier transform is defined as [33]

F(µ) = F(k) = µ̂(k) =

∫ ∞

−∞

e−ikxµ(x)dx (3.41)

Where i is the unit imaginary number, k is the index of the Fourier series of µ. This transform allows visualizing the

frequencies composing that signal. The spectrum amplitude a = |F(k)|, i.e., the module of µ’s Fourier transform, is

equal to the amplitude of the single harmonics [33]. The Fast Fourier Transform (FFT) is an algorithm widely adopted

to extract information from sampled signals. Given µ̂(x) as the sampled signal, the discrete Fourier transform is given

in Eq. (3.42). The demonstration is omitted but can be found in [34].

g̃
( n

2lN

)
=

N−1∑

k=0

µ(2lk)e
−2πink

N n = 0, 1, 2, . . . , N − 1 (3.42)

This expression relates the N time samples and N frequency samples by means of the continuous Fourier

transform.

3.6 Short-Term Wave Analysis

When studying sea wave data, short-term analysis refers to waves that occur within one wave train or storm [35]. The

real sea surface is random; therefore, a number of simplifications can be made on the field recordings. Waves may

appear in a variety of heights and lengths. Therefore, statistical analysis is used. Defining z as the instantaneous

water level referred to a datum and ¸ as the difference between the instantaneous and mean water level, these are

functions of time t and spatial position (x, y).

Figure 3.8: Water level record z(t).

Figure 3.8 shows the water level record, i.e., one realisation of the process z(t). A set of evaluations of one

process is called an Ensemble. All values of z at t = j∆t in the k realisations can be used to compute statistical

parameters such as the mean z̄j and standard deviation Ãj .

z̄j =
1

K

K∑

k=1

zk,j and Ãj =

√√√√ 1

K

K∑

k=1

(zk,j − z̄j)2 (3.43)

In the ensemble, higher-order moments, i.e., skewness and kurtosis, can be determined as well. The system can

be called stationary if none of these statistical parameters varies in time; if only the mean and standard deviation

are constant, the ensemble is considered weakly stationary. If the ensemble average is equal to the time average of

each realisation, the process is called ergodic.
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3.6.1 Wave Height Distribution

¸ is usually defined as the superposition of an infinite number of small waves. Each wave is generated by a small

eddy at different locations and times. The sea surface is, therefore, defined as a sum of a large number of statistically

independent processes, i.e., ¸ is a random variable. The probability that ¸ assumes a certain value can be found

with a probability density function (PDF).

A random variable is described by a Gaussian or normal distribution. The probability of a certain wave height

can be described by its mean and standard deviation.

p(¸) =
1

Ã
√
2Ã
e

−η2

2σ2 (3.44)

where the standard deviation Ã is equal to the square root of the variance of ¸

Ã2 = ¯̧2 =
1

N

N∑

j=1

¸2j (3.45)

If the waves occur within a narrow frequency band, the PDF of the maximum value is

p(¸max) =
¸max

Ã2
e

−η2

2σ2 (3.46)

If the wave height is H = 2¸max, the PDF for H becomes

p(H) =
1

4

H

Ã2
e

−H2

8σ2 (3.47)

Equations (3.46) and (3.47) are known as the Rayleigh Distribution.

Figure 3.9: Rayleigh Distribution.

The cumulative distribution function (CDF) P of wave height is achieved with the integration of the probability

density function. The probability that a wave with H ′ height exceeds a specified wave height H is given by Q

P (H ′ < H) = 1− e
−H2

8σ2 and Q(H ′ > H) = 1− P (H ′ < H) = e
−H2

8σ2 (3.48)

The average of all waves higher than those with a given probability Q, in a storm, is determined as

H̄Q =

∫∞

HQ
Hp(H)dH

Q
(3.49)

Of all the waves, with probability Q, the most important is defined as the average of the highest 1
3 of the waves in

a wave train, H̄1/3. This quantity is known as the Significant wave height Hs.
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3.6.2 Frequency Analysis

In a random sea, the wave spectrum is composed of components with many frequencies. The wave spectrum can

be characterised by its peak frequency, corresponding to the largest variance of energy. The peak spectral period is

defined as

Tp =
1

fp
(3.50)

3.6.3 Directional Wave Spectra

The variable ¸ has been considered until now only as a function of time at a single location. In real sea states„ ¸ is

also a directional function of x and y.

Figure 3.10: Directional wave spectrum.

Figure 3.10 shows a sketch of the directional wave spectrum as a function of frequency and direction. The

simplest approach to describe the directional spectrum is:

S(f, ¹) = S(f)G(¹) (3.51)

where S(f) is the frequency spectrum and G(¹) is called the directional spreading function which is tyipically

assumed equal to cos2.

Figure 3.11: Wind energy transfer.

3.7 Wind Wave Generation

In the sea, when the wind blows, turbulent wind eddies periodically touch the water surface, forming small ripples.

The maximum energy transfer between the wind and waves occurs when the wind velocity matches the wave velocity.
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However, this alignment is generally not exact; the wind velocity is typically much higher than the wave velocity.

Consequently, the waves form at an angle to the wind direction, causing the propagational velocity of waves to

approach the wind velocity. Once the first small waves form, the wind continues to blow, transferring energy from the

wind to the waves. Figure 3.11 illustrates the energy transfer mechanisms.

Sheltering causes the wind speed downwind of the wave to be smaller, or sometimes even the reverse of the wind

velocity towards the upwind side. The resulting shear stress moves water toward the wave crest from both sides.

The wind speed, due to the wave shape, increases over the crest and decreases at the trough, both phenomena

described above contribute enhancing the wave height. According to Bernoulli’s law, pressure is lower in the crest

and higher in the trough.

Figure 3.12 depicts the process of wave generation. The majority of the wind energy is transferred to high-

frequency waves. Small waves form on top of existing ones rather than increasing the height of existing ones.

Subsequently, the energy is transferred from the higher-frequency waves to the lower-frequency ones via wave-wave

interaction.

Figure 3.12: Wind wave generation.

3.7.1 Wind Velocity Profile

In the upper part of the atmosphere, at altitudes greater than 1 km, the winds are driven by the geostrophic balance

between large-scale pressure gradients and the Coriolis force (Geostrophic region). Below 1 km altitude, frictional

effects due to the presence of the Earth’s surface affect the wind field (boundary layer). For the process of wave

generation by wind, the lower part of the boundary layer is of main concern. It extends from above the free surface

to about 100 m and is called the constant shear stress layer. In this layer, the wind speed and direction become

dependent, on the elevation above the mean surface, surface roughness, and air-sea temperature gradients.

Figure 3.13: Wind velocity profile.
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Assuming a logarithmic velocity profile of the wind in the constant shear layer, the wind speed Uz measured at

any elevation z (less than 20 m) can be related to the wind speed U10 at 10 m elevation through a simplified law:

U10

Uz
=

(
10

z

) 1
7

(3.52)

As the input of energy from the wind depends on the surface stress, parametric models use an adjusted wind

speed (or wind stress factor) that accounts for the nonlinear relation between wind stress and wind speed:

U = 0.71U1.23
10 (3.53)

Usually, the measured wind speed is available as an hourly-average speed. If a duration greater than 1 hour

is required as input for the parametric models, the hourly-average values may be averaged to achieve the desired

duration. If these values differ significantly (say 3-5 m/s), the assumption of constant wind speed is not valid, and

the prediction becomes dubious. Conventionally, the wind speed measured over the water is adopted in parametric

models. If measurements of wind speed over land are available, they usually underestimate the speed over water

(due to increased friction over land) and should be properly corrected.

3.7.2 Wave Hindcasting: The JONSWAP Method

Wave height, period, and direction are closely linked to wind conditions. By analysing measured wind records, it is

possible to reconstruct the wave climate. This process is known as hindcasting. In the past, several methods have

been developed to predict wave fields from wind data. These methods are called parametric methods because they

use wind parameters to evaluate wave parameters (such as significant wave height HS and peak period Tp) without

developing a detailed description of the physics behind the generation process. The wind parameters involved are:

• Fetch F , the distance the wind blows over the water to generate waves.

• Duration t of the wind forcing.

• Wind speed U blowing over the sea.

The first empirical method, developed during World War II, aimed to predict wave conditions based on weather

forecasts to assist in landing Allied troops [36] and [37]. This effort led to the development of the SMB method, as

presented in [38]. Subsequently, the JONSWAP method, based on research conducted during the Joint North Sea

Wave Project [22], extended to developing sea this early method in [39]. Figure 3.12 illustrates the wave generation

process.

Determining fetch length for an open shore poses a challenge; however, for sufficiently large fetches, wave

parameters are not highly sensitive to errors in fetch length. A fully developed sea occurs when fetch, duration,

and depth are infinite. The energy content of the wave field is determined solely by wind speed, representing an

equilibrium condition between wind transfer and dissipation through internal friction and turbulence. Adopting a

simplified method for predicting waves in deep water is feasible only under the following conditions:

• The water body has a relatively simple geometry.

• Wave conditions are either fetch-limited, duration-limited, or fully developed.

• An adjusted wind speed U can be evaluated, representing a relatively constant average value over the fetch

F .

Under fetch-limited conditions, the wind has blown consistently long enough for the wave height at the end of the

fetch to reach equilibrium. In duration-limited conditions, wave heights are constrained by the length of time the wind

has blown.
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Assuming the non-dimensional fetch F ∗ = gF/U2, the following relations are valid for determining non-dimensional

wave height (H∗), non-dimensional wave period (T ∗), and non-dimensional time (t∗).

H∗ = 1.6× 10−3(F ∗)
1
2 with H∗ =

gHm0

U2

T ∗ = 0.2868(F ∗)
1
3 with T ∗ =

gTp
U

t∗ = 68.6(F ∗)
2
3 with t∗ =

gt

U

(3.54)

where Hm0 is the spectrally based significant wave height and Tp is the peak period of the wave spectrum. In

the case of a fully-developed sea, the following equations are assumed to evaluate the significant wave height and

the peak period. Wind duration should be greater than that obtained from t∗ in Eq. (3.55).

H∗ =
gHm0

U2
= 0.2433

T ∗ =
gTp
U

= 8.134

t∗ =
gt

U
= 7.17× 104

(3.55)

An interim method for forecasting waves generated by winds blowing over relatively shallow water (15–90 m) is

provided in [39]. It accounts for bottom-induced dissipation by introducing the non-dimensional depth d∗ = gd
U2 .

H∗ = 0.283tanh
(
0.530d∗ 3

4

)
tanh

[ 0.00565F∗ 1
2

tanh(0.530d∗ 3
4 )

]

T∗ = 7.54tanh
(
0.833d∗ 3

8

)
tanh

[ 0.0379F∗ 1
3

tanh(0.833d∗ 3
8 )

]

t∗ = 537(T∗) 7
3

(3.56)

Figure 3.14 shows the block diagram to apply the JONSWAP method.

Figure 3.14: Block diagram for the JONSWAP method.

The proposed method for wave prediction is a simplified approach developed based on observations mainly in

the North Atlantic Ocean, and it relies on certain simplifications. Therefore, it is approximate and requires proper

calibration based on the climate of a specific site. It is advisable to use such a method for a rough estimate of the

wave field, which should be confirmed by more sophisticated hindcasting models that numerically solve the governing

equations for the energy balance of the wave field.

34



4

Wave hindcast in the Mediterranean sea

The use of spectral models holds paramount importance in understanding and characterizing the dynamic forces

exerted on offshore structures, particularly during specific meteorological conditions. These models serve as in-

dispensable tools in comprehending the intricate interplay of waves with marine structures, enabling engineers and

researchers to assess the potential impacts and design structures resilient to these forces.

In the context of this paragraph, a comprehensive investigation is undertaken into a prominent spectral model

aimed at simulating the propagation of wave motion in coastal regions. This endeavor seeks to delve deeply into the

intricacies of the selected model, probing its efficacy and applicability in capturing the nuanced behavior of waves

near the shoreline.

4.1 Introduction

This chapter illustrates an application of the SWAN spectral model for wind-wave hindcasting. The study area is a

coastal region located south of the Sicily near Mazara del Vallo, Italy. This choice allows for model validation by

comparing hindcasted results with measurements from the wave meter station at Mazara del Vallo (see Fig. 4.1).

The wave buoy is positioned offshore of Capo Granitola at a nominal depth of 85 meters and is part of the Italian

wave-meter buoy network. It has been operational for at least 40 years, and its measurements, including sea state,

significant wave height, spectral period and direction, as well as wind measurements, are freely available to the

public. To validate the model, a storm event lasting 24 hours is reproduced.

Figure 4.1: Measuring buoy.

4.2 Preprocessing

As discussed in Section 2.5, model setup requires grids related to bathymetry, wind, and computational grid. For

simplicity, in this context, the nodes of these grids are coincident.

35



Wave hindcast in the Mediterranean sea

4.2.1 Computational Grid

The case is situated in a real region, and a geographical information program is utilised for this purpose. The

geographical position of the wave buoy at Mazara del Vallo is marked with a red cross (Fig. 4.2). It is crucial to

align the coordinate system of the project with that of the buoy’s position. In this scenario, the Cartesian projection

EPSG:3857 is employed. A set of points, spaced 1x1 km apart, is then generated in the study area. After generating

these points, they are adjusted so that one grid point matches the position of the wave buoy. This process is

illustrated in Fig. 4.2, where the initially generated grid (purple dots) is shifted (orange dots) to align one point with

the position of the wave buoy (red cross). The coordinates of the orange points constitute the computational grid.

Figure 4.2: Position of the wave buoy (red cross), initially placed grid points (purple dots), computational grid points

(orange dots).

4.2.2 Bathymetry Grid

Bathymetric data for the Mediterranean basin is freely accessible from EMODnet. EMODnet Bathymetry offers

a service for viewing and downloading the best available harmonised Digital Terrain Model (DTM) for European

sea regions, along with various other bathymetric data, products, and services. Figure 4.3 presents the coloured

bathymetry of the Mediterranean basin, ranging from red (shallow water) to blue (deep water), with the study region

highlighted by a pink ellipse.

The bathymetry grid required as input for the SWAN model is obtained by assigning depths from the DTM to each

node of the previously defined computational grid.

Figure 4.3: Bathymetry of the Mediterranean Seas, with the study area and the position of the Mazara del Vallo

wave-meter buoy marked.
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4.2.3 Wind Grid

Although the buoy can provide measurements of wind, this local information is insufficient for generating waves over

a large computational grid spanning several kilometres. A single point measurement cannot be considered valid for

a large region due to the significant spatial variability of wind. The ERA5 reanalysis dataset from the Copernicus

project of the European Union is utilised for this purpose. ERA5 is the fifth generation ECMWF reanalysis for global

climate and weather over the past eight decades, with data available from 1940 onwards. The data is provided as

a geo-referenced vector image with a grid of 5x5 km. Once imported into the graphics information system program,

wind velocity and direction values can be assigned to each point of the previously defined grid. In this case, 48 grids

are defined, 24 each for the x-direction and y-direction. These grids correspond to each hour of simulation.

Figure 4.4 compares the measured and forecasted wind velocities at the measuring buoy. While there is slight

variation between the forecast and measurement, it is necessary to use forecasted wind data as it provides spatially

distributed information rather than punctual measurements, which is essential for accurate simulations.
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Figure 4.4: Wind velocity comparison between forecasted data and measured data in the location of the measuring

buoy.

4.3 Input File

The input file is configured using the Cartesian convention, with water density set to 1023 kg/m3 and gravity to 9.81

m/s2. Figure 4.5 illustrates the region of interest for this study. The northeastern part of the figure depicts the Sicily

coast, delineated by the pink line, with bathymetry and wind vectors indicated. The axes display the geographical

coordinates of the study area, utilizing the Cartesian projection EPSG:3857.
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Figure 4.5: Bathymetry and mean wave direction of the study region.

The initial sea state is not provided; at the beginning of the simulation the water surface is at rest. The model

execution is non-stationary as it focuses on hindcasting waves generated by wind. Due to these two aspects,

the initial part of the simulation (first 10 hours) is required to generate the sea state. The computational grid is
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established in geographical coordinates, with a grid size of 128 km in the x-direction and 116 km in the y-direction,

and a spacing of 1 km in both directions. The grid comprises 14,848 computational nodes. The grids of bathymetry

and wind velocity have the same size as the computational grid and are uploaded as text files.

The wind-wave generation parameters are configured, with type 3 generation based on the Komen method being

the default. SWAN operates in third-generation mode for wind input, quadruplet interactions, and whitecapping. The

Komen wave generation relies on linear growth [40], with wave generation occurring only if the keyword AGROW is

present, indicating exponential growth [41]. In non-stationary runs, SWAN starts with INIT ZERO (flat water surface),

and wave energy remains zero unless wave energy penetrates over the boundary or AGROW is activated.

The simulation is set up to consider all physical processes with standard values:

• QUADRUPL: Nonlinear wave-wave interactions.

• WCAPPING: Steepness-induced wave-breaking.

• BREAKING: Depth-induced wave breaking in shallow water.

• FRICTION: Bottom friction.

• TRIAD: Nonlinear wave-wave interaction redistributing wave energy within the spectrum due to resonance.

• LIMITER: This command allows the user to permanently deactivate quadruplets when the actual Ursell number

exceeds 10. Additionally, as soon as the actual fraction of breaking waves exceeds 1, the action limiter will not

be used in case of decreasing action density.

Next, numerical parameters are set for non-stationary computation with implicit time integration, a stop criterion

with a maximum of 30 iterations per time step, and output control introduced for the entire computational grid,

including the point of the wave-meter buoy. Results are saved at hourly intervals for comparison with the measured

data.

The non-stationary computation begins for a duration of 24 hours, starting from May 25, 2021, at 00:00 to May

25, 2021, at 23:00.
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Figure 4.6: Bathymetry of the study area with significant wave height at hour 20:00.

4.4 Results

As previously said, no wave spectrum has been assigned at the beginning of the simulation. The model takes

about 10 hours to develop a sea state in equilibrium with the wind forcing. After that time, results are compared

with observed data. Hence, the results will be considered starting from hour 10 onward. Figure 4.6 displays the

significant wave height and the bottom depth. It’s worth mentioning that the North and West boundaries (Fig. 4.5)

exhibit reduced wave heights. This aspect is related to the lack of spectral information for the incoming wave entering

the computational domain trough these boundaries, leading to some errors in the significant wave height calculation
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(Fig. 2.11). Within the region of interest, the wave height varies with water depth, ranging from 0.8-1.0 m in shallow

water, while it ranges between 1.6-1.7 m in deep water.

Figure 4.7 illustrates the directional wave spectrum at the location of the wave-meter buoy at t=19:00h and

t=20:00h. In both cases, the waves are directed southwest, with directions between 200◦ and 360◦. The directional

wave spectrum indicates that the simulated waves lie in the low-frequency spectrum, corresponding to relatively long

wavelengths. For instance, a wave with a f = 0.2 Hz would have a wavelength of 39 m. The spectral energy

undergoes slight changes from hour 19:00 to hour 20:00, with the wave energy slightly lower at hour 20:00. The

waves exhibit similar lengths, while the direction undergoes a slight change, nearing 360◦.
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Figure 4.7: Directional wave spectrum S (m2/(Hz deg)) at the location of the wave-meter buoy. Left panel: hour

19:00; Right panel: hour 20:00.

Figure 4.8 depicts the hindcasted significant wave height, wave direction, peak spectral period, and mean spectral

period at the Mazara del Vallo wave-meter buoy. As mentioned earlier, at least 10 hours of physical time are required

to establish a sea state. This is evident in all the sub-figures, where measured data begins from a specific value,

whereas simulated data initiates from zero except the wave direction•. After these 10 hours, it can be observed

that the simulated trends of significant wave height, peak and mean spectral period closely resemble the measured

data. While the wave direction exhibits slight discrepancies, it’s noteworthy that the simulated waves are directed

southwest, consistent with the measured data. This constitutes the validation of the model, albeit limited to the

analysed storm event.
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Figure 4.8: Comparison of hindcasted significant wave height, wave direction, peak spectral period, and mean

spectral period with measured data at the Mazara del Vallo wave-meter buoy.
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4.5 Final Remarks

This chapter presents a real-scale application of a spectral model used to hindcast a sea state. The southeast coast

of Sicily was selected, particularly due to the presence of a wave-meter buoy in the region. A SWAN model was

constructed and executed to replicate a storm event lasting 24 hours. The results were compared with measured

data, validating the model on the selected storm event. Further testing is necessary to evaluate the model’s reliability

for wave hindcasting based on forecasted wind data. However, as the model input is affected by uncertainties (e.g.,

wind characteristics and model parameters), global sensitivity analysis and parameter optimization could enhance

the model’s description, though these aspects will be the subject of future studies.

Up until now, wave hindcasting at a large scale has been presented. This approach is useful for identifying the sea

state of a site of interest, but it only considers time-averaged quantities such as significant wave height and spectral

period. However, identifying the sea state is only the first step toward the analysis of impulsive waves impacting

onto offshore structures. Time-averaged quantities are insufficient to describe these phenomena. Therefore, in the

next chapter, time evolution of wave generation, propagation and wave-structure impact in a channel are studied

developing and using Lagrangian particle methods.
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Improvements to the single phase SPH model

5.1 Introduction

The modelling of regular and focused waves began in the master’s thesis [42], where the SPHERA v.9.0.0 code (RSE

S.p.A.) [43] was employed to simulate various linear waves. However, the model exhibited excessive numerical

dissipation, resulting in reduced wave heights and velocities, particularly noticeable for higher frequency waves.

During the first year of the doctoral program, efforts were focused on addressing these numerical dissipations. After

an extensive literature review, the renormalisation scheme was chosen as a potential solution. Initially introduced in

[44] and [45] to achieve first-order consistency in kernel derivatives, the renormalisation scheme was implemented

to improve the accuracy of the SPHERA equations. The subsequent sections present the specific equations of

SPHERA, with a focus on the renormalisation of kernel derivatives.

5.1.1 Original Numerical Model

In this context, SPHERA v.9.0.0 is utilised to solve the WCSPH (Weakly Compressible Smoothed Particle Hydro-

dynamics) approximation of the governing equations for a Newtonian fluid. The boundary treatment includes a

semi-analytic approach for solid walls [46] and a scheme for solid bodies [47]. The continuity equation is as follows:

〈dÄ
dt

〉
i
=
∑

j

Äj(ub,j − u0,j)
∂W

∂xj
ϖj

+ 2Äi

∫

V ′

h

[(uw − ui) · n]nj
∂W

∂xj
dx3 + Cs

(5.1)

where Cs is introduced to represent the fluid-body interaction term. The notation “
〈〉

" denotes the SPH particle

discrete approximation. The momentum balance equation is:

〈dui
dt

〉
i
=− ¶i3g +

∑

j

(
pj
Ä2j
− pi
Ä2i

)W ′
jmj + 2

pi
Äi

∫

V ′

h

∂W

∂xi
dx3+

− ³M

∑

j

mj

Äir2ij
(uj − ui) · (xj − xi)

∂W

∂xj

∣∣∣
j
+

− ³M (uw − ui)
∫

V ′

h

1

r20w
(x− xi)

∂W

∂xi
dx3 + as

(5.2)

In Eq. 5.1 and Eq. 5.2, ¶ij represents the Kronecker delta, as denotes an acceleration term due to fluid-body

interactions, ³M stands for artificial viscosity [48], m represents particle mass, and r0b is the relative distance

between the computed particle (subscript 0) and the neighbouring particle (subscript b). Here, W is the kernel

function, u is the velocity vector, p is pressure, Ä is fluid density, g is the modulus of gravitational acceleration, x is

the position vector, and t represents time.
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The kernel support is truncated when it intersects the boundary that confines the computational domain filled by

fluid particles. To address this issue, a semi-analytic technique is adopted to mimic solid boundaries. The summation

extends to all fluid particles with volume ϖ (subscript b) within the kernel support of the computed fluid particle

(subscript 0). The volume integral represents the boundary term, which is the convolution integral on the kernel’s

truncated portion with the fictitious outer volume V ′
h; the subscript w denotes a generic boundary. Additionally, n

represents the normal vector to the wall surface.

The system of equations is completed by the following linearised barotropic equation of state (EOS) for slightly

compressible fluids:

p = c2ref(Ä− Äref) (5.3)

Here, the artificial sound speed c is set to be at least ten times higher than the maximum fluid velocity to ensure

a relative density variation of at most 1% [48], and the subscript “ref" denotes the reference state. The wavemaker

and the box-shaped structure are treated using the scheme of rigid body transport as solid bodies, with imposed and

fixed kinematics, respectively. The time integration is performed using a second-order Leapfrog scheme. For further

details on the code, readers are referred to the code documentation [43].

5.1.2 Renormalization

The renormalisation scheme is implemented to enhance the numerical accuracy in computing the kernel gradient. It

mitigates non-physical dissipation of both wave height and velocity, which are more pronounced in slow dynamic phe-

nomena. These dissipations primarily stem from higher frequency components (wave spectrum) in slow dynamics

[42, 49].

Renormalization enables achieving first-order consistency of a function (zeroth order consistency for its deriva-

tive), thereby precisely reproducing the derivative of a linear function. Initially introduced in [44, 45], this technique

has been consistently utilised, with minor adjustments, in free surface flows characterised by slow dynamics. In re-

cent applications, renormalisation is employed to compute the density gradient for the diffusive term in the continuity

equation (Eq. (6.15)) [50, 51, 52]. Considering the derivative of a function, as depicted in Eq. 5.4, the kernel gradient

is normalised using the renormalisation matrix L.

〈
∇f
〉
i
=
〈∂f
∂x

〉
i
≡
∑

j

(fj − fi)(Li
· ∇W j)i

mj

Äj
(5.4)

The renormalisation matrix, defined by Eq. (5.5), is applicable within the fluid and at its boundary surface, aiding

in reducing truncation errors at the free surface.

L
i
= B−1

i
=
(
±
∑

j

(xj − xi)∇W
mj

Äj

)−1

(5.5)

Subsequently, the normalised kernel derivative is defined as shown in Eq. 5.6.

W̃ ′
j = L

i
· ∇W j (5.6)

The renormalisation technique is employed in the pressure term of the momentum balance equation, in the

continuity equation to normalise the kernel gradient, and for the diffusive terms (see Section 6.1.2). In Eq. (5.5), a ±
sign is present. The sign of B is positive when the renormalisation is applied to the continuity equation and diffusive

term, while it is negative for the momentum balance equation, as indicated in [44].

The value of the matrix determinant (det(B
i
)) is proportional to the concentration of neighbouring particles. When

the renormalisation is applied to the continuity equation and the diffusive term, there are no issues, and det(B
i
) = 0.

However, problems arise when it is applied to the pressure term in the momentum balance equation, which is more

sensitive. To address this, renormalisation is conducted in a case-sensitive manner using Eq. (5.7), introducing a

threshold value Btol for the matrix determinant. The parameter Btol is chosen heuristically to ensure stability. In the

investigated problems, values lower than Btol = 0.3 cause instabilities. In the results presented in the conference

paper [49], Btol = 0.6 is used, representing a suitable compromise between accuracy and stability. In [49], regular
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and nonlinear waves are generated in a numerical wave tank, demonstrating good accuracy compared to laboratory

experiments and theoretical solutions.




if |det(B

i
)| g Btol W̃ ′

j = B
i
· ∇W j

if |det(B
i
)| < Btol W ′

j = ∇W j

(5.7)

It’s important to emphasise that the renormalisation procedure, when applied to the pressure term of the motion

equation, is particularly useful for enhancing the accuracy of flows characterised by slow dynamics and involving

relatively large domains, as observed in wave generation scenarios in flumes.

5.2 SPH Simulation of Water Waves and Impact with a Rigid Offshore

Structure in a 2D Flume

This enhancement in the single-phase model has finally enabled accurate modelling of regular waves. By reducing

numerical dissipation, the waves are better able to maintain their height and velocity. This approach was validated

across a wide spectrum of regular waves with varying characteristics, encompassing both short and long waves,

and waves with different amplitudes. Eight regular waves with varying degrees of non-linearity, characterised by

their steepness, were considered. The improved model successfully captured the behaviour of these waves. While

regular waves serve as useful benchmarks for testing and validating numerical models, their relevance in real-

world engineering applications is somewhat limited. In contrast, plunging or rogue waves, which greatly exceed

the mean sea wave height, pose significant dangers to structures when they interact with the built environment. I

began modelling these waves, generated using the focused theory. However, with the original model, components of

waves in the higher frequency spectrum were not accurately reproduced. The improvements introduced now allow

for the modelling of these high-frequency wave components as well. These findings were presented at the Thirty-

first International Ocean and Polar Engineering Conference (ISOPE) in 2021, in a conference paper titled “SPH

Simulation of Water Waves and Impact with a Rigid Offshore Structure in a 2D Flume," which details the methods

and initial results obtained.
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ABSTRACT 

Reliable offshore structural design deserves proper definition of the 
loads that a structure must bear during the life cycle. The characterization 
of the wave-induced action plays a key role in this context. Wave-wave 
interaction can cause non-linear phenomena leading to occasional wave 
heights much greater than the mean wave height in a sea state. When sea 
waves interact with an offshore structure, breaking and water sprays 
occur as well as two-phase flow due to air entrapment. Particle-based 
methods have been proven to be particularly suitable to mimic these 
phenomena. 

This work illustrates the application of the Free/Libre and Open-Source 
Software (FOSS) code SPHERA v.9.0.0 (RSE S.p.A.) for the generation 
of regular waves, non-linear waves, and the wave impact with a fixed 
rigid offshore structure in a 2D wave flume. Obtained results are 
compared against laboratory experiments and results from other 
numerical models. The main advantages of the proposed modelling 
approach are pointed out and the aspects that deserve further 
improvement are discussed. 

KEY WORDS: 

SPH; Experimental Validation; Non-Linear Wave Generation; Offshore 
Structures; Wave Impact; Wave Load. 

INTRODUCTION

The wave load is a key parameter in the design process to ensure 
reliability and longevity of offshore structures. Wave-structure 
interaction, is a highly complicated phenomenon as the impacting wave 
forces a movement to the structure which being partially constrained, 
generates an interference wave field. Furthermore, in the impact, wave 
breaking and large deformation of the continuum occur. Eulerian grid-
based methods have been soundly adopted to simulate wave-structure 
interaction. Examples can be found in Stansberg et al. (2005) with the 
commercial code Flow-3D; Pákozdi et al. (2005) using the commercial 
code STAR CCM+; Yan et al. (2019) with a Navier-Stokes solver and 
Yan et al. (2020) using OpenFOAM. These highly non-linear 

phenomena are well estimated by means of Lagrangian particle-based 
methods, among which the Smoothed Particle Hydrodynamics (SPH) 
seems to be particularly well suited (Liu and Liu, 2003) and has therefore 
been recently applied to these phenomena. Gómez-Gesteira et al. (2005) 
analyzed green water overtopping a deck, finding the utilized SPH model 
to be quantitatively suitable for one-to-one comparison between 
numerical and experimental results. Lo and Shao (2002) adopting an 
Incompressible SPH (ISPH) method together with a Large Eddy 
Simulation (LES) successfully reproduced wave profiles of solitary wave 
against a vertical wall and running up a plane slope. In the matter of ISPH 
Liu et al. (2014) used a non-reflection internal wave maker to simulate 
waves and interaction with a solid wall and a submerged trapezoid 
backwater; the authors found that the non-reflection internal wave maker 
can be a quite robust tool for long time simulation of waves and wave- 
structures interaction. More recently Sun et al. (2019) simulated a freak 
wave impacting a fixed structure focusing on the suction stage. Altomare 
et al. (2020) simulated real sea wave impacting a large-scale structure 
with the open-source code DualSPHysics in a real-word engineering 
application. In order to test the capability of a numerical code and its 
accuracy, before simulating non-linear waves and wave-structure 
impact, it may be convenient starting with the generation of regular 
waves in a flume using the wavemaker theory (Biésel and Suquet, 1951). 
Ursell et al. (1960) investigated the regular wave generation in a flume 
adopting wavemaker theory for flap-type and piston-type wavemakers. 
Laboratory experiments focused on the wave steepness affecting the 
non-linear behavior of regular waves. The study results showed that the 
wavemaker theory is quite suitable to describe the height of small 
steepness generated waves whilst the amplitude is slightly overestimated 
for high steepness waves (non-linear effect). The experiments of Ursell 
et al. (1960) were reproduced adopting numerical codes in Huang et al. 
(1998) and in Anbarsooz et al. (2013). Huang et al. (1998) focused on 
the piston-type wavemaker for the simulation of non-linear wavefields. 
They developed a finite difference numerical method for solving the 
unsteady 2D Navier-Stokes equations where a modification of the 
SUMMAC method for treating the free-surface unknown variables was 
implemented. Their results are in good agreement for the low steepness 
waves whilst high steepness wave heights are slightly underestimated 
with respect to the experimental results. Anbarsooz et al. (2013) focused 
on laboratory experiments and numerical non-linear generation of 
regular waves for both piston-type and flap-type wavemaker. The used 
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model is a finite difference method where the Navier-Stokes equations 
are solved by a three-step projection method. The results are similar to 
Ursell et al. (1960) showing good agreement between simulations and 
experimental data. It is worth mentioning also the work of Lee et al. 
(2020), who investigated the SPH wave generation focusing on waves 
with short period, large relative depth, and large wave steepness. Lee’s 
studies show that the wave tank with the mass-weighted damping zone 
is useful to accurately generate different waves, from linear to breaking 
waves. He et al. (2021) proposed a new theoretical method for the 
plunger-type wave maker. Results shows that solitary waves generated 
by plunger-type wave makers are of a comparable accuracy respect to 
the piston-type wave maker, provide that the plunger does not have sharp 
corners. Yan et al. (2019) studied the regular wave generation, non-linear 
wave generation, as well as the impact with a box-shaped structure. They 
performed laboratory experiments as well as numerical simulations, 
using a 2D two-phase Navier-Stokes solver with a set method (finite 
difference) while the structure was simulated with an improved 
immersed boundary method. Their results show that the front wall bears 
a larger impact pressure than the bottom wall. Pressure oscillations are 
detected due to the evolution of the air cavity. Numerical results are 
roughly in agreement with the experiments. Sun et al. (2018) presented 
a 2D two-phase + Weakly Compressible Smoothed Particle 
Hydrodynamics (WCSPH). The + correction term is a diffusive term 
which helps in reducing the high-frequency oscillations that usually 
affect the pressure field as a consequence of the weakly compressible 
assumptions. This numerical model was adopted in Sun et al. (2019) 
where they performed a numerical study on the waves presented in Yan 
et al. (2019). Sun et al (2019) focused on the implementation of a Tensile 
Instability Control (TIC) scheme preventing the occurrence of 
unphysical fluid voids. Results are validated through experimental data 
and are in good agreement. Impact pressures onto the structure are well 
represented by the numerical model, particularly the pressure oscillations 
in the suction stage. 
This work is part of a wider study aiming at testing and validating the 
research computer code SPHERA v.9.0.0 (RSE S.p.A.) (2021) for the 
simulation of 2D water waves and wave impact on a fixed offshore 
structure. Simulations are performed using a 2D single-phase WCSPH 
model and the validation is carried out through analytical, experimental, 
and reference numerical results. The main advantages of the proposed 
modelling approach are pointed out, and aspects deserving further 
improvements are discussed, proposing remedial interventions on the 
source code. The paper is mainly subdivided into three parts: regular 
wave generation, non-linear wave generation, and impact against a fixed 
rigid box-shaped structure. In the first part, a parametric study on two 
types of waves is performed and eight waves with different period T from 
Ursell et al. (1960) are simulated. In the second part of the paper a freak 
wave is analyzed, while in the third part an early investigation on the 
impact with a box-shaped structure from Sun et al. (2019) is shown. 

MATHEMATICAL FORMULATION OF THE 
SPHERA MODEL

SPHERA v.9.0.0 (RSE S.p.A.) (2021) is here used to solve the WCSPH 
approximation of the governing equations for a Newtonian fluid using 
the semi-analytic approach for solid walls (Di Monaco at al. 2011) and a 
scheme for solid bodies (Amicarelli et al., 2015) as boundary treatment 
schemes. The model solves, accordingly to standard WCSPH approach 
the following continuity equation, Eq. (1), and the momentum balance 
equation, Eq. (2): 

+þĀþý,0 = ∑ Ā�(þ�,Ā 2 þ0,Ā) Ā�Ā�Ā |� ö�� + 2Ā0 ∫ [(þý 2 þ0) ∙ Ā]ĀĀ Ā�Ā�Ā þ�3 + �Ā�ℎ′
(1) 

where the Einstein’s notation is adopted to imply a summation over 
repeated indices, and Cs is introduced to represent a fluid-body 
interaction term. The notation <= indicates the SPH particle -discrete- 
approximation. According to Di Monaco et al. (2021), Amicarelli et al. 
(2015) and SPHERA (2021) the momentum balance formulation is: 

+þþÿþý ,0 = 2�ÿ3ā + ∑ (��Ā�2 + �0Ā02)� ��′ÿ� + 2 �0Ā0+ ∫ Ā�Ā�ÿ þ�3 �ℎ′2 �ý ∑ ÿ�Ā0�0�2 (þ� 2 þ0)�∙ (�� 2 �0) Ā�Ā�Ā |� 2 �ý (þý 2 þ0)
∙ ∫ 1�0ý2 (� 2 �0) Ā�Ā�ÿ þ�3�ℎ′ + �Ā

(2) 

where ij is the Kronecker’s delta, as represents an acceleration term due 
to the fluid body interactions, M is the artificial viscosity (Monaghan 
2005), m is the particle mass, and r0b the relative distance between the 
computed particle (subscript 0) and the neighboring particle (subscript 
b). In Eq 1 and Eq 2 W is the kernel function, u is the velocity vector, p 
is the pressure,  is the fluid density, g is the modulus of gravity 
acceleration, x is the position vector and t time. The kernel support is 
truncated when it intersects the boundary that limits the computational 
domain filled by the fluid particles. To avoid this inconvenience, the 
semi-analytic technique is adopted for mimic solid boundaries. The 
summation is extended to all fluid particles with volume ö  (subscript b) 
in the kernel support of the computed fluid particle (subscript 0). The 
volume integral represents the boundary term, that is the convolution 
integral on the kernel’s truncated portion with the fictitious outer volume 
Vh’; the subscript w denotes a generic frontier. Furthermore, n is the 
normal vector to the wall surface. 
The system of equations is closed by the following linearized barotropic 
equation of state (EOS) for slightly compressible fluids: � = ýÿÿĀ2 (Ā 2 ĀÿÿĀ) (3) 

The artificial sound speed c is at least ten times higher than the maximum 
fluid velocity in order to guarantee a relative density variation at most 
equal to 1% (Monaghan 2005) and the subscript ref stands for the 
reference state. The wavemaker and the box-shaped structure are treated 
by the scheme of rigid body transport as a solid body, respectively with 
imposed kinematics and fixed kinematics. The time integration is 
performed by means of a second-order Leapfrog scheme. For further 
details on the code readers are referred to the code documentation 
(SPHERA (RSE S.p.A.) (2021)). 



SIMULATION SET-UP 

In this section, the Biésel transfer function is first presented, followed by 
a description of the regular wave generation for the parametric study and 
to reproduce the experiments by Ursell et al. (1960) with a constant still 
water depth of h=1 m. The second part of the section describes the inputs 
for the non-linear wave generation and the box-shaped structure wave-
impact, as well as the input data for these experiments. In Biésel et al. 
(1951) the solutions of the analytical problems concerning different 
wave generators are presented. Given a particular wavemaker, a transfer 
function allows to link the wavemaker displacement to the generated 
wave amplitude. Considering the piston-type wavemaker as the upstream 
boundary condition in the wave boundary value problem, Biésel et al. 
(1951) found the following solution for the transfer function: �ÿ0 = 4 sinh2(�ℎ)sinh(�ℎ) + 2�ℎ (4) 

In Eq (4), H is the wave height, S0 is the wavemaker stroke and kh is the 
relative depth, k is the wave number related to the wavelength L.  

Regular Wave Generation 

In Fig. 1 the adopted domain for the regular waves is sketched. The 
domain has a flat part and a sloped beach with 1/10 slope ratio to reduce 
wave reflection. This configuration has been carefully selected based on 
a previous study (Salis 2019) where the sloped beach is found to produce 
similar results to a flat bottom domain whilst reducing computational 
time. 

Figure 1: Wave flume with water at rest (regular waves). 

The piston-type wavemaker is placed on the left-hand side of the flume. 
Two wave gauges H1 and H2 for measuring wave heights are positioned 
respectively at xp= 2m and at xp= 4m away from the wavemaker. Two 
wave types are generated, relevant characteristics are listed in Tab. 1. 
Wave types T1 and T2 serve to perform a parametric study that allows 
evaluating the influence of relevant model parameters, such as particle 
resolution, artificial viscosity, CFL, as well as the model convergence. 

Table 1: Parameters Adopted for Simulating Regular Waves. 
Wave T (s) L (m) S0 (m) kh h (m) H/L H/S0 

T1 1.13 1.99 0.1 2.14 1.00 0.097 1.195 
T2 1.4 2.97 0.1 3.16 1.00 0.058 1.729 

After some early simulations in Salis (2019), the following optimal set 
of numerical parameters has been defined: particle size dx=0.01m, 
artificial viscosity M=0.01, and CFL=0.2. The probe resolution of 
dxp=0.0025m is found to be sufficiently accurate. Either the free-slip or 
the no-slip condition can be utilized. These parameters seem to guarantee 
a good compromise between numerical accuracy and computational cost 
with a run-time of approximately 18h for a simulation time of 20s on a 
machine with 218-core Intel Xeon E5-2697 v4 (Broadwell) @2.30 
GHz, 128 GB of Ram. All simulations presented in this paper are 
executed on this machine. The optimal resolution, artificial viscosity and 
CFL parameters are then utilized to simulate the experiments by Ursell 
et al. (1960). To reproduce these waves, the same wave steepness (H/L), 
the same relative depth (kh), and the same wave height to stroke ratio 

(H/S0) as seen in Ursell et al. (1960) are imposed. A constant still water 
depth (h) is adopted and therefore the wavemaker stroke S0 and the wave 
period T are determined with the following procedure: 

1. Knowing h and kh the wavelength L is obtained.

2. Given the wave steepness H/L the wave height H is
determined.

3. The wavemaker stroke S0 is determined with the wave height
to stroke ratio H/S0, Eq. (4).

4. The wave period T is determined with the dispersion equation
knowing kh and L.

Once the stroke S0 and period T have been determined for each testing 
wave, the time evolution of the wavemaker velocity can be obtained, 
Tab. 2 summarizes the relevant parameters for the studied waves. 

Table 2: Regular waves parameters from Ursell et al. (1960) 

Wave T (s) L (m) S0 (m) kh h (m) H/L H/S0 

Low steepness waves 

09 1.070 1.78 0.021 3.52 1.00 0.0488 1.970 
13 1.294 2.58 0.022 2.44 1.00 0.0485 1.820 
15 3.010 8.37 0.120 0.72 1.00 0.0439 0.700 
17 1.785 4.42 0.032 1.42 1.00 0.0409 1.320 

High steepness waves 

21 1.006 1.16 0.039 3.98 1.00 0.2300 1.990 
22 1.264 2.46 0.065 2.55 1.00 0.1530 1.850 
23 1.714 4.16 0.131 1.51 1.00 0.0094 1.390 
24 2.152 5.76 0.225 1.09 1.00 0.0096 1.050 

The input for each simulation is the wavemaker velocity and is 
determined with Eq. (5) where ÷ is the angular frequency and t is the 
time variable. Furthermore, the sinusoidal terms are multiplied by an 
exponential term to damp the wavemaker velocity at the beginning of 
simulation thus avoiding numerical instabilities due inertial effects. 

þþ(ý) = 12 ÿ0ÿ ∙ cos(ÿý) ∙ (1 2 exp (2 ýĀ))
+ ÿ02 sin (ÿý) ∙ ÿ�� (2 ýĀ) Ā⁄  

(5) 

The input velocity for each wave type described in Tab. 1 and Tab. 2 can 
be obtained from Eq. (5). Figure 2 shows the wavemaker displacement 
and velocity for wave-type 09 in Tab. 2. 

Figure 2: Wavemaker displacement and velocity for test case 09. 

Non-linear Freak Wave Generation and Wave-Structure Impact 

The non-linear wave to be simulated is generated with the focused wave 
theory as a superimposition of 32 linear wave components. Their crest 
meets simultaneously at a specific point, referred to as the focusing point, 
in space xf and in time tf, producing a large-amplitude wave which will 
develop into a plunging breaker subsequently (Yan et. al. 2019). The 
profile of the wave can be described as: 



�(�, ý) = ∑ �ÿ cos[�ÿ(�� 2 �Ā) 2 2ÿĀÿ(ý 2 ýĀ)]  þ
ÿ=1 (6) 

The wave has N =32 linear components. The i-th subscript index refers 
to each linear component. The amplitude ai=0.0061m is constant 
throughout the frequencies which are equally spaced from fmin = 0.32Hz 
to fmax = 0.96Hz. The wavenumber ki is computed, for each linear wave 
component with the dispersion equation (based on linear wave theory). 
The domain configuration is set accordingly to the freak wave test case 
with h=0.7m in Sun et al. (2019). The flume in Fig. 3 is a slight 
modification of the domain in Fig. 1, where the flat bottom has been 
extended whilst the beach slope ratio remains unchanged. 

Figure 3: Wave flume with water at rest (freak wave). 

Simulations are performed with the optimal particle resolution and 
artificial viscosity. The non-linear wave is first studied without the 
structure, thus allowing to keep control of the model results and to tune 
model parameters (e.g., artificial viscosity and particle resolution). The 
wave height is evaluated at the wave gauges WG1, WG2 and WG3 and 
the velocity is measured at the probes V1 and V2. Then the box-shaped 
structure is introduced for the analysis of wave-structure impact. Four 
additional probes have been added: BP1 and BP2 placed on the bottom 
of the structure; FP1 and FP2 placed on the front of the structure. Fig. 4 
shows the time plot of the wavemaker input velocity utilized for all the 
simulations. 

Figure 4: Experimental Wavemaker Velocity 

ANALYSYS OF RESULTS 

In this section, the results of the parametric study on regular wave 
generation in a numerical flume are first briefly discussed. Furthermore, 
the results relative to the modelling of the eight waves from Ursell et al. 
(1960) are analyzed. The second subsection, instead, deals with the 
results of the non-linear wave generation in a flume, and the section is 
concluded with the first insights of wave-structure impact reproducing 
the experiments of Sun et al. (2019). 

Regular Wave Generation 

The parametric study on wave types T1 and T2 is subdivided in an 
investigation on artificial viscosity, particle resolution, and the CFL 
convergence study. The influence of artificial viscosity to the model 

considers four values of artificial viscosity M: 0.01, 0.02, 0.03, and 0.06. 
Simulations are carried out with the optimal set of parameters (particle 
resolution dx=0.01m and the optimal CFL = 0.2). 

Figure 5 shows the free surface elevation for wave T1 (upper panel) and 
T2 (lower panel) at wave gauge H1 compared with Biésel reference 
solution. It can be seen that the phase is well represented, while some 
wave height dissipation can be noticed. Such a wave height dissipation 
is more emphasized for wave type T1. Artificial viscosity seems to 
influence wave type T1 more than T2, and the top panel of Fig. 5 
highlights that using a higher artificial viscosity gives more numerical 
dissipation. 

Figure 5: Artificial viscosity. Free surface comparison at xp=2m. 

Figure 6 reports the contour of velocity magnitude at t=15s of wave-type 
T2 for different values of artificial viscosity. Higher artificial viscosity 
shows, as said for Fig. 5, higher numerical dissipation.  

Figure 6: Artificial viscosity. Contour of velocity magnitude for wave-
type T2. 

In Fig. 7 the free surface elevation time plot at 4m from the wavemaker 
shows that the wave height reduction grows as the probe distance from 
the wavemaker is increased. 

Figure 7: Artificial viscosity. Free surface comparison at xp=4m. 



Considering the reference solution of Biésel, wave heights are 
underestimated by the model. Numerical dissipation can be controlled 
(to some extent) by lowering the artificial viscosity and considering a 
lower artificial viscosity value seems appropriate for this purpose. 
However, further lowering the artificial viscosity gives noisy and less 
overall stable results. A first-order consistency scheme could help in 
reducing numerical dissipation for regular waves. Wave height 
dissipation could also be related to non-linear effects such as the wave 
steepness.  

In Salis (2019), the particle dimension dx is set to be a multiple of the 
still water height thus avoiding errors in the free-surface position. Three 
particle sizes are investigated, since simulation run-time is highly 
dependent on the particle resolution through the numerical stability 
condition and significantly drops when particle size is increased. The 
simulation run time is 18h, 0.9h, and 0.38h, respectively, for particle 
dimensions dx=0.01m, dx=0.02m, and dx=0.025m and a constant 
simulation time of t=20s. The reference parameters for this study are 
M=0.01 and CFL=0.2. 

Figure 8: Particle resolution. Free surface comparison at xp=2m. 

All three investigated particle sizes in Fig. 8 give similar results, 
however, it can be seen that those from the higher resolution simulation 
are more regular and seem more consistent throughout the whole 
simulation time. As the resolution decreases, one can notice less 
consistency in wave height profiles, with a more pronounced wave height 
reduction as the particle dimension grows. Based on the present results, 
the most appropriate resolution is dx=0.01m. 

Figure 9: Temporal convergence. Free surface comparison at xp=2m. 

The temporal convergence of the model is studied by varying the CFL 
value. As CFL is doubled the simulation run-time is halved. The 

following different CFL values are considered: 0.1 with a run time of 
36h, 0.2 with a run time of 18h, and 0.4 with a run time of 9h. Particle 
dimension and artificial viscosity remain constant at dx=0.01m, 
M=0.01. Figure 9 shows that, in the investigated range of values, the 
CFL condition does not significantly modify the simulation results. 
CFL=0.2 seems the most appropriate as it grants a suitable accuracy 
whilst reducing computational time. 

Figure 10 shows the pressure contours at t = 10s in regular wave cases 
T1 and T2. Pressure fields in the two snapshots are generally smooth and 
there is not numerical noise. In the SPHERA model the diffusion term in 
the continuity equation is substituted by the partial smoothing of the 
pressure field (Di Monaco et al. (2011)). 

Figure 10: Pressure contours at t = 10s in two regular wave cases. 

Since the model suffers from wave height dissipation it is worth 
investigating the non-linear aspects of regular waves to assess how much 
the numerical dissipation affects the model. To verify the SPHERA code 
eight waves from Ursell et al. (1960) are reproduced. All presented 
simulations are carried out with the optimal values of parameters: 
particle resolution dx=0.01m, artificial viscosity M=0.01, and 
CFL=0.2. 

Figure 11:Wave height to stroke ratio vs. relative depth (low steepness 
waves). Probe at 2 m from the wavemaker. 

Figure 11 shows the wave height to stroke ratio, i.e., H/S0, in dependence 
of the relative depth kh for the low-steepness waves. It can be said that, 
on average, the wave to stroke ratios appear to be quite close to the 
reference solution and the experiments. For wave-type 13 simulation 
results are comparable with the experiments of Ursell et al. (1960) and 
Anbarsooz et al. (2013) whilst appearing a little far from the reference 
solution. 

Figure 12 shows the wave height to stroke ratios for the simulated high 
steepness waves. For waves of higher relative depth (kh>2), the wave 
height to stroke ratio H/S0 results underestimated. For lower relative 
depth waves (kh<2), H/S0 results are very similar to literature results, 
whilst being underestimated with respect to the reference analytical 
solution. In Tab. 2, it can be seen that wave-types 21 and 22 have the 
higher frequency (1/T) than wave-types 23 and 24. As previously 
discussed for wave types T1 and T2, it can be observed that the wave 



height numerical dissipation increases with the wave frequency. Based 
on the results for low and high steepness waves, the H/S0 reduction with 
respect to literature data should be attributed to numerical dissipation. 

Figure 12: Wave hight to stroke ratio vs. relative depth (high steepness 
waves). Probe at 2 m from the wavemaker. 

In general, the accuracy of the model in generating waves needs further 
improvement. A first order consistency scheme e.g., the renormalization 
scheme (Randles and Libersky, 1996; Johnson and Beissel, 1996; Vila 
1999; Amicarelli et al. 2011) could damp numerical dissipation. In Fig. 
12 the wave height to stroke ratio of wave type 21 is much lower than 
those of both experimental and others’ numerical results. Figure 12 
includes the results of a preliminary simulation (H/S0 – 21 ren) adopting 
the renormalization scheme, indicated as <ren=, (Randles and Libersky, 
1996) for the momentum equation, i.e., Eq. (2). This result seems 
adequate for the early investigation of the non-linear wave and the impact 
on the fixed structure, presented in the following.  

Non-Linear Wave Generation 

Table 3 summarizes the adopted parameters for simulating the non-linear 
wave. It seems to be in general a good strategy to run test simulation with 
a low CFL value to ensure convergence; thus, run12 is assumed to be the 
reference simulation. In run11 and run10 the CFL is increased. Run10, 
despite a constant simulation time of t=20s, has a much lower 
computational run time (10h) than regular wave simulations (18h) 
mainly due to the lower number of particles contained in the 
computational domain (see Fig. 3). 

Table 3: Summary of relevant parameters adopted for non-linear wave 
simulations. 

2Dnlw dx [m] M CFL slip 
Total elapsed time 

[hh:mm:ss] 

10 0.01 0.02 0.2 free 10:35:36 
11 0.01 0.02 0.1 free 21:01:09 
12 0.01 0.02 0.05 free 43:02:45 
13 0.007 0.02 0.05 free 234:56:06 
14 0.007 0.01 0.05 free 242:51:20 

When considering the higher particle dimension dx=0.01m the CFL 
value, in the investigated range does not seem to affect the simulation 
stability. However, if the particle dimension is reduced to dx=0.007 
numerical instability appears. This instability can be controlled either by 
reducing CFL=0.05 or by increasing the artificial viscosity at a value 
higher than M=0.02. The adoption of CFL=0.05 allows reducing the 
artificial viscosity to M=0.01 with controlled numerical instability. 

Figure 13: Non-linear wave elevation at WG1, WG2 and WG3. 

Figure 13 shows the free surface time plot. At WG1 the wave height of 
the last crest, at about t=16.2s, is very close to the experimental wave 
height, while crests at early time are slightly underestimated. At gauges 
WG2 and WG3 the numerical dissipation of wave height is higher and 
increases with the distance of the gauge from the wavemaker. It should 
be noted that the phase of the simulated wave shows a delay with respect 
to the experimental result in all three gauges. In Fig. 13 it can be noticed 
the improvement in reproducing the wave height with respect to the 
reference simulation (run12). Improvement is obtained by increasing the 
particle resolution (run13) and combining the increased resolution with 
a lower artificial viscosity (run14). Particularly at WG1 the wave height 
increase is higher on the third and fourth crest. In WG2 and WG3 the 
wave height increase is significant in the last crest. The best result in term 
of simulating the experimental maximum wave height is obtained with 
run14. It can be noticed that for all three gauges the phase is again better 
represented by run14, with combined increased particle resolution and 
lowered artificial viscosity. 

Figure 14: Non-linear wave velocity at V1 and V2. 

The time histories of fluid velocity at the probes V1 and V2 in Fig. 14 
shows that numerical dissipation affects the fluid velocity at V2 more 
than that at V1. The time plot of the x-velocity at both probes V1 and V2 
is quite smooth while the z-velocity time plot appears to be affected by 
non-physical higher order oscillations. It is to be noted that the oscillation 
frequency increases in run13 and run14 with respect to run12. Figure 15 
reports the contour of velocity magnitude at 18.0s, 18.5s, and 19s, 
respectively, for run12, run13, and run14. It can be seen that in the higher 
resolution simulations (e.g., run13 and run14) the highest crest is faster 
than that in the coarser-resolution simulation of run12. When the higher 
resolution is combined with the lower artificial viscosity (run14), 
velocity magnitude increases with respect to run12 and run13 of about 
0.1 m/s in the higher crest. 



Figure 15: Contour of velocity magnitude at time 18s, 18.5s and 19s. 

Figure 16 shows the wave height of a test simulation, executed with the 
proposed renormalization scheme. It can be seen that in the simulation 
with the renormalization scheme, the kinematics of the non-linear wave 
(height and phase) are more adherent to the experimental data. 

Figure 16: Wave elevations at WG1, WG2 and WG3 for the non-linear 
wave case.  

Non-linear Freak Wave Impact on a Rigid Box-Shaped Structure 

In this section, a preliminary investigation of wave-structure impact is 
briefly discussed.  

Figure 17: Contours of velocity magnitude at time instants close to and 
during the wave-structure interaction. Left panels: results without 

renormalization. Right panels: results with renormalization. 

The relevant parameters are dx=0.01, M=0.02, CFL=0.2 with a free-slip 
boundary condition and a simulation time of t=20s; using such choices, 
numerical instability can be controlled while obtaining a suitable result 
accuracy and computational time of 10h. The contours of velocity 
magnitude in Fig. 17 show that the predicted velocity field is generally 
smooth. Moreover, when renormalization is applied, wave height and 
phase are better predicted and wave breaking is successfully captured 
(right hand panels). 

CONCLUSIONS

The SPHERA code has been applied to simulate regular waves, a non-
linear wave packet, and the wave impact on a fixed rigid structure. For 
the regular wave simulation, the phase is always well represented by the 
model. It is however to be noted that the model is affected by numerical 
dissipation, leading to a wave height reduction that increases with the 
probe distance from the wavemaker. Nevertheless, SPHERA results are 
in accordance with the literature data, in particular when simulating low 
steepness waves. The numerical dissipation seems larger in the 
simulation of regular waves of higher frequencies. However, numerical 
dissipation can be controlled via the renormalization scheme. The 
generated non-linear wave height is affected by numerical dissipation. 
Velocities are well represented and the z-velocity shows some 
oscillations (reason for which needs further investigation). A finer 
particle resolution gives better results, particularly when a smaller 
artificial viscosity is adopted. The simulation of freak wave impact on a 
rigid structure, thanks to the damping of numerical dissipation by the 
renormalization, produces reasonably good results. The adopted model 
allows obtaining a suitable accuracy and proper representation of both 
the linear and non-linear wave kinematics (i.e. wave height and phase) 
when including the renormalization procedure. These results 
demonstrate that SPHERA is promising in simulating ocean wave related 
problems. Reducing numerical dissipation is very important for this 
study, and this goal can be achieved through the renormalization scheme 
(Randles and Libersky, 1996; Johnson and Beissel, 1996; Vila, 1999; 
Amicarelli et al. 2011) to damp numerical dissipation. Future 
perspectives of this study are therefore the generalization of the 2D 
renormalization scheme in SPHERA and its validation. Concerning the 
non-linear wave impact onto the structure, pressure field representation 
needs to be improved. This task can be accomplished by subsequent steps 
with increasing complexity that will be considered in the future: (i) 
applying the renormalization scheme to the continuity equation; (ii) 
managing the tensile instability caused by negative pressure; (iii) 
including the air phase to account for the air cushion that affects the 
slamming pressure. 

ACKNOWLEDGEMENTS

We acknowledge the CINECA award under the ISCRA initiative, for the 
availability of High Performance Computing resources and support=. In 
fact, SPHERA simulations of the present study have also been financed 
by means of the following instrumental funding HPC projects: 
HPCNHLW2, HSPHER20, HSPHER21. 

The partial support by the MIUR-PRIN project XFAST-SIMS (no. 
20173C478N) is also gratefully acknowledged. 

Finally, the authors would like to deeply thank Dr. Andrea Amicarelli 
(RSE S.p.A.) for several fruitful discussions on the topic of the present 
paper. 



REFERENCES

Altomare, C., Tafuni, A., Domínguez, J. M., Crespo, A. J., Gironella, X., 
& Sospedra, J. (2020). SPH simulations of real sea waves impacting a 
large-scale structure. Journal of Marine Science and Engineering, 8(10), 
826. 

Amicarelli, A., Marongiu, J.-C., Leboeuf, F., Leduc, J., Neuhauser, M., 
Fang, L., and Caro, J. (2011). SPH truncation error in estimating a 3d 
derivative. International journal for numerical methods in engineering, 
87(7):677–700. 

Amicarelli, A., Albano, R., Mirauda, D., Agate, G., Sole, A., & 
Guandalini, R. (2015). A Smoothed Particle Hydrodynamics model for 
3D solid body transport in free surface flows. Computers & fluids, 116, 
205-228.

Anbarsooz, M., Passandideh-Fard, M., and Moghiman, M. (2013). Fully 
nonlinear viscous wave generation in numerical wave tanks. Ocean 
Engineering, 59:73–85.  

Biesel, F., & Suquet, F. (1951). Les appareils générateurs de houle en 
laboratoire. La houille blanche, (2), 147-165.  

De Padova, D., Dalrymple, R., Mossa, M., and Petrillo, A. (2009). SPH 
simulations of regular and irregular waves and their comparison with 
experimental data. arXiv preprint arXiv:0911.1872. 

Di Monaco, A., Manenti, S., Gallati, M., Sibilla, S., Agate, G., & 
Guandalini, R. (2011). SPH modeling of solid boundaries through a 
semi-analytic approach. Engineering Applications of Computational 

Fluid Mechanics, 5(1), 1-15.  

Lo, E. Y., & Shao, S. (2002). Simulation of near-shore solitary wave 
mechanics by an incompressible SPH method. Applied Ocean 

Research, 24(5), 275-286. 

Gómez-Gesteira, M., Cerqueiro, D., Crespo, C., and Dalrymple, R. 
(2005). Green water overtopping analyzed with a SPH model. Ocean 
Engineering, 32(2):223–238. 

He, M., Khayyer, A., Gao, X., Xu, W., & Liu, B. (2021). Theoretical 
method for generating solitary waves using plunger-type wavemakers 
and its Smoothed Particle Hydrodynamics validation. Applied Ocean 

Research, 106, 102414. 

Huang, C.-J., Zhang, E.-C., and Lee, J.-F. (1998). Numerical simulation 
of nonlinear viscous wavefields generated by piston-type wavemaker. 
Journal of engineering mechanics, 124(10):1110–1120. 

Johnson, G. R., & Beissel, S. R. (1996). Normalized smoothing functions 
for SPH impact computations. International Journal for Numerical 

Methods in Engineering, 39(16), 2725-2741. 

Lee, S., & Hong, J. W. (2020). A Semi-Infinite Numerical Wave Tank 
Using Discrete Particle Simulations. Journal of Marine Science and 

Engineering, 8(3), 159. 

Liu, G. R., & Liu, M. B. (2003). Smoothed particle hydrodynamics: a 

meshfree particle method. World Scientific. 

Liu, X., Lin, P., & Shao, S. (2015). ISPH wave simulation by using an 
internal wave maker. Coastal Engineering, 95, 160-170. 

Monaghan, J. J. (2005). Smoothed particle hydrodynamics. Reports on 

progress in physics, 68(8), 1703. 

Pákozdi, C., Östeman, A., Stansberg, C. T., Peric, M., Lu, H., & 
Baarholm, R. (2015, July). Estimation of wave in deck load using CFD 
validated against model test data. In The Twenty-fifth International 

Ocean and Polar Engineering Conference. International Society of 
Offshore and Polar Engineers. 

Randles, P. W., & Libersky, L. D. (1996). Smoothed particle 
hydrodynamics: some recent improvements and applications. Computer 

methods in applied mechanics and engineering, 139(1-4), 375-408. 

Salis, N. (2019). Numerical Modelling of Waves in a 2D Flume. Master’s 
thesis, University of Pavia., Faculty of Engineering Department of Civil 
Engineering and Architecture. 

SPHERA (RSE SpA) (2021). https://github.com/AndreaAmicarelliRSE. 

Stansberg, C. T., Baarholm, R., Kristiansen, T., Hansen, E. W. M., & 
Rortveit, G. (2005, January). Extreme wave amplification and impact 
loads on offshore structures. In Offshore Technology Conference. 
Offshore Technology Conference. 

Sun, P. N., et al. "Multi-resolution Delta-plus-SPH with tensile 
instability control: Towards high Reynolds number flows." Computer 

Physics Communications 224 (2018): 63-80. 

Sun, P.-N., Luo, M., Le Touzé, D., and Zhang, A.-M. (2019). The suction 
effect during freak wave slamming on a fixed platform deck: Smoothed 
particle hydrodynamics simulation and experimental study. Physics of 
Fluids, 31(11):117108. 

Ursell, F., Dean, R. G., and Yu, Y. (1960). Forced small-amplitude water 
waves: a comparison of theory and experiment. Journal of Fluid 
Mechanics, 7(1):33–52. 

Vila, J. P. (1999). On particle weighted methods and smooth particle 
hydrodynamics. Mathematical models and methods in applied 

sciences, 9(02), 161-209. 

Wang, W., Kamath, A., Pakozdi, C., and Bihs, H. (2019). Investigation 
of focusing wave properties in a numerical wave tank with a fully 
nonlinear potential flow model. Journal of Marine Science and 
Engineering, 7(10):375.11. 

Windt, C., Davidson, J., Schmitt, P., and Ringwood, J. V. (2019). On the 
assessment of numerical wave makers in CFD simulations. Journal of 
Marine Science and Engineering, 7(2):47. 

Yan, B., Luo, M., and Bai, W. (2019). An experimental and numerical 
study of plunging wave impact on a box-shape structure. Marine 
Structures, 66:272–287. 

Yan, M., Ma, X., Bai, W., Lin, Z., & Li, Y. (2020). Numerical Simulation 
of Wave Interaction with Payloads of Different Postures Using 
OpenFOAM. Journal of Marine Science and Engineering, 8(6), 433. 



5.3 Final remarks

The model has now been validated to accurately reproduce both regular waves and focused plunging waves. In

Figure 17 of the initial paper, the first attempt to model a wave-structure impact was depicted. However, the initial

results of this phenomenon were slightly unstable. Furthermore, it became evident that something crucial was

missing from the model. The inclusion of the air phase is essential for a comprehensive modelling of the physical

phenomena involved. Recognizing this necessity, I commenced the development of a high-density ratio multiphase

scheme.



6

Development of a high density ratio multiphase scheme

This chapter delineates the numerical intricacies of a Free and Open Source Software (FOSS) derived code, accom-

plished by incorporating significant modifications into the original SPHERA v.9.0.0 (RSE SpA) code.

6.1 Introduction

Extensive modifications were made to the original SPHERA v.9.0.0 model. Henceforth, the multiphase model will

be referred to as derived model. Analyzing the impact of waves on structures and the induced loads is inherently

complex due to air entrapment between the wavefront and the structure. Figure 6.1 illustrates the instability at

the interface observed during the simulation of a hydrostatic case with a different Weakly Compressible Smoothed

Particle Hydrodynamics (WCSPH) model [53]. Two main factors contribute to this instability: the discontinuity of both

density and pressure derivatives at the interface.

Figure 6.1: SPH numerical instability in still water. [53]

Numerous models in the technical literature have been proposed to address these issues [54, 55, 53, 52]. Each of

these models employs different approaches to mitigate instabilities at the fluid interface. Herein, a relatively simple

and accurate alternative approach is presented to eliminate instabilities caused by the high density discontinuity.

The strategy involves replacing particle density with particle volume in the kernel summation. While density is

discontinuous at the interface, particle volume remains continuous (assuming there is no multi-particle resolution).

Pressure and viscous terms in the momentum balance equation must be accordingly modified. For the pressure

term in the momentum equation, a symmetric formulation with volume-weighted summation is implemented. Initial

results reveal some residual instabilities associated with the pressure field. Therefore, pressure smoothing, based

on Shepard filtering, is replaced by a diffusive term in the continuity equation, which provides greater stability. These

aforementioned modifications were incorporated into the original SPHERA v.9.0.0 code.
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6.1.1 Two-phase WCSPH Formulation

Several two-phase WCSPH models for high density ratio have been proposed in the technical literature. Colagrossi et

al. [54] presented a simple model for treating interfacial flows, while Grenier et al. [55] introduced a new Hamiltonian

interface SPH formulation that achieved good agreement between simulations and reference results [53]. Rezavand

et al. [56] proposed a new standard WCSPH by substituting the density (which is discontinuous at the interface) with

the inverse of the particle volume inside the kernel summation. Colagrossi et al. [52] overcame WCSPH instabilities

by solving a Riemann problem at the interface. Additionally, based on the approach of Grenier et al. [55], they found

a new formulation of WCSPH with the continuity equation written in terms of evolving volume rather than density.

In standard WCSPH, there are two alternative approaches that may lead to different discretisations of the continuity

and momentum equation [57]. Equation (6.1) illustrates the application of the SPH approximation, considering only

the velocity divergence.

DÄi
Dt

= Äi
∑

j

mj

Äj
uj · ∇W (6.1)

Considereing the partition of kernel in Eq.(6.2) allows to write Eq. (6.3).

∇1 =

∫

1∇W =
∑

j

mj

Äj
· ∇W = 0 (6.2)

Äi
∑

j

mj

Äj
ui · ∇W = Äiui

∑

j

mj

Äj
· ∇W (6.3)

Adding Eq. (6.3), which is zero, to the right hand side of (6.1) gives Eq. (6.4) which represents the first approach

to obtain the continuity equation.

DÄi
Dt

= Äi
∑

j

mj

Äj
(uj − ui) · ∇W (6.4)

The second approach, which is the most widely used for defining the continuity equation, is represented by Eq.

6.6. This approach is also employed in the Smoothed Particle Hydrodynamics (SPH) approximation of the continuity

equation in the official release of SPHERA, and it relies on the identity presented in Eq. 6.5.

−Ä∇u = −(∇(Äu)− u · ∇Ä) (6.5)

DÄi
Dt

= Äi
∑

j

mj(uj − ui) · ∇W (6.6)

This last approach allows us to “hide" the density of the neighbouring particles. Thus, the summation of relative

velocities is weighted with the mass of the neighbouring particle. For a single-phase scenario, this is not a prob-

lem since the particle mass is constant across the entire domain. However, for two-phase simulations, the mass

differences between particles can be very high, as is the case with water and air.

Taking a step back and not applying the identity in Eq. 6.5 leads to the relative velocity being multiplied by the

neighbor’s mass over the density, i.e., the volume, which is continuous, as shown in Eq. 6.4. With this formulation of

the continuity equation, it is possible to treat two-phase flows with high-density ratios. This continuity equation must

be in accordance with the momentum equation. Similarly to (6.6), the most widely used momentum equation, where

Ã is a generic stress tensor, is given by Eq. 6.7.

Dui
Dt

=
∑

j

mj

( Ã
i

Ä2i
+

Ã
j

Ä2j

)

· ∇W (6.7)

This formulation (Eq. 6.7) is obtained by applying the following identity Eq. 6.8.

−1

Ä
∇Ã = −

(

∇
( Ã

Ä

)

+
Ã

Ä2
∇Ä

)

(6.8)

Also in this case, it is found that the stress tensor is “weighted" with mass, which is not ideal for simulating two fluids

with a high density ratio and is not compatible with (6.4). Without the substitution of these mathematical identities
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(Eqs. 6.5 and 6.8), the continuity and momentum equations are valid for treating two phases with a high density

ratio. Further details can be found in [57] and [58]. Based on the above developments, the standard SPH balance

equations can be written as shown in Eq. (6.9).
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j
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j Vj(Ãj
+ Ã

i
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(6.9)

The new two-phase model is obtained by modifying the original Eqs. (5.1) and (5.2) according to Eq. (6.9).

The continuity equation of the model is therefore given by Eq. (6.10). This formulation needs to accommodate the

semi-analytic approach for boundary treatment [46]. The formulation of integral terms for the semi-analytic boundary

treatment does not encounter any issues since the particle mass doesn’t appear in the fluid-body interaction terms,

which depend solely on the geometry of boundaries.
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(6.10)

The momentum balance equation is modified accordingly, resulting in Eq. (6.11), which represents the new

two-phase momentum balance equation. The only altered terms are the pressure term and the artificial viscosity

term. The pressure term remains symmetric but now incorporates the volume rather than the mass in the neighbour

summation.
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The artificial viscosity term has also been modified. Now, the artificial viscosity is calculated only if the neigh-

bouring particle and the computational particle 0 belong to the same phase.

Åm =
³ · h · c
Äi

(6.12)

The factor Åm is adjusted in accordance with [52], resulting in Eq. (6.12), where Ä0in is the initial density of

particle 0, c is the velocity of the medium, h is the smoothing length, and ³ is the Monaghan alpha parameter

ranging between 0.01 and 0.1 depending on the specific simulation case.

6.1.2 Diffusive Term

In WCSPH, the pressure field requires numerical treatment to avoid non-physical noise. This is due to the weakly

compressible assumption and the fact that pressure is computed with a stiff equation of state, meaning small changes

in density result in high pressure changes. In SPHERA, the noisy pressure field is addressed with pressure smooth-

ing:

pi = pi + ¹

N
∑

b=1

∆P
∇W
rij

(6.13)

Here, ¹ is defined as:
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¹ = ¹pci
dt

h
(6.14)

where ¹p is a user-defined constant ranging between 0.1 and 0.3, ci is the sound speed of the medium, dt is the

time step, and h is the smoothing length.

To apply pressure smoothing, three loops are required: two loops over all particles and one nested loop over the

neighbours of the computational particle 0. It’s important to note that pressure smoothing is not applied every time

step. However, this method is robust and yields good results.

In some WCSPH models [59, 60], this method is replaced by the addition of a diffusive term in the continuity

equation:

Di = 2¶cih

N
∑

b=1

Èij
rij · ∇W
∥rij∥2

Vj (6.15)

The diffusive term must satisfy Eq. 6.16 for consistency with global mass conservation [60]:

∑

i

DiVi = 0 Èij = −Èb0 (6.16)

This approach is more robust and less computationally demanding than pressure smoothing. The definition of

the term Èij affects the formulation. The formulation by [59] is simple:

ÈMol
ij = Äj − Äi (6.17)

However, it leads to non-physical behaviour in certain scenarios characterised by slow particle motion and long-

time dynamics, such as sloshing problems and gravity wave propagation.

The formulation by [60] is stable and consistent with both hydrostatic and dynamic cases:

ÈAnt
ij = Äj − Äi −

1

2
(ï∇ÄðLj + ï∇ÄðLi ) · rij (6.18)

ï∇ÄðLi =
∑

j

(Äj − Äi)Li
· ∇W i

mj

Äj
(6.19)

The formulation proposed by [60] is preferred because it is compatible with slow dynamics and long simulation

times. This is demonstrated in [61], where after a long simulation time, particles near the free surface spread and

rise above the expected free surface.

6.2 Wave Generation and Wave–Structure Impact Modelling with WCSPH

The multiphase model was initially tested by reproducing a dam break scenario. It’s important to highlight that

renormalisation was not compatible with the dam break simulation and was consequently disabled. However, renor-

malisation was consistently applied for computing the diffusive term in the continuity equation. The results of the

multiphase dam break simulation were quite accurate. Nevertheless, the model exhibited instabilities at the inter-

face, primarily stemming from tensile instability and the formation of numerical voids.

Given the extensive changes in the governing equations compared to those of SPHERA v.9.0.0, the model

required a new round of study and validation in single-phase scenarios. The selected cases for validating the new

model were the eight regular waves and the plunging wave-structure impact. It’s noteworthy that renormalisation in

these cases could also introduce instabilities. To address this, a limiter was applied to the renormalisation process.

The limiter, a constant, determined whether renormalisation was applied based on the determinant of the B matrix.

This approach enabled the use of renormalisation while avoiding both numerical dissipation and instabilities.

The results of these validations are detailed in the paper titled “Wave generation and wave–structure impact

modelling with WCSPH," published in the journal Ocean Engineering.
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A B S T R A C T

The reliable prediction of plunging wave induced load, which represents a challenging task in offshore
engineering, is of key relevance for the safety of existing offshore structures as well for the reliable design
of new ones. This work shows the early advances in the development of a FOSS derived model, obtained by
independently introducing relevant modifications in the original model SPHERA v.9.0.0 (RSE SpA) based on
the Weakly Compressible Smoothed Particle Hydrodynamics (WCSPH) method. This derived model is validated
on single-phase laboratory flume tests from technical literature (i.e., dam break and regular waves) and on a
laboratory flume test of plunging wave impacting an offshore structure. The derived model allows modelling
two-phase flows with a large density ratio, as shown by an additional two-phase dam break simulation.
Therefore it seems promising for application to two-phase plunging impact to improve the prediction of impact
load on the structure.

1. Introduction

In recent years, the world has seen the increase of the frequency in
climate-generated calamities as well as of the severity of the induced
consequences. For this reason, wave height and slamming forces acting
on offshore structures are meant to grow, and thus the issue of their
safety is strategic and deserves to be carefully analysed on the basis of
expected changes. This is even more important considering the fact that
the offshore structure population is considerable and more structures
are being built. Even if some climate change models are being devel-
oped to forecast the relevant characteristics of wave forcing, reliable
wave load prediction on the offshore structure is very challenging. The
phenomenon is highly non-linear, because of the impulsive interaction
between water, air and a structure with complex geometry.

1.1. Modelling approaches in literature

Experimental campaigns are quite expensive and can still have
some intrinsic uncertainties related to scale effects (Johnson, 1949).
Empirical methods may be unsuitable when applied to cases that
strongly differ from those for which these methods have been obtained.

∗ Corresponding author.
E-mail addresses: nicolo.salis01@universitadipavia.it (N. Salis), min.luo@zju.edu.cn (M. Luo), alessandro.reali@unipv.it (A. Reali), sauro.manenti@unipv.it

(S. Manenti).
1 Ph.D. Student.
2 Research Professor, Ph.D..
3 Professor of Solid and Structural Mechanics, Ph.D..
4 Associate Professor of Fluid Mechanics, Ph.D..

In this framework, numerical modelling may be more versatile and
can represent a trade-off between effort and accuracy, overcoming
the limitations due to scale effects, but they need calibration and
validation making use of experimental results. The numerical mod-
elling of wave generation and structure interaction may be carried
out following several approaches, each one with its own advantages
and disadvantages. Eulerian grid-based methods are the most widely
used computational fluid dynamics (CFD) tool in engineering (Liu and
Liu, 2003). Wave generation and wave–structure interaction have been
investigated widely with Eulerian grid-based methods. Stansberg et al.
(2005) simulated wave-deck impacts with a commercial Volume-of-
Fluid (VOF) tool (Flow-3D), achieving promising results of load time
series against test data. Pákozdi et al. (2015) studied wave-deck loads
on a gravity-based structure caused by 5th order Stokes regular waves
in a laboratory model, the air–water simulation being carried out with a
commercial model (STAR CCM+), solving a VOF method that accounts
for wave breaking and air entrapment. Both Stansberg et al. (2005)
and Pákozdi et al. (2015) reported that greater loads are generated
by non-linear waves. Recently, Yan et al. (2020), used the open-
source model OpenFOAM to study the non-linear interaction of regular
waves with floating payloads. However, modelling free surface flows

https://doi.org/10.1016/j.oceaneng.2022.113228
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Notation

Subscript 0 Computational particle.

Subscript b Neighbour of the computational particle 0.

� Density of the neighbouring. (kg m−3)

t Time variable. (s)

u Velocity vector. (m s−1)

∇ Gradient operator.

W Kernel function.

$ Particle volume. (m3)

n Normal vector to the wall surface.

V 2
ℎ

Fictitious wall boundary volume.

Cs Fluid-body interaction term (continuity
equation).

g Gravitational acceleration vector. (m s−2)

p Particle pressure. (Pa)

�m Artificial viscosity multiplication term.

m Particle mass. (kg)

r0b Distance between computational and neigh-
bouring particle. (m)

x Particle position. (m)

a
s

Acceleration term due to fluid-body interac-
tions. (m s−2)

� Artificial viscosity factor. (–)

ℎ Smoothing length. (m)

cs Artificial sound speed (celerity). (m s−1)

B
0

Neighbour concentration matrix on compu-

tational particle.

L
0

Renormalization matrix on computational

particle.

∇W Kernel gradient.

∇̃W Renormalized Kernel gradient.

� Renormalization threshold value. (–)

�i3 Kronecker’s delta function.

� Multiplying factor for pressure smoothing.
(–)

�P Pressure variation. (Pa)

D0 Diffusive term in the continuity equation.

� Multiplying factor for the continuity diffu-
sive term. (–)

 Continuity diffusive summation term. (–)

∇�B
0

Renormalized density gradient.

with an Eulerian approach introduces some challenging aspects to be
handled, such as boundary conditions to determine the free surface,
simulation of jets, sprays and wave breaking. Large grid distortion that
may occur can affect the solution accuracy, and therefore it must be
properly treated with expensive re-meshing techniques. Owing to its
intrinsic properties, Lagrangian particle methods have proven to be a
reliable tool for the simulation of free surface flows with impacts (Luo
et al., 2021). The lack of any topological connection between particles
allows to model large and rapid deformation of the domain, fluid
splitting and particle coalescence. The Lagrangian formulation of the
fluid governing equations lacks the advection terms, thus avoiding nu-
merical diffusion and making particle methods more suitable to model
advection-dominated flows. Furthermore, the particle discretization
allows tracking implicitly fluid interfaces when dealing with multi-
phase interaction problems. Among Lagrangian particle methods, the
Smoothed Particle Hydrodynamics (SPH) provides a good framework
for the analysis of free surface impulsive flows (Monaghan, 2005;

Gomez-Gesteira et al., 2010; Lind et al., 2020; Lyu et al., 2022). SPH
allows the straightforward inclusion of a different medium to study
multiphase flows (Manenti, 2018; Colagrossi et al., 2020; Gu et al.,
2022; Gong et al., 2016). SPH has proven to be suitable for generating
regular and non-linear waves in a Numerical Wave Tank (NWT) using
either a plunging wave-maker (He et al., 2021), or a piston-type wave-
maker (Lee et al., 2020), or an internal wave-maker algorithm (Liu
et al., 2015) or via the interaction with external rigid or deformable
bodies (Gallati et al., 2005), such as landslides (Manenti et al., 2018).
Also SPH techniques have been proved suitable to investigate wave-
impacts. Lo and Shao (2002) adopted ISPH with Large Eddy Simulation
(LES) to reproduce near-shore solitary waves and impacts with vertical
and sloped walls. Gómez-Gesteira et al. (2005) simulated the impact
of a single wave with a flat horizontal deck finding results that both
qualitatively and quantitatively match experimental results, although
the used particle dimension was quite rough. Altomare et al. (2020)
applied the open-source model DualSPHysics to a real-scale engineering
application simulating a sea wave impacting the ‘‘Pont del Petroli’’
deck. Results showed higher forces than those considered in design
phase and demonstrated the failure mechanism that led to severe
damage of the piers.

1.2. Purpose of this research

The contributions introduced by this research are summarized in
the following. An alternative standard WCSPH formulation to treat
multiphase flows with high-density ratio is proposed. To the authors
knowledge this research shows for the first time a thorough SPH
analysis of the generation and propagation of a wide variety (from
low to high steepness) of regular waves in a flume. Furthermore,
a reliable tool has been set up for the investigation of non-linear
waves in a flume with impact load to a marine structure providing
accurate results using a single-phase approach. The work contributes
to the development and validation of a FOSS model. The FOSS model
here described ‘‘Derived code’’ (2022) is obtained by independently
introducing relevant modifications in the original model (SPHERA
v9.0.0 (RSE SpA), 2022) to obtain stable and accurate simulations of
the analysed problems. An alternative formulation of the continuity
and momentum equation is proposed where the kernel summation is
weighted by the particle volume that, unlike the density, is continuous
at the air–water interface. For the same reason, the momentum equa-
tion is reformulated adopting a symmetric formulation of the pressure
term. Renormalization of kernel derivatives is also adopted to avoid
excessive numerical dissipation of wave energy (Gomez-Gesteira et al.,
2010). The computed renormalization matrix allows to replace Shepard
filtering in the continuity equation with a diffusive term which is suit-
able even for slow-dynamics (Molteni and Colagrossi, 2009; Antuono
et al., 2010). The model is validated, thus showing its capability to
simulate the relevant aspects of these flows, although some aspects still
need further study to improve the model. The layout of the paper is
the following: the relevant modifications introduced into the original
model (SPHERA v9.0.0 (RSE SpA), 2022) to obtain the (Derived code,
2022) are described; then, the benchmarks performed to validate the
model are introduced; simulation results are illustrated and discussed;
finally, conclusions are drawn.

2. Mathematical formulations

This section illustrates the relevant modifications introduced into
the original model (SPHERA v9.0.0 (RSE SpA), 2022) to obtain the (De-
rived code, 2022) for application to non-linear wave generation and
impact onto a fixed structure.
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2.1. Original model

This subsection briefly recalls the governing equations for a New-
tonian fluid of the original model SPHERA v.9.0.0 (RSE S.p.A.) that
were modified to obtain the derived model described in the following
subsection. The adopted boundary treatment schemes are the semi-
analytic approach for solid walls (Di Monaco et al., 2011) and the
scheme for solid bodies (Amicarelli et al., 2015). These schemes are
reported in Section 2.1.1. Other numerical schemes of SPHERA that
were not used in this work are described in Amicarelli et al. (2020)
and the user guide of SPHERA (SPHERA v9.0.0 (RSE SpA), 2022).
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Eq. (1) is the continuity equation where Cs is introduced to rep-
resent the fluid-body interaction term. The notation ‘‘ïð’’ indicates the
SPH particle -discrete- approximation; Eq. (2) is the momentum balance
formulation, where: a

s
represents an acceleration term due to the

fluid body interactions. �m is the artificial viscosity, which mimics the
physical viscosity of water providing consistent and accurate results,
and it is defined in Eq. (3) (Monaghan, 2005) where �̃ = 2�0ℎ, c̃ = 2ci
and ci is the medium celerity; ℎ is the smoothing length, � is the
Monaghan parameter ranging between 0.01 and 0.1 depending on the
simulated case study. m is the particle mass, and r0b the relative distance
between the computational particle (subscript 0) and the neighbouring
particle (subscript b). In Eqs. (1) and (2) W is the kernel function, u
is the velocity vector, p is the pressure, � is the fluid density, g is the
gravity acceleration, x is the position vector and t is the time variable.
The summation is extended to all fluid particles with volume $ (sub-
script b) that are in the kernel support of the computed fluid particle
(subscript 0). The kernel support becomes truncated when it intersects
the boundary surface. To avoid this inconvenience, the semi-analytic
technique is adopted for mimic solid boundaries (Section 2.1.1). n is the
normal vector to the wall surface. The system of equations is closed by
the following linearized barotropic equation of state (EOS) for slightly
compressible fluids:

p = c2
ref

(
� − �ref

)
+ p0 (4)

The artificial sound speed c must be assumed at least ten times
higher than the maximum fluid velocity in order to assure a relative
density variation at most equal to 1% (Monaghan, 2005); the sub-
script ref stands for the reference state. In WCSPH approximation,
the pressure is computed with a stiff equation of state where small
changes in density correspond to high pressure variations. Therefore,
the pressure field requires numerical treatment to avoid numerical
noise. In SPHERA v9.0.0 a pressure smoothing is applied based on
Shepard filtering according to Eq. (5).

p0 = p0 + �

N1
b=1

�P
∇W

r0b
(5)

� is defined in Eq. (6) where �p is a user defined parameter ranging
between 0.1 and 0.3, dt is the time step.

� = �pc0
dt

ℎ
(6)

To apply the pressure smoothing three loops are needed: two loops
over all particles and one nested loop over the neighbours of the compu-
tational particle 0. It is worth noting that the pressure smoothing is not
applied on every time step. Moreover, it can be said that this method is
robust and give good results. For a complete description of the model
features, readers are referred to the model documentation (SPHERA
v9.0.0 (RSE SpA), 2022).

2.1.1. Boundary conditions
Solid walls are treated with the semi-analytic approach (Vila, 1999).

The inner domain is filled with particles while at the boundaries the
kernel support is not truncated and it can partially lie outside the
fluid domain. The boundary contributions, owing to the semi ana-
lytic approach in Eqs. (1) and (2) are expressed through the integral
terms. These terms represent the convolution integral on the portion
of the kernel support V 2

ℎ
that lies outside of the domain. Flow vari-

ables e.g. pressure, velocity and density are linearized accordingly
to Di Monaco et al. (2011). Eq. (7) shows the linearization for the
pressure and density. Values of these ‘‘SA’’ functions are assigned to
represent a null normal gradient of reduced pressure at the frontier
interface (Amicarelli et al., 2020).
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(7)

The velocity vector is considered uniform outside of the domain.
At the boundary, the velocity vector is divided in normal u

SA,n
and

tangential u
SA,�

components. The normal component is expressed as
a linearization of the fluid particle velocity, the tangential component
is set equal to the analogous vector of the computational particle
(subscript 0). Eq. (8) shows such linearization where subscript 
 refers
to a generic domain frontier.
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(8)

In Eqs. (1) and (2), the terms Cs and as account for fluid-body inter-
action respectively. This scheme has been firstly introduced by Adami
et al. (2012) and in this research is used to model the wavemaker in
the cases of wave generation and the structure in the case of wave–
structure impact. This method can be interpreted as a discretization
of the semi analytic approach. The outer domain is not truncated but
filled with the body particles. Eq. (9) shows the fluid-body interaction
term for the continuity equation. This represents a discretization of
the analogues semi-analytic term for the solid boundary contribution.
Eq. (10) shows the acceleration introduced by the fluid–solid interface,
which influences the estimation of body particle pressure. The subscript
s refers to the generic neighbouring surface body particle. Amicarelli
et al. (2015)

Cs = 2�0
1
s

[(u
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− u

0
) ç n

s
]∇Ws$s (9)
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s
=
1
s

( ps + p0
�2
0

)
∇Wsms (10)

Further details on the derivation of boundary conditions can be found
in Di Monaco et al. (2011) and Amicarelli et al. (2015, 2020). More-
over, it is worth noting that these schemes apply also to the ‘‘Derived
code’’ (2022).



Ocean Engineering 266 (2022) 113228

4

N. Salis et al.

2.1.2. Time propagation scheme
A second-order Leapfrog scheme is used to integrate in time the

governing equations. Amicarelli et al. (2020)

x|t+dt =x|t + u|t+dt∕2dt

u|t+dt∕2 =u|t−dt∕2 +
ïdu
dt

ð|||tdt

�|t+dt =�|t +
ïd�
dt

ð||||t−dt∕2dt

(11)

Eq. (12) shows the stability criteria for the time integration.

dt = min0

{
0.05

2ℎ2

�
;CFL

2ℎ

c + |u|
}

(12)

The described integration scheme is used without modification in
the (Derived code, 2022).

2.2. Derived model

This subsection reports the independent modifications introduced
in the original WCSPH model (SPHERA v9.0.0 (RSE SpA), 2022) to
obtain the (Derived code, 2022). These modifications are introduced
in the governing equations adopting the standard WCSPH formulation
which suffer from some intrinsic problems when simulating two fluids
with large density ratio. Several two-phase WCSPH models have been
proposed in the literature in order to overcome these problems. Cola-
grossi and Landrini (2003) presented a relatively simple and effective
model to treat interfacial flows. Grenier et al. (2009) introduced a
new Hamiltonian interface SPH formulation obtaining good agreement
between simulations and reference results. Manenti et al. (2018) pro-
posed a new standard WCSPH substituting the density (discontinuous
at the interface) with the inverse of the particle volume inside the
kernel summation. Rezavand et al. (2020) overcame the instabilities
of WCSPH by solving a Riemann problem at the interface. Colagrossi
et al. (2020), based on the approach of Grenier et al. (2009), introduced
a new formulation where the continuity equation is written evolving
volume rather than density. Writing the continuity and momentum
equation in a proper formulation (see for instance Liu and Liu (2003),
Violeau (2012)), the following equivalent discretized WCSPH equations
can be obtained:ï
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Eqs. (13)–(14) are suitable to perform stable simulations of multi-
phase flows with high density ratio because the kernel summation is
carried out assuming the particle volume instead of their mass which
varies abruptly between the phases leading to unbalanced fictitious
forces. Therefore, the (Derived code, 2022) is obtained by modify-
ing (SPHERA v9.0.0 (RSE SpA), 2022) mass and momentum balance
Eqs. (1) and (2). The integral terms of the semi analytic boundary
treatment depend solely on the geometry of boundaries, not on the
particle mass. Therefore, in the momentum balance equation the only

modified terms are the pressure term and the artificial viscosity term.
The pressure term is still symmetric but the kernel summation is carried
out on particle volume rather than on mass. The artificial viscosity term
has been modified to obtain particle b volume instead of mass.

�m =
� ç ℎ ç c

�0in
(15)

The �m factor defined in (3) is modified in accordance with Cola-
grossi et al. (2020) becoming Eq. (15), where �0in is the initial density
of the particle 0. In order to reduce non-physical dissipation of both
wave-height and velocity which are more pronounced for slow dynamic
phenomena, a kernel derivative renormalization is adopted to obtain
first order consistency of the kernel function. This technique was first
introduced in Randles and Libersky (1996) and Vila (1999), and has
been utilized since then, with minor modifications, in free surface flows
with slow dynamics. In most recent applications (Gomez-Gesteira et al.,
2010; Antuono et al., 2010; Sun et al., 2019b; Antuono et al., 2012;
Colagrossi et al., 2020) the renormalization is used to compute the
density gradient for the diffusive term in the continuity equation (see
following). Since this technique may be applied to the renormalization
of the SPH gradient of several flow variables, such as p, � and u, the
general formulation (16) if given for the generic variable f .
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The renormalization matrix L
0
is defined by the formulation in

Eq. (17) which is valid inside the fluid and at its boundary surface.
According to Randles and Libersky (1996), the sign of B0 is positive

when the renormalization is applied to the continuity equation and the
diffusive term, while it is negative for the momentum balance equation.

L
0
= B−1

0
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1
b
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mb
�b
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(17)

Hereafter the normalized kernel derivative, when the renormalization
scheme is activated, will be defined as in Eq. (18) and it replaces the
kernel gradient in the summations of Eqs. (13) and (14).

∇̃W
b
= L

0
ç ∇W

b
(18)

The renormalization is used in the pressure term of the momentum
balance equation, in the continuity equation applied to the kernel
gradient and for the diffusive terms (see following). To calculate L

0
a key parameter is the determinant of matrix B0, which is always
different from zero but can get very close to zero, because its value
is proportional to the concentration of neighbouring particles. If this
happens, the pressure term in the momentum balance equation may
become unstable. For this reason, renormalization is carried out with a
conditional statement through Eq. (19), introducing a threshold value
� for the matrix determinant.

⎧⎪⎨⎪⎩

|B
0
| e � ³ ∇̃W

b
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b

|B
0
| < � ³ keep ∇W

b

(19)

The parameter � is chosen heuristically to achieve stability. In the
investigated problems it has been found that values lower than � = 0.4

create instabilities. Results presented in Salis et al. (2021) adopted
� = 0.6 which represents a good compromise between accuracy and
stability. It is worth remarking that the renormalization procedure,
applied to the continuity equation, is useful to improve the accuracy of
those flows with slow dynamics and involving relatively large domain,
as in the case of wave generation in the flume. In some WCSPH models
the Shepard filtering is substituted by a diffusive term (Eq. (20) in the
continuity equation), similarly to the artificial viscosity (Molteni and
Colagrossi, 2009; Antuono et al., 2010).

D0 = 2�c0ℎ
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Vb (20)
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To assure the consistency with the global mass conservation, the diffu-
sive term must satisfy the following condition (Antuono et al., 2010) to
enforce that the summation of the diffusive terms D0 on all particles is
zero:
1
0

D0V0 = 0  0b = − b0 (21)

The adoption of diffusive term in the continuity equation can be
more robust and less computationally demanding than the pressure
smoothing. Its definition depends on the formulation of the term
 0b. Molteni and Colagrossi (2009) suggested a quite simple formula-
tion given by Eq. (22):

 Mol
0b

= �b − �0 (22)

The major benefit of this formulation is its low computational cost,
since no extra loop is needed for computing this term. The drawback
of this formulation is the incompatibility with the hydrostatic solution
that leads to a non-physical motion of the fluid particles. This issue also
affects those phenomena characterized by a slow particle motion and
a long-time dynamics as, for example, sloshing problems and gravity
wave propagation. The formulation by Antuono et al. (2010) is given
in Eq. (23)

 Ant
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This formulation is stable and consistent with the hydrostatic and
dynamic cases. In the latter case the re-normalization is needed to
compute the density gradient at the computational particle 0 and its
neighbour b. Computationally it is less expensive than the pressure
smoothing as it needs only one extra loop to compute the renormalized
density gradient in Eq. (24). Nevertheless, in the present work the
formulation of Antuono et al. (2010) is adopted since it is compatible
with slow dynamics and guarantees stability at the free surface.

3. Results and discussion

The derived model is first validated on two laboratory flume tests
from technical literature: the dam break and the regular waves. Results
are compared to the original model to show improvements. The results
of simulation where is employed the original model, SPHERA v9.0.0
(RSE SpA) (2022), are referred to as ‘‘SPHERA-master’’.5 Then the
derived model, hereafter referred to as ‘‘Present model’’ is validated
on a laboratory flume test of plunging wave impacting an offshore
structure which is simulated neglecting air phase at this early stage of
development. It is worth noting that derived model allows modelling
two-phase flows with large density ratio, as shown by the two-phase
dam break simulation illustrated in the subsequent section.

3.1. Dam break

The dam break test case is widely adopted to test numerical models.
In technical literature, there is wide availability of reference results for
comparison. The interest to this test case concerns the relative simple
set up and implementation and the low computational cost. For the
above-mentioned reasons the dam break is here used to validate the de-
rived code considering both single and two-phase simulations. Obtained
results are compared with SPHERA-master to show improvements.
SPHERA v9.0.0 (RSE SpA) has already been validated to reproduce
dam-break test cases (Amicarelli et al., 2020) and allows a straight-
forward comparison with the present model. Fig. 1 shows the domain
for the dam-break test case (Zhou et al., 1999). The domain has a

5 All simulations are held with commit b443656 published on 29 Mar 2021.

Fig. 1. Dam-break simulation set-up.

Table 1
Dam-break run time.

Code Particles Pressure Run time
(hh:mm:ss)

Simulated
time (s)

SPHERA-master 28 800 Shepard filtering 02:54:18 4.00
Present model 28 800 �-SPH (Antuono) 04:46:22 4.00
Present model multiphase 57 960 �-SPH (Antuono) 86:16:51 4.00

length of 3.22 (m) and a height of 1.8 (m). The water body in the
left-hand side of the domain is 0.6 (m) deep and 1.2 (m) long. In the
domain there are three gauges: water gauge 1 (WG1) and water gauge
2 (WG2) which measure the water height or the interface location for
two-phase simulations; the third gauge is a pressure gauge (pg) located
on the downstream vertical wall at a height of 0.16 (m). The initial
condition consists of water column at rest with hydrostatic pressure
distribution. The water body is free to collapse under gravity force
inside the domain. The wave propagates on a dry bed with free slip
conditions. For the multiphase simulation no boundary condition is
applied on the air free surface. The closed top condition has been
momentarily excluded to avoid non-physical pressure in the air phase
due to particle settlement. The same numerical parameters are assumed
in the master and the independently derived model. The particle di-
mension is dx = 0.005 (m) for single-phase simulations, while for the
multiphase simulation is dx = 0.01 m. The Monaghan’s parameter is
� = 0.02 and the CFL = 0.05 to ensure convergence. The artificial
sound speed, defined by Eq. (25a), is set to c = 54.77 (m s−1), since
the expected highest fluid velocity is H5 (m s−1). The ratio between
the sound speed of air and water can be obtained with Eq. (25b) and
the sound speed in the air phase should always be higher than that
in water (Manenti, 2018). The adopted air artificial sound speed is
ca = 699.85 (m s−1).

c =

√
�

k
(25a)

ca
cw

=

√
0.2

�w
�a

(25b)

In the simulations performed with SPHERA-master the pressure
smoothing parameter is set to �p = 0.25 while in the present model
is used � = 0.1. Table 1 shows the run time and simulated time. The
simulations presented in this paragraph are carried out on the HPC
cluster available at the Department of Mathematics of the University
of Pavia, equipped with 68 cores (Intel(R) Xeon(R) Gold SkyLake 6130
CPU @ 2.10 GHz) and 128 Gb of memory. The high number of air
particles combined with the high artificial sound speed results in high
simulation time in Table 1.
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Fig. 2. Dam-break wave-front kinematics.

Fig. 2 shows the comparison of wave-front evolution for the dam
break simulations. The ordinate shows the water tongue position after
the water column collapse. The abscissa show the physical time until
the downstream wall impact. This figure shows negligible differences
between the curves. The wave fronts advance with the same speed in
single-phase simulations while the multiphase wave front is slightly
slower due to the presence of the air particles that are accelerated by
the leading water front.

Fig. 3 shows the pressure and magnitude velocity contour plots.
Single-phase results are quite similar with each other, the pressure con-
tours are slightly different due to the different pressure treatment and
may present some oscillation owing to the media compressibility. There
are negligible changes in the contour and shape for the single-phase
and the multiphase model. The wave front impacts the downstream
wall at the same time (t = 0.59 (s)); the maximum water height at
the downstream wall is the same and the reflected wave impact occurs
almost simultaneously (t = 1.47 (s)) with a negligible change. The
generated spray (t = 1.80 (s)) is also similar. Negligible difference in the
shape of the air pocket can be observed. The multiphase model shows
good results of pressure and velocity contours. Although some transient
instabilities, the multiphase model is stable and produces acceptable
results.

Fig. 4 shows the free surface elevation at the two water gauges.
WG1 is closer to the right-hand side wall than WG2. The recorded
free surface at WG1 (Fig. 4(a)) is similar to the experimental curve
from t = 0.5 (s) to t = 1.5 (s). After that time, the simulated water
height rises to the maximum value before the experimental curve while
reaching similar height. The air–water interface, reaches similar height
to the single-phase model at t = 1.5 (s). Between t = 1.5 (s) and
t = 2 (s) the two-phase interface is lower than the single-phase height.
From t = 2 (s) the simulated water height start descending in all
simulations, showing a higher slope than the experimental curve. From
t = 2.5 (s) the water height shows a second relative peak which is more
pronounced for the single-phase simulations. From this time on, the
multiphase model interface reproduces better the experimental height
of this second peak. At WG2 (Fig. 4(b)) the trends of the simulated
free surface is closer to the experimental curve. It is worth noting
that just after the time t = 1.5 (s) the single-phase simulated water
height grows faster and higher than the experimental water height.
In the same time interval, the trend of the multiphase model, allows
obtaining an interface height which is lower than the single-phase
and is much closer to the experimental data. This behaviour can be
explained by the fact that, during the descending phase of the water
tongue, a cavity is progressively formed inside the backward plunging
wave. The compressibility of the entrapped fluid affects the wave front
dynamics (Colagrossi and Landrini, 2003). In the single-phase models,
where there is no air inside the cavity, the collapse of plunging wave is
faster than in the two-phase model, where the collapse of the backward
plunging wave is slightly damped by the entrapped air cushion which
is going to be compressed by the plunging wave; hence, the obtained
surface elevation at WG2 is closer to the experimental data. This can
also be noticed in Fig. 3 at t = 1.99 (s) where the wave elevation
evolution which is obtained with the multiphase model is lower than

Fig. 3. Dam-break pressure contour (a) velocity contour (b). Left column: SPHERA
master, centre column: present model, right column: present model multiphase.

the single-phase ones and close to the experimental result. After t = 2

(s) the simulated water height decreases following the slope of the
experimental result. Only slight differences appear between the models
and the experimental results, so they can be considered validated in
this aspect.

Fig. 5 shows the pressure time series at the pressure gauge ‘‘pg’’.
The simulated pressure signals are post-processed with a lowpass filter,
to smooth out the high frequency spurious oscillations owing to fluid
compressibility. This is carried with the signal analyser in Matlab (ver-
sion R2022a). Parameters utilized are: Passband frequency 1 ç 10−6 ç �
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Fig. 4. Free surface elevation at the water gauges. Water gauge 1 (a), water gauge 2
(b).

Fig. 5. Dam-break: Pressure time series at the pressure gauge pg on the right-hand
side wall.

(rad samples−1) with a sample frequency f = 1000 (Hz); steepness
is set to 0.85 and the stopband attenuation is 60 (dB). It is worth
specifying that this procedure has no significant effects on high and
low values of pressure signal. It can be seen that the pressure rises at
t = 0.65 (s), simulations show a milder slope than the experimental
data (probably owing to fluid compressibility) while reaching similar
pressure values. At t = 1.5 (s) there is a second peak of the pressure
in the experiment. This is captured by both single-phase models with a
slightly higher pressure for a time of 0.2 (s). The multiphase simulation,
at t = 1.5 (s) better reproduces the experimental pressure. After t = 1.8

(s) the pressure starts descending in accordance with the experiment. At
t = 2 (s) the single-phase simulations, both master and present model,
produce a very high peak not shown by the experimental result. In the
multiphase simulation such a pressure peak is much more damped and
the computed pressure profile is closer to the experimental curve. Luo
et al. (2016) investigated the behaviour of pressure field, and the
evolution of air pockets in the dam break. At t = 2 (s) it forms a
full closed air pocket, the entrapped air (vacuum) region collapses and
impacts on the main water body, which induces a non-physical violent
pressure peak. The diffusive term utilized still displays some travelling

Table 2
Summary of regular wave parameters. Ursell et al. (1960).

Wave T (s) H (m) L (m) S (m) c (m s−1) h (m) kh H/L H/S

U09a 1.07 0.041 1.78 0.02 1.67 1.00 3.52 0.023 1.97
U13a 1.29 0.039 2.58 0.02 1.99 1.00 2.44 0.0153 1.82
U15a 3.01 0.084 8.73 0.12 2.9 1.00 0.72 0.0096 0.7
U17a 1.78 0.042 4.42 0.03 2.48 1.00 1.42 0.0094 1.32
U21b 1.01 0.077 1.58 0.04 1.57 1.00 3.98 0.0488 1.99
U22b 1.26 0.12 2.46 0.06 1.95 1.00 2.55 0.0485 1.85
U23b 1.71 0.183 4.16 0.13 2.43 1.00 1.51 0.0439 1.39
U24b 2.15 0.236 5.76 0.22 2.68 1.00 1.09 0.0409 1.05

aLow steepness wave.
bHigh steepness wave.

sound waves after the impact at the right wall causing such spurious
pressure fluctuation (Antuono et al., 2012). This comparative analysis
between the present model (both single-phase and multiphase) with
the experimental data shows suitable results. Therefore the present
model is validated against the experimental result in Zhou et al. (1999).
Similar consideration holds for SPHERA-master.

3.2. Regular wave generation

Fig. 6 shows a sketch of the adopted domain for the generation of
regular waves. On the left-hand side of the flume, there is the piston-
type wave maker. On the right-hand side, there is a 1:10 sloped beach.
This domain comes from previous investigations, where the configura-
tion had been tested to reduce wave reflection at the boundaries (Salis,
2019; Salis et al., 2021). Wave heights are measured with two wave
gauges, placed in the flat part of the flume bottom respectively at 2
and 4 meters from the wavemaker. The piston-type wavemaker and the
box-shaped structure are treated by the scheme for rigid body transport,
respectively with imposed kinematics and fixed kinematics. The still
water height is kept constant to ℎstill = 1 (m) for all the simulated reg-
ular waves. Biésel and Suquet (1951) obtained the analytical solution
for different wavemakers types. Eq. (26) relates the wave height H to
the wavemaker stroke S0 for the piston-type wavemaker:

H

S0

=
4sinℎ2(kℎ)

sinℎ(kℎ) + 2kℎ
(26)

The regular waves in Ursell et al. (1960) have been generated with
various still water heights, ranging from ℎstill = 0.18 (m) to ℎstill = 0.73

(m). To reproduce these waves in the numerical flume, the wave steep-
ness (H∕L), the relative depth (kℎ), and the wave height to stroke ratio
(H∕S0) are imposed in accordance with the laboratory experiments
of Ursell et al. (1960). The wavemaker stroke S0 and the wave period
T are determined through the following procedure: L is obtained first
by knowing ℎ and kℎ; wave height H is determined knowing wave
steepness H∕L; wavemaker stroke S0 is calculated knowing the wave
height to stroke ratio H∕S0, Eq. (26); the wave period T is computed
by solving the dispersion equation. For each wave type, the piston-type
wavemaker velocity is determined with Eq. (27) knowing the stroke S0

and period T . In this equation ! is the angular frequency and t is the
time variable.

ux(t) =
1

2
S0! ç cos(!t) ç

(
1 − exp

(
−
t

T

))

+
S0

2
sin(!t) ç exp

(−
t

T
)

T

(27)

In Eq. (27) the piston velocity is initially damped with an ex-
ponential coefficient to avoid numerical instabilities due to inertial
effects. Table 2 summarizes the regular waves parameters obtained
with the illustrated procedure. Optimal simulation parameters have
been previously investigated in Salis (2019) and Salis et al. (2021).
Some numerical parameters are further tuned to better reproduce the
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Fig. 6. Wave flume with water at rest for regular wave generation.

Table 3
Regular wave generation run-time.

Wave Run-time (hh:mm:ss) Increase (%)

SPHERA-master Present model

U09a 10:45:41 12:01:14 12
U13a 10:24:31 11:13:18 8
U15a 10:03:55 12:08:37 21
U17a 10:04:39 10:44:53 7
U21b 09:41:41 11:16:33 6
U22b 09:39:01 10:52:18 13
U23b 10:10:21 11:38:21 14
U24b 10:18:39 11:49:26 15

aLow steepness wave.
bHigh steepness wave.

experiments. The particle dimension is set to ensure that H∕dx ≳ 8.
For wave-type 09, 13 and 17 the particle dimension is dx = 0.005 (m)
while for all other wave-types is dx = 0.01 (m). The CFL is set to 0.05
to ensure convergence, although higher values may be used without
losing stability. A free slip condition is utilized as boundary condition.
The artificial sound speed is set to be at least 10 time higher of the
wave celerity. Is employed a single value for all the simulations that
is c = 31.62 (m s−1). These parameters are adopted in both models.
The pressure stabilization method is different for the two models, in
simulations held with SPHERA-master, �p = 0.25 is used while in the
present model � = 0.1 is used. The alpha coefficient was used to reduce
the numerical dissipations. With the introduction of the new features,
(renormalization and diffusive terms) it is found that a low value of
alpha is not necessary. The simulations held with the SPHERA-master
have � = 0.01while in the simulations held with the new model � = 0.06

is used. All simulations are run on a node of the High-Performance
Computing machine Galileo100 with 2 × CPU Intel CascadeLake 8260
(24 cores each) @2.4 GHz and 384 GB RAM. For each simulation 48
threads are utilized, so only one of the two CPU in the computing
node is used. The number of particles and the simulation time are
constant for all wave-types respectively Np = 110 000 and t = 20 (s).
Table 3 summarizes the run time for the regular wave generation. Run
times between the two models are similar, with the present model
slightly more computationally expensive than the master, due to the
renormalization procedure. The increase in run time is between 6% and
21% and can be considered acceptable.

Fig. 7 shows the non-dimensional wave elevation time series for all
the simulated waves, recorded at WG1 and WG2. The wave dynamics
is well reproduced by both models. Wave height is slightly underes-
timated by the SPHERA-master. The present model shows decreased
numerical dissipation and simulated wave height is better represented.
Both models present a slight phase displacement with respect to the
linear solution. However, in the present model the phase displacement
is reduced with respect to SPHERA-master. These two aspects are more
noticeable for the higher frequency waves, and are related to numerical
dissipation (Salis et al., 2021). The numerical dissipation increases with
the distance from the wavemaker. This aspect is more pronounced for
high frequency waves, e.g., U09 and U21 whose wave length is smaller
than the distance between the wavemaker and WG1. The second wave
gauge (WG2) is at a distance from the wavemaker twice that one of

Table 4
Amplitude (A), amplitude Lowering (L), Error (E) and Improvement (I).

Wave Aa (m) Am (m) Lm (%) Em (%) Ap (m) Lp (%) Ep (%) I (%)

U09a 0.0207 0.0144 69.75 30.25 0.0158 76.42 23.58 9.56
U13a 0.0202 0.0167 82.66 17.34 0.0191 94.68 5.32 14.54
U15a 0.043 0.0372 86.54 13.46 0.0404 94 6 8.63
U17a 0.0214 0.0185 86.8 13.2 0.0207 96.93 3.07 11.67
U21b 0.0388 0.023 59.39 40.61 0.0288 74.28 25.72 25.07
U22b 0.0605 0.0446 73.79 26.21 0.0537 88.85 11.15 20.41
U23b 0.0917 0.0765 83.44 16.56 0.0856 93.34 6.66 11.86
U24b 0.1196 0.104 86.97 13.03 0.1101 92.02 7.98 5.81

aLow steepness wave.
bHigh steepness wave.

WG1, that is about one wave length (for wave types U17 and U23) or
more (for wave types U09, U13, U21 and U22). The adopted set-up
is therefore suitable to detect the numerical dissipation. For wave-
type U23 and U24, the wave elevation and phase-displacement are
slightly better when simulated with SPHERA-master model. It is worth
noting that for wave U09 and U13 the particle dimension is too high
to correctly simulate the waves. The utilized particle dimension is
dx = 0.01 (m) while U09 and U13 wave heights are respectively
H = 0.041 m and H = 0.039 m. To achieve a similar H∕dx ratio to
the other waves, the particle dimension should be dx = 0.005 (m).
This comes with a substantial increase in simulation time; H10 (s)
need H72 CPU hours. Fig. 8 shows these two waves, simulated with
the refined particle dimension. The present model is more adherent to
the linear solution and the wave height time series is smoother than
the master. The disturbances in the normalized free surface profile
computed with SPHERA-master can be probably reduced increasing the
value of the artificial viscosity coefficient � even if this would lead to
higher numerical dissipation.

The fast Fourier transform of the wave signal allows to compute
the amplitude of the simulated wave. Eq. (28) is employed to study the
wave spectrum (Rahman et al., 2011).

g̃
(

n

2lN

)
=

N−11
k=0


 (2lk) e
−2�ink
N n = 0, 1, 2,& , N − 1 (28)

Fig. 9 shows the fast Fourier transform of the wave elevation,
recorded at WG1, for all the simulated waves. In Fig. 9 the y-axis
can represent either the wave amplitude or the wave energy spectral
density and the x-axis sees the frequencies (Rahman et al., 2011).
Despite the slight phase displacement, experienced in both models, the
analytical frequency is always captured by both models. For all wave-
types, plots show negligible numerical oscillations around the peak
frequency. Figs. 7 and 8 show that the simulated wave profile is always
close to the relative maxima (wave crest) and slightly far-off than the
relative minima (wave through). The Fourier transform of the signal
allows to evaluate the wave amplitude rather than the wave height.
Furthermore, Fig. 9 shows that the wave amplitude simulated with the
present model is higher than SPHERA-master and always closer to the
linear solution.

Table 4 summarizes the results from the fast Fourier transforms of
the regular waves presented in Fig. 9. The second column Aa shows
the maximum amplitude of the analytical transform. Columns from
three to five show for SPHERA-master the maximum amplitude Am, the
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Fig. 7. Simulated wave elevation time series, recorded at WG1 and WG2. For each sub-figure: the ordinate axis shows the wave elevation over the amplitude for each wave-type
�∕a0 (–); the abscissa shows time t (s). Low steepness waves are U09, U13, U15 and U17. High steepness waves are U21, U22, U23 and U24.

amplitude lowering Lm and the error Em of the master maximum value
with respect to the analytical solution. The columns from six to eight
show for the present model the maximum amplitude Ap, the amplitude
lowering Lp and the error Ep of the present model maximum value with
respect to the analytical solution. The last column reports the improve-
ment I of the present model with respect to the SPHERA-master. These
quantitative result shows that the SPHERA master amplitude reaches
at least 59% of the analytical value while the present model reaches
at least the 74%, with an improvement of 25%. The SPHERA-master
always shows bigger errors than the present model which guarantees
improvements between 5% and 25%. The highest error are made by
both models simulating the two waves that have the higher frequency.
However, the present model improves the master amplitude of 9.5%
for U09 and 25% for U21. Fig. 10 shows the vertical profiles of velocity
and pressure, at characteristic locations which are representative of the
velocity fields below: through A, node B, crest C and node D. Fig. 10(a)
shows these four locations highlighted for the three curves. It is worth
noting that, due to the slight phase displacement with respect to the
analytical solution, the locations do not overlap in the figure. For each
wave signal it is found the time t0 at which the free surface elevation is

zero, representative of node B with a tolerance of 0.1% due to sampling
interval. From node B the through at the time of t = t0 − T ∕4 and the
crest at the time of t = t0+T ∕4 are determined, while node D is found at
t = t0 + T ∕2 (T is the wave period). The velocity profiles are computed
with the regular wave theory (Dean and Dalrymple, 1991). Fig. 10(b)
and (c) show that the simulated velocity profiles are in good accordance
with the analytical solution. For the x-velocity profiles Fig. 10(b) at
location A and C the present model shows higher velocity, near the free
surface, than the SPHERA-master. Present model velocities are closer
to the maximum analytical values. As the depth increases, both models
show smaller differences with respect to the analytical profile. At points
B and D, both models correctly represent the analytical velocity profile.
Similar consideration can be made for the z-velocity profiles Fig. 10(c),
where the present model profile is closer, near the free surface, to the
maximum analytical values and both models well represent the profiles
at locations A and C. The vertical velocity profile dynamics is correctly
represented by both models. The present model shows, near the free
surface, a reduced difference from the analytical maximum values with
respect to the SPHERA-master. Fig. 10(d) shows the non-dimensional
pressure. Both models well represent the analytical pressure vertical



Ocean Engineering 266 (2022) 113228

10

N. Salis et al.

Fig. 8. Wave elevation time series with refined particle dimension dx = 0.005 (m),
recorded at WG1. For each sub-figure: the ordinate axis shows the wave elevation over
the amplitude for each wave-type �∕a0 (–); the abscissa shows time t (s).

Fig. 9. Fast Fourier transforms of wave elevations recorded at WG1. For each sub-
figure: the ordered axis shows the simulated amplitude over the analytical amplitude
a∕a0 (−); in the abscissa there is the frequency f (Hz).

profile. It is worth noting that the present model, for increasing depths,
shows values closer to the analytical solution while the SPHERA-
master shows slightly higher values. This difference, although present,
is however negligible and both models can approximate the pressure
profiles.

Fig. 11(a) shows the pressure contours for wave U23 at some
representative instant. These are smooth and free from numerical noise,
the maximum pressure at the flume bottom is representative of the
quasi-hydrostatic pressure in a flume. Pressure contours of the two
models is similar with SPHERA-master showing slightly higher values
at the flume bottom. This confirms the validity of both methods of
stabilization for the pressure, i.e., Shepard filtering and the (continuity)
diffusive term are adequate and equivalent. Fig. 11(b) reports the veloc-
ity magnitude contours. The comparison of the two models shows that
SPHERA-master is affected by numerical dissipations as velocities are
significantly reduced near the free surface. This aspect has been already
discussed for the vertical velocity profiles (Fig. 10(b) and (c)). Even
if velocity contours near the wavemaker are quite similar for the two
models, the present model retains the velocity in all crests over the flat
bottom. Instead, the SPHERA-master model presents significant velocity
reduction, starting approximatively two meters from the wavemaker
onwards.

In order to compare results with laboratory experiments, the wave
height to stroke ratio are computed considering the mean wave height
as follows:

Hmean =
1

N

N1
n=1

� (t (n)) −
1

N

N1
n=1

�
(
t (n) +

T

2

)
(29)

where � represents the free surface elevation, n = 1 represents the first
relative maximum (crest) position, T is the wave period. The second
relative maximum n = 2 is one period from n = 1 while the subsequent
relative minimum (trough) is found at half a period. To compute
the wave number of the simulated wave the fast Fourier transform
is applied according to the following procedure. The simulated wave
period is obtained as T = 1∕f (Amax), where f (Amax) is the frequency
found at the peak of amplitude spectrum. Once the period is obtained
the wave number is computed with the dispersion equation from linear
theory.

SPH results of the eight wave-types are compared, in terms of wave
height to stroke ratio, with the laboratory experiments of Ursell et al.
(1960), Huang et al. (1998) and Anbarsooz et al. (2013). The black
curves in Fig. 12 represents the linear solution of Biesél Eq. (26). Fig. 12
shows two sub-figures, one for low steepness waves (LSW) and one
for high steepness waves (HSW). Low steepness wave height to stroke
ratio is slightly underestimated by the SPHERA-master with respect to
the linear solution, to the experimental result of Ursell et al. (1960)
and the numerical results (Huang et al., 1998; Anbarsooz et al., 2013).
This is noticeable particularly for waves with higher frequency and
small wave height (U09, U13 and U17). The present model presents
an increased accuracy as the wave height to stroke ratio is closer to
the experimental reference results (green squares). The only exception
is U09 for which, as discussed earlier, the particle dimension should be
probably enhanced to capture the small wave height. Results with the
refined particle dimension are not presented due to the short simulation
time and consequent small number of waves. For high steepness waves,
the wave height to stroke ratio is closer to the experiments for both
models. In this sub-figure, the difference between low frequency (U23
and U24) and high frequency (U21 and U22) is clearer. The model
SPHERA-master is more dissipative in regards of the simulated higher
frequency waves. The results of wave height to stroke ratio for the
lower frequency waves is closer to the experiments, showing that
numerical dissipation is greater for the simulated higher frequency
waves. With the present model, for the low frequency waves, the
obtained results show a higher wave height to stroke ratio with respect
to the experiments of Ursell. It is worth noting that these results are
closer to the analytical solution as the simulated wave height is greater.
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Fig. 10. Wave elevation and vertical profiles under wave-type U23, recorded at WG1. (a) wave elevation with highlighted points. (b) non dimensional x-velocity. (c) non-dimensional
z-velocity. (d) non-dimensional pressure. Points A are through, B and D are nodes and C are crest.

Fig. 11. Pressure contour (a) and velocity magnitude contour (b) for regular wave-type
U23. For each time SPHERA-master on the top, derived model at the bottom.

For the higher frequency waves, with the present model, substantially
higher values of wave height to stroke ratio are achieved. For the wave
U22 the results are adherent to the experiment however, U21 shows a
slightly lower value. The relative depth of simulated waves is in close
proximity with the relative depth of the experiments and the numerical
results. The kh distance with respect to the experiments is negligible,
with a slightly greater distance shown in the case of high frequency
waves (U09, U13, U21 and U22).

Fig. 12 shows that the error in relative depth is always acceptable,
exception made for the higher frequency wave (i.e., U09) which is
characterized by similar wave height (i.e., similar particle dimension)
but higher steepness (more than twice) than simulation U17. If simu-
lation U13 is considered, which has almost the same wave height of
simulation U17 but lower steepness than simulation U09, the error in
relative depth is quite acceptable. Therefore, simulation U09 would
probably benefit from an increase of particle resolution to account for
higher steepness relative to wave height. From Fig. 12 it seems that the
relative depth best captured when the wave steepness to wave height
ratio is below 0.4, as in the case of the simulations U15 and U17 (for
LSW) and the simulations U23 and U24 (for HSW). Concerning the
error on the prediction of wave height to stroke ratio, the worst results
are obtained for the simulations U09 (LWS) and U21 (HSW) that shows
both the higher ratio between wave steepness and wave height. As
discussed above, an increase of particle resolution may help lowering
the relative error. Therefore, obtained results can be considered accept-
able in reproducing regular waves. It is worth noting that numerical
parameters could be calibrated for each wave-type in order to reduce
the error. However, retaining constant numerical parameters across this
variety of wave-types with different characteristics such as wave height,
period, steepness, allows validating the present model.

On the basis of the results obtained for the simulation of eight
regular waves illustrated above, the wave dynamics is well reproduced
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Fig. 12. Wave height to stroke ratio H∕S0 vs. relative depth kℎ. (LSW) low steepness
waves, (HSW) high steepness waves. Wave elevation recorded at WG1, all results are
simulated with dx = 0.01 (m) (Ursell et al., 1960; Huang et al., 1998; Anbarsooz et al.,
2013). (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

by both models that were tested. However, wave heights and amplitude
of the derived model are generally better than the SPHERA-master. The
frequency of each wave is captured by both models. The vertical veloc-
ity and pressure profiles of both models are very close to the analytical
solution. However, the SPHERA-master shows a significant velocity
dissipation at the free surface, with respect to the derived model. This
is further shown in the velocity contours. SPHERA-master near the free
surface, at a distance greater than two meters from the wavemaker,
shows a reduced velocity with respect to the derived model. Finally,
derived model results are compared with the experiments of Ursell
showing significant error reduction with respect to the SPHERA-master.
Based upon these considerations, the present model can be considered
validated to generate regular waves in a numerical flume.

3.3. Non-linear wave generation and structure impact

A modified wave flume is adopted to simulate the experiment
from Yan et al. (2019) and Sun et al. (2019b). The non-linear wave-
type S3 is generated with the focusing wave theory by superimposing
32 linear wave components. The larger wave amplitude is produced
at the focusing point, at the spatial position xp and time tp, where all
crest components meet simultaneously. The wave profile is described
at any point of space and time by Eq. (30). The sum is extended to
N = 32 wave components of constant amplitude ai = 0.0061 (m). The
reproduced frequency bandwidth (fi) ranges from fmin = 0.32 (Hz)
to fmax = 0.96 (Hz) and the wavenumber ki is computed with the

Table 5
Wave–structure impact simulations run times and parameters summary.

Run Run-time ( hh:mm:ss ) dx∕dxb c (m s−1) � �

A 49:14:25 1 31.62 0.06 0.7
B 153:18:13 2 22.36 0.06 0.7
C 36:33:54 1 22.36 0.06 0.7
D 16:38:24 1 10 0.06 0.4
E 17:46:36 1 10 0.06 0.5
F 16:10:50 1 10 0.06 0.7
H 18:35:54 1 10 0.04 0.7
I 17:02:22 1 10 0.02 0.7
L 16:00:34 1 10 0.08 0.7

dispersion equation (linear wave theory) for each wave component.

� (x, t) =

N1
i=1

aicos
[
ki

(
xp − xf

)
− 2�fi

(
t − tf

)]
(30)

Fig. 13 shows a sketch of the numerical flume for the non-linear
wave generation and wave–structure impact. The flat part which ex-
tends beyond the box is stretched from 6 (m) (in the previous configu-
ration) to 16 (m); the still water height is set to ℎstill = 0.7 (m) and the
beach slope is 1:10. The piston-type wavemaker and the box-shaped
structure are treated by the scheme for rigid body transport, with an
imposed and a fixed kinematics, respectively. The numerical probes
and the fixed structure are set according to Sun et al. (2019b). There
are three wave gauges WG1, WG2 and WG3 respectively at a distance
from the wavemaker of 6.849 (m), 9.659 (m) and 11.104 (m) at the
focusing point. Two velocity probes V1 and V2 are placed at a height of
0.5 (m) with a distance from the wavemaker respectively of 6.845 (m)
and 11.296 (m). The red box in Fig. 13 shows a detail of the box-shaped
fixed structure. The bottom left corner is at coordinates x = 12.677 (m)
and y = 0.7485 (m) with a still water–structure clearance of 0.0458 m.
The structure has a height of 0.12 (m) and length of 0.5 (m). In the
structure there are four probes, denoted by red dots (Fig. 13), named
respectively FP1 and FP2 in the front of the structure and BP1 and BP2
at the bottom.

Fig. 14 shows the wavemaker input velocity. The particle resolution
is dx = 0.007 (m) with a ℎ∕dx ratio of 100. In Sun et al. (2019b) this
particle resolution is found to be adequate to reproduce the experi-
ment. To guarantee convergence the CFL is set to 0.05 and the free
slip boundary condition is adopted. Different values of the artificial
viscosity have been investigated, the results showing that � = 0.06 is
appropriate for this experiment. In this section all presented results
are simulated with the proposed model, independently derived from
SPHERA v9.0.0 (RSE SpA). In this section, all simulations run on a node
of the High-Performance Computing machine Galileo100 with 2 x CPU
Intel CascadeLake 8260 (24 cores each) @2.4 GHz and 384 GB RAM.
For each simulation 48 threads are utilized, so only one of the two
CPUs in the computing node is used. Table 5 summarizes simulation
run times and parameters. For the non-linear wave impacting the fixed
box structure, the model sensitivity to its parameters is assessed. The
investigated parameters are the ratio between the fluid particle size and
body particle size (dx∕dxb), the artificial sound speed (c), the artificial
viscosity coefficient (�) and the renormalization threshold (�). Runs
are named from A to L, the reference run being F to which other
simulation results are compared, with the exception of the parameter
dx∕dxb investigated in early simulation stage. The number of particles
is constant Np = 278 600 and the simulation time is t = 20 (s). The run
time varies significantly. Since the CFL = 0.05 is constant, run time is
influenced mainly from two parameters: dx∕dxb and c.

The first is relevant to avoid fluid-body (wavemaker and structure)
particle penetration, since a lower body particle dimension i.e., a higher
particle concentration, prevents this issue. However, for the presented
simulations, the fluid–solid penetration is negligible with no significant
influence on the results. The run time is 4.2 times higher with the lower
body particle dimension. For this reason, it is more convenient to have
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Fig. 13. Wave flume with water at rest for non-linear wave generation and wave–structure impact. Magnification of the box-shaped structure (top panel). (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. Wavemaker input for the non-linear wave generation.

the structure particle dimension equal to the fluid particle dimension.
To achieve faster run-times the artificial sound speed has been reduced,
implying higher fluid compressibility. For regular waves the artificial
sound speed was assumed ten times the wave celerity in order to
reduce density oscillations. For the non-linear wave generation, the
characteristic wave celerity cw = 2.11 (m s−1) could be used, and
therefore the artificial sound speed must be higher than c = 21.10 (m
s−1) which implies high computational cost for this set-up. However,
results show that with c being 5 times the characteristic wave celerity,
simulations are stable even when sharp gradients of pressure and
velocity occur. Moreover, numerical results are in good agreement with
the experimental results. Once the artificial sound speed is assigned,
the influence of the artificial viscosity may be analysed. The usual
range of this parameter is from 0.01 to 0.1. Values close to 0.1 are
slightly more dissipative (lower wave height) with a greater simulation
stability; on the contrary with values close to the lower limit (0.01)
the numerical dissipation is reduced but numerical noise may appear.
Fig. 15 shows the wave elevation at WG1 and WG2 for different values
of �. With the lower � values, namely, 0.02 and 0.04, wave heights
are overestimated and non-physical wave breaking occurs (purple wave
at t = 14.4 (s) recorded at WG1). The higher tested values show
similar results. The value of � is 0.06 represents a compromise between
stability and suitable wave heights, particularly at WG3 and the wave
crest at t = 18.2 (s) (the time and point before the wave–structure
impact).

The threshold � for the determinant of the matrix |B
0
| controls the

application of the renormalization procedure. The matrix determinant
has the physical meaning of spatial particle concentration. Low values
of the determinant mean that the interaction domain of computational
particle 0 has a low number of neighbours i.e., is close to the free
surface or boundary. With values close to 1 instead, the interaction
domain of computational particle 0 is almost full of neighbours. Fig. 16
shows the typical contour plot of |B

0
|. It can be seen that close to

the free surface and the bottom boundary values are close to 0.2
while inside the water these values range between 0.6 to 1.0. The
renormalization is not applied to those particles that have |B

0
| lower

Fig. 15. Wave elevation recorded and simulated at WG1 and WG3, sensitivity to
artificial viscosity. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

than the threshold value �. Three values of � are herein considered,
namely, 0.4, 0.5 and 0.7. With values lower than 0.4 the simulation is
not accurate. For this value, in fact, the numerical dissipation is quite
negligible but the wave elevation is higher than expected, reaching a
greater steepness i.e., waves are closer to instability and non-physical
wave breaking occurs, preventing the correct wave generation. With
values from 0.5 to 0.7 results are similar and it is found that a greater
accuracy is reached. The renormalization is not applied to particles at
or near free surface, including jets or splashing particles.

Fig. 17 shows the wave elevation time series at the three wave
gauges for different � values. For the lowest considered value, higher
wave heights are achieved. These are closer to the experimental ones in
all crests except the crest at t = 18.1 (s) recorded at WG3. It can be seen
that, for some crests, there is a significant phase displacement between
the simulation and the experimental result. The second negative aspect
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Fig. 16. Contour plot of the determinant of B
0
.

Fig. 17. Wave elevation recorded and simulated at the three wave gauges, sensitivity
to �.

is that some wave components break, prior reaching the focusing point
(i.e., crest at t = 18.1 (s) at WG3). For the low considered � values, at
WG3 the crests at t = 16.6 (s) break and subsequently reduce the wave
height at the focusing point.

The most appropriate value of � seems to be 0.7 since this value pro-
vides a good balance between numerical dissipation and wave height
at the focusing point. From this parametric analysis the appropriate
parameters to reproduce the wave–structure impact can be determined.
The reference simulation, which will be compared to the experimental
results, is run F in Table 5. Fig. 18 compares the wave elevation,
recorded at three wave gauges. SPH results, at WG1 are close to the
experimental result. The wave height is close to that of the experiment
while there is a negligible phase displacement in all crests except at
t = 16.3 (s). Similarly, at WG2 there is a phase displacement in all
crests and the wave height is slightly lower than the experimental one.
At WG3 t = 16.8 (s) the wave height of the simulation is lower than the
experimental one, and occurs slightly earlier. In the crest at t = 18.1

Fig. 18. Wave elevation recorded and simulated at the three wave gauges.

(s), the wave height is quite close to the experimental one and slightly
in advance. This means that, although small, the phase displacement
affects the wave–structure impact. This will be further discussed later
on, as the numerical pressure gauges at the structure have a delay of
�t H 0.03 (s) with respect to the experimental one.

Fig. 19 shows the fast Fourier transform of the surface elevation
signal at the three wave gauges. The frequency spectrum of the SPH
simulation is in good agreement with the experimental wave spectrum.
Wave amplitude is close to the experimental values; it is worth noting
that at WG3 there is a slightly underestimation in the frequencies from
f = 0.4 (Hz) to f = 0.8 (Hz). Fig. 20 shows the velocity magnitude
and pressure contours around the impact instants. Before the impact
(Fig. 20(a)), the highest velocity is at the crest top and it progressively
reduces along the depth. When the impact occurs (Fig. 20(b) and (c)),
in the area of contact between wave and structure, velocity comes to a
sudden reduction while pressure increases. After the impact (Fig. 20(d)
and (e)) it can be observed the formation of a jet that rapidly overcomes
the structure deck. In all snapshots, the pressure is quasi hydrostatic
excluding the impacting wave. The velocity field shows the presence
of secondary waves. Fig. 21 shows the x and z velocity components
(u and w respectively) recorded at the two velocity probes V1 and V2
at a height of z = 0.5 (m). For the probe V1 the u and w components
are quite close to the experiment values. The simulated u is adherent
to the laboratory result in both phase and magnitude. The simulated
w shows a slight phase displacement of the peak at t = 16.9 (s)
with a lower velocity; the crest at t = 17.9 (s) shows smaller phase
displacement while the velocity is higher than the experiment one. At
V2 the simulated velocity is slightly different than the experimental
velocity. The simulated u velocity, before t = 15.0 (s), presents a series
of oscillations whereas in the experiment one these are less prominent.
After t = 15.0 (s), the simulated u velocity approximates well the
experimental time series. The w velocity instead is quite close to the



Ocean Engineering 266 (2022) 113228

15

N. Salis et al.

Fig. 19. Fast Fourier transform of the surface elevation signal at the three wave gauges.

Fig. 20. Velocity magnitude and pressure contours for the wave–structure impact.

experimental time series before t = 15.0 (s) while, after this time,
it overestimates the expected experimental velocity values. Overall,
the present model seems suitable to reproduces the relevant kinematic
features of the experiment.

Fig. 22 shows three snapshots of the wave–structure impact, com-
paring the SPH results to the laboratory experiments of Sun et al.
(2019b). As anticipated, the numerical impact it is slightly delayed with
respect to the experiment. Moreover, the sampling of SPH result has
been done every tsample = 0.05 (s) thus they are not available at the
exact laboratory frames. For this reason, the delay between the SPH
and laboratory snapshots can be considered negligible. The frame just
before the impact at t = 18.65 (s) shows that the wave is breaking as the
experimental one. The shape of the impacting crest is slightly different,

Fig. 21. x-velocity (u (m s−1)) and z-velocity (w (m s−1)) time series recorded at the
two velocity probes V1 and V2.

Fig. 22. Wave–Structure impact. SPH simulation, left panels. Experimental snapshots,
right panels.

with the plunging wave crest in the laboratory frame slightly moved
forward. The curvature of the experimental frame at t = 18.69 (s) is
higher than in the numerical result at 18.65 (s). This aspect slightly
affects the pressures at the sensors. At t = 18.75 (s) the SPH and the
laboratory results are very similar both over and under the decks. Over
the deck the wave is closing onto the structure while breaking with
several particles detaching. At t = 18.80 (s) the shapes of the curves
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Fig. 23. Pressure time series at the structure front sensors FP1 and FP2 (Sun et al.,
2019b; Yan et al., 2019).

of the SPH simulation and of the experiment is slight difference. The
SPH wave carries slightly higher velocity thus the jet reaches a higher
elevation than the experimental one which envelopes completely the
structure deck. The relevant impact characteristics are, anyway, well
reproduced by the present model. It is worth noting that the model is
single-phase and cannot reproduce the effects of air entrapment and
suction stage where strong negative pressures appear in the structure
bottom.

As discussed earlier there is a slight phase displacement in the last
crest (Fig. 19, WG3 at t = 18.1 (s)) thus also the simulated pressure
time series is slightly delayed. As a result, in both Figs. 23 and 24
the SPH pressures plots are shifted forward in time with respect to
the experimental ones. It is worth noting that the time delay is always
small (�t H 0.03 (s)). In Fig. 23 the SPH result at the structure front
sensors FP1 and FP2 is close to the experimental one. At sensor FP1
the SPH pressure peak is slightly higher than the experimental one,
but the overall trend is suitably reproduced. The model reproduces the
compression–decompression stages at early times in FP2, with reduced
amplitude than the experimental one. Fig. 24 shows the pressure time
series at the bottom structure pressure probes. The first half of the
pressure time series at BP1 is well reproduced, with similar values
of pressure and a similar descending trend. From t = 18.85 (s) on,
the experimental strong negative pressures values are not captured by
the present model where an non-physical void forms at the measuring
point, and the suction effect is not captured. At the sensor BP2 the
pressure increment is captured by the present model, while in the

Fig. 24. Pressure time series at the structure bottom sensors BP1 and BP2 (Sun et al.,
2019b; Yan et al., 2019).

descending phase some differences appear. This could be due to the
difference between the simulated impacting wave and the laboratory
one previously described.

Also, the multiphase simulation in Sun et al. (2019b) and in Yan
et al. (2019) are reported for comparison purposes. Even though the
presented model is single-phase, its results are similar to those ones
from more complex models and the relevant aspects of the laboratory
test can be captured.

4. Conclusions

In this paper, a model derived from SPHERA v.9.0.0 (RSE SpA) has
been presented. The model equations are modified with the possibility
to treat multiphase flows with high density ratio which will be further
investigated in a future study. The diffusive term in the continuity
equation is added and the renormalization is used to reduce numerical
dissipation. The model has been tested and validated on three cases:
(i) dam-break, (ii) generation of regular waves in a 2D flume, and (iii)
generation of non-linear wave in a 2D flume and structure impact.
Dam-break results obtained with the original code SPHERA and with
the derived model, both single-phase and multiphase, are quite close
to the laboratory experiments. The main limitation of the proposed
multiphase formulation is the formation of a very small interface gap
between the two media, that however do not affect the accuracy of the
results. Non-physical air voids can be momentarily generated by local
pressure/velocity gradients with negligible influence on model results.
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In the case of the generation of regular waves, the present model is
less dissipative than SPHERA and adequately reproduces the kinematic
and dynamics aspects. Moreover, with the present model the error
in wave height, with respect to the laboratory experiment of Ursell
et al. (1960) is significantly reduced, showing similar accuracy to other
numerical models presented in the literature. The generation of the
non-linear wave shows that the present model accurately reproduces
the wave height, the amplitude spectrum and velocity field with respect
to the laboratory data. When applied to wave generation, the model
requires fine calibration of the model parameters, to accurately repro-
duce the different wave-types. The wave–structure impact reproduces
satisfactorily the relevant aspects of the phenomenon. The shape of
the impacting wave is very similar to the laboratory one, even if it is
slight delayed. Thanks to the reduction of the artificial sound speed,
pressures at the structure probe are in the same range of values with
the experimental one. The suction stage at BP1 cannot be reproduced.
Nevertheless, the obtained results are quite satisfactory considering the
relative simplicity of the presented model. The present model can be
extended to the analysis of two-phase flows with high density ratio.
This will be the subject of future investigations.

5. Future perspectives

The future perspectives of this research are the application of
the multiphase model to the wave–structure impact. The drawbacks
(e.g. interface gap, particle cluster) of the multiphase model should be
overcome with a particle shifting technique (PST). A PST, based on the
Fick’s law, can be used to regularize the particle distribution in the
domain, shifting particles from a zone with high particle density, to a
zone with low particle density. Particle shifting techniques, based on
this law have proven to be a reliable tool to model multiphase flows
with high density ratios (Sun et al., 2019a; Wang et al., 2019; Krimi
et al., 2020).
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6.3 Final remarks

As previously mentioned, the multiphase model exhibited some issues, notably the formation of non-physical voids

in the domain and a small gap between the two phases. These voids manifest when significant deformation with a

very high velocity gradient occurs. In Section 9, several ideas are proposed to address these instabilities. Given that

these instabilities arise from high-velocity gradients, a particle shifting PS scheme is proposed to mitigate tensile

instability. Additionally, the small particle gap is addressed by solving the Riemann problem at the interface for

particles of different densities.
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Comparison on two Lagrangian particle methods

In March 2022, I embarked on my first Erasmus exchange abroad, which lasted for four months. In alignment with my

group, I chose to join CIMNE - “Centro Internacional de Métodos Numéricos en la Ingeniería" in Barcelona, Spain.

During this period, my focus remained on the development of the multiphase SPH model, particularly refining the PS

scheme, as detailed further in Section 9. Additionally, I began learning and utilising the free and open-source model

“Kratos multiphysics," specifically exploring the particle finite element method (PFEM).

7.1 Introduction

Following an initial learning phase, I commenced testing the model with various cases. Initially, I attempted to

simulate a multiphase collapsing water column impacting a bottom-fixed structure. Figure 7.1 displays snapshots of

this simulation, comparing the results obtained from the PFEM model (top panels) with those from the SPH-derived

model (bottom panels). The water (heavy phase) is represented in blue, while the air (light phase) is depicted in red.

Figure 7.1: Multiphase collapsing water column and impact with bottom structure. A comparison between PFEM (top

panels) and SPH (bottom panel).

The model encountered challenges in accurately simulating these flows, particularly when a heavier phase jet

penetrated the lighter phase, resulting in a loss of mass conservation. Rectifying these issues necessitated significant

modifications and the development of new strategies to ensure mass conservation.

Upon consultation with my supervisor at CIMNE, we decided to pivot away from this approach. Consequently,

I shifted my focus to modelling regular waves. Initial tests were conducted using the same flume configuration as

previous simulations. The PFEM model, leveraging finite element methods and implicit integration, demonstrated

high accuracy from the outset.

Upon closer examination, it was observed that the recorded wave height at the measuring gauges was affected

by reflected waves from the beach on the right-hand side. Figure 7.2 presents the fast Fourier transform of the

recorded wave height, highlighting the presence of low-frequency waves reflected by the beach. Notably, resonant

frequencies at approximately 0.9 and 1.4 Hz were observed, with minimal influence on the results.
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To address wave reflection issues, various domain configurations were explored. Utilizing a longer domain

effectively mitigated wave reflection. After successfully modelling regular waves, I proceeded to simulate solitary

waves and the wave impact with a box-shaped structure. Notably, no critical issues arose during this simulation with

the PFEM model.

Figure 7.2: Fast Fourier transform of a regular wave, comparison between the PFEM and SPH model.

7.2 Lagrangian Particle-Based Simulation of Waves: a Comparison of SPH

and PFEM Approaches

The objective of this publication is to provide an overview of two Lagrangian particle models: the SPH-derived model

discussed in Section 6, and the PFEM model implemented in the multiphysics code Kratos. The aim is not only

to compare the mathematical formulations of these methods but also to explore their potential applications in real

engineering problems, particularly in the context of waves and wave-structure interactions.

The selected cases for comparison lie at an intermediate level between the two models. Solitary waves, as

discussed in the paper, had previously been studied using the PFEM model but were new to the SPH model.

Conversely, regular waves and plunging wave-structure impacts had been investigated using the SPH model but

were novel to the PFEM approach.

The resulting publication, titled “Lagrangian particle-based simulation of waves: a comparison of SPH and PFEM

approaches," has been featured in the journal “Engineering with Computers."
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Abstract

Lagrangian numerical methods are particularly suitable to reproduce flows involving large and rapid deformation of the 
domain, fluid splitting and coalescence, jets and sprays. The absence of the convective terms in the governing equations 
avoids numerical diffusion. This paper provides a comparative study between two Lagrangian particle models based on the 
Smoothed Particle Hydrodynamics (SPH) and the Particle Finite Element Method (PFEM). The description of the methods 
is provided; features and drawbacks of each method are compared and discussed. The introduced models, which represent 
widely used advanced analysis tools, are compared and validated in the simulation of five test cases: Two solitary waves, two 
regular wave trains and a non-linear wave-structure impact. Results from each model are similar and quite close to reference 
data. Therefore, both models have been validated against new test cases never simulated before, showing that these models 
can be effectively used for the analysis of regular and non-linear wave with structure impact.

Keywords SPH · PFEM · Particle methods · Solitary waves · Regular waves · Non-linear waves · Breaking waves

1 Introduction

Extreme wave events are of great concern in coastal and 
ocean engineering. Furthermore, these events are expected 
to grow in number and severity owing to climate change. 
Wave-structure impacts may cause severe damages to off-
shore and coastal structures, besides causing human and 
economic losses. Moreover, bores that may originate can be 
highly risky for seaside urban areas. Numerical simulation 
can be of strategic relevance to predict the effects of wave-
structure impact. With the recent developments in computa-
tional capabilities, simulations are much faster, cheaper and 

more accessible than an experimental campaign. Moreover, 
numerical simulation allows the investigation of several 
test configuration with relative ease. Furthermore, numeri-
cal methods allow a full-scale simulation of a real event 
thus overcoming scale effect-induced problems, though they 
may need to be validated with the aid of experimental or 
field data. Numerical wave generation and wave-structure 
interaction, although widely investigated in literature with 
both Eulerian and Lagrangian strategies, still represent a 
challenging task. On the one hand, Eulerian methods need 
an ad-hoc treatment for dealing with evolving free-surface, 
such as the use of Level Set functions, and may suffer from 
numerical diffusion in the simulation of advection-domi-
nated flows. Despite these inconveniences, Eulerian meth-
ods have been successfully employed for the generation of 
regular waves [1, 2], solitary and non-linear waves [3, 4] and 
wave-structure interaction [5, 6]. On the other hand, Lagran-
gian strategies allow for a natural tracking of the deforming 
fluid domain and modelling of the convective term. How-
ever, in mesh-based Lagrangian methods, the progressive 
deterioration of the mesh limits the application of these 
methods to small deformation problems. Lagrangian particle 
methods overcome this limitation either by avoiding the use 
of the mesh, such as in the Smoothed Particle Hydrodynam-
ics (SPH) method [7], or by combining the use of material 
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particles with a fixed solving mesh, such as in the Material 
Point Method (MPM) [8] or in the Particle Finite Element 
Method of second generation (PFEM-2) [9], or by using an 
efficient remeshing procedure, such as in the Particle Finite 
Element Method (PFEM) [10].

In this comparative analysis, we focus our attention on 
the application to wave generation and structure impact of 
two particle-based methods, namely the SPH and the PFEM.

The SPH was introduced in [7, 11] to solve astrophysical 
problems. Subsequently, it has been also adapted to simu-
late continuum solid and fluid mechanics problems [12, 13] 
along with alternative methods, such as the Moving Particle 
Method (MPS) [14], the Consistent Particle Method [15] and 
the Incompressible SPH [16]. Applications of the SPH to 
wave propagation and fluid-solid interaction can be found in 
[17–21]. In this work, we will use the weakly-compressible 
SPH formulation presented in [20].

Since its pioneering works [10, 22], the PFEM has been 
applied to complex fluid dynamics problems in presence of 
free-surface flows and fluid–structure interaction phenom-
ena. Previous PFEM works in the context of wave propa-
gation problems can be found in [23–25]. In more recent 
publications [26, 27], complex fluid–structure interaction 
phenomena involving strong wave impact and structural 
failure were also considered. In this work, we will use the 
weakly-compressible PFEM formulation presented in [28].

SPH and PFEM have some common features. Both numeri-
cal techniques are classified as particle methods, since they 
discretise the computational domain into a discrete set of par-
ticles that move according to the equation of motion. Despite 
this continuous nature, both methods allow sprays formation 
which subsequently splash onto the main water body, thus 
allowing wave-breaking analysis. However, while the SPH is 
a mesh-less method, wihout a connection between particles, 
the PFEM solution is computed using a FEM mesh. In particu-
lar, the SPH embraces the concept of integral representation 
of functions using a kernel function (Fig. 1(a)) that mimics 
the Dyrac’s delta but is continuous and differentiable. Instead, 
in the PFEM, a computational mesh is generated using the 
particles as mesh nodes. Then, after the appropriate definition 
of shape functions (Fig. 1(b)), this mesh is used for the finite 

element solution of the Lagrangian governing equations. To 
circumvent mesh distortion in large-deformation problems, 
the PFEM regenerates the mesh continuously via an efficient 
remeshing technique based on a Delaunay triangulation algo-
rithm [29, 30].

In this work, two distinct frameworks are used for the SPH 
and PFEM solvers. For the SPH solution, is adopted a Free 
and Open-Source Software (FOSS) derived from SPHERA 
v.9.0.0 (RSE SpA) by introducing relevant modifications of 
the research code [31]. Instead, for the PFEM, the formulation 
implemented in the PfemFluidDynamicsApplication module 
of the open-source code Kratos Multiphysics [32] is used.

In this work, two models based on SPH and PFEM are 
applied to the analysis of regular, non-linear and solitary waves 
with structure impact in two-dimensional flumes. Some of 
the investigated test cases have never been performed before 
and represent a validation of these models. To the best of the 
authors’ knowledge, this document represents the first com-
parison (and result discussion) between these two particle 
methods.

The layout of the paper is described in the following. In 
Sect. 2, the governing equations of the problem are presented. 
In Sects. 3 and 4, the mathematical models and solution 
algorithms of the SPH and the PFEM are briefly described. 
In Sect. 5, the models are validated on three significant test 
cases. The first test concerns solitary waves, where simulation 
results are validated with laboratory results for two different 
experimental campaigns. These test cases are new for the SPH 
model. The second test is the generation of regular waves in 
a flume and the validation with the linear wave theory [33]. 
The third test represents a non-linear wave impacting on a 
fixed box-shaped structure validated with experimental results. 
These last two test cases are new for the PFEM model.

2  Governing equations

The Navier–Stokes equations are solved by both the SPH and 
the PFEM. In Eqs. (1a) and (1b), the strong form of the gov-
erning equations (momentum and mass balance equations, 
respectively) for a Newtonian fluid are written in an updated 
Lagrangian framework. 

 Where u is the velocity vector, p is the pressure, b is the 
body force per unit volume, � is the fluid dynamic viscosity, 
� is the density, t is the time, Ω

t
 is the updated computational 

(1a)
�
�u

�t
− ∇ ⋅

(

2�

(

1

2

(

∇u + ∇u
T
)

−
1

3
(∇ ⋅ u)I

)

− pI

)

= b in Ωt × (0, �)

(1b)
��

�t

+ �∇ ⋅ u = 0 in Ω
t
× (0, �)

Fig. 1  Graphical representation of SPH kernel (a) and PFEM (FEM) 
(b) shape functions for a cloud of points
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domain, � is the total time duration, and I is the identity 
second-order tensor. We remark that both the SPH and the 
PFEM strategies used in this work are based on a quasi-
incompressible formulation. We also remark that Eq. (1b) 
can be re-written by substituting the density with the pres-
sure as follows

where � is the material bulk modulus which is defined as 
� = �c

2 , being c the speed of sound in the medium. System 
(1) is complemented by the following boundary conditions 

 being t the normal projection of the stress tensor on the 
fluid boundaries, û the prescribed velocities on the Dirichlet 
boundary ( Γ

v
 ), and t̂ the tractions acting on the Neumann 

boundary ( Γ
t
 ), with Γ

v
∪ Γ

t
= �Ω

t
 and Γ

v
∩ Γ

t
= ∅.

3  SPH formulation

The SPH model utilised in this work has been obtained by 
independently introducing relevant modifications in the 
original code SPHERA v.9.0.0 (RSE SpA) [31]. This derived 
code [34] is redistributed on Github (bound to the GNU-GPL 
license and in respect of SPHERA copyright terms). For a full 
description of the derived model, the reader is referred to [20]. 
For further information, interested readers are referred to the 
documentation of the original SPHERA model [31, 35–38].

3.1  SPH approximation of governing equations

The SPH approximation of the mass balance equation (Eq. 
(1b)) reads

where the notation “ ⟨⟩ ” indicates the SPH particle -discrete- 
approximation. In this equation the computational particle 
has subscript 0 while the neighbouring particle has subscript 
b. � is the particle density, m is the particle mass, W is the 
kernel function and r

0b
 the relative distance between the 

computational particle and the neighbouring one. n is the 

(2)
�p

�t
+ �∇ ⋅ u = 0 in Ωt × (0, �)

(3a)u = û on Γ
v

(3b)t = t̂ on Γ
t

(4)

⟨
d�

dt

⟩

0

=
∑

b

�
0
(u

b
− u

0
) ⋅ ∇W

m
b

�
b

+ 2�
0 ∫

V
�
h

[(u
w
− u

0
) ⋅ n]n ⋅ ∇Wdx

3

+ C
s
+ 2�c

0
h

N∑

b=1

�
0b

r
0b

⋅ ∇W

||r
0b
||2

m
b

�
b

outward normal vector to the boundary surface, c
0
 is the arti-

ficial sound celerity, and h is the smoothing length. � is the 
diffusive coefficient and �

0b
 is the diffusive term formulated 

accordingly to [39]. The subscripts s and w refer, respec-
tively, to the generic neighbouring surface body particle and 
the solid boundary [37]. In Eq. (4), the term C

s
 represents 

the fluid-body interaction contribution for the mass balance 
equation and is defined as

where �
s
 is the body particle volume. This scheme first 

introduced in [40] can be interpreted as a discretisation of 
the semi-analytic approach. We also remark that the last 
term of Eq.(4) represents a diffusive contribution that it is 
needed to obtain a stable pressure field solution [39]. Using 
the same notation as Eq. (4), the SPH approximation of the 
momentum balance equation (Eq. (1a)) reads

where g is the gravity acceleration, x is the position vector 
of the particle, �

0in
 is the initial density of particle 0. The 

artificial viscosity is defined as �
m
= �

0in

�⋅h⋅c

�
0

 where � is the 

artificial viscosity coefficient ranging between 0.01 and 0.1. 
Artificial viscosity introduced by [11] bears no relation to 
real fluid viscosity, while it mimics its behaviour [41]. More-
over, its design allows the simulation of shock phenomena 
and stabilises the numerical algorithm [42]. For a thorough 
study on the influence of the artificial viscosity coefficient, 
the reader is referred to [19, 20].

The term a
s
 of Eq.(6) is the fluid-body interaction 

contribution for the momentum balance equation and is 
defined as

we remark that the artificial viscosity term of Eq. (6) has 
been modified to depend on particle volume instead of mass. 
This allows to obtain stable simulations of multiphase flows 
with high density ratio. The system of equations (4) and (6) 

(5)C
s
= 2�

0

∑

s

[(u
s
− u

0
) ⋅ n

s
]∇W

s
�

s

(6)

⟨

du

dt

⟩

0

= −g +
1

�
0

∑

b

(pb + p
0
)∇W
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�b

+ 2
p

0

�
0
∫V �

h

∇Wdx3

− �m

∑

b

mb

�b

1

r2

0b

(ub − u
0
) ⋅ (xb − x

0
)∇W

− 2
�m

�
0in

(uw − u
0
) ⋅ ∫V �
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1
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0w

(x − x
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)∇Wdx3
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�W

�r
dx3
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0
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2
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)

∇Wsms
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is closed by the linearised barotropic equation of state for 
slightly compressible fluids, which reads

In SPH, the artificial sound speed cref  must be assumed at 
least ten times higher than the maximum fluid velocity to 
guarantee a relative density variation at most equal to 1% 
[42] and the subscript ref stands for the reference state. Con-
cerning the boundary conditions, we remark that no con-
straints are needed to define the free surfaces. Solid walls 
are treated with the semi-analytic approach [36] where at the 
boundaries, the kernel support can partially lie outside the 
fluid domain. The integral terms in Eqs. (4) and (6) express 
these boundary contributions. Such terms represent the con-
volution integral on the portion of the kernel support V ′

h
 that 

lies outside of the domain and is filled with body particles. A 
second-order staggered Leapfrog scheme is used to integrate 
in time the governing equations [38]. The stability criterion 
for the time integration is given by:

Where the utilised viscosity � is the real fluid viscosity.

3.2  SPH solution scheme

The momentum and the mass balance equations are solved as 
described below. After the first initialisation of the particles 
in the domain, i.e., neighbouring search and computations of: 
r

0b
 , W, ∇W  for the background grid, at each time step the 

procedure is given by the following steps 

1. Evaluation of the integrals for the solid neighbouring 
surface contour

2. Computation of the momentum balance equation and 
body dynamics by Eq. (6)

3. Leapfrog integration scheme applied to momentum bal-
ance equation

4. Update the particle position (Lagrangian trajectory)
5. Neighbouring search and computations of: r

0b
 , W, ∇W

6. Evaluation of the integrals for the solid neighbouring 
surface contour

7. Computation of the mass balance equation (4)
8. Leapfrog integration scheme applied to mass balance 

equation
9. Pressures computations via the equation of state (8)

(8)p = c2

ref
(� − �ref ) + p

0

(9)dt = min0

{
0.05

2h2

�

;CFL
2h

cref + |u|

}

4  PFEM formulation

In this work, the PFEM solution is obtained through the 
velocity-pressure solver for Newtonian fluids presented in 
[28]. As in standard PFEM formulations, equal order of 
interpolation (linear) for both the velocity and the pressure 
unknowns. The Finite Calculus (FIC) stabilisation [28] is 
adopted to avoid spurious oscillations due to the unfulfill-
ment of the so-called inf-sup condition [43]. The formulation 
is implemented in the open-source code Kratos Multiphys-
ics [32]. In the following sections, the basic features of the 
method are presented.

4.1  FEM discretisation

In the PFEM, the balance equation system (1) is discretised 
according to the standard Galerkin Finite Element Method 
(FEM). The full derivation of the FEM solution scheme is 
considered out of the scope of this work and only the final 
discretised, FIC-stabilised form is given.

Following the variational equation approach in [28], the 
governing equations (1a) and (2) can be written in matrix 
form as

where M
0
 is the mass matrix, K is the viscous matrix, Q 

is the gradient matrix, f  is the external force vector, M
1
 is 

the bulk matix, and S
�
 includes all terms arising from the 

FIC stabilisation procedure. The vectors ū and p̄ contain 
respectively the nodal velocities and nodal pressures. The 
notation ̇̄a stands for the first material derivative of vector 
ā . The definition of all the matrices introduced in Eqs. (10) 
and (11) is provided in appendix A. For the full mathemati-
cal development of the discretised equations the reader is 
referred to [28].

4.2  PFEM solution scheme

At each time step [nt;n+1
t] of duration Δt , the linear momen-

tum and the mass balance equations are solved iteratively 
for the nodal velocities and pressures. In the following, the 
main steps of this implicit PFEM scheme are summarised.

At each non-linear iteration i : 

1. Compute the nodal velocities ūi+1 from Eq.(10)
2. Update the nodal coordinates: n+1

x̄
i+1

3. Compute the nodal pressures p̄i+1 from Eq.(11)

(10)M
0
̇̄u + Kū + Qp̄ = f

(11)M
1
̇̄p + QT ū = S

�
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4. C h e ck  t h e  c o nve rge n c e :  
‖ū

i+1
− ū

i‖

‖n
ū‖

≤ e
u
 , 

‖p̄
i+1

− p̄
i‖

‖np̄‖
≤ ep

  with e
u
 and e

p
 prescribed error norms for velocities 

and pressures.
  If condition 4 is not fulfilled, return to 1 with i ← i + 1.

The nodal positions, thus the mesh, are continuously updated 
in a Lagrangian fashion according to the solution of the 
governing equations. To maintain a good quality of the dis-
cretisation in large deformation problems, such as the ones 
considered in this work, the mesh is continuously rebuilt. 
This is done by erasing all the elements of the previous (dis-
torted) mesh but maintaining the nodes. The new mesh is 
built over this distribution of nodes by combining the Delau-
nay triangulation [44] and the Alpha-Shape [45] method. 
The main steps of the PFEM remeshing are summarised in 
the following.

At each remeshing step: 

1. Erase the elements of the previous mesh and maintain 
the nodes

2. Create a Delaunay triangulation
3. Do Alpha-Shape check to rebuild the boundaries

On one hand, the Delaunay triangulation guarantees a good 
quality of the elements for the given cloud of nodes, on the 
other hand, the Alpha-Shape method allows recovering the 
physical contours of the computational domain with good 
accuracy. The result is a good-quality mesh ready to be used 
for the FEM solution of the following computational step. 
We also remark that in the PFEM, as for the SPH, the fluid-
free contours are automatically tracked by the solution algo-
rithm. More details about the PFEM remeshing procedure 
and its implications on the PFEM solution are provided in 
[29].

5  Results and discussion

5.1  Solitary waves

Two solitary wave types generated by piston wave-maker are 
considered for testing the SPH and PFEM models. In Fig. 2, 

a sketch of the two numerical wave tanks is plotted. For both 

domains, on the left-hand side there is a piston-type wave-

maker. Figure 2 (a) shows the domain for the so-called wave-

type A. On the right-hand side of the domain, there are two 

beaches with a 1:10 slope ratio that are connected by a flat 

bottom. The wave height is measured at the toe of the upper 

beach ( x = 90m ) with the gauge WM. In the reference labo-

ratory experiments [46], the wave impacted and damaged a 

reinforced concrete wall that was placed at the right-hand 

side of the flume. The 3D wave-wall interaction has been 

fruitfully reproduced with the PFEM method in [26].

Figure 2 (b) shows the domain for wave-type B. This 

wave type reproduces the laboratory experiment carried 

out in the large wave flume at the Coastal Research Cen-

tre in Hannover [47–49]. At the right-hand side of the 

domain there is a sloped beach with a 1:14.5 ratio. The 

sloped beach is followed by a flat part where a bore origi-

nates from the solitary wave breaking. The wave height 

is monitored at three WG gauges. This experiment has 

been reproduced in [27] coupling an Eulerian method and 

the PFEM method. This is the first attempt to reproduce 

these wave generation and propagation with SPH. Figure 3 

shows the velocity input for the wave-maker for both wave 

types. While both waves are generated in ten seconds, 

the propagation in the channel is different: wave-type A 

propagates in ten seconds while wave-type B propagates 

in forty seconds. Table 1 shows the spatial resolution and 

the particle/node number for each wave-type. The wave 

type is defined in the first column of the table while on the 

second column the run number is reported to distinguish 

simulations with different spatial resolution. The third and 

fourth columns show the particle spacing dx respectively 

for the SPH and PFEM model. The fifth column shows 

Fig. 2  Numerical wave tanks for solitary waves. a Domain for wave-

type A [26, 46] b domain for wave-type B [27, 47, 48]. In this figure, 

all measures are in meters

Fig. 3  Velocity input for paddle wave-maker. a Solitary wave-type A, 

b solitary wave-type B
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the physical simulation end time. On the sixth and sev-

enth columns the particle number (number of nodes) N is 

reported respectively for the SPH and PFEM model.

5.1.1  Solitary wave-type A

This solitary wave, due to the lower particle number and 

simulation time, is chosen to perform a sensitivity analysis 

on the particle/mesh size. Table 1 shows the simulation 

runs where three different spatial resolutions have been 

considered. Figure 4 shows wave elevation at WM obtained 

with the SPH and the PFEM models for three different res-

olutions. These graphs show that the change in resolution 

has a greater impact on the SPH (Fig. 4 (a)) model than on 

the PFEM (Fig. 4 (b)). In fact, negligible differences in the 

wave elevation are exhibited with the PFEM model for the 

selected mesh sizes. Instead, the wave elevation obtained 

with the SPH model grows significantly from the coarse to 

fine resolutions and a very fine mesh is needed to obtain a 

convergent result. The best result being achieved with the 

fine spatial resolution. The trough, the second crest and the 

subsequent descending part of the wave elevation are close 

to the PFEM model and the experimental wave elevation.

Figure 5 shows a detail of the SPH and PFEM particles/

nodes at t = 14.0s (wave breaking point) for the three differ-

ent resolutions. As discussed before, the effect of resolution 

increase on the numerical results is more significant in the 

SPH than in the PFEM. Although the number of particles is 

similar between models (Table 1), at the coarsest resolution 

(Fig. 5 (a)) the finite element discretisation allows to obtain a 

more faithful representation of the wave breaking than SPH, 

and the wave evolves into a plunging breaker. With the mid-

dle spatial resolution (Fig. 5 (b)), the accuracy of SPH is 

greatly improved but the wave breaking is still not so accu-

rately reproduced. At the higher spatial resolution analysed 

Table 1  Simulation nodes at 

different resolutions - solitary 

waves

Wave run dx (m) End time (s) N (-)

SPH PFEM SPH PFEM

A 1 0.25 0.25 20.00 6451 8174

A 2 0.1 0.1 20.00 41120 48315

A 3 0.05 0.05 20.00 164480 191661

B 1 0.1 0.1 50.00 75510 88395

B 2 0.05 – 50.00 302040 –

Fig. 4  Solitary wave-type A: wave elevation at wave gauge WM 

obtained with spatial discretisation dx = 0.25 m , dx = 0.1 m , and 

dx = 0.05m . a SPH solution, b PFEM solution

Fig. 5  Solitary wave-type A: domain discretisation at t = 14.0s . 

Left-hand panels SPH, right-hand panels PFEM. a dx = 0.25m , b 

dx = 0.1m , c dx = 0.05m
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(Fig. 5 (c)) the discretisation is finally sufficient to model the 

breaking wave with the SPH. Figure 5 also confirms that in 

the SPH model the wave breaks before the PFEM model. In 

Fig. 5 (c), the SPH plunging breaker is falling and closing 

onto the main water body. With the PFEM model, the break-

ing point is much less influenced by different resolutions. 

Moreover, the crest gets tighter when resolution increases 

and with the highest resolution analysed no particles detach 

from the crest.

Figure 6 shows the wave elevation at WM. Numerical 

results with the resolution of dx = 0.05m are compared with 

the experimental results of [46]. The first SPH peak in Fig. 6 

is slightly shifted to the left. The SPH wave breaks slightly 

earlier than the wave generated with the PFEM model. 

Therefore the first SPH peak is slightly lower than the PFM 

one. Both models overestimate the experimental peak at 14s. 

The wave gauge WM is placed at the toe of the upper slope 

change where the solitary wave becomes a plunging breaker, 

thus affecting the experimental measure of the wave eleva-

tion at the peak. Both models produce a wave profile with 

negligible differences from the experimental wave. This is 

particularly evident in the trough and during the descending 

part of the wave from t = 14.5s to t = 20s.

5.1.2  Solitary wave-type B

The original experiment [48] focused on the propagation 

of the wave in the flat beach and subsequent impact with 

fixed structures. Based on the previous results, for the 

PFEM mesh, a resolution coarser than the one adopted 

for the SPH is used. In particular, with the PFEM, suit-

able results are achieved with dx = 0.1m , while the SPH 

needs a particle size of dx = 0.05m . Even though mesh/

particle resolutions are different, the models produce simi-

lar results. Figure 7 shows the wave elevation obtained 

numerically and experimentally at the three gauges 

WG8, WG13, and WG14. In this figure, two SPH wave 

elevations are shown with dx = 0.1 m and with dx = 0.05 

m. The first one has the same resolution as the PFEM 

simulation. As discussed for Fig. 4 at this resolution the 

SPH model does not converge. Once spatial convergence 

is achieved by both models (with different discretisation) 

a fair comparison can be maid, showing that results are 

similar and rather close to the experiment. At WG8, Fig. 7 

(a) both models gives a slightly higher wave elevation at 

the t = 15.0s crest. The models capture the wave train from 

t = 18.0s to t = 35.0s in both phase and height. For WG13, 

and WG14, corresponding to Fig. 7 (b) and (c), similar 

considerations can be made. The wave crest at t ≈ 32.0 s 

and the following wave train of smaller amplitude are well 

estimated with negligible differences between both models 

and the experiment.

Figure 8 shows the velocity magnitude contour of the 

solitary wave propagating in the channel. In the PFEM 

model the highest velocities are centred under the wave 

crest moving in the channel. In the SPH model, the highest 

velocities seem diffused in front of and behind the wave 

crest. The maximum velocity captured at the crest top is 

≈ 1ms
−1 . Close to the bottom, the SPH velocity is attenu-

ated, while the PFEM contours show higher velocities.

Figure 9 shows the pressure contour. Both models show 

a quasi hydrostatic distribution, with the PFEM contour 

Fig. 6  Solitary wave-type A: wave elevation at wave gauge WM 

obtained experimentally [46] and numerically with SPH and PFEM

Fig. 7  Solitary wave-type B: wave elevation at sensors: a WG8, b 

WG13, c WG14 [48]
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being slightly more consistent than the SPH one. The 

pressure increase under the wave crest is detected by both 

models and is consistent with the increase of free surface 

height in shallow water.

5.2  Regular waves

The domain is a slight modification of that used in pre-

vious SPH simulations [19, 20] to avoid wave reflection 

due to the sloped beach. Figure 10 shows a sketch of the 

updated domain, with a milder beach slope 1:50 that 

allows to reduce wave reflection at measuring gauges. The 

flat part of the domain has been extended to 50 m. On the 

left-hand side, there is the piston-type wave-maker. Wave 

heights are monitored with six wave gauges placed at an 

increasing distance from the wave-maker with imposed 

kinematic. This is the first time that the PFEM model is 

tested on the generation and propagation of regular wave 

trains in a flume.

Biŕsel [50] derived the analytical solution for differ-

ent wave-maker types. The wave-maker stroke is set to 

obtain the target wave height. Equation (12) shows the 

time-velocity law imposed on the wave-maker. S
0
 is the 

maximum displacement (stroke) of the wave-maker, � is 

the angular frequency related to the wave period T, and 

t is the time variable. The following exponential terms 

are introduced to avoid inertial effects at early simulation 

stages:

The still water height is h
still

= 1m and is constant in both 

experiments; wave parameters are obtained with the proce-

dure illustrated in [19, 20]. Two wave types, from Ursell [51] 

are reproduced. Table 2 summarises the target characteristics 

of the waves. T is the wave period, H is the wave height, L 

is the wavelength, S is the maximum paddle stroke, c is the 

wave celerity, �
�����

 is the still water height in the flume, kh is 

the wave relative depth, �∕� is the wave steepness, �∕� is 

the wave height to stroke ratio. One may refer to [19, 20] for 

a short theoretical description of wave generation. Table 3 

shows the adopted dx, the simulation time and the node / 

particle number for the two models. Figure 11 shows the 

wave elevation at the wave gauges in the numerical flume for 

wave-type U15 and U24. Regular wave-types are compared 

with their respective analytical solution. With both models, 

the phase and wave heights are accurately reproduced. This 

numerical flume, with the 1:50 sloped beach, prevents wave 

reflection. Moreover, this sloped beach prevents mass losses 

in the PFEM model. In the flat part of the channel both mod-

els show negligible wave height reduction with respect to the 

analytical solution.

Figure 12 (a) shows the magnitude velocity contours for 

both models at t = 50s . The results of the two models are 

comparable. The velocity at wave crests, through, and nodes 

is well simulated. Slightly lower velocities are obtained 

with the PFEM model than with the SPH one. It is worth 

noting that the SPH velocity field is affected by negligible 

(12)

ux(t) =
1

2
S

0
�cos(�t) ⋅

(

1 − exp

(

−
t

T

))

+
S

0

2
sin(�t) ⋅ exp

(

−
t

T

)

∕T

Fig. 8  Solitary wave-type B: 

velocity magnitude contour at 

t = 30.0s . SPH dx = 0.05 m, 

PFEM dx = 0.1 m

Fig. 9  Solitary wave-type B: 

pressure contour at t = 30.0s . 

SPH dx = 0.05 m, PFEM 

dx = 0.1 m

Fig. 10  Numerical wave tank for regular waves. In this figure, all 

measures are in meters

Table 2  Regular waves 

characteristics
Wave T(s) H (m) L (m) S(m) c (m s−1) h

still
 (m) kh H/L (–) H/S (–)

U15 3.01 0.084 8.73 0.12 2.9 1.00 0.72 0.0096 0.7

U24 2.15 0.236 5.76 0.22 2.68 1.00 1.09 0.0409 1.05
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numerical noise. The dashed box is magnified in Fig. 12 (b) 
where the velocity vector field under the wave is shown. On 
the left-hand side, there is the node before the wave crest, 
where the horizontal component of velocity is null and the 
vertical component is directed downwards. Under the wave 
crest the vertical component of velocity is null and the hori-
zontal component is directed along the wave propagation 

direction. In the node between the wave crest and the wave 
through, the horizontal component of the velocity vector is 
null while the vertical component is directed upwards. Under 
the wave through, the vertical velocity component is null 
and the horizontal velocity component is directed against 
the direction of wave propagation. The obtained results from 
both models are in accordance with the linear wave theory 
[33].

5.3  Non-linear wave-structure impact

The original laboratory experiment [52] was carried out in 
the flume at the hydraulic laboratory at the National Univer-
sity of Singapore. The freak wave was designed according 
to the focusing wave theory (13). N = 32 small amplitude 
waves meet simultaneously at a focusing point in space 
xf  and time tf  producing a large amplitude wave, which 
becomes a plunging breaker subsequently. This test case is 
applied here for the first time to the PFEM model and there-
fore used for validation.

In Eq. (13), the index i refers to each linear wave compo-
nent with a constant amplitude of a

i
= 0.0061m . Frequency 

components fi are equally spaced in the frequency band-
width ranging from fmin = 0.32Hz to fmax = 0.96Hz . The 
wave number k

i
 is computed for each linear wave component 

with the dispersion equation (linear theory). The character-
istic wavelength is L = 3.312m and the characteristic wave 

(13)�(x, t) =

N
∑

i=1

ai cos[ki(x − xf ) − 2�fi(t − tf )]

Table 3  Simulation nodes - regular waves

Wave dx (m) End time (s) N (-)

SPH PFEM SPH PFEM

U15 0.025 0.025 51.0 187500 143325

U24 0.025 0.025 56.0 187500 143325

Fig. 11  Regular wave elevation at measurement gauges. Wave-type 
U15: left panels; wave-type U24: right panels. (a) (g) WGA, (b) (h) 
WGB, (c) (i) WGC, (d) (l) WGD, (e) (m) WGE, (f) (n) WGF

Fig. 12  Regular wave-type U15. a Magnitude velocity contours. b 
Velocity vectors
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celerity is c = 2.11 ms
−1 . The experimental velocity input for 

the wave-maker can be found in [20]. The adopted domain 
is shown in Fig. 13. The flat bottom is 16m long allowing 
the simulation of the non-linear wave at the focusing point 
xf = 11.104m (WG3). The wave is generated through a pis-
ton type wave-maker (left-hand boundary). A 1:10 sloped 
beach (right-hand side) prevents reflected waves. A 0.7m 
still water height is used and the wave elevation is recorded 
at three wave gauges WG1, WG2, and WG3. The bottom 
left corner of the fixed box-shaped structure is placed at 
x = 12.677m and y = 0.7458m . Impact pressure time series 
are recorded at four probes, two on the bottom side and two 
on the front.

With the SPH, a resolution of h∕dx = 100 is required to 
achieve accurate results for both the wave propagation and 
the fluid-solid impact. Instead, with the PFEM a coarser 
resolution would be sufficient to reproduce accurately the 
wave generation and propagation phenomena. However, 
a coarse discretisation would be not adequate to simulate 
satisfactorily the wave-structure impact. This is because 
contact elements connecting the solid obstacle and the free 
surface of the fluid at rest would be built during the PFEM 
remeshing. We remark that the distance between the water 
and the structure is less than 5cm. Therefore, for both SPH 
and PFEM models a resolution of h∕dx = 100 , i.e., a discre-
tisation size of 0.007m is used. The adopted SPH artificial 
viscosity parameter � = 0.7 , is slightly higher than the one 
used in [20]. Table 4 shows the spatial resolution dx and the 
computational nodes/particles utilised for each model. It is 
worth noting that with the PFEM model a decreased simula-
tion time can be achieved by adopting a variable mesh size 
with a consequent node number reduction.

Figure 14 shows the wave elevation at the three wave 
gauges. The models show similar results accurately repro-
ducing the experimental wave elevation time series at each 
gauge. In Fig.  14 (c) the only difference between both 

models and the experimental wave elevation is at t ≈ 16.5s . 
In this crest both numerical models show a reduced elevation 
with respect to the experimental data. However, the wave 
height at the subsequent crest ( t ≈ 18.0s ) is more accurate. 
The PFEM model shows slightly higher accuracy than the 
SPH at some crests.

Figure 15 shows the impact pressures. At the front probes 
(Fig. 15 (a) and (b)) both models reproduce adequately 
the positive impact pressures. Peak values are similar to 
the experimental one for FP1 (Fig. 15 (a)) while they are 
slightly underestimated for FP2 (Fig. 15 (a)). The trend of 
the impact load is suitably reproduced by both models. At 
FP1 (Fig. 15 (a)) the SPH shows some secondary oscilla-
tions that are not shown in the results of the PFEM and the 
experiment. At FP2 (Fig. 15 (b)) the PFEM pressure time 
series is quite regular. At t = 18.78s , a secondary pressure 
increase is exhibited in the experimental signal that is well 
captured by the SPH model. Figure 15 (c) and (d) shows 
the bottom pressure probes. The positive impact pressures 
are well reproduced by both models even if the SPH over-
estimates the peaks. At the bottom probes, the SPH shows 
some oscillations as in the experimental signal but does not 
capture negative values. The PFEM model shows a regular 
trend with no oscillations and values close to the averaged 

Fig. 13  Non-linear wave-structure impact. a Numerical flume. b 
Structure close-up.In this figure, all measures are in meters

Table 4  Simulation nodes - non-linear wave

dx (m) End time (s) N (–)

SPH PFEM SPH PFEM

0.007 0.007 20.00 278600 322764

Exp SPH PFEM

Fig. 14  Non-linear wave elevation at the gauges: a WG1, b WG2, c 
WG3



Engineering with Computers 

1 3

experimental signal. The time series of both models shows, 
on average, a similar trend to the experimental time series. 
At the bottom probes, the SPH computes slightly higher 
pressure values than the experiment and PFEM model. At 
BP1 (Fig. 15 (c)) from t ≈ 18.85s to t ≈ 19.1 s strong suction 
pressures are recorded [53]. While the SPH model cannot 
capture these negative pressures due to tensile instability, 
the PFEM model reproduces the average suction pressures 
adequately. Similar considerations can be made for BP2 
(Fig. 15 (d)). It is worth noting that other SPH models can 
reproduce the negative pressures [53] when the tensile insta-
bility is properly controlled.

Figure 16 shows the pressure contours of the non-linear 
wave impact with the box shaped structure. The SPH and 
the PFEM results are shown on the left-hand and right-
hand sides, respectively. In the centre, the experimental 
snapshots are given for comparison purposes. For each 
frame, pictures refer to the indicated time. The pressure 
contours produced by each model are quite similar. At 
t = 18.69s , just before the impact, the pressure distribu-
tion is quasi-hydrostatic. On the bottom left corner of 
the structure, there is a slight pressure increase, with a 
similar magnitude for both models. Both models produce 

a wave whose shape is similar to the experimental results. 
At t = 18.74s , the SPH model produces higher pressure 
distribution around the wetted part of the structure than 
the PFEM, as shown in Fig. 15. In this frame the experi-
mental wave is plunging onto the structure, this behav-
iour is captured by both models obtaining a similar behav-
iour. At t = 18.77s , the PFEM pressure contour is smooth 
with the highest pressures around the bottom centre of 
the structure. The SPH shows pressure peaks in the same 
area, but there are some minor oscillations (owing to the 
fluid–structure boundary treatment). At this time the SPH 
wave is more similar to the experimental frame where 
the leading edge turns downwards. The PFEM model 
shows a different dynamics of the wavefront collapse. At 
t = 18.82s , the SPH model produces slightly higher pres-
sures to the bottom of the structure than PFEM model.

6  Conclusions

This work dealt with a comparative study among two 
Lagrangian particle-base numerical models, namely, SPH 
and PFEM, applied to the simulation of regular and non-
linear waves in a flume with impact onto rigid structures. 
The analysed test cases were two solitary waves, two regular 
waves and a non-linear wave. Some of these test cases are 
investigated here for the first time and allow validation of 
the models. Results show that choosing the appropriate reso-
lution, the wave elevation and the kinematic properties of 
the studied waves are adequately reproduced by both mod-
els. The PFEM wave elevation is not affected by relatively 
coarse mesh size. Instead, the SPH wave elevation is greatly 
improved with a higher spatial resolution. The SPH method 
needs a high number of neighbouring particles to obtain 
reliable results with the kernel approximation. The PFEM 
model instead is less influenced due to the FEM discretisa-
tion, which provides good results even for coarse resolu-
tions. This aspect was highlighted in the analysis of solitary 
wave-type A where the influence of particle/mesh resolu-
tion was investigated. The non-linear wave impact result also 
shows that to model accurate impact pressures both models 
require a high spatial resolution. With higher resolution, 
both models can reproduce the pressure time history of the 
non-linear wave-structure impact. The SPH models slightly 
higher pressures than the experimental signal. The PFEM 
shows a regular trend with no oscillations and values close 
to the averaged experimental signal. Although the models 
are characterised by different Lagrangian approaches, they 
produce very similar results. The kinematic and dynamic 
properties of the analysed waves are reproduced adequately 
by both models and the achieved results are close to the 
experimental / analytical results of analysed waves. Given 

Fig. 15  Non-linear wave-structure impact pressure time series at the 
structure probes [52]. a FP1 b FP2 c BP1 d BP2
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the appropriate parameter choice and mesh / particle sizes, 
both models can be considered validated to reproduce a wide 
range of waves.

Appendix A FEM discretization

In this appendix, we give the discretised form of the FIC-
stabilised Navier-Stokes equations [28], briefly introduced 
in Sect. 4.1.

Let us consider a computational domain discretised into 
N

e
 finite elements with n nodes. For 2D problems, as those 

considered in this work, linear triangles are considered, 
therefore n = 3 . Linear shape functions Ne

i
 are defined for 

each node i ( i = 1, n ) of the element e, both for the velocity 

and the pressure field. [54–56]. Following the variational 
equation approach in [28], the governing equations (1a) and 
(1b) can be written in matrix form as

The tensors of Eqs. (A1) and (A2) are defined as follows:

• M
e

0ij
= ∫

Ωe �Ne
i
NjIdΩ

• K
e

ij
= ∫

Ωe B
eT

i
DB

eT

j
dΩ

• Qe

ij
= ∫

Ωe BeT

i
mNe

j
dΩ

• Me
1ij

= ∫
Ωe

1

k
Ne

i
Ne

j
dΩ

(A1)M
0
̇̄u + Kū + Qp̄ = f

(A2)M
1
̇̄p + M

2
̈̄p + QT ū + (L + Mb)p̄ = f p

Fig. 16  Non-linear wave-
structure impact pressure 
contours. Left-hand column 
SPH, right-hand column PFEM. 
Comparison with experimental 
snapshots [52]
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• Me
2ij

= ∫
Ωe

�

c2
Ne

i
Ne

j
dΩ

• Me
bij

= ∫
Ωe

2�

hn

Ne
i
Ne

j
dΓ

• Le
ij
= ∫

Ωe �(∇
TNe

i
)∇Ne

j
dΩ

• f e
i
= ∫

Ωe Ne
i
bdΩ + ∫

Γt
Ne

i
tdΩ

• f e
pi
= ∫

Γt �Ne
i
[�u̇n −

2

hn

(2��n − tn)]dΓ − ∫
Ωe �∇

TNe
i
bdΩ

These integral are defined on the element domain Ωe or at the 
frontier Γt . The sub-index n refers to the normal component, h 
is the mesh size, and the stabilisation parameter � arising from 
the FIC procedure is defined as follows.

being h and � a characteristic space and time lengths, 
respectively.

The tensors introduced in Eqs.(A1) and (A2) are listed 
below.

• D = �

⎛
⎜
⎜
⎝

4∕3 − 2∕3 0

−2∕3 4∕3 0

0 0 2

⎞
⎟
⎟
⎠

• B
e

i
=

⎛
⎜
⎜
⎜
⎝

�Ni

�x
0

0
�Ni

�y
�Ni

�y

�Ni

�x

⎞
⎟
⎟
⎟
⎠

• N
e

i
= N

e

i
I

• ∇ =

(

�

�x
,

�

�y

)T

• m = [1, 1, 0]
T
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Comparison on two Lagrangian particle methods

7.3 Final remarks

This study demonstrates that both models yield accurate results when simulating various types of free surface waves.

It strikes a good balance between the mathematical underpinnings of the models and their practical applications in

engineering contexts.
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3D modelling of wave interaction with floating tension leg moored platform

In February 2023, I embarked on my second Erasmus period, which also lasted four months. In collaboration with

my research group, I chose to visit TUM -“Technische Universität München" in Munich, Germany. During this period,

I advanced the development of the multiphase SPH model, including the Riemann scheme to treat the interface.

Additional information can be found in Section 9. Simultaneously, I began learning, using, and contributing to the

free and open-source SPH model SPHinXsys.

Figure 8.1: Simulation of regular waves interaction with partially submerged or submerged tethered buoy.

8.1 Introduction

During the first month and a half, my primary focus was on enhancing the SPH multiphase model outlined in Section

6. However, detailed discussions regarding these enhancements are provided in Chapter 9, and will not be covered

in this chapter.

Modeling ropes in a 3D framework presents considerable challenges. My initial aim was to simulate the interac-

tion of a plunging wave with a tension leg floating platform in 3D. Within SPHinXsys, there was already integration

with a multibody model called Simbody, which is utilised for simulating the motion of rigid bodies. Simbody includes

a rope model that can be used as a constraint for a rigid body. While this feature was intriguing, modelling a structure

in 3D, supported by four cables, proved to be quite complex. It was essential to gain control over the model through

simpler simulations.

To start, I conducted simulations involving a rope interacting with regular waves and a circular buoy. Achieving

numerical stability was a significant concern throughout this process. Figure 8.1 displays snapshots from these

simulations. Initially, there was an unexpected behaviour where the circular buoy was overrun by water. Once fully

submerged, the buoy exhibited erratic movement. After several attempts, focusing on a submerged buoy, the model

began producing satisfactory results. The transport velocity technique was particularly useful in these simulations.
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However, it required careful handling to prevent the free surface from rising uncontrollably. This aspect was managed

through the implementation of free surface identification, which excluded particles near the free surface from the

transport of velocity.

Next, I sought to increase the complexity by modelling a structure with a complex shape, tethered with two cables.

However, I encountered strange behaviour, as depicted in Figure 8.2, where the structure exhibited unexpected

rotation early in the simulation.

Figure 8.2: Complex shape structure rotating casually.

Upon investigation, I discovered that the inertia of the structure was not properly configured. Once the inertia was

correctly set and coupled with the removal of the transport of velocity and free surface identification, the model yielded

improved results. It became apparent that the utilisation of these schemes was unnecessary and computationally

inefficient for this simulation, as tensile instability was not a significant issue.

Figure 8.3: Free surface rising bug. Solid line shows the bug with free surface non-physically risyng, dashed lines

(pull #274) show the fixed issue. Legend stlw stands for still water, stfb stands for still water with floating body.

While the wave-structure interaction was adequately modelled, another issue surfaced: the free surface rose

above its expected level. To address this, I conducted four cases—two in 2D and two in 3D—simulating still water

and a free-floating box in still water. The improper initialization of density was identified as the cause of this issue.

Figure 8.3 illustrates the free surface elevation in still water and with a floating body before and after the bug fix,

showing a marked improvement following the resolution of this issue.
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8.2 3D SPH Analysis of Focused Waves Interacting with a Floating Struc-

ture

This publication presents one of the initial real engineering applications of plunging wave interaction with a floating

moored tension-leg platform. Here, SPHinXsys is coupled with Simbody to simulate three waves with varying fo-

cusing times in 3D. Accurate results regarding the overall aspects such as movement, impact pressures, and tether

tension in the fluid-structure interaction are achieved with relatively low particle resolution and no parameter tuning.

The publication, titled “3D SPH Analysis of Focused Waves Interacting with a Floating Structure," is featured in the

journal “Applied Ocean Research."
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A B S T R A C T

In recent years, the number of offshore floating structures has been growing and is expected to continue
growing. Due to climate change, the frequency and severity of extreme waves are increasing. Numerical
models can be a strategic tool in the reliable design and optimization of marine structures. However, the
number of numerical parameters to be tuned plays a crucial role, as they could limit the model’s applicability
and reliability. Furthermore, there are many challenges in modelling wave-structure interaction. Among these
challenges, the simulation of one-dimensional tethers is of great concern when dealing with moored floating
structures. In this study, a 3D numerical model is developed based on the Smoothed Particle Hydrodynamics
(SPH) technique. This hydrodynamic model is coupled with a multi-body solver for the dynamic analysis of
moorings and structures. In a three-dimensional numerical flume, focused ocean waves are generated with a
piston-type wave-maker and propagated until impact with the floating structure. The developed model predicts
the wave profile, impact forces, and structural dynamics, and is validated by comparing numerical results
against experimental data.

1. Introduction

Impacts of waves onto marine structures are of high concern. The
population of marine structures is increasing, along with the probability
of natural disasters, which is also related to climate change. Freak
or rogue waves are among the most dangerous, characterized by a
wave height that exceeds those expected by the sea state (Dysthe
et al., 2008). Moreover, their formation is random and can occur in
ocean areas with various depths (Kharif and Pelinovsky, 2003). Three-
dimensional wave focusing is a mechanism that contributes to the
occurrence of these rogue waves (Fochesato et al., 2007). Rogue waves
interacting with offshore floating structures (e.g., ships, offshore wind
turbines, oil platforms) can pose a serious threat, and impacts are often
catastrophic. Field recordings of freak waves show significant heights,
e.g., 18.49 m for the Draupner wave (Karin Magnusson and Donelan,
2013). The occurrence and consequences of these waves have been
highlighted by research communities. Moreover, they emphasize the
importance of accounting for these waves in structural design (Bitner-
Gregersen and Gramstad, 2016). These waves have been investigated
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both experimentally and numerically (Yan et al., 2020; Salis et al.,
2021). A wave-structure impact with a fixed box-shaped structure has
been considered (Sun et al., 2019; Salis et al., 2022, 2023).

1.1. Challenges in numerical modelling

Wave-structure impacts are particularly violent and involve large
domain deformation of the fluid phase, air entrapment, rapidly varied
flow, and sprays. The numerical modelling of flows with the aforemen-
tioned characteristics is quite challenging. Eulerian grid-based methods
are widely adopted in computational fluid dynamics problems. Wave-
structure impacts with fixed structures have been investigated using
Eulerian grid-based methods, even though these methods are not partic-
ularly suited to model these phenomena (Chen et al., 2014; Westphalen
et al., 2014). Modelling free surfaces requires additional boundary
conditions and must simulate wave breaking. Some of these issues can
be solved by employing Lagrangian methods, which could be advanta-
geous: the advection is implicitly modelled, simulation of free surface,

https://doi.org/10.1016/j.apor.2024.103885
Received 20 September 2023; Received in revised form 9 January 2024; Accepted 10 January 2024
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sprays, jets, fluid splitting/merging do not need additional treatment.
The Lagrangian discretization of the governing equations could be
investigated with mesh-based or mesh-free approaches. Lagrangian
grid-based methods, e.g., the material point method (Larese et al.,
2019; Soga et al., 2016), and the particle finite element method (Cre-
monesi et al., 2020; Carbonell et al., 2010), require computationally
expensive re-meshing techniques to guarantee high-quality meshes. The
capabilities of mesh-free Lagrangian particle methods in ocean and
coastal engineering have been highlighted in Luo et al. (2021).

Among mesh-free particle methods, the Smoothed Particle Hydro-
dynamics (SPH) technique (Lucy, 1977; Gingold and Monaghan, 1977;
Monaghan, 1994) has been successfully employed in this research
field (Altomare et al., 2020; Zhang et al., 2021c; Marrone et al.,
2019; Shimizu et al., 2020). The majority of research has focused on
wave loads on cylinders (Deng et al., 2016; Yan et al., 2020), vertical
rigid walls (Chan and Melville, 1988; Oñate et al., 2022), or fixed
structures (Stansberg et al., 2005; Gómez-Gesteira et al., 2005). Wave-
structure interaction is much more complicated, as it requires two-way
coupling between the fluid and solid; the structure displacement has
to be coupled with the fluid phase, and the force exchange between
fluid and structure must be accounted for Verbrugghe et al. (2018),
Manenti et al. (2008) and Zhang et al. (2021c). In real ocean applica-
tions, deep-sea founded floating structures (e.g., wind turbines and oil
platforms) are moored to the seabed. This aspect introduces a further
complication as the structure moorings are one-dimensional elements
in a three-dimensional domain. The small cable diameter, compared to
the simulation scale, would require a very fine domain discretization.
Coupling a fluid-dynamic model with a multi-body solver overcomes
this issue. Several approaches that model floating structures with moor-
ings are proposed in Tagliafierro et al. (2022), Domínguez et al. (2019),
Moreno et al. (2020) and Altomare et al. (2020, 2021). However, they
only consider regular waves with either simple structures or without
including tether tension. Moreover, in most of these works, the impact
pressures are not shown, or the air-cushion effect is not mentioned.

In Tagliafierro et al. (2023), an open-source SPH code is validated
against experimental data for three configurations of a floating plat-
form subjected to several wave conditions (regular, bi-chromatic, and
JONSWAP). Simulated and measured model responses are compared
in terms of water surface elevation, run-up wave elevation, surge,
and heave forces. The surge decay test shows the model’s potential
precision, even if excessive numerical dissipation is induced by the
adopted SPH implementation. Investigation of hydrodynamic loads on
the floating offshore structure yielded good accuracy for both regular
and spectral wave forcing. Two ensembles of focused wave trains are
also investigated, which could be relevant for ultimate limit state
analysis, but the model has not been validated against experimental
data.

Recently, Cai et al. (2023) modelled a non-linear wave interact-
ing with a moored floating structure. They found precise simulation
of wave generation and propagation using high particle resolution.
However, only one wave condition is considered, and the structure
dynamic interaction and impact pressures are in weak accordance with
the experimental data.

1.2. Novelties and outline

In this work, three irregular focused wave types are generated in
a 3D numerical flume, subsequently plunging onto a complex three-
dimensional floating offshore structure. The main aim of this work is
to validate an SPH model for the analysis of wave-structure interaction,
predicting wave and structure dynamics, hydrodynamic impact pres-
sure, and tension on the tethers. Wave height, structure displacement,
and mooring tension are accurately computed. Numerical results are
successfully validated with experimental data (Luo et al., 2020).

To the best of the authors’ knowledge, this research represents the
first attempt to validate an open-source SPH code against three plung-
ing focused wave types impacting onto a floating moored 3D structure.

Fig. 1. WC2 wave-maker’s displacement �, velocity u, and acceleration a.

Besides validating the time series of wave kinematics, hydrodynamic
pressure on the structure, and its displacement components, the time
representation of stress tension on the tethers is computed.

All the aforementioned works (Tagliafierro et al., 2022; Domínguez
et al., 2019; Moreno et al., 2020; Altomare et al., 2020, 2021; Tagli-
afierro et al., 2023) employ the numerical code DualSPHysics
(Domínguez et al., 2022) coupled with MoorDyn (Hall, 2020), while in
this paper, the multi-physics library SPHinXsys (Zhang et al., 2021b)
is coupled with Simbody (Sherman et al., 2011). SPHinXsys is used
to model fluid dynamics, while structure movement and moorings are
modelled with Simbody. This work features the first use of SPHinXsys
coupled with Simbody to model the structure anchor cables. The
SPHinXsys library has been extensively applied to model a wide variety
of test cases, e.g., fluid–structure interaction (Han and Hu, 2018; Zhang
et al., 2023), sloshing interaction with an elastic baffle (Ren et al.,
2023a), wave interaction with an oscillating surge converter (Zhang
et al., 2021c), oscillating beams, and elastic objects (Wu et al., 2023).

The paper is structured as follows. In the section ‘‘Materials and
Methods’’, the test cases are defined, the SPHinXsys and Symbody
libraries are introduced, and the modelling chain of the developed
model is presented. The Kernel gradient correction parameter and the
spatial convergence studies are performed, showing high accuracy and
efficiency at relatively low resolutions. Results of three focused waves
are discussed, and numerical results are validated with laboratory
measurements.

2. Materials and methods

2.1. Test cases

In a numerical wave tank, three different wave conditions are
reproduced. In each testing condition, the same geometrical properties,
still water depth, and equilibrium position of the floating structure are
assumed. Using a piston-type wave-maker, three focused wave types
are generated, impacting and interacting with the floating structure.

2.1.1. Wave conditions
The considered non-linear waves are generated adopting the focused

wave theory (Rapp and Melville, 1990). In the frequency range of the
spectrum, 0.32 < f < 96 (Hz),Nw = 32 small linear waves are generated
with a constant amplitude ai = 0.0068 (m). The wave-wave interaction
produces a rogue wave at a specific focusing time tf and spatial position
yf .
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Fig. 2. Schematic of the three-dimensional numerical wave flume, dimensions in meters. (a) Top view. (b) Side view.

Table 1
Simulated wave conditions: focusing spatial position and time.

Condition yf (m) tf (s)

WC1 11.800 20.360
WC2 12.000 20.480
WC3 12.300 20.620

The test cases reproduce three wave conditions from the labora-
tory experiments in Luo et al. (2020). Each wave condition is im-
posed, specifying the focusing spatial position yf and time tf . Table 1
shows, for each wave condition, the focusing spatial position and
time. WC1 is highly-breaking, tongue impacts with the deck vertical
wall; WC2 is breaking, tongue impacts with the vertical wall; WC3 is
slightly/non-breaking.

Considering the linear transfer function (Biésel and Suquet, 1951) to
define the piston-type wave-maker stroke Si as a function of the wave
characteristics, the displacement �, the velocity u, and the acceleration
a of the wave-maker are defined:

⎧⎪⎪⎨⎪⎪⎩

� =
1N

i
1

2
Si cos(−kiyf − !i(t − tf ))

u =
1N

i
1

2
Si!i sin(−kiyf − !i(t − tf ))

a =
1N

i −
1

2
Si!

2
i
cos(−kiyf − !i(t − tf ))

(1)

where !i = 2�fi is the angular frequency and ki is the wavenum-
ber of the ith regular wave component. Fig. 1 shows for WC2 the
displacement, velocity, and acceleration of the wave-maker.

2.1.2. Numerical wave flume
Fig. 2 shows a sketch of the numerical flume with still water depth

d = 0.80m. The left-hand side of the floating structure is assumed as the
sea side, while the right-hand side is assumed as the port side. At the
sea-side boundary, the piston-type wave-maker is used to generate the
waves. Waves propagate from left to right towards the moored floating
structure. The wave height is recorded at the wave gauge WG. On the
port side, there is a wave-absorbing region where the particle fluid
velocity is reduced at each time step, with quadratic decay depending
on particle position (Zhang et al., 2021c). This region prevents wave
reflection from the port-side vertical wall.

2.1.3. Floating structure
The floating moored structure is characterized by a complex ge-

ometry, composed of nine parts: two partially submerged pontoons,
four pillars, one deck, and two strengthening rods. Fig. 3 shows the
dimensions of the floating structure. The structure is considered as a
rigid body with uniform density. Table 2 shows the parameters adopted
to model the structure. The structure’s volume and weight match the
experimental ones (Luo et al., 2022).

In the laboratory experiment, the structure is anchored to the flume
bed with four steel tethers (Fig. 2) aligned with the geometrical centre
of each pillar. Table 3 shows the adopted mooring parameters. In the

Fig. 3. Floating structure dimensions (mm). (a) Front view. (b) Side view.

Table 2
Structure parameters.

Parameter Description Value Units

ms Mass 62.036 kg
Vs Volume 0.182 m3

�s Density 340.360 kg/m3

xG Center of mass 1.000 m
yG Center of mass 12.756 m
zG Center of mass 0.833 m
Ixx Inertia 7.803 m4

Iyy Inertia 6.422 m4

Izz Inertia 10.987 m4

Table 3
Mooring parameters.

Parameter Description Value Units

lt Length 0.573 m
sax Axial stiffness 316.3 kN/m

laboratory flume, the moorings are anchored to steel bars at the bot-

tom. In the numerical flume, these anchoring bars are not considered.

Therefore, the tethers have a greater length lt than the experimental

ones (0.447 m). Although the length differs from the experiment, the

axial stiffness of the tethers is assumed to be equal to the laboratory

one.
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Fig. 4. Position of deck pressure probes (mm). (a) Vertical deck front wall (b) Deck
top (c) Deck bottom.

Fig. 4 shows the position of the eight pressure probes: two at the
top of the structure deck, two at the bottom of the structure deck, and
four at the deck vertical wall. Length and tension of the four tethers
are monitored as well.

After defining the geometrical properties and wave conditions of the
problem, the mathematical formulation is introduced.

2.2. SPHinXsys library

SPHinXsys (https://github.com/Xiangyu-Hu/SPHinXsys) is an
open-source multi-physics SPH library (Zhang et al., 2020b, 2021b).
The following subsections illustrate: the governing equations for weakly
compressible fluids; the kernel gradient correction; the wall bound-
ary treatment; the dual-criteria time-stepping and the coupling with
Simbody (https://github.com/simbody/simbody).

2.2.1. Governing equation for a weakly compressible fluid
The governing equations are based on a low-dissipation Riemann

solver (Zhang et al., 2017) that allows the simulation of free surfaces.
SPHinXsys is used to solve the discretized governing equations for a
weakly compressible fluid continuum (2).

⎧⎪⎨⎪⎩

d�i
dt

= 2�i
1

j

mj

�j
(U∗ − vi ç eij )

)Wij

)rij

dvi
dt

= −
1

j mj
2P ∗

�i�j
∇iWij + 2

1
j mj

�

�i�j

vij
|rij |

)Wij

)rij
+ ą

(2)

The mass mi of the ith computational particle is assumed to be
invariant. The particle volume is defined as Vi = mi∕�i, where �i is
the particle density. Wij is the 5th-order Wendland Kernel (Wendland,
1995) used with a smoothing length of ℎ = 1.3 dx and a cut-off
radius of 2.6 dx where dx is the particle dimension. The velocity of
the computational particle is vi. U

∗ and P ∗ are the solutions of the
Riemann problem between the neighbouring particle j and the compu-
tational particle i. According to Ren et al. (2023b), P ∗ is normalized
with the kernel gradient correction, see Section 2.2.2. The Riemann
problem is solved along the direction between the two particles eij =

rij∕|rij | (Zhang et al., 2017), where rij is the relative particle position.
The shear term for viscous flows is defined according to Hu and Adams
(2006), where � is the dynamic viscosity. A density reinitialization
scheme (Zhang et al., 2020a) is used at the beginning of a new time
step to stabilize the density field updated through the mass balance
equation in free surface flows:

�i = max
(
�∗, �0

1
j Wij1
j W

0
ij

)
(3)

where �∗ is the density prior to reinitialization, and the superscript 0
refers to the kernel computed with the initial particle distribution.

Note that recent schemes preventing the generation of pressure
oscillation have been proposed in Sun et al. (2023) and Khayyer et al.
(2023), showing promising results. However, in this work, we adopt
a density reinitialization scheme. The density re-initialization allows
for the modelling of slow-dynamics cases, such as still water, without
non-physical rising of the free surface (Antuono et al., 2012). Although
simultaneous uses of density diffusion in Riemann SPH and a density
reinitialization scheme would raise concerns about excessive smooth-
ing, this framework has been proven to provide stable and smooth
pressure distributions in previous publications (Zhang et al., 2021b,
2020a). In this paper, the simulations are performed without particle
shifting or transport velocity schemes.

2.2.2. Kernel gradient correction

The kernel gradient correction is adopted to avoid the over-
attenuation of small waves, thereby improving energy conservation
(Salis et al., 2022; Wen et al., 2018; Zago et al., 2021; Khayyer
et al., 2017). This correction on the normalization matrix can lead to
numerical instability that may be induced by the inversion of the matrix
ýi when its determinant approaches zero. Several formulations have
been proposed to mitigate these numerical instabilities (Salis et al.,
2022; Lyu et al., 2023; Vila, 2005). In this work, the scheme proposed
in Ren et al. (2023b) is adopted. The normalization matrix is corrected
with two weighting factors w1 and w2. The corrected normalization
matrix reads:

B̃i = w1Bi +w2I (4)

where I is the identity matrix, and Bi is:

Bi =
(
ýi

)−1

=
(1

j

rij ⊗ ∇iWijVj

)−1

(5)

The weighting factors w1 and w2 depend on |ýi|, which is the
determinant of matrix ýi, and �i = max(�− |ýi|, 0) with � ranging from
0 to 1.

w1 =
|ýi|

|ýi| + �i
and w2 =

�i

|ýi| + �i
(6)

When �i = 0, the correction on the normalization matrix is not
applied; therefore, B̃i = Bi. If the ith particle has an irregular particle
distribution in its neighbour, |ýi| can approach zero. In this case, B̃i H I;
therefore, the kernel gradient correction is not applied. �i depends
on the concentration matrix determinant and a parameter �. In Ren
et al. (2023b), values ranging between 0 and 1 are suggested, with the
general indication that the value 0.1 is effective.

2.2.3. Wall boundary

For fluid particles near solid wall particles is solved with a one-sided
Riemann problem (Zhang et al., 2017) along the wall normal direction.
The left state, subscript L, of the Riemann problem is defined as

(�L, UL, PL) = (�f ,−nw ç vf , Pf ) (7)

where nw is the normal to the wall, and the subscript f refers to the
fluid particles. In accordance with the wall boundary conditions, the
right state of the Riemann problem is defined in Eq. (8), where uw is the
wall velocity. The right state pressure PR, is defined similarly to (Adami
et al., 2012):
{

UR = −UL + 2uw

PR = PL + �fg ç rfw
(8)

where rfw = rw − rf is obtained by applying the equation of state
p = c2(� − �0).
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2.2.4. Dual-criteria time stepping

Following Zhang et al. (2020a), the governing equations for fluids
are relaxed with two time-step size criteria. The advection criterion is
defined as:

�tad = CFLad min
(

ℎ

|v|max ,
ℎ2

�

)
(9)

where ℎ is the smoothing length. The acoustic criterion is defined
according to:

�tac = CFLac
ℎ

c + |v|max (10)

In (9) and (10), CFLad = 0.25 and CFLac = 0.6, while |v|max is the
maximum anticipated flow particle advection velocity, and � denotes
the kinematic viscosity. It is worth noting that the computation of |v|max
may take into account external forces, e.g., gravity. The advection
criterion controls the updating rate for neighbouring particles, while
the acoustic criterion determines the updating rate for pressure and
density.

2.2.5. Coupling with simbody

Simbody is an open-source library to model multi-body dynam-
ics (Sherman et al., 2011). The hydrodynamic force on rigid bodies
is computed by SPHinXsys. These forces define a Simbody state that
is solved with the Newton–Euler equation, providing the body motion.
The solution of the kinematic state are stored in Simbody and outputted
to SPHinXsys, which updates the position, velocity, and normal direc-
tion of the structure particles (Zhang et al., 2021c). In SPHinXsys, fluid
and solid bodies are discretized into a set of numerical particles. The
total force induced onto the solid bodies by the fluid is computed as:

F =
1
a*Ns

fa =
1
a*Ns

(
− 2

1
i=1

ViVa
pi�

d
a + pda�i

�i + �da
∇aWai

+ 2
1
i=1

�ViVa
vi − v

d
a

rai

)Wai

)rai

) (11)

The summation extends to the Ns structure’s particles. Subscripts a
and i point respectively to the solid body and to the fluid one. The right-
hand side terms of Eq. (11) express the pressure and viscous forces. The
fictitious pressure and velocity read as follows:

⎧⎪⎨⎪⎩

pda = pi + �i max
(
0,
(
g − dva

dt

)
ç n

)
(rai ç n)

vda = 2vi − va
(12)

where n is the outward normal to the solid body. The total torque Ā

acting on the solid body can be written as:

Ā =
1
a*N

(ra − rG) × fa (13)

where ră is the position vector for the solid body mass centre at the
end of each time step. The force and torque are now the input for a
Simbody state. The Newton-Euler equation solved by Simbody reads:
(
F
Ā

)
=

(
mI 0
0 I

)(
dv∕dt
dΩ∕dt

)
+

(
0

−kdΩ

)
(14)

where m is the mass of the solid body, I is the identity matrix, I is a
vector containing the inertia moments for the three rotation axes of the
solid body. Ω is the angular velocity, and kd is the damping coefficient.
To satisfy the momentum balance from fluid to structure and vice
versa, on the right hand side of Eq. (2) the reaction terms from the
structure are included according to the multi-resolution FSI coupling
described in Zhang et al. (2021b). In detail, the coupling with Simbody
is executed as follows. At the beginning of the advection step, Eq. (3) is
used to reinitialize the density. The viscous force from the fluid body is
computed, and the pressure relaxation is executed several times (Zhang

Fig. 5. Block diagram of the modelling chain.

et al., 2020a) using a position-based Verlet scheme (Zhang et al.,
2021a):

⎧⎪⎨⎪⎩
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(15)

The fluid particle density and position are integrated and updated
in the middle point. The particle velocity is subsequently updated to
the new time step:

vn+1
i

= vni + �tac

(dvi
dt

)n+1

(16)

Now the particle’s position and density can be updated to the new
time step as:
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The pressure and viscous force on the structure is computed; so
the total force and torque are given to Simbody and the Newton-Euler
equation is solved. The result is imported back to SPHinXsys, and the
position, velocity, and normal direction of the solid body particles are
updated.

2.3. Modelling chain

This section illustrates the model development implementing the
mathematical algorithms previously described. Fig. 5 shows a
schematic representation of the proposed modelling chain using the
open-source libraries SPHinXsys and Simbody.

2.3.1. Preprocessing
In the preprocessing step, all the quantities needed in the main

program are defined. The material properties of the fluid are defined:
�f = 1000 (kg/m3), �f = 0.001 (Pa s). The considered characteristic ve-
locity is Uf = 2

√
gzw where g = 9.81 (m/s2) is the gravity acceleration
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modulus, zw is the initial water depth, and the reference sound speed
is c = 10Uf . The dimensions of the bodies (fluid and solid) are defined
either with binary shapes or by importing a CAD model. The topology
of the four tethers is defined considering the structure centre of mass.
The boundary conditions for the wave generation and wave absorbing
are introduced.

2.3.2. Main program
In the main program, the SPHsystem (SPHs) is initialized. The

bodies are all discretized with numerical particles. According to a level-
set function (Yu et al., 2023), the particle resolution of the structure
body is refined near the faces. Therefore, the particle resolution of the
structure is independent of the particle dimension of the other bodies.
The monitoring bodies (e.g., FP1, BP2, etc.) are defined in their initial
position and initialized.

The body relation map (contact map) is specified. The contact map
defines the numerical connections between the bodies (e.g., the water
has a topological connection with both the wall and the structure).

The Simbody multi-body system (MBs) is initialized; the structure
body is imported into the MBs. The structure is modelled as a rigid
free-moving body with six DOF. The cable subsystem is used to model
the tethers inside the MBs. The force subsystem is initialized for the
MBs. The structure will float under the hydrodynamic forces (from
the SPHs). The tethers behave similarly to elastic springs, with the
prescribed axial stiffness. A Runge–Kutta Merson integration method
with suitable accuracy is adopted.

The numerical methods, introduced in 2.2, are initialized as well as
the input/output methods to write output files. The basic control pa-
rameters for the time stepping are defined. The simulation is configured
with the Verlet cell-linked list (Zhang et al., 2021a).

2.3.3. Main loop
The main loop of the program can be summarized into six points:

1. A fluid time step is initialized with the density reinitialization.
In the advection time step: the advection time step size as well
as the water viscous acceleration with the wall and structure are
computed.

2. In the acoustic time step: the acoustic time step size is defined,
and the governing equations for the fluid are integrated. The
mass and momentum balance equation are computed.

3. The pressure force exerted by the water to the structure is
computed.

4. The MBs state is realized and integrated with the Newton-Euler
equation.

5. Structure particle position and velocity are updated, and the
wave-maker boundary condition is executed.

6. If the SPHs and MBs integration process is successfully con-
cluded, the cell-linked list and particle-interaction configuration
are updated. The output files for the measuring devices are
written for the current time step. A new advection time step can
start (point 1), and the simulation time is updated. If the SPHs
and MBs integration process is not satisfied, the acoustic time
step is repeated (point 2).

3. Results and discussion

In this section, the model results for the three wave conditions are
discussed and validated with laboratory experiments. An investigation
on the kernel gradient correction parameter � and a subsequent spatial
convergence study have been carried out. The spatial resolution d∕dx

is defined as the still water depth d divided by the particle dimension
dx. For the spatial convergence study, WC2 is investigated at various
resolutions ranging from d∕dx = 10 to d∕dx = 50 with a step size of 10.
Despite the model with lower particle resolution being very fast and
yielding acceptable physical results, the higher resolution of d∕dx = 50

is adopted to reproduce the three wave characteristics with greater
accuracy.

Fig. 6. 2D WC2: Influence of �. Wave height error �H at different spatial resolutions
d∕dx.

3.1. Analysis on the kernel gradient correction

The effect of the kernel gradient correction parameter � on the
simulation results is investigated. This study focuses on the wave height
of WC2 simulated in 2D. Ten values of � in the range suggested by Ren
et al. (2023b) are investigated at different spatial resolutions d∕dx. In
this document, unless otherwise specified, the error is relative to the
experimental signal with:

�f = 100
fe − fs

fe

(18)

The subscript e refers to the experimental signal, while the subscript
s refers to the simulated signal. Eq. (18) will be used in the following,
where f is a dummy function, here represents the wave height H =

max(�) − min(�), where � is the wave elevation. With � = 0, the
simulations show numerical instabilities, while for values from 0.1 to
1, the error ranges from −3% (simulated wave height is higher than
the experimental one) to 25% (simulated wave height is lower than
the experimental one). Fig. 6 shows that simulation results are affected
by the value of � in combination with the particle dimension. The 2D
analysis suggests that low values of � can produce accurate results.

WC2 is reproduced in 3D by analysing the � values suggested by
Fig. 6. The target spatial resolution for 3D simulations is d∕dx = 50.
With this spatial resolution, the following � values are investigated: 0.1,
0.2, 0.25, and 0.3.

Fig. 7 shows for WC2 the shape of � obtained for different � values
at the resolution d∕dx = 50. With � = 0.1, non-physical numerical
breaking at the H18 (s) crest is induced. Fig. 6 suggests that, at this
spatial resolution, the error would be reduced close to zero with � = 0.3.
However, Fig. 7 shows that the crest height is unchanged while the
experimental trough is underestimated with both � equal to 0.25 and
0.3. In conclusion, the choice of d∕dx = 50, � = 0.2 provides a good
compromise between accuracy and numerical stability. Therefore, in
the following simulations, � = 0.2 is adopted.

3.2. Convergence analysis

The convergence analysis is carried out to show that meaningful
quantitative results can be achieved with a relatively small particle
number in a short computational time. Table 4 shows the number of
fluid nodes N and the computational time.

SPHinXsys is parallelized with OpenMP, which allows single-node
multicore simulation using shared memory. The lowest particle resolu-
tion d∕dx = 10, with N = 56 000 computational particles, is computed
in Ts = 10 min (see Table 4). The higher resolution, with N = 7.01

million particles, is computed in circa 2.7 days. The model exhibits high
computational efficiency, with a relatively small computational time
required to obtain a reliable representation of such a complex physical
problem.
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Fig. 7. 3D wave height of WC2 at d∕dx = 50: Influence of parameter �. (a) Wave
elevation, (b) t = 18.7 (s) through, (c) t = 19.3 (s) crest.

Fig. 8. Convergence study for WC2. (a) Wave elevation, (b) surge displacement, (c)
normalized pressure at probe FP2.

Table 4
Number of fluid particles N against computational time. Computational Time (Ts)
for the simulation time of t = 25.00 (s) executed on 2 × 16 cores CPUs (Intel(R)
Xeon(R) Gold SkyLake 6130 CPU @ 2.10 GHz) at the HPC cluster of the Mathematics
Department at the University of Pavia.

d∕dx N Ts (d-hh:mm:ss)

10 56.01 ç 103 0:10:17
20 448.7 ç 103 01:44:01
30 1.51 ç 106 08:19:15
40 3.59 ç 106 1-03:20:10
50 7.01 ç 106 2-18:15:53

Table 5
Error produced at different d∕dx resolution measured for: wave height �H , surge
amplitude �S , and pressure peak �P .

d∕dx �H (%) �S (%) �P (%)

10 7.67 33.51 61.34
20 5.33 27.34 5.32
30 3.77 22.24 25.51
40 6.40 6.68 20.21
50 5.35 6.44 6.57

Fig. 8 shows the results of a convergence study for WC2. For
different spatial resolutions, the time series of wave elevation (a),
platform surge (b), and pressure at probe FP2 (c) are shown. Table 5
shows the error produced by the model at different resolutions, in the
estimation of wave height, surge amplitude, and peak pressure. The
errors are computed with respect to the experimental signals. The error
at d∕dx = 50 for the wave height is 5%, the difference between the crest
of the numerical model and the experiment is �� = 0.017 (m), which is
circa the particle size dx.

At the lowest resolution d∕dx = 10, the model shows a higher
duration of the peak than the experiment with a comparable wave
height at the focusing point. In this context, it is worth highlighting
that the lower resolution has a particle size of dx = 0.08 (m), which
is approximately 11 times bigger than the amplitude of one linear
wave component ai = 0.0068 (m) of the focused wave. At the lower
analysed resolutions, the surge amplitude and the frequency are higher
with larger and faster structure oscillations. At the higher resolution,
the surge amplitude error is significantly lower H6%. The pressure
estimation error at probe FP2 is H6%. It is worth noting that in this
impact the air phase plays a crucial role, as it will be discussed in
Section 3.4.3. Based on the results of the convergence analysis, the
resolution of d∕dx = 50 is adopted to model the three wave conditions
in 3D. This resolution, which is relatively low considering the problem,
gives accurate results in terms of wave height, structure displacement,
and pressure.

3.3. Wave generation

Fig. 9 shows the magnitude velocity contour for three rogue waves
before the structural impact. The simulation frames are compared with
the laboratory images in Luo et al. (2020). The three wave conditions
yield different wave shapes upon impact: In WC1, the wave crest breaks
and impacts the vertical wall; in WC2, the wave crest is very close to
the breaking point and breaks while impacting the structure; in WC3,
the wave crest does not break before impact, thus showing slightly
lower height and velocity. For each one of the three conditions, the
wave shape at the impact is quite close to the experimental one. The
comparison with the experimental snapshots highlights that the model
accurately reproduces the wave design characteristics upon impact. The
experimental snapshots show that a large air cavity interposes between
the wave front and the structure. The air influence on the impact
pressures will be discussed in Section 3.4.3.

Fig. 10 shows the wave elevation, for the three wave conditions,
at the wave gauge WG. As previously explained, the three waves are
focused in three different spatial and temporal points. WC1 shows
the highest wave height, WC2 and WC3 show progressively smaller
wave heights. Although the waves are characterized by the same linear
components, WC1 has the focusing point closer to the wave-maker.
This means that the WC1 wave develops into a plunger breaker before
the others; therefore, slightly higher wave heights and velocities are
expected at the impact with the structure. Table 6 shows the maximum
and minimum wave elevation measured (subscript e) and simulated
(subscript s), the difference between the experimental and the simu-
lated results, and the error produced by the numerical model for the
wave height. The numerical model slightly overestimates the wave
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Fig. 9. Magnitude velocity contour of the wave crest before the impact, left-hand panels. Laboratory experimental snapshots (Luo et al., 2020), right-hand panels. (a) Wave
condition 1, (b) wave condition 2, (c) wave condition 3.

Table 6
Wave height error. For the wave trough min(�) and crest max(�).

WC 1 2 3

max(�e) (m) 0.202 0.195 0.182
max(�s) (m) 0.221 0.212 0.193
�max (m) 0.018 0.017 0.012

min(�e) (m) −0.143 −0.144 −0.141
min(�s) (m) −0.143 −0.146 −0.146
�min (m) 0.0002 0.0016 0.0046

�H (%) 5.16 5.35 4.83

height, �max is circa the dimension of one particle dx = 0.016 (m) for all
three wave conditions. The error produced for the wave amplitude is H
5% for all three waves, which is acceptable for engineering purposes. In
conclusion, the model accurately reproduces the mechanics of focused
non-linear wave generation and propagation. For the three simulated
conditions, the numerical model accurately reproduces the laboratory
wave phase and height, showing wave heights slightly higher than the
experiment.

Fig. 11 shows the focused wave generation for WC1, where small
amplitude waves are generated by the piston-type wave-maker. The
propagation of the linear wave components before the impact is visu-
alized from t = 0.00 (s) to t = 19.73 (s). The linear wave components’
focus occurs near the structure sea-side at t H 19.0 (s). In Cai et al.

(2023), WC2 is modelled with DualSPHysics at higher spatial resolution
(higher computational cost); nevertheless, wave heights similar to those
presented in this study are obtained. Based on the above considerations,
the model can accurately reproduce different wave conditions.

3.4. Floating structure interaction

The impacting wave induces pressures, displacements, and ten-
sion in the moorings on the structure. In the following sections, the
fluid–structure interaction results are discussed.

3.4.1. Structure dynamics
Fig. 12 shows, for WC1, the wave-structure impact. The structure

undergoes large displacements in the y-direction. At the port-side, the
structure slightly sinks while the hydrodynamic buoyancy forces on the
pontoons keep the structure afloat. As the wave impacts and excites the
structure, the anchor cables pull the structure back to the undisturbed
configuration, resulting in dynamic transitoriness during which the
structure oscillates around its static equilibrium position. The numer-
ical model shows a faster decay of the oscillation amplitude than the
experimental results. Fig. 13 shows the structure displacement in the y-
direction (surge) and in the z-direction (heave). The simulated structure
displacement is close to the experimental results for all three wave
conditions. The surge amplitude is slightly higher than the experiment.
For all three wave conditions, the simulations show that the structure
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Fig. 10. Wave elevation at gauge WG. Numerical simulation against experimental
measurement (Luo et al., 2020). (a) Wave condition 1, (b) wave condition 2, (c) wave
condition 3.

Fig. 11. WC1, wave generation and propagation. Still water surface is at � = 0.0 (cm).

is pulled toward the seaside direction. (t H 19.9 s) before a large

displacement to the port-side region (t H 20.5 s). In the experiment, the

structure is poorly influenced by the wave thorough (Fig. 11 at t = 19

s) and shows a smaller displacement in the negative y-direction. The

simulated maximum positive and negative surge peaks occur roughly

at the same time instant as the experimental recordings. Concerning the

heave, the model can accurately reproduce the maximum submersion

of the structure (i.e., maximum negative peak), while the subsequent

oscillations differ from the experimental recording. In Cai et al. (2023),

the WC2 structural displacement is modelled with DualSPHysics at

higher spatial resolution, showing higher period with faster amplitude

decay than the experiment. Table 7 shows the error of the numerical

model predicting the structure displacement. The model is able to

accurately reproduce the structure movement with surge amplitude

errors ranging between 3 and 10% and heave errors ranging between

1 and 15%. In conclusion, the presented model can suitably reproduce

the maximum and minimum peaks, introducing some discrepancies in

the decay phase of dynamic oscillation. Differences in the structural

Fig. 12. WC1, wave-induced displacement on the moored floating structure. Contour
of magnitude velocity.

dynamic response can be related to the differences between the exper-
imental and simulated cables, as pointed out in the description of the
numerical model.

3.4.2. Anchor cables

Fig. 14 shows the moorings’ tension over time. Since the structure
displacement along the x direction is negligible, only two cables are
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Fig. 13. Wave-induced displacement on the moored floating structure. Panels (a), (b),
and (c) surge (Sg) (displacement in y direction); panels (d), (e), and (f) heave (Hv)
(displacement in z direction). (a) and (d) WC1, (b) and (e) WC2, (c) and (f) WC3.

Fig. 14. Wave-induced tension on structure moorings. Tension is normalized with
respect to the initial tether pre-tension. In the legend, the letters (a), (b), and (c) refer
respectively to WC1, WC2, and WC3 while the letters (*s) and (*p) indicate respectively
the sea-side and port-side cable.

considered: one sea-side cable and one port-side cable for each wave

condition; minor tension changes may appear between the right and

the left cable. Tension is normalized with respect to the initial tension

of Tp = 68.6 (N). Results of the numerical model are quite close to

the experimental ones. The simulated cable tension is smoother than

the experimental normalized tension and it approaches zero during the

Table 7
Structure displacement error � for surge amplitude �(Sg) = max(Sg)−min(Sg) and heave
minimum min(Hv). The subscripts e and s refer respectively to the experimental and
simulated signal.

WC 1 2 3

�(Sg)e (m) 0.395 0.395 0.396
�(Sg)s (m) 0.353 0.370 0.385
�(Sg) (%) 10.70 6.44 2.77
min(Hv)e (m) −0.066 −0.062 −0.067
min(Hv)s (m) −0.065 −0.067 −0.068
�(Hv) (%) −1.09 −16.31 −15.92

process. Excluding the port-side tension of WC1 and WC2, the maxi-
mum stress is, on average, suitably predicted, and the error produced
by the numerical model estimating the maximum mooring tension is
between 14% and 22%. In Cai et al. (2023), the WC2 impact with this
structure is modelled with DualSPHysics at higher spatial resolution,
finding cable tension smaller than the experiment due to the smaller
surge displacement.

3.4.3. Impact pressures
The wave-structure interaction phenomenon is a complex combina-

tion of several factors: the three-dimensional wave shape, its height,
and the impact position influencing the hydrodynamic load. From the
symmetry axis of the structure, two air pockets form between the wave-
front and the structure vertical wall. The size of the air pockets is
bigger when the wave height is higher, e.g., wave tongue impacts onto
the top deck. The air pockets are always present and influence the
impact pressures: when air is violently slammed between the wave-
front and the structure wall, it acts as an elastic buffer. More in-depth,
air undergoes subsequent stages of compression and decompression.
Therefore, the air cushion reduces the impact pressures. An exhaustive
discussion on the wave-shape and air pocket influence on the resulting
impact pressures is featured in Luo et al. (2022). At this early stage of
the work, we consider only the water phase to test the model capability
in simulating wave-structure dynamics. Higher computational effort is
required to account for the air phase and its effect on pressure load.
This task will be the subject of future research. Therefore, in the follow-
ing, the pressure time series obtained with single-phase simulations are
discussed. Fig. 15 shows the non-dimensional pressures compared with
the laboratory experiment in Luo et al. (2020). The first column (a*)
refers to WC1. In this case, the wave is highly breaking and impacts
on the front structure wall while breaking. The pressure is generally
overestimated by the model; for FP1 and BP2, the simulated peak
is closer to the experimental one with errors of 1–3 P∕�C2 (20%–
50%). In all probes, even if the pressure is overestimated, the impact
duration is captured except BP1. The second column (b*) refers to wave
condition 2: the wave is highly breaking and impacts on the vertical
structure wall. For most probes, the peak simulated pressure is higher
than the experimental one. For the probes FP1, FP2, and FP4, the
simulated pressure is relatively close to the experimental one. Similar
pressure peaks with errors ranging from 0.1 P∕�C2 (6%) at FP2 to
4 P∕�C2 (80%) at FP1 are obtained. Results from Cai et al. (2023),
where pressures are modelled with DualSPHysics at a higher spatial
resolution, are depicted with a green line. However, peak pressures
for FP1, FP2, and FP3 exhibit significant underestimation, with errors
ranging from 80% to 98%. Notably, at FP3, the pressure from Cai
et al. (2023) is closer to the experimental data than the present results.
For BP1, the pressure peak from Cai et al. (2023) is closer to the
experimental data; subsequently, the pressure values show significant
oscillations, producing large deviations from the experimental mea-
surements and indicating prolonged contact between water and the
structure bottom. This discrepancy may potentially be attributed to a
less precise wave shape upon impact. In contrast, the present model
closely reproduces the duration of the impact pressures. In conclusion,
the pressures from Cai et al. (2023) appear less reliable and poorly
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Fig. 15. Wave-induced pressures on structure. The x axis reports the time t (s) while the y axis reports the pressure normalized with respect to the water density and wave celerity
squared P∕�C2 (–). In the plots, the letter (a*) refers to WC1, (b*) refers to WC2 (green line shows results from Cai et al., 2023), and (c*) refers to WC3. Numbers from 1 to 6
refer respectively to FP1, FP2, FP3, FP4, BP1, and BP2.

accurate, replicating the overall trend of impact pressure. The present
model for WC2 demonstrates significantly improved results compared
to Cai et al. (2023), although further accuracy enhancements are
necessary.

The third column (c*) refers to WC3: the wave is non-breaking
and impacts on the vertical structure wall. This condition generates
lower pressure peaks at the vertical wall probes FP1, FP2, FP3, and
FP4, where the calculated pressure overestimates the experimental one
with errors between 1 and 2 P∕�C2 (25%–60%). At FP3, the simulated
pressure peak is similar to the experimental one.

Some pressure signals, such as a5, b3, b6, and c6, show experimen-
tal pressure values close to zero during impact, whereas the present
model exhibits significantly higher pressure values. Given the numerous
factors influencing the pressure evolution, exploring the reasons for

these discrepancies deserves further investigation, which is beyond the
scope of this work. It can be supposed that the absence of the air
phase plays a key role, which may slightly affect the three-dimensional
shape of the wave after its collapse. As previously discussed, slight
modifications in the wave shape can result in significant differences
in recorded pressures. For wave conditions 1 and 3 the model weakly
reproduces the oscillations found in the experimental signal at FP1. For
all three wave conditions, at all structure probes, the air cushion plays a
significant role. As a result, the pressure is, on average, overestimated.
Despite the single-phase approximation, the present model gives, on
average, a suitable estimate of the impact pressures. The single-phase
model drawbacks have been highlighted. Modelling the air phase could
enhance the pressure time series while significantly increasing the
computational effort.



Applied Ocean Research 144 (2024) 103885

12

N. Salis et al.

4. Conclusions

This work reports, for the first time, the validation of a 3D Smoothed
Particle Hydrodynamics (SPH) model to study the impact and interac-
tion of plunging waves with a moored floating structure. In addition to
validating the time series of wave kinematics, hydrodynamic pressure
on the structure, and its displacement components, the time represen-
tation of stress tension on the tethers has also been compared with
experimental data. Results show that the simulated wave dynamics
(i.e., height, phase, and wave shape upon impact) closely align with
the laboratory experiment. Wave height errors are approximately 5%,
which is deemed acceptable for engineering applications; differences
between the simulation and the experiment are of the order of the
particle dimension.

The simulated structure dynamics is reliable, showing relatively
higher surge and slightly higher heave movement. The model predicts
the maximum tensions in the anchor cables with a trend similar to
the experimental data. The wave-structure impact pressures are largely
affected by the air phase, with the air cushion between the wave-
front and structure acting as an elastic buffer. Even without considering
the air phase, pressures predicted by the single-phase model are quite
acceptable at some pressure gauges where the simulated peak is close
to the experimental one. Although the model shows relatively higher
pressure peaks, the experimental trend is closely reproduced by the
model with a duration similar to the experiment.

While air phase modelling is possible, it requires a significantly
larger computational effort. The main features of different wave con-
ditions impacting an offshore floating structure are reliably predicted
by the single-phase model. Therefore, this model is validated with
experimental data. Results featured in this work are compared with Cai
et al. (2023), where only WC2 is modelled with DualSPHysics at higher
spatial resolution. This comparison shows that the presented model pro-
vides, with significantly smaller computational cost, a comprehensive
and accurate prediction of the physical processes involved in the three
focused waves with structure impact.
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8.3 Final remarks

This work shows that the models produces accurate results with different forcing waves. The model is validated and

can be used to reproduce numerically real-scale engineering applications, or to design an experimental campaign.
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Improvements to the multiphase model

9.1 Introduction

This chapter discusses the final components of the multiphase model, completing the puzzle. As mentioned in the

previous chapter, the multiphase model encountered some issues. Figure 9.1 depicts two snapshots of a multiphase

plunging wave-structure impact, illustrating the tensile instability between phases. To save computational time, a

small number of air particles were considered in this simulation.

Figure 9.1: Plunging wave-structure impact in a multiphase scenario, showing tensile instability between phases.

Figure 9.2 illustrates the small gap between particles of different phases and the initiation of tensile instability.

Additionally, particle clusters inside the air bubble are visible due to the high pressure gradient.

The following sections introduce two schemes aimed at addressing these issues. First, a particle shifting algo-

rithm is presented, along with a novel free surface detection method to reduce tensile instability and particle clusters.

Additionally, the interface is treated with a Riemann solver to eliminate the interface gap and prevent tensile instability.

9.2 SPH Formulation

The SPH model presented in the following sections has been developed by introducing relevant modifications in-

dependently into the original code SPHERA v.9.0.0 (RSE SpA) [43]. This derived code [62] is redistributed on

GitHub under the GNU-GPL license, adhering to the copyright terms of SPHERA. For additional details, the official

documentation of the code provides a comprehensive description of the original SPHERA model [43, 63, 46, 47, 64].
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Figure 9.2: Gap between phases in a dam break scenario.

9.2.1 A Reminder on the SPH Approximation of Governing Equations

The mass balance equation is:

〈dÄ
dt

〉
i
=

∑

j

Äi(uj − ui) · ∇W
mj

Äj

+2Äi

∫

V ′

h

[(uw − ui) · n]n · ∇Wdx3 + Cs

+2¶cih
N∑

b=1

Èij

rij · ∇W

||rij ||2
mj

Äj

(9.1)

In the computational framework, the subscript i denotes the computational particle, while subscript j denotes the

neighbouring particle. Here, Ä represents particle density, m denotes particle mass, W is the kernel function, and

rij stands for the relative distance between the computational particle and its neighbouring counterpart. The vector

n denotes the normal vector to the boundary surface, ci signifies the artificial sound celerity, and h represents the

smoothing length. Additionally, ¶ denotes the diffusive coefficient, and Èij represents the diffusive term formulated

as per [60]. The subscripts s and w respectively denote the generic neighbouring surface body particle and the solid

contour, as described by [47]. The term Cs characterises the fluid-body interaction contribution to the mass balance

equation and is defined as:

Cs = 2Äi
∑

s

[(us − ui) · ns]∇Wsϖs (9.2)

In this scheme, ϖs represents the volume of the body particle. This approach, initially introduced by [65], can

be interpreted as a discretisation of the semi-analytic method. Additionally, it’s worth noting that the final term in

Equation (9.1) accounts for a diffusive contribution necessary for obtaining a stable pressure field solution [60]. The

Smoothed Particle Hydrodynamics (SPH) approximation of the momentum balance equations Eq. (9.3) is expressed

as follows:

〈du
dt

〉
i
=− g +

1

Äi

∑

j

(pj − pi)∇W
mj

Äj

+ À
|pj |+ |pi|

ÄiÄj
+ 2

pi
Äi

∫

V ′

h

∇Wdx3

− ¿m
∑

j

mj

Äj

1

r2ij
(uj − ui) · (xj − xi)∇W

− 2
¿m
Ä0in

(uw − ui) ·

∫

V ′

h

1

r20w
(x− xi)∇Wdx3

+ as + 2¿i(uw − ui)

∫

V ′

h

1

r

∂W

∂r
dx3

(9.3)
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In this context, g represents the acceleration due to gravity, x is the position vector of the particle, and Ä0in stands for

the initial density of particle 0. The artificial viscosity is defined as ¿m = Ä0in
α·h·c
ρi

, where ³ is the artificial viscosity

coefficient ranging between 0.01 and 0.1 depending on the case study [48]. The second term aims to control the

interface sharpness between the two media. In [52], this term is utilised to introduce a small repulsive force between

the media to model surface tension. It’s important to note that no attempt at correctly modelling surface tension is

made. The term as in Equation (9.3) represents the fluid-body interaction contribution to the momentum balance

equation and is defined as:

as =
∑

s

(ps + pi
Ä2i

)
∇Wsms (9.4)

The system of equations (Equations (9.1) and (9.3)) is closed by a new formulation of the state equation for

slightly compressible fluids, which reads:

p =
Ärefχc

2
refχ

µχ

(( Ä

Ärefχ

)γχ

− 1
)
+ pi (9.5)

Here, the subscript Ç refers to the properties of the fluid particle, where µχ = 7 for water and µχ = 1.4 for the air

phase. In SPH, the artificial sound speed cref must be assumed to be at least ten times higher than the maximum

fluid velocity to ensure a relative density variation of at most 1% [48], and the subscript ref stands for the reference

state. Regarding the imposition of boundary conditions, it’s noteworthy that no constraints are required to define

the free surfaces. Solid walls are treated with the semi-analytic approach [46], where at the boundaries, the kernel

support can partially lie outside the fluid domain. The integral terms in Equations (9.1) and (9.3) express these

boundary contributions. These terms represent the convolution integral over the portion of the kernel support V ′
h that

lies outside of the domain and is filled with body particles. A second-order staggered Leapfrog scheme is utilised to

integrate the governing equations in time [64]. Equation (9.6) presents the stability criteria for the time integration:

dt = min
i

{
0.05

2h2

¿
;CFL

2h

c+ |u|

}
(9.6)

9.2.2 Particle Shifting Technology

Particle shifting algorithms based on Fick’s law enable the regularisation of particle concentration within the domain.

Particles are relocated from regions of high particle density to those with lower density. In technical literature,

particles are shifted using either a spatial shifting vector [66, 67, 68] or a velocity shifting vector [69, 70, 71]. After

careful consideration, both approaches are evaluated. This work considers the shifting velocity vector as depicted in

Equation (9.7), where the characteristic velocity is defined in Equation (9.8) [71], with the characteristic length being

equal to the smoothing length 2h.

¶ui = −0.5ϕ




U char

(
h
dx

)3

h∇̂Ci if
∥∥∥
(

h
dx

)3

R∇̂Ci

∥∥∥ < 0.5 1
h
,

U char
(
0.5 h

dx

)
∇̂Ci

∥∇̂Ci∥
otherwise

(9.7)

U char =
N

max
b=1

(∥∥∥(uj − ui) ·
xj − xi

∥xj − xi∥

∥∥∥
)

(9.8)

The SPH approximation of the particle concentration gradient is utilised:

∇̂Ci =

N∑

b=1

[
· +Xij

]
∇W

mj

Äj
(9.9)

with:

Xij = 2
( Wij

W (dx0)

)4

(9.10)

Here, Xij denotes an artificial pressure-like function originally introduced in [72] and used as an additive term in

the momentum balance equation to prevent tensile instability, where dx0 is the initial particle dimension. Following
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the approach proposed by [67, 68], the magnitude of the velocity vector varies depending on the particle type. Three

particle types are identified within the domain: free surface particles (F), buffer particles (B), and inner particles (I).

Free surface particles F are not shifted to avoid non-physical movement of the free surface. Buffer particles B are

treated differently than inner particles, with · being added according to the improved particle shifting technique in

[67]:




· = 0 if pg ∈ B

· = 1 if pg ∈ I

(9.11)

The parameter ϕ controls the intensity of the shifting:





ϕ = 0 if pg ∈ F

ϕ = ς if pg ∈ B

ϕ = 1 if pg ∈ I

(9.12)

The function ς changes smoothly from zero to one, and min(rij) represents the distance from the computational

B particle to the closest free surface particle:

ς =
min(rij) · ni

2h
(9.13)

A particle’s normal vector is defined according to [67]:

ni = −
L∇Ci

∥L∇Ci∥
(9.14)

Here, −∇Ci always points in the direction of maximum anisotropy [73], i.e., the region with low particle concen-

tration:

∇Ci =

N∑

j

∇W
mj

Äj
(9.15)

9.2.3 Free Surface Detection

Particles within the domain must be identified to correctly apply particle shifting. Two similar methods are proposed

in the technical literature. In [74], free surface particles are identified using the minimum eigenvalue of the Li matrix.

After an initial detection with the minimum eigenvalue, the search is extended to an “umbrella-shaped" area. If

no particles are detected in this area, the particle is classified as a free surface particle; otherwise, it is not. [68]

proposed a similar technique based on the concept of human vision. Both algorithms identify particles near the free

surface, i.e., particles with at least one free surface neighbor in their compact support. Here, we propose a new

algorithm formulation for particle identification. Initially, free surface particles are identified in a first sweep using a

condition on the determinant of the Bi matrix:




pgi ∈ F if det(Bi) f 0.6,

pgi /∈ F if det(Bi) > 0.6.
(9.16)

In a second sweep, particles are distinguished as either belonging to B or I; where pgi represents the computa-

tional particle and pgj is the neighbouring particle:





if
[
(xj − xi) f 2h and pgj ∈ F

]
⇒ pgi ∈ B,

else pgi ∈ I.
(9.17)
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9.2.4 Two Phase Extension

The two-phase extension is implemented in a single sweep across all particles. The position of the interface remains

unaltered due to the newly introduced free surface detection method. Heavier mean particles belonging to the

interface are not shifted, while no conditions are imposed on lighter fluid particles near the interface. It is worth

noting that with the semi-analytic approach as boundary treatment, particles near the boundary are treated like free

surface particles, and thus no shifting is allowed.

9.2.5 Riemann Interface

At the interface, a Riemann solver is applied to achieve the exact solution at the interface, hereafter referred to as

the star region and indicated with the apex ∗. Velocities at the interface are projected along the normalised direction

eij = (xi − xj)/∥rij∥. According to [75], the solution of the Riemann solver at the interface, for fluids with different

sound speeds, is given by:




u∗ij =

ρjcjuj+ρiciui+pi−pj

ρjcj+ρici
,

p∗ij =
ρjcjpj+ρicipi+ρjcjρici(ui−uj)

ρjcj+ρici
.

(9.18)

At the interface, the pressure term in Eq. (9.3) and the velocity term in Eq. (9.1) are modified according to [56]:




2
∑

j Äi(u
∗ − ui) · ∇W

mj

ρj
,

2 1
ρi

∑
j(p

∗)∇W
mj

ρj
+ À

|pj |+|pi|
2ρiρj

.
(9.19)

The velocity at the interface is u∗ = u∗eij + uij − ueij , where uij = (Äjcjuj + Äiciui)/(Äjcj + Äici) and

u = (Äjcjuj + Äiciui)/(Äjcj + Äici).

9.2.6 SPH solution scheme

The momentum and the mass balance equations are solved as described below. After the first initialisation of the

particles in the domain i.e. neighbouring search and computations of: rij, W , ∇W for the background grid, at each

time step:

1. Evaluation of the integrals for the solid neighbouring surface contour

2. Computation of the momentum balance equation and body dynamics Eq. (9.3)

3. Leapfrog integration of the momentum balance equation

4. Particle shifting

5. Update the particle position (Lagrangian trajectory).

6. Neighbouring search and computations of: rij, W , ∇W

7. Evaluation of the integrals for the solid neighbouring surface contour

8. Computation of the mass balance equation Eq. (9.1)

9. Leapfrog integration of the mass balance equation

10. Pressures computations via the equation of state Eq. (9.5)
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9.3 Results and discussion

9.3.1 Taylor-Green Vortices

The Taylor-Green vortex problem is characterised by a set of decaying vortices, for which analytical solutions of the

incompressible Navier-Stokes equations can be achieved. These vortices are counter-rotating, resulting in regions

of low pressure, i.e., pressure lower than zero, between them. In the Smoothed Particle Hydrodynamics (SPH)

framework, tensile instability appears in these regions. This problem serves as a common benchmark to assess the

accuracy of SPH schemes, where particles are adjusted from their natural trajectories to achieve a regular distribution

in the domain, avoiding non-physical voids. In this work, the Taylor-Green vortex problem is utilised to validate the

proposed particle shifting technique. The initial condition for the Taylor-Green vortices is defined by the following

velocity field components:

ux = A cos(ax) · sin(by) · sin(cz)

uy = B sin(ax) · cos(by) · sin(cz)

uz = C sin(ax) · sin(by) · cos(cz)

(9.20)

Figure 9.3: Taylor-Green vortices initial condition. Upper panels show particle distribution, lower panels show initial

velocity contour.

After imposing the initial conditions, the flow begins. Turbulence is not considered in the SPH model; therefore,

the Taylor-Green vortices do not decay over time but rather oscillate indefinitely with constant amplitude. Figure 9.3

illustrates the initial conditions defined in (9.20). The reference density of the fluid is Äw = 1000 kg m−3, and gravity

gz = 9.81 m s−2 acts in the −z direction.

Figure 9.4 displays the Taylor-Green vortices after 6 seconds of simulation. It is important to note that with

turbulence modelling, the vortices would dissipate, and the velocity field would flatten. In the left-hand panels,

the derived model without particle shifting is shown. Tensile instability is evident, and the particle distribution in the

domain becomes irregular. In the right-hand panels, the model with particle shifting is depicted. With particle shifting,

no voids appear, and the particle distribution is more regular. Small voids form at the domain edges because those

particles are considered free surface particles, and thus, particle shifting is not applied to them.
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Figure 9.4: Taylor green vortexes at t = 2.00 (s) and t = 5.99 (s). Upper panels particle distribution, lower panels

velocity contour. On the left-hand side there is the derived model without particle shifting, on the right-hand side

there is the model with the particle shifting.

9.3.2 Dam Break

The dam break test case is widely adopted to evaluate the response of numerical models due to its relatively simple

setup and implementation, low computational cost, and availability of reference results for comparison. Figure 9.5

illustrates the adopted domain.

Figure 9.5: Dam-break simulation setup.

The presence of the air phase is crucial as both the pressure measured at pg and the interface are affected.

In [76], a multiphase model without interface treatment and particle shifting was presented. The absence of these

schemes resulted in particle clusters inside the enclosed air pocket and the formation of non-physical voids in the

air phase, especially in the presence of high velocities and pressure gradients. These difficulties are overcome with

the present model. Although there is a difference in particle size between the two simulations, this fundamental

improvement is evident in Figures 9.6 and 9.7.

Figure 9.8 compares the interface between the single-phase model [76] and the present multiphase model.

At WG1, the present model exhibits a more regular interface, while at WG2, the present model interface closely

resembles the experimental result. The peak at t = 1.8s observed in the single-phase free surface is attenuated by

the presence of the air phase in the present multiphase model.

Figure 9.9 depicts the pressure recorded at the pg gauge. Although there are oscillations due to the coarse

particle dimension, the present model closely matches the experimental pressure.
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Figure 9.6: Comparison of dam break between the multiphase model [76] and the present model. Focus on the

particle clusters in the air pocket and void formation at t = 1.55s.

Figure 9.7: Comparison of dam break between the multiphase model [76] and the present model. Focus on the

particle clusters in the air pocket and void formation at t = 1.70s.

Figure 9.8: Comparison of water-air interface between the single-phase model [76] and the present model.
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Figure 9.9: Pressure comparison at pg between the single-phase model [76] and the present model.

9.3.3 Falling Droplet

This test case is included to demonstrate the model’s capabilities in handling large velocity and pressure gradients.

In this scenario, a water droplet is released to fall in air. Figure 9.10 illustrates the domain setup, where D = 2m

represents the diameter of the water droplet. For this test case, À = 0.8 is used to enable the simulation of surface

tension.
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Figure 9.10: Falling droplet domain setup.

Figure 9.11 displays the contours of density, pressure, velocity, and the result of the free surface identification

algorithm. In the right-hand panel, black particles represent free surface particles F, orange particles represent buffer

particles B, and white particles represent inner particles I. The velocity contour near the falling droplet is smooth

and exhibits a very high gradient upon impacting the bottom. Despite these high velocity gradients, void formation

is not observed. As the droplet falls, it maintains its circular shape, and the simulation remains stable upon impact,

with the water symmetrically diverging toward the side walls.
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Figure 9.11: Falling droplet and impact with bottom. Left-hand panel: Density between media, middle left.hand

panel: pressure, middle right-hand panel: magnitude velocity vectors, right hand panels: free surface particles.
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9.3.4 Rising Bubble

This test case is included to demonstrate the model’s capabilities in simulating slow dynamics. In this scenario, an air

bubble is released to rise in water. Figure 9.12 illustrates the domain setup, where D = 2m represents the diameter

of the air bubble. For this test case, À = 0.8 is used to enable the simulation of surface tension.
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Figure 9.12: Rising bubble domain setup.

Figure 9.13 shows the contours of density, pressure, velocity, and the result of the free surface identification

algorithm. The air bubble is initialised with zero pressure, and as the computation starts, the air bubble is suddenly

compressed due to the strong pressure gradient with the surrounding water. At t = 0.8s, the bubble assumes a

lenticular shape as it is pushed upwards. A vertical water jet rises from the bottom in the direction of the bubble axis

due to the pressure gradient with respect to the air. The middle right-hand panel shows this water jet with a vertical

velocity of approximately 3.5m/s, increasing to approximately 5m/s at t = 1.15s. Due to the hydrodynamic thrust of

the upward water jet, the bubble moves upwards while its transverse length grows. As the bubble rises, it develops

two tails, comparable to the results in [54].
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Figure 9.13: Rising bubble. Left panel: Density between media, middle left panel: pressure, middle right panel:

magnitude of velocity vectors, right panels: free surface particles.
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9.4 Final Remarks

This chapter presents a new strategy to address issues in the multiphase model. A particle shifting technique

based on Fick’s Law is introduced, along with the use of Riemann solvers to treat the interface. The combination of

these methods addresses issues such as tensile instability, particle clusters, and interface gaps. Early applications

on three challenging cases are demonstrated. However, the resolution in these early tests is coarse, and smaller

particle dimensions are required for a more accurate definition of the fluids. The multiphase dam break is well

reproduced, and the pressure results are closer to experimental ones compared to the single-phase model. The

rising bubble and falling droplet cases are also successfully modelled, demonstrating high gradients of pressure and

velocity without encountering the previously mentioned issues. Therefore, the model is validated. It is important to

note that the multiphase model is still in an early development phase, and further testing is needed for validation.
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Conclusions

This work deals with the modelling of free surface waves using innovative mesh-free particle numerical approaches

and discusses the role of numerical models in engineering. It presents the governing equations for a fluid and in-

troduces the SPH and PFEM approaches. The first study focuses on wave hindcasting in the Mediterranean Sea,

using the model SWAN to accurately reproduce a storm by hindcasting the significant wave height and spectral

period, with validation against field data. SPHERA v9.0.0 model is utilised for modelling regular waves. The intro-

duced improvements to the single-phase model (SPHERA) have enabled accurate modelling of regular waves in a

2D channel and nonlinear waves with structural impact. However, the air cushion interposed between the wave front

and structure holds strategic relevance. The current focus lies on developing a multiphase model for high-density ra-

tio between the two media. This new DERIVED model has been validated through accurate modelling of multiphase

dam breaks and several single-phase waves; however, it does exhibit some shortcomings that have been addressed

subsequently as discussed below. A comparison has been made between this DERIVED model and a PFEM model

(Kratos Multiphysics), while new wave cases for both SPH and PFEM are being investigated with results that can ac-

curately reproduce the involved physical phenomena. Another research study explored the interaction of waves with

a tension-leg floating structure. The SPHinXsys model is combined with a multibody solver (Simbody) to accurately

simulate non-linear wave generation and model structural displacement and impact pressures. The final chapter dis-

cusses improvements to the DERIVED model (based on SPHERA v9.0.0) that address the shortcomings identified

in previous studies. The last model is tested with simple cases, demonstrating promising results and providing a

strong foundation for future investigations. The thesis overall demonstrates the potential of Lagrangian mesh-free

particle methods, particularly the smoothed particle hydrodynamics approach, in accurately modelling wave impact

on marine structures.
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