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Abstract

Minerals that are trapped as inclusions within other host minerals, after exhumation
to the Earth's surface, will exhibit stress and strain �elds that are di�erent to those in
the host because of the contrast in their thermoelastic properties. The residual strain
in the inclusion can be measured with X-ray di�raction or Raman spectroscopy, and, if
interpreted correctly through elastic geobarometry, it allows the determination of the
entrapment conditions, giving us invaluable information on the pressures and temper-
ature of metamorphism during geodynamical processes such as subduction. However,
current models for elastic geobarometry make several assumptions: the geometry of
the system is ideal, with a spherical inclusion isolated at the center of an e�ectively
in�nite host, and both the minerals are elastically isotropic. None of these conditions
apply in natural systems: no mineral is perfectly elastically isotropic and inclusions
might be non-spherical and close to grain boundaries or other inclusions. The e�ect of
these assumptions on the residual strain and stress can be evaluated through numerical
calculations, such as Finite Element Modeling (FEM), a well-suited technique to solve
mechanical problems over complex geometries.

Keeping the assumption of isotropic elasticity, I de�ne a geometrical factor (Γ) to
correct the residual pressure in the inclusion (Pinc) for non-ideal geometry. With this
analysis it is possible to estimate which geometries of host-inclusion systems lead to
deviations in the �nal Pinc smaller than the typical experimental uncertainties in the
determination of inclusion pressures, and can therefore be safely used for geobarometry
without any correction. The Γ factor can also be applied to correct the residual pressure
measured experimentally accounting for the geometric e�ects. The Pinc corrected for
the geometry can then be used to calculate the entrapment pressures using ideal-
geobarometry models. For more accurate results, I developed a procedure to determine
the geometrical factor directly on the 3D model obtained from the micro-tomography
of the sample, preserving the shape and mutual orientation of the minerals.

Raman spectroscopy measurements on a zircon inclusion in garnet from the ultrahigh-
pressure Dora Maira Massif, revealed that the strain in the inclusion is gradually re-
leased as the inclusion approaches the external surface of the host during a step-by-step
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2 Abstract

polishing of the petrological thick section. The experimental results con�rm the out-
come of FE models, showing that the rate of strain release depends on the contrast
in elastic properties between the host and the inclusion, their elastic anisotropy and
the mutual crystallographic orientation. This allows us to give new methodological
guidelines for determining the residual strain in inclusions contained in rock sections.

I present also a new method for elastic geobarometry for spherical elastically anisotropic
inclusions in quasi-isotropic hosts, based on a combination of equations of state and
FEM. The �nal strain in the inclusion is �rst calculated as imposed only by the defor-
mation of the cavity (i.e. the host) during the exhumation, without considering any
mechanical coupling between the host and the inclusion. The discontinuity in traction
at the interface between the two minerals is then relaxed through the anisotropic elastic
relaxation of the system, until the mechanical equilibrium is restored. The solution for
the change in strain upon relaxation is related to Eshelby's equivalent inclusion problem
and can be found analytically for a few cases with speci�c crystallographic symmetries,
but not for host minerals typical of high-pressure metamorphic rocks (e.g. garnets, zir-
con). It can be computed numerically with FE analyses, without any restriction given
by the elastic anisotropic properties of the host and of the inclusion and their mutual
orientation. However, this approach is extremely time consuming since a new analysis
is needed for each speci�c initial state. I propose a semi-analytical solution based on
the application of FEM, under the assumption of linear elasticity, introducing a linear
mapping represented by a fourth order non-symmetric tensor (the relaxation tensor R)
to transform the unrelaxed strain into the relaxed strain. This approach can be used
to predict the residual strain/stress state in an inclusion if the entrapment conditions
are known, or to estimate the entrapment conditions from the residual strain measured
in real inclusions. Examples are shown of applications to inclusions in garnets, which
are common hosts in ultra-high pressure metamorphic rocks.



Introduction

Application of conventional thermobarometry to High-Pressure (HP) and Ultra-High-
Pressure (UHP) metamorphic rocks is extremely challenging due to alteration pro-
cesses, chemical re-equilibration and di�usion, and kinetic limitations. Elastic geother-
mobarometry on host-inclusion systems is a complementary method independent of
chemical equilibrium. This method allows the determination of the pressure (P ) and
temperature (T ) of entrapment of mineral inclusions in their mineral hosts, essentially
on the basis of the elasticity of the two minerals. It therefore can provide new con-
straints on the P-T conditions attained during metamorphism (Angel et al., 2015b).
For example, because it does not rely on chemical equilibrium between minerals, it has
the potential to provide information on over-stepping of reaction boundaries (Spear
et al., 2014). Several studies reported successful examples of application of elastic geo-
barometry to natural (e.g. Enami et al., 2007) and synthetic (e.g. Thomas and Spear,
2018) samples. However, some discrepancies still exist that pose limitations to the
applicability of the current methodologies (e.g. Ashley et al., 2016) and that required
the introduction of arbitrary corrections, such as empirical calibrations for interpreting
the Raman spectra collected from inclusions.

A fundamental assumption of elastic geobarometry is that at the moment when the
inclusion is trapped by its host crystal, both the host and inclusion experience the same
temperature and the same hydrostatic pressure, and that the inclusion crystal �ts ex-
actly inside the cavity within the host crystal without any void space. While these
P-T conditions are maintained, and there is no change in the external stress �eld,
there is no development of stress gradients across the host and inclusion, and both
phases continue to experience the external pressure. If the host and the inclusion have
a contrast in elastic properties, when P and T change the inclusion may exhibit stress
and strain �elds that are di�erent to those in host because the inclusion is constrained
to undergo the same volume change as its host mineral. For example, if the inclusion
is softer than the host, during decompression from entrapment Ptrap -Ttrap conditions
to room conditions the volume of the hole in the host expands less than would a free
crystal of the inclusion mineral. As a consequence, the inclusion is compressed by the
surrounding host to a smaller volume than expected for the �nal external P and T and

3



4 Introduction

exhibits a pressure signi�cantly greater than the external ambient pressure at room
conditions (Angel et al., 2014). All the changes in the system following entrapment are
assumed to be elastic. If plastic deformation occurs, it will release some or all of the
inclusion stress. Brittle failure of the host by cracking may also release inclusion stress,
and is more di�cult to evaluate because it can change the inclusion stress in a variety
of di�erent ways (Taj£manová et al., 2014). Phase changes in the inclusions, such as
the inversion of trapped coesite to quartz or the crystallization of melt inclusions, may
result in the inclusion pressure being bu�ered (Gillet et al., 1984; Korsakov et al., 2009;
Anzolini et al., 2016), and requires more elaborate analysis. Inclusion minerals formed
by phase changes can often be identi�ed by the characteristic textures formed, for ex-
ample the palisade textures seen in quartz inverted from coesite, and cracked inclusions
are readily identi�ed by optical microscopy. Therefore, application of elastic geobarom-
etry is usually restricted to un-cracked systems containing a single mineral inclusion
which does not undergo reactions or phase transformations. In this case the over-
pressure in the inclusion can be simply calculated by computing the volume change of
the host mineral from entrapment to room conditions, from its PVT Equation of State
(EoS), and constraining the inclusion to that volume change. However, current models
for elastic geobarometry (e.g. Van der Molen and Van Roermund, 1986; Zhang, 1998;
Guiraud and Powell, 2006; Angel et al., 2017b) make further assumptions such as the
simpli�ed geometry of the system (the inclusion is spherical and isolated at the center
of an e�ectively in�nite host) and the use of isotropic elastic properties for both the
host and the inclusion. These conditions mean that during the exhumation the stress
in the inclusion is homogeneous and hydrostatic which allows for a simple analytical
solution of the problem (Goodier, 1933; Eshelby, 1957; Zhang, 1998). None of these
conditions apply in natural systems: no mineral is perfectly elastically isotropic and
inclusions are often close to grain boundaries or other inclusions, and they might be
non-spherical. This thesis will investigate how the assumptions of ideal geometry and
isotropic elastic properties a�ect the application of elastic geobarometry and the cal-
culation of the entrapment conditions (Ptrap , Ttrap), providing examples of application
to UHP metamorphic rocks and diamond geobarometry.

Part I: geobarometry for geometrically non-ideal host inclusion
systems

Application of ideal elastic geobarometry requires the volume strain or the residual
pressure (Pinc) to be measured on natural inclusions that can be contained either in
a thick or thin section cut from the metamorphic rock specimen or in their diamond
host. In both cases, the size of the inclusion, its proximity to the external surfaces
and its shape can strongly a�ect the stress/strain retained by the inclusion and thus
the calculation of the entrapment conditions if they are not accounted for. Several
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studies pointed out the e�ects of the inclusion size and of its partial exposure with
respect to the mineral host surface on the residual pressure determination (e.g. Rosen-
feld and Chase, 1961; Zhang, 1998; Enami et al., 2007). Nevertheless, open questions
still remain, including: how much can the contrast in properties between the host
and the inclusion and their geometry in�uence the residual strain? What is the ef-
fect of the inclusion anisotropy in the residual strain release? These e�ects can be
evaluated through numerical calculations. In the paper "Elastic geothermobarometry:
Corrections for the geometry of the host-inclusion system" (published in Geology and
reported in chapter 1 of this thesis) I applied the Finite Element Method (FEM) on
models of elastically isotropic host-inclusion systems with non-ideal geometries to de-
termine how the geometry a�ects the residual pressure Pinc during the exhumation
of the rock from entrapment conditions to the Earth's surface. Through 3D FEM
models I explored the e�ects of several deviations from the ideal geometry, including
the size of the inclusion relative to the host and its proximity to external surfaces.
To evaluate the e�ects of non-spherical shapes I modeled ellipsoidal, cylindrical and
prismatic inclusions. The residual pressure obtained from each of these models was
then compared to the pressures calculated for the same exhumation from the model
for ideal-geobarometry (Angel et al., 2017b) for a spherical inclusion contained in an
in�nite host. This comparison allowed me to introduce a geometrical factor (Γ) de�ned
as the normalized deviation of the actual inclusion pressure from that expected for an
ideal isolated spherical inclusion, for the same decompression. As a consequence, I
could provide guidelines as to which geometries of host-inclusion systems lead to devi-
ations in the �nal Pinc smaller than the typical experimental uncertainties in inclusion
pressures obtained from conventional experimental measurements, and can therefore
be safely used for geobarometry without any correction. In all the other cases, the Γ
factor can be used to correct the residual pressure measured experimentally account-
ing for the geometric e�ects. Once the residual inclusion pressure is corrected for the
geometry of the system it can then be used to calculate the entrapment pressures using
ideal-geobarometry models.

When the shape of the inclusion is not ellipsoidal, or it is not isolated within an in�nite
host but is close to the external surface of the host or to other inclusions, the stress and
the strain �elds in the inclusion are not homogeneous. Also, the residual �pressure�
(de�ned as the negative of the mean normal stress P = −(σ11 + σ22 + σ33)/3) is not
constant within the inclusion, and as a consequence the geometrical factor may change
in value from point to point within the inclusion. The state of strain of an inclusion
(from which the residual pressure is obtained) can be measured experimentally with
mainly two techniques: X-ray di�raction and Raman spectroscopy. The �rst approach
gives the average state of strain of the inclusion since the information on its defor-
mation is averaged over all the unit-cells in the crystal. On the other hand, Raman
spectroscopy gives a point measurement, and, if the crystal is su�ciently large com-
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pared to the section of the laser beam, it can be used to e�ectively track the variation
of the strain �eld within an inclusion. The application of Raman spectroscopy as a
probe for the strain state of a quartz inclusion in garnet is shown in the paper �Ra-
man elastic geobarometry for anisotropic mineral inclusions� (published in American

Mineralogist and reported in appendix A) which I coauthored as a side project dur-
ing my PhD. This paper shows that the strain (and the mean normal stress, i.e. the
pressure) is actually not homogeneous in a quartz inclusion with non-ellipsoidal shape.
Therefore, the correction factor Γ must be calculated keeping in mind the experimental
measurement that needs to be corrected. Γ can be either calculated as a local factor,
to correct the measurement obtained from Raman spectroscopy on a speci�c point in
the inclusion (usually its central point that is the least a�ected by stress concentration
given by edges and corners), or as a bulk factor averaged over the entire volume of
the sample to correct measurements from X-ray di�raction. The method implemented
by this thesis based on FE provides the capability to perform both calculations. The
derivation of Γ as a local factor is presented in chapter 1, while in chapter 2 it is de�ned
as an average bulk factor. Chapter 2 presents a manuscript in preparation with the
title �Depth of diamond formation obtained from single periclase inclusions� in which
I was responsible for the 3D reconstruction, the correction for the geometry and the
application of elastic geobarometry. Here is shown that the geometrical factor should
be evaluated on a case-by-case basis with FEM analysis carried out on realistic digital
models of the inclusions. X-ray micro-tomography was performed on two ferropericlase
inclusions in a diamond host. I segmented the tomography to obtain a CAD model of
the two inclusions that was meshed and incorporated in the FE model, which there-
fore preserves the shape of the inclusions and their reciprocal position and orientation.
From the FE analysis I obtained two average geometrical factors, one for each inclu-
sion, that allowed me to correct for the geometry the residual pressures obtained from
X-ray di�raction. The corrected Pinc were then used for the back-calculation of the
entrapment conditions of the ferropericlase inclusions in their diamond host.

The e�ect of the proximity of the inclusion to the external surface of the host is particu-
larly crucial for high-pressure metamorphic rocks that are investigated on thick (thick-
ness 100 µm) or thin (thickness 30 µm) sections cut from the rock specimen. Inclusions
may be randomly contained at di�erent depths within the section and the position with
respect to the surface can modify the residual strain recorded by the inclusion, possibly
leading to large errors in the back-calculation of the entrapment conditions. To verify
that the correlation between position and residual strain calculated by FEM models
does reproduce the real behavior, in the manuscript �How geometry and anisotropy
a�ect residual strain in host-inclusion system: coupling experimental and numerical
approaches� (published in American Mineralogist and reported in chapter 3) numeri-
cal calculations were combined with experimental measurements on a zircon inclusion
in pyrope from the ultrahigh-pressure (UHP) Alpine Dora Maira Massif. The zircon in-
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clusion was initially entrapped at the center of the thick section and the Raman spectra
were collected performing several steps of polishing of the rock thick section to bring
the inclusion closer to the external surface of the host. The residual pressures obtained
from the Raman spectra as a function of the position of the inclusion were compared
with the results of a set of FEM models that closely reproduce the shape of the in-
clusion and its proximity to the external surface, and that also account for the elastic
anisotropy of the inclusion and its crystallographic orientation within the section. This
comparison provided new methodological guidelines and examples of correction curves
to adjust measurements carried out on anisotropic inclusions close to the surface of the
thin or thick section. A key result is that elastic anisotropy of minerals is relevant and
a�ects the �nal strain and stress state in the inclusion, especially when the geometry of
the system is not ideal. But, as noted above, ideal elastic geobarometry assumes that
minerals are elastically isotropic, and the incorporation of elastic anisotropy in models
for geobarometry requires an extensive reformulation of the problem.

Part II: geobarometry for elastically anisotropic spherical inclu-
sions

The extension of elastic geobarometry to include elastic anisotropy is best illustrated
with the forward-calculation: the entrapment conditions (Ptrap, Ttrap) are assumed to
be known, and the aim is to calculate the �nal residual strain and stress developed
in the inclusion after the exhumation to the Earth's surface. Section 4.1 in chapter
4 shows that, as for the case of ideal geobarometry, this calculation is split into two
steps: thermodynamic calculation and relaxation. The thermodynamic step consid-
ers the �nal strain in the inclusion as imposed only by the deformation of the cavity
(i.e. the host) during the exhumation, without considering any mechanical coupling
between the host and the inclusion. The calculation is based on non-linear elastic-
ity and requires the knowledge of the volume and axial Equations of State (EoS) of
both the host and of inclusion to describe how their crystallographic axes change in
length with changing pressure and temperature. If the host and the inclusion are dif-
ferent minerals, when the host is at room condition (i.e. under an hydrostatic stress
state with σ11 = σ22 = σ33 = P ≈ 0 GPa) the inclusion is subject to a di�erent
stress �eld that depends on its elastic properties and on the strain imposed to it by
the host. As a consequence, the host and the inclusion are not in mechanical equi-
librium, and the discontinuity in traction at the interface between the host and the
inclusion forces the elastic relaxation of the system until the mechanical equilibrium is
restored. The calculation of the change in strain upon anisotropic relaxation requires
the knowledge of the unrelaxed strain state, the full elastic properties of the host and
the inclusion, including their variation with direction, and the relative orientation of
their crystallographic axes. This problem is related to Eshelby's equivalent inclusion
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problem and can be solved analytically for a few cases with speci�c crystallographic
symmetries (e.g. transversely isotropic symmetry), but not for host minerals typical of
high-pressure metamorphic rocks (e.g. garnets, zircon). Section 4.2.1 shows that the
strain and stress in the inclusion after the relaxation can be found numerically with
FE analyses, without any restriction given by the elastic anisotropic properties of the
host and of the inclusion and their reciprocal orientation. However, this approach is
extremely time consuming and would greatly restrict the routine applicability of elastic
geobarometry since a new analysis is needed for any speci�c initial unrelaxed strain
state, requiring hours of computational time. This can be avoided assuming that the
elastic properties of both the host and the inclusion stay constant during the relax-
ation. Under this assumption, in section 4.2.2 I will demonstrate that a linear mapping
represented by a fourth order non-symmetric tensor (the relaxation tensor R) exists
that transforms the unrelaxed strain into the relaxed strain. The 36 independent com-
ponents of R can be found with a set of only six FE analyses. Once the relaxation
tensor is calculated for a speci�c reciprocal orientation of the host and the inclusion it
can be applied to relax any unrelaxed strain state for that system, without the need of
new FE analyses. With this approach the �nal residual strain and stress in the inclu-
sion can be predicted after exhumation from any entrapment condition. This allowed
me to investigate e�ciently the response of speci�c host-inclusion systems given by
their anisotropic elasticity for a wide range of entrapment conditions. To this aim I
developed an algorithm in MatlabR© to produce contour plots that show synthetically
all the relevant results (chapter 6). The code generates a grid of equally-spaced points
of entrapment within a Ptrap, Ttrap range chosen by the user, and the exhumation of
the host-inclusion system from each of these points to room conditions is simulated
combining the thermodynamic and the relaxation calculations. The results provide
the relaxed strain in the inclusion, from which the relaxed stress and all the other re-
lated quantities (e.g. volume strain, residual pressure ecc.) are obtained. I applied this
procedure to evaluate the strain and the stress developed during exhumation in several
inclusions (diamond, quartz, zircon) contained in garnets, all common mineral phases
in Ultra-High Pressure (UHP) metamorphic rocks. Garnets have cubic crystallographic
symmetry and are almost elastically isotropic, while the inclusions have been selected
over a wide range of crystallographic symmetries (cubic, trigonal and tetragonal) and
degree of elastic anisotropy. This choice allowed me to provide examples of exhumation
of geologically relevant host inclusion systems, testing at the same time how the sym-
metry, the anisotropic elasticity and the crystallographic orientation of the inclusion
a�ect the strain and the stress �elds developed during exhumation (chapters 7 and 8).

Notes

Chapters 1 and 3 and the appendix A presents pre-print manuscripts of articles that
have been published in international peer-review journals. Chapter 2 reports a manuscript
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recently submitted for publication. They are self-standing units, complete with their
own supplementary materials and references. Part II of this thesis shows the derivation
and examples of application of anisotropic geobarometry. The conventions adopted,
the elastic properties and the references relative to Part II are reported at the end of
the thesis.
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Chapter 1

Elastic geothermobarometry:

Corrections for the geometry of the

host-inclusion system

This chapter was published as an article in Geology with the title:

Elastic geothermobarometry: Corrections for the geometry of the
host-inclusion system

Authors: M.L. Mazzucchelli1∗, P. Burnley2, R.J. Angel3, S. Morganti4, M.C.
Domeneghetti1, F. Nestola3, and M. Alvaro1

The �nal published version of the article can be downloaded at
https://doi.org/10.1130/G39807.1. The publication is open access and released under
the terms of the CC-BY-NC license.

1.1 Abstract

Elastic geothermobarometry on inclusions is a method to determine P-T conditions of
mineral growth independent of chemical equilibrium. Because of the di�erence in their
elastic properties, an inclusion completely entrapped inside a host mineral will develop

1Deparment of Earth and Environmental Sciences, University of Pavia, 27100 Pavia, Italy;
2Department of Geosciences and High Pressure Science and Engineering Center, University of Nevada,
Las Vegas, Nevada 89154, USA; 3Department of Geosciences, University of Padua, 35131 Padua, Italy;
4Department of Electrical, Computer, and Biomedical Engineering, University of Pavia, 27100 Pavia,
Italy.

13
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a residual stress upon exhumation, from which one can back-calculate the entrapment
pressure. Current elastic geobarometric models assume that both host and inclusion
are elastically isotropic and have an ideal geometry (the inclusion is spherical and
isolated at the center of an in�nite host). These conditions do not commonly occur in
natural rocks, and the consequences for inclusion pressures can only be quanti�ed with
numerical approaches. In this paper, we report the results of numerical simulations
of inclusions with �nite element methods on elastically isotropic systems. We de�ne
and determine a geometry factor (Γ) that allows measured residual pressures to be
corrected for the e�ects of non-ideal geometry. We provide simple guidelines as to
which geometries can safely be used for elastic geobarometry without correcting for
the geometry. We also show that the discrepancies between elastic and conventional
geobarometry reported in literature are not due to geometrical e�ects, and therefore
result from other factors not yet included in current models.

1.2 Introduction

Application of conventional geothermobarometry is extremely challenging in many rock
types due to alteration processes, chemical re-equilibration and di�usion, and kinetic
limitations. Elastic geothermobarometry on host-inclusion systems is a complementary
method independent of chemical equilibrium. An inclusion completely entrapped inside
a host mineral will develop a residual stress upon exhumation because of the contrast in
elastic properties (Rosenfeld and Chase, 1961). If the host does not undergo plastic de-
formation or brittle failure after trapping the inclusion the entrapment pressure (Ptrap)
can be calculated from the measured residual pressure on the inclusion (or remnant
pressure, Pinc ), provided that the elastic properties (equations of state, EoS) for the
host and inclusion are known (e.g., Zhang, 1998; Angel et al., 2014). Elastic geother-
mobarometry is increasingly applied to metamorphic rocks, where measurements of
Raman shifts on quartz inclusions trapped in garnet (QuiG) give information on the
residual stresses that can be used to infer growth conditions (e.g., Kouketsu et al.,
2016) and the degree of over-stepping of garnet isograds (e.g., Spear et al., 2014). The
validity of elastic geobarometric methods has been recently discussed by Ashley et al.
(2016) who reported that the Ptrap inferred from measured Pinc of quartz inclusions in
garnets do not match those obtained by conventional geobarometry on the same rocks.
However, the calculation of Ptrap currently assumes that the minerals are elastically
isotropic with ideal geometry where the inclusion is spherical and isolated at the center
of the host (Goodier, 1933; Eshelby, 1957; Van der Molen and Van Roermund, 1986).
None of these conditions apply in natural systems; neither quartz nor garnet are elas-
tically isotropic, inclusions are often close to grain boundaries or other inclusions, and
they are often not spherical. The resulting changes in Pinc can only be quanti�ed using
numerical approaches. In this paper we use �nite element (FE) models of elastically
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isotropic host-inclusion systems with non-ideal geometries to determine the magnitude
of the geometric e�ects on Pinc, and in turn on the calculated Ptrap. We show that the
discrepancies reported by Ashley et al. (2016) are only partly due to the geometry of
their samples. Finally, we provide guidelines as to which geometries of host-inclusion
systems lead to deviations smaller than the typical experimental uncertainties in inclu-
sion pressures obtained from conventional µ-Raman measurements, and can therefore
be safely used for geobarometry without any correction.

1.3 Methods

The �nal stress state of an inclusion is path-independent, and it is convenient to split
the P −T change from the entrapment conditions (Ptrap, Ttrap see Fig. 1.1) to the �nal
pressure and temperature (Pend, Tend) into two parts (see Angel et al. 2014). Fig. 1.1
illustrates the stepwise procedure used to calculate the residual pressure from known
entrapment conditions. During step 1 the temperature is reduced from Ttrap to Tend
along the isomeke (Rosenfeld and Chase, 1961; Adams et al., 1975) thus preserving
the reciprocal mechanical equilibrium between the host and the inclusion. The change
in external T and P required to maintain the pressure in the inclusion equal to the
external P can be calculated directly from the thermodynamic properties of the min-
erals without any in�uence of the geometry of the system. In step 2 the isothermal
decompression from Pfoot, Tend to the �nal Pend, Tend (as in Angel et al., 2014) causes
a mechanical disequilibrium between the host and the inclusion. Consequently, the
stresses are readjusted through the relaxation process. Since the relaxation depends
on force balance at the interface between host and inclusion, in this step the geometry
becomes important. The exact amount of relaxation in step 2 can only be calculated
if the geometry of the system is ideal, for all other cases a numerical approach is re-
quired. In our study we have used two commercially-available engineering packages
(MARC Mentat By MSC Software and Abaqus by Dassault Systèmes) to create and
solve 2D axisymmetric and 3D models using FE numerical simulations. Always us-
ing isotropic elastic properties, we explored the e�ects of several deviations from ideal
geometry, including the size of the inclusion relative to the host and its proximity to
external surfaces. To evaluate the e�ects of non-spherical shapes we modeled ellipsoids
of revolution with aspect ratios 1:1:1, 2:1:1, 1:2:2, 5:1:1, and 1:5:5. The e�ects of edges
and corners were then determined by comparing the results against cylindrical and
prismatic models (with quadrilateral cross-sections) with the same aspect ratios. To
simulate the e�ects of external pressure, edge loads (for 2D models) or face loads (for 3D
models) were applied to the external boundaries of the models. Stationary boundary
conditions were placed on the relevant edges and faces to prevent rigid body rotations
and translations. An example of a model mesh and the elastic properties used in the
models are given in the supplementary materials (section 1.6), more details are also
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given in Burnley and Davis (2004), Burnley and Schmidt (2006) and Abaqus (2016).
For each model, we performed calculations using di�erent elastic isotropic properties
for the host and the inclusion to probe possible scaling laws For each geometry we
calculated the actual inclusion pressure P non−ideal

inc by performing FE simulations upon
isothermal decompression from Pfoot to Pend. We de�ne a geometrical factor (hereafter
Γ) as the normalized deviation of the actual inclusion pressure from that expected for
an ideal isolated spherical inclusion, P ideal

inc , for the same decompression:

Γ =
P non−ideal
inc

P ideal
inc

− 1 (1.1)

The value of Γ is obtained using the linear elastic approximation, so it is independent of
the magnitude of Pfoot−Pend. Because pressures in natural inclusions are typically less
than 1 GPa (e.g., Ashley et al., 2016), this linear approximation is not signi�cant for
most inclusions, and the Γ parameter can be used to correct experimentally-determined
inclusion pressures (P exp

inc = P non−ideal
inc ) for geometric e�ects:

P corrected
inc =

P exp
inc

1 + Γ
(1.2)

This corrected residual inclusion pressure can then be used to calculate the entrapment
pressures using isotropic elastic geobarometry models (e.g Angel et al., 2014, 2017b).

1.4 Results and discussion

1.4.1 Insights from FEM

Our FE models have been validated against the analytical `exact' solution by modeling
an ideal in�nite spherical system. In practice, the host can be considered in�nite when
the simulation results do not change upon further increase in the size of the host (Fig.
1.2A). Our FE models then reproduce the analytical solution for the pressure inside
a spherical inclusion well within the expected numerical precision (i.e., 0.2 %). The
stress in the region of the host close to the inclusion is always deviatoric (e.g., Zhang,
1998). Therefore, when a large inclusion is surrounded by a thin layer of host crystal,
the deviatoric stress extends throughout the volume of the thin host layer causing the
outer boundary of the host to deform. The host is thus no longer able to shield the
inclusion from the external P. Consequently, the Pinc will be partially released. For a
spherical inclusion at the center of the host, the pressure release is a function of the size
and the properties of the inclusion with respect to the host (Fig. 1.2A). Hosts much
sti�er than the inclusion (e.g., quartz in garnet) can preserve a larger Pinc . Our results
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Figure 1.1: Calculation procedure for two host inclusion pairs; one with ideal geometry (red
dot inclusion) and one with non-ideal geometry (green dashed rectangle), that are trapped at
the same Ptrap, Ttrap conditions. Step 1: along the isomeke the host and inclusion are in
reciprocal mechanical equilibrium. Therefore, the Pfoot at the �nal Tend will be the same for
any geometry of the system. Step 2: The host is decompressed to the �nal pressure Pend. The
relaxation of the inclusion is geometry-dependent and therefore the �nal Pinc will be di�erent
for the two systems (Pnon−idealinc 6= P idealinc ). The geometrical factor Γ is a measure of this
discrepancy. The Inset illustrates how to apply Γ to correct the experimental P expinc measured
on natural rocks with non-ideal geometry. The corrected P correctedinc can then be used to back-
calculate the Ptrap using currently available elastic geobarometry models. From Mazzucchelli
et al. (2018).
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indicate that, if the radius of the host is at least four times that of the inclusion, both
the P non−ideal

inc ) and the P non−ideal
trap are within 1 % of the value expected for an in�nite

host. For the same reason, the capacity of the host to act as a pressure vessel for the
inclusion is also reduced when a small inclusion is close to the external surface of the
host (Fig. 1.2B). Sti�er hosts again preserve more residual pressure than softer hosts.
Regardless of the contrast in elastic properties, if the inclusion is at least 3 radii from
the external surface of the host the e�ect on Pinc is smaller than 1 %. If a spherical and
isotropic inclusion is close to the external surface of the host, the normal stresses in the
inclusion are not homogeneous, and the domains of the inclusion closer to the external
surface record stresses lower than those toward the center of the host. For a quartz
inclusion in pyrope the variation of the pressure across the inclusion can reach up to 8
% when the distance to the surface is half the radius of the inclusion (Fig. 1.2C). Note
that these conclusions do not depend on the absolute size of the inclusion but upon
the relative sizes of the inclusion and host. For �uid inclusions the aspect ratio and
the presence of corners and edges are two major in�uences on the pressures of isolated
inclusions (e.g., Burnley and Davis, 2004; Burnley and Schmidt, 2006). In our models
of solid inclusions we �nd that the aspect ratio of the inclusion gives rise to deviations
in Pinc greater than 7 % for soft platy inclusions (aspect ratio 1:5:5) in sti� hosts (e.g.,
quartz in pyrope, see Fig. 1.3). The presence of edges and corners further enhances the
deviations (≈ 9%). For non-spherical shapes with edges and corners, the stress in the
inclusion is neither homogeneous nor hydrostatic. The pressure varies from the center
of the inclusion toward its external surface, by di�erent amounts in di�erent directions.
For a quartz inclusion with aspect ratio 1:5:5 in pyrope the pressure variation along the
longer axes of the inclusion is 5 %, while it is less than 1 % along the shortest axis (see
Fig. 1.5 and Fig. 1.6). For a residual pressure at the center of the inclusion of 0.3 GPa,
the di�erential stress (σmax − σmin) within the inclusion reaches 0.28 GPa. For a sti�
inclusion in a soft host with the same shape (e.g., Diamond in Pyrope) the pressure
variation within the inclusion is much larger (22 %) and of the opposite sign (see Fig.
1.5). The exact e�ect of inclusion shape on P non−ideal

inc is a complex interplay between
the bulk and shear moduli for both host and inclusion (see Fig. 1.3). In general, the
in�uence of non-ideal shapes becomes greater when the bulk modulus of the host and
the inclusion are similar, provided there is a signi�cant contrast in shear moduli. For
a soft inclusion in a sti�er host (quartz in garnet, or pyrope in diamond) with aspect
ratios less than 1:2:2 the deviations induced by the shape are typically smaller than 5
% (Fig. 1.3).

1.4.2 Calculation of Entrapment Pressures

Ashley et al. (2016) used Raman spectroscopy to determine the remnant pressure in
quartz inclusions in garnets, while they were heated up to 500 ◦ C. As the T increases
the P exp

inc increases because of thermal pressure e�ects, but the Ptrap for a single inclusion
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should always be a unique value independent of the temperature (Tend) at which the
P exp
inc is measured. However, Ashley et al. (2016) reported large variations on Ptrap for

the same inclusion calculated from the various P exp
inc measured at di�erent Tend and none

of the calculated Ptrap agreed with the results from conventional geobarometry. They
ascribed this unphysical behavior to the use of unrealistic EoS for quartz close to the
α - β structural phase transition. We chose this example to assess if the shape of the
inclusion could explain these discrepancies. We consider the case of sample MT 09�09
where several quartz inclusions are entrapped in an almandine-rich garnet (Ashley et
al., 2015, 2016). The entrapment pressures Ptrap at 540 ◦C were recalculated from the
experimental P exp

inc of 0.300 GPa and 0.491 GPa at the minimum and maximum Tend (31
◦C and 500 ◦C) using a more reliable EoS for quartz (Angel et al., 2017a) that explicitly
includes the α - β transition. Assuming ideal geometry for the quartz inclusion the
discrepancy between the two Ptrap values is 0.186 GPa (Table 1.1), similar to that
reported by Ashley et al. (2016) con�rming that the di�erences cannot be ascribed to
errors in the EoS. To eliminate the discrepancies in Ptrap values the volume thermal
expansion of almandine must be increased by more than 30 % to α298K ≈ 2.76·10−5K−1

which is unrealistic given that this value is much greater than those of any silicate garnet
end-member. As the shapes of the inclusions measured by Ashley et al. (2016) are not
reported, we then over-estimated the shape e�ects by modeling the inclusion as a platy
prism (aspect ratio 1:5:5). At room temperature the correction factor is Γ = −0.094,
similar to that for quartz in pyrope (Fig. 1.3), but decreases to Γ = −0.078 at 500 ◦C
(Table 1.1) due to the elastic softening of quartz as it approaches the phase transition
(Lakshtanov et al., 2007). The inclusion pressures corrected for shape, P corrected

inc are
then 0.331 GPa (at 31 ◦C) and 0.532 GPa (at 500 ◦C), and result in a small but
insigni�cant reduction of 0.02 GPa in the di�erences in Ptrap calculated from the two
measurements. Further, even with the geometrical correction the Ptrap (1.091 and
0.929 GPa) are not in agreement with those from the conventional methods (0.82 GPa,
Ashley et al., 2015). Thus neither the EoS nor the shape of the inclusion can explain
the discrepancies found by Ashley et al. (2016), and other factors not yet included in
the current models must be responsible for the discrepancies in the Ptrap . One factor is
that quartz inclusions in a garnet host will be subject to isotropic strain (leaving aside
further perturbations arising from the elastic relaxation and the geometry) because
garnet is cubic. As quartz is elastically anisotropic, the isotropic strain will result in
a non-hydrostatic stress in the inclusion. The e�ect of this deviatoric stress on the
Raman spectrum of quartz is not known in detail, but both theory (Key, 1967) and
experiments (Briggs and Ramdas 1977) show that Raman peak shifts will be di�erent
from those predicted from hydrostatic calibrations used by Ashley et al., (2016) to
convert measured Raman shifts into pressures. Therefore, the mismatch in the Ptrap
is probably due the combination of an inappropriate Raman-stress calibration and the
assumption of elastic isotropy in the geobarometric models.
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Table 1.1: Calculation of entrapment pressure (Ptrap) for sample MT 09-09 before and after
the correction for the shape of the inclusion.

Uncorrected for shape Correction for shape

Tend
◦C P

exp
inc (GPa)

Ptrap at 540 ◦C
from P

exp
inc (GPa)

Geometrical
factor (Γ)

Pcorrected
inc
(GPa)

Ptrap at 540 ◦C

from Pcorrected
inc

(GPa)

31 0.300 1.041 -0.094 0.331 1.091

500 0.491 0.855 -0.078 0.532 0.929

∆Ptrap = 0.186 ∆Ptrap = 0.162

Note: ∆Ptrap is calculated as the di�erence between Ptrap from the Pinc at Tend=31
◦C and that from the Pinc

at 500 ◦C. The EoS used for quartz and almandine are reported in Table 1.3.

Figure 1.2: E�ects of inclusion size and proximity to the external surface. A: Geometrical
factor Γ for a spherical inclusion with increasing size (toward the left) with respect to that of
the host. B: Γ for a spherical inclusion approaching the external surface of the host (toward
the right). Γ is always negative when the distance of the inclusion from the external surface is
reduced or when the size of the inclusion increases. This can be interpreted as the Pinc in the
inclusion being reduced from the ideal Pinc. Inset: Stress map of a model of a quartz inclusion
in pyrope, where the distance between the inclusion and the external surface of the host was
one-half of the inclusion radius, showing the inhomogeneity of the stress. From Mazzucchelli
et al. (2018).
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Figure 1.3: Geometrical factor Γ for several shapes plotted versus the normalized aspect ratio.
The latter is calculated with the unique axis as the denominator (e.g., aspect ratio 2:1:1 becomes
1/2 = 0.5). For a soft inclusion in a sti�er host (e.g., quartz in garnet), Γ < 0 and therefore
Pnon−idealinc < P idealinc (as in Fig. 1.1). The opposite occurs for a sti� inclusion in a softer host
(e.g., diamond in pyrope). Note that Γ values greater than zero are plotted with a compressed
vertical scale. From Mazzucchelli et al. (2018).
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1.5 Conclusions

Current elastic geobarometric models assume isotropic elastic properties for the host
and the inclusion, and that the inclusions are isolated and spherical. These conditions
do not commonly occur in natural rocks. Regardless of the relative sti�ness of host and
inclusion, for a big inclusion in a small host and for an inclusion close to the external
surface of the host, the P exp

inc is reduced relative to the ideal case, but a simple correction
factor cannot be de�ned and Γ should be evaluated on a case-by-case basis with FEM
analysis carried out on realistic digital models of the inclusions. For isotropic elasticity,
our FEM results show that `isolated' means that the inclusion must be at least 3 radii
from external surfaces or other inclusions, for the geometric e�ects on P exp

inc to be below
1 % (Fig. 1.2B). Under these conditions the shape e�ects then dominate the geometric
corrections to the measured P exp

inc (Fig. 1.3). For soft inclusions in a sti� host (e.g.,
quartz in garnet) non-spherical inclusions (Γ < 0), will exhibit a lower pressure than
spherical inclusions. Correction of the measured P exp

inc for the shape e�ects will therefore
result in P corrected

inc > P exp
inc and thus an increase in the calculated Ptrap. By contrast, for

sti� inclusions in soft hosts (Γ > 0), the correction will lead to P corrected
inc < P exp

inc and
therefore a reduction in Ptrap. Experimental uncertainties on P

exp
inc are typically smaller

than 5 % when measured by Raman spectroscopy (e.g., Ashley et al., 2016, Kouketsu
et al., 2016). For Pinc below 1 GPa, the uncertainties propagated into the Ptrap are
smaller than those on the Pinc . Therefore, pressures from inclusions for which the
geometrical e�ects on P exp

inc are less than 5 % will provide reliable estimates of Pinc, and
hence Ptrap without the need for correction. For soft inclusions in sti� hosts, such as
quartz in garnet, this means:

• the radius of the inclusion must be smaller than 1
2
of that of the host

• the distance from the external surface is larger than 1
2
the radius of the inclusion

• the inclusion aspect ratio is lower than 1:3:3 with few sharp edges and corners

These guidelines do not apply to inclusions sti�er than the host (e.g., diamond in gar-
net) which require much larger corrections of opposite sign (Fig. 1.3).

1.6 Supplementary materials

1.6.1 Computational details

We have used a commercially available engineering package, MSC MARC/ Mentat,
to create and analyze 2D axisymmetric and 3D �nite-element models. Another engi-
neering software, Abaqus Standard v.2016 (Dassault Systèmes, Simulia, Providence),
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has been used to replicate the 3D models adopting the same simulation strategy, and
cross-check for consistency in the stress calculation for those shapes that have edges
and corners. For those models that have at least one rotational axis (sphere, ellip-
soids of revolution and cylinders), 2D axisymmetric models were constructed with
MARC/Mentat using six-node triangular elements (element 126 in the MARC library)
that have a node at each vertex and at the midpoint of each side that allows a parabolic
interpolation function to be used along each edge. These models were calculated as-
suming an axisymmetric geometry utilizing full integration. For the other shapes, 3D
models have been reproduced with both MARC/Mentat and Abaqus to check for con-
sistency in the obtained solutions for the stress. All 3D models have at least three
orthogonal mirror planes, therefore only 1/8 of the selected shape was created. The
resulting model consisted of about 400000 four-node linear isoparametric tetrahedral
elements (element 134 and C3D10 in the MARC and Abaqus library respectively).
The �nished 1/8 model was then re�ected through three orthogonal mirror planes and
joined along the resulting inner surfaces. Material properties and boundary conditions
were assigned, and then a mesh convergence analysis was performed. The models were
calculated as 3D solids assuming constant dilation using full integration. The element
is integrated numerically at a single point at the centroid of the element and linear
interpolation functions are used. An iterative process was used to discretize the model
with di�erent mesh sizes. Smaller elements were used to discretize the region around
and inside the inclusion while larger elements were used for the remaining part of the
model (Fig. 1.4). The mesh was re�ned in the areas with higher stress gradients until
the calculated stress distribution appeared smooth. To simulate the external pressure,
edge loads were applied to the external boundaries of the 2D models and face loads
were applied to the 3D elements on the external boundaries of the host. MARC uses
numerical integration to calculate equivalent nodal loads given the dimensions of the
area over which the distributed load is applied. Face loads are integrated using a single
integration point at the centroid of the element face to which they are applied. Face
and edge loads are assumed by MARC to have the same units as the elastic moduli
(i.e. GPa). Boundary conditions were placed on the appropriate edges and faces of the
models to avoid rigid body rotation and translation in the x, y and z directions.

1.6.2 Elastic properties

As discussed in the main text, the calculation of the remnant pressure on the inclusion
were performed using linear elasticity (i.e. neglecting the temperature and pressure
derivatives of the moduli, dK/dT , dK/dP , dG/dT , dG/dP ). The properties used are
reported in Table 1.2. The correction for the geometry for the speci�c case reported
by Ashley et al. (2016) requires the calculation of geometrical factor Γ at two di�erent
values of Tend (31 and 500 ◦C). Therefore, the elastic properties to be used in the
FE calculations must be evaluated at these two temperatures. The bulk modulus of
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Figure 1.4: 3D Finite element meshes of a prismatic inclusion with aspect ratio 1:5:5 (blue
region) and of the surrounding host. Only an eighth of each model is shown. The full model is
obtained by re�ection through three orthogonal mirror planes, as described in the text. From
Mazzucchelli et al. (2018).

almandine has been calculated with a PVT-EoS that combines data from Milani et al.
(2015) and Scandolo (2016). Its shear modulus is allowed to change with temperature
and pressure according to the P and T derivatives from Arimoto et al. (2015). The
variation of the quartz bulk modulus has been evaluated with the new EoS proposed
by Angel et al. (2017a), that includes an improved description of the α - β structural
transition. The shear modulus of quartz has a small variation over T (Lakshtanov et al.,
2007) which does not a�ect signi�cantly the results of the calculations, and is therefore
assumed to be constant. The resultant elastic parameter used for the simulations at
each Tend are reported in Table 1.3.

1.6.3 Stress within and around the inclusion

For a spherical inclusion included in an in�nite host, the analytical models (Zhang,
1998; Angel et al., 2015a) predict that: (i) in the portions of the host far away from
the inclusion the stress is hydrostatic, homogeneous, and equal to the external pressure;
(ii) in the host close to the inclusion the stress is deviatoric even if the pressure (de�ned
as the negative of the average of the three normal stresses) remains equal to the external
pressure; (iii) in the inclusion the stress is homogeneous and hydrostatic. With FEM
the complete stress distribution within and around an inclusion for any geometry is
obtained, solving for each component of the stress tensor at any given position within
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Table 1.2: Isotropic elastic properties used for the simulations reported in Fig. 1.2 and 1.3.

Mineral

Bulk
Modulus
K0T
(GPa)

Ref.

Shear
Modulus,
G0T
(GPa)

Ref.
Young's
Modulus,
E (GPa)

Poisson's
ratio ν,

Quartz 37.0
Scheidl et al.

(2016)
44

Wang et al.
(2015)

94.53 0.0742

Pyrope 163.7
Milani et al.

(2015)
94

Sinogeikin and
Bass (2002)

236.7 0.2590

Diamond 444
Angel et al.
(2015b)

535
Grimsditch and
Ramdas (1975)

1145.1 0.0702

Olivine 126.3
Angel et al.
(2017c)

78
Abramson et al.

(1997)
194.1 0.2440

Feldspar 55

Average value for
alkali feldspars
e.g. Waeselmann
et al. (2016)

35
Brown et al.

(2006)
86.63 0.2375

Table 1.3: Elastic properties for almandine and quartz used for the calculations of the geomet-
rical factor reported in Table 1.1.

Tend Pend Pinc Almandine (host) Quartz (inclusion)
Geometrical

factor (Γ)
K0T

(GPa)

G0T

(GPa)

K0T

(GPa)

G0T

(GPa)

31 0 0.3 172.54 94.86 39.03 44.4 -0.094

500 0 0.491 161.86 88.68 32.17 44.4 -0.078
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the model. As an example, here we show the stress distribution calculated for a quartz
(soft) and a diamond (sti�) inclusion with prismatic shape and aspect ratio 1:5:5
included in a pyrope host. In Fig. 1.5 is reported the stress distribution along two
di�erent sections that cut the model from the center of the system (i.e. the center
of both the host and the inclusion) along the shortest (x-axis) and longest (y-axis)
directions of the inclusion. As could be expected, in the portion of the host that
are not perturbed by the presence of the inclusion the stress is still homogeneous
and hydrostatic. Closer to the inclusion the stress in the host becomes deviatoric,
and the amount of di�erential stress developed in the host is di�erent along the two
geometrically non-equivalent directions (x- and y-axes). It should be noted that here
the pressure is not constant and deviates from the external pressure.

Our results also show that, even when the elastic properties are isotropic, non-spherical
inclusions always develop deviatoric stresses. For a quartz inclusion in garnet with a
residual pressure (negative of the mean normal stress) of 0.3 GPa and with an aspect
ratio of 1:5:5, the di�erential stress (σmax− σmin) within the inclusion can reach up to
0.22 GPa for an ellipsoid, and 0.28 GPa for a prism (see Fig. 1.5).

The pressure, de�ned as the negative of the mean normal stress, is homogeneous in
ellipsoids but in prisms a gradient is developed, with the �pressure� changing by 5 %
percent from the center of the inclusion to its surface on the longest axis (Fig. 1.5 and
Fig. 1.6). Fig. 1.5 shows that for the same shape of the inclusion under the same
Pinc (0.3 GPa), a sti� inclusion in a softer host, such as diamond included in pyrope,
develops a much larger di�erential stress (0.37 GPa) and pressure change (22 %).
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Chapter 2

Depth of diamond formation obtained

from single periclase inclusions

This chapter has been adapted from a manuscript, recently submitted for publication
to Geology, with the title Depth of diamond formation obtained from single periclase

inclusions, authored by C. Anzolini1, F. Nestola1, M.L. Mazzucchelli2, M. Alvaro2, P.
Nimis1, A. Gianese1, S .Morganti3, F. Marone4, M. Campione5, and J. W. Harris6.
Modi�cations made to the submitted manuscript are intended to highlight my contri-
butions, focusing on the application of elastic geobarometry and on the computational
aspects.

2.1 Introduction

Diamonds, and the mineral inclusions they trap during their growth, are pristine sam-
ples from the Earth's mantle and provide information on processes operating in inac-
cessible regions of our planet. This information is particularly valuable if it can be
combined with depth estimates. Based on the mineral inclusions, it is estimated that
the majority of diamonds (99%) originate within the lithosphere (e.g. Stachel and
Harris, 2008). The other 1% are believed to be sub-lithospheric and formed at depths
between 300 and 800 km (Harte, 2010; Walter et al., 2011; Smith et al., 2016; Nestola
et al., 2018), and hence are called super-deep diamonds (hereafter SDDs). Early in-

1Department of Geosciences, University of Padova, I-35131 Padova, Italy; 2Department of Earth
and Environmental Sciences, University of Pavia, I-27100 Pavia, Italy; 3Department of Electrical,
Computer, and Biomedical Engineering, University of Pavia, I-27100 Pavia, Italy; 4Swiss Light Source,
Paul Scherrer Institut, 5232 Villigen, Switzerland; 5Department of Earth and Environmental Sciences,
University of Milano Bicocca, Milan, Italy; 6School of Geographical and Earth Sciences, University of
Glasgow, G12 8QQ Glasgow, United Kingdom.
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clusion work (Harte et al., 1999; Stachel et al., 2000; McCammon, 2001) concluded
that Fe-rich periclase was a lower mantle mineral, especially when found in the same
diamond as low-Ni enstatite, which was interpreted as the inversion product of silicate
perovskite. But the fact that the Fe2+ content in some periclase inclusions is too high
compared to the expected ferrous iron partitioning in the lower mantle (e.g. Muir and
Brodholt, 2016) and the �ndings of Fe-rich periclase in association with olivine and
je�benite in some SDDs (Hutchison et al., 2001) cast doubt on that conclusion. In
addition, synthesis of Fe-rich periclase and diamond by carbonate melt-peridotite reac-
tions (Thomson et al., 2016) suggested an upper-mantle to transition-zone formation
for some Fe-rich periclases. The presence of nanometric exsolutions of magnesioferrite
in some Fe-rich periclase inclusions (Harte et al., 1999; Wirth et al., 2014; Kaminsky et
al., 2015) led Palot et al. (2016) to propose an origin in the uppermost part of the lower
mantle, but Uenver-Thiele et al. (2017a,b) showed that magnesioferrite cannot exsolve
directly from Fe-rich periclase in the lower mantle. Hence, it is evident that the depth
of formation of Fe-rich periclase inclusions in diamond has a large uncertainty. Elastic
geobarometry may give hints to constrain this problem providing at least a minimum
estimate of the pressure conditions at which the periclase inclusions are entrapped in
their diamond host. We estimated the entrapment pressure (Ptrap) of two Fe-rich peri-
clase inclusions in a diamond from the São Luiz area, Juina, Brazil (sample AZ1, Fig.
2.1) applying isotropic elastic geobarometry (Angel et al., 2015; 2017), including the
correction for the full geometry of the inclusions applied to a realistic 3D reconstruc-
tion of the sample. We also compared the results of the purely elastic calculation with
those obtained by a simple elasto-plastic model (Campione, 2018) that accounts for
the plasticity of the diamond host at high temperature.

2.2 Methods

2.2.1 Sample

The diamond investigated in this study (Fig. 2.1) was recovered in the mid to late
1980s from alluvial deposits of the São Luiz river in the Juina area of south-western
Brazil (Harte et al., 1999; Kaminsky et al., 2001; Hayman et al., 2005). The sample
contains two main black inclusions, identi�ed as Fe-rich periclase by Single-Crystal
X-ray Di�raction (SCXRD). The smaller one, whose longest dimension is ∼ 160 µm,
is named AZ1_1; the bigger one, whose longest dimension is ∼ 280 µm, is named
AZ1_2.
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Figure 2.1: The inclusion-bearing diamond studied in this work. The sample was recovered
from the São Luiz river alluvials (Juina, Brazil) and contains two main black inclusions iden-
ti�ed as Fe-rich periclase by single-crystal X-ray di�raction.

2.2.2 Synchrotron X-ray Tomographic Microscopy

This non-destructive, high-resolution technique allows the acquisition of 3D maps of
the variations of the X-ray attenuation coe�cient within a sample. X-ray micro-
tomography experiments were carried out at the Swiss Light Source (SLS) at TOM-
CAT, a beamline for TOmographic Microscopy and Coherent rAdiology experimenTs
(Stampanoni et al., 2006). Measurements were performed at 13.5 keV in order to
maximize contrast. A total of 1501 X-ray radiographs were acquired from di�erent
angular positions around a vertical rotation axis for each sample. The imaging setup
consisted of a 20 µm thick LuAG:Ce scintillator screen, a 20x objective and a sCMOS
(PCO.edge) camera. The tomographic reconstruction was performed using optimized
routines based on the Fourier Transform Method (Marone and Stampanoni, 2012). The
resulting volume consisted of 2160 axial slices of 2560 x 2560 pixels, with a pixel size
of 0.33 µm.

2.2.3 Single-Crystal X-ray Di�raction (SCXRD)

SCXRD measurements were performed on the Fe-rich periclase inclusions both before
and after release from their diamond host at the Department of Geosciences (University
of Padova). X-ray data were collected using a Rigaku Oxford Di�raction SuperNova
single-crystal di�ractometer, equipped with a Dectris Pilatus 200 K area detector and
with a Mova X-ray microsource. A monochromatized MoKa radiation (λ = 0.71073
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Å), working at 50 kV and 0.8 mA, was used. The sample-to-detector distance was 68
mm. Data reduction was performed using the CrysAlisPro software (Rigaku Oxford
Di�raction).

2.2.4 Field Emission Gun � Scanning Electron Microscopy (FEG-
SEM)

The two Fe-rich periclase inclusions were �rst extracted by mechanical crushing of the
host, then polished in a three-step process after which they were carbon coated. FEG-
SEM measurements were carried out at the Department of Physics and Astronomy
(University of Padova), using a Zeiss SIGMA HD FEG-SEM microscope operating at
20 kV, with a spot size of ∼ 1 nm. Imaging was performed using an InLens secondary
electron detector. Compositional analysis was performed using an energy dispersive
X-ray spectrometer (EDX by Oxford Instruments). The spatial resolution in micro-
analysis was of ∼ 1 µm.

2.2.5 Finite Element (FE) analysis

The FE analysis was performed on the real 3D model built from the segmentation of
the X-ray microtomographic data (Fig. 2.2). The surface of the model was simpli�ed
and smoothed to improve the quality of the �nal FE mesh, having care to not obliterate
the surface topography of the inclusions. The �nal 3D model was then assembled in
Simulia Abaqus, a commercial engineering package for FE analysis, placing the two
inclusions in the diamond host. An elastically isotropic FE analysis was run (for
more details on the procedure see Mazzucchelli et al., 2018 and section 1.6.1). The
elastic properties for the Fe-rich periclase inclusions were obtained from the re-�tting
of the original P-V-T data of Mao et al. (2011) up to 2000 K and 50 GPa using
a 3rd-order Birch-Murnaghan equation of state (EoS) combined with a Berman-type
thermal expansion, that gives an isothermal bulk modulus K0TR = 162(14) GPa (full
EoS reported at http://www.rossangel.com). The Reuss shear modulus G0R = 87(2)
GPa was obtained from the elastic constants reported by Jacobsen et al. (2002) for
a Fe-rich periclase with composition (Mg0.63Fe0.37)O that is close to the composition
of our inclusions, (Mg0.60Fe0.40)O. For diamond we used the K0TR = 444(2) GPa and
G0TR= 535 GPa from Angel et al (2015).

2.2.6 Elasto-plastic model

The calculation is split into two steps, dividing the calculation into an isothermal,
quasi-static decompression from Ptrap, Ttrap to Proom, Ttrap, followed by an isobaric
cooling to room temperature. This is assumed to be a realistic approximation of the
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Figure 2.2: Real 3D model of the periclase inclusions built from the segmentation of the X-
ray microtomographic dataset. The reconstruction, which preserves the morphology of the
two inclusions and their mutual distances and orientations, reveals the absence of fractures
both around the inclusions and at the diamond-inclusion interface. The inclusions' residual
pressure (Pinc ) as calculated by FE analysis on the basis of their shape predicts a higher Pinc
for AZ1_1 (red) compared to AZ1_2 (blue).

P-T path experienced by diamonds exhumed to the Earth's surface through Kimber-
lite pipes. The model is solved by inversion. The host-inclusion system is initially at
Proom, Troom with the inclusion at the experimentally measured P exp

inc . First, an en-
trapment temperature (Ttrap) is chosen and the over-pressure P

Proom,T trap
inc developed in

the inclusion during isobaric heating to Proom ,Ttrap is calculated adjusting the elastic
properties of the host and the inclusion according to their EoS. A Ptrap is guessed at the
chosen Ttrap , and the elasto-plastic deformation of the host and inclusion pressure are
calculated during the quasi-static decompression of the host from Ptrap, Ttrap to Proom
,Ttrap according to Campione (2018). The guessed Ptrap is adjusted until the pressure
calculated in the inclusion at Proom ,Ttrap matches the previously found P

Proom,T trap
inc .

The elastic properties for diamond are from Angel et al. (2015) and from Zouboulis et
al. (1998). The variation of σY with T (between 1273 and 1823 K) was obtained from
Weidner et al. (1994). The EoS of the inclusion was obtained from the re-�tting of the
original P-V-T data of Mao et al. (2011) as discussed above.

2.3 Results

2.3.1 Sample analysis

The diamond was a �attened colourless dodecahedron from the São Luiz alluvial area,
Juina, Brazil in which two Fe-rich periclase inclusions occurred in the central area of
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the stone (sample AZ1, Fig. 2.1). The �nal 3D reconstruction (Fig. 2.2) of the inclu-
sions revealed the absence of fractures around them, suggesting that the host did not
experience brittle deformation during exhumation. SCXRD measurements on the two
Fe-rich periclase inclusions revealed the presence of another phase, which was identi�ed
as magnesioferrite. Di�raction images (Fig. 2.3) only show the second (1.49 Å) and the
third (2.44 Å) most intense peaks of Fe-rich periclase, as the main peak (2.10 Å) cannot
be detected due to an overlap with the most intense diamond peak, located at the same
d spacing (2.07 Å). In addition, the �rst (2.53 Å) and the third (2.97 Å) most intense
peaks of magnesioferrite are visible. Again, the second peak of magnesioferrite in order
of intensity (1.48 Å) cannot be unambiguously detected due to overlapping with the
peak of Fe-rich periclase (1.49 Å). As indicated by the di�raction data, Fe-rich peri-
clase and the exsolutions of magnesioferrite show an almost identical crystallographic
orientation. In order to produce pseudo-single-crystal X-ray di�raction spots like those
shown in Fig. 2.3, there must be a high density of nanometer-sized magnesioferrite
grains in topotaxial relation to the Fe-rich periclase. Both inclusions after release and
polishing exhibited pervasively and homogeneously distributed exsolutions of magne-
sioferrite of about 200 nm size, which often coalesced into chains of 2�3 µm length and
constituted about 6% of the total surface area (calculated using the ImageJ software,
Abràmo� et al., 2004). EDX analyses of both Fe-rich periclases gave a similar average
and approximate composition of (Mg0.60Fe0.40)O.

2.3.2 Inclusion residual pressure

X-ray analyses provided the lattice parameters and the relative unit-cell volumes re-
ported in Table 2.1. By comparing the unit-cell volumes before (V ) and after (V0)
release from the diamond host and using the P-V-T EoS for Fe-rich periclase discussed
above (and reported at http://www.rossangel.com), we obtained a residual pressure,
Pinc of 1.84(65) GPa for inclusion AZ1_1 and of 1.48(67) GPa for inclusion AZ1_2.
The high uncertainties in Pinc are due to the high uncertainty in the bulk modulus
value of Fe-rich periclase (Mao et al., 2011).

2.3.3 Depth of formation of the Fe-rich periclase � diamond
pair by elasto-plastic geobarometry

Given the absence of fracture systems around the inclusions, the calculated Pinc can
be linked to the depth of formation by elastic geobarometry. Standard elastic meth-
ods rely on simpli�ed models which assume that the inclusion is spherical and sitting
isolated in an in�nitely large host (e.g. Zhang, 1998). However, numerical simulations
based on elasticity theory and including geometrical e�ects predict that platy inclu-
sions should exhibit a lower Pinc compared to more rounded inclusions of the same
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Figure 2.3: Single-crystal X-ray di�raction images of inclusion AZ1_2 showing the second
and the third di�raction peaks of Fe-rich periclase together with the �rst and the third most
intense peaks of magnesioferrite. Peaks at 2.07 Å and 1.26 Å belong to diamond.

mineral entrapped at the same pressure (Mazzucchelli et al., 2018). This is consis-
tent with our measurements, which show a lower Pinc for the platy AZ1_2 than for
the more rounded AZ1_1. We applied the Finite Element (FE) analysis described by
Mazzucchelli et al. (2018), reported in chapter 1 of this thesis, to determine appro-
priate geometrical correction factors (Γ) for AZ1_2 and AZ1_1. To obtain realistic
corrections, we performed the FE analysis on the real 3D model built from the segmen-
tation of the X-ray microtomographic data, thereby modelling the correct morphology
of the two inclusions and their mutual orientation (Fig. 2.2). When the morphology of
the inclusion is not perfectly ellipsoidal, the residual strain, stress and pressure in the
inclusion are not homogeneous (Eshelby, 1957; Campomenosi et al., 2018) and vary
from point to point depending on the presence of edges, corners and in general on the
speci�c morphology. SCXRD measurements give a mean volume strain that is aver-
aged over the entire volume of the inclusion; as a consequence, the experimental Pinc
is not associated to any speci�c point in the inclusion and should be regarded as an
average over the inclusion volume. Accordingly, Γ, calculated as a local factor, can also
vary from point to point in the inclusion depending on the local stress concentration
due to the speci�c morphology. Therefore, for applications to XRD measurements,
Γ was calculated as an average factor integrated over the inclusion volume. The Γ
factors obtained in this way are �0.016(5) and �0.080(10) for inclusions AZ1_1 and
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AZ1_2, respectively. Applying the correction factor to our experimental determined
residual pressures we obtained the corrected Pinc of 1.87(66) GPa and 1.61(73) GPa
for the inclusions, respectively. We then calculated the entrapment isomeke for the two
Fe-rich periclase-diamond pairs using the corrected values for Pinc and the software
EosFit-Pinc (Angel et al., 2017). Since both the host and the inclusion have cubic
crystallographic symmetry, the e�ect of anisotropic elasticity is limited (see chapter
7 of this thesis), allowing the use of current isotropic elastic geobarometry models.
To maintain consistency among each step of the calculation, we used the same elas-
tic properties reported above for the determination of the residual pressure and for
the calculation of the geometrical factors. The intersection of the isomeke with the
mantle geotherm, accounting for the isomeke uncertainty, gave an entrapment pres-
sure for AZ1_1 of Ptrap = 13.4(1.4) GPa and for AZ1_2 of Ptrap = 12.8(1.6) GPa at
a temperature Ttrap = 1790(30) K (see Table 2.2 and Fig. 2.4). This estimate does
not take into account plastic deformation in the diamond, which may accommodate
part of the inclusion expansion during uplift to surface (Anzolini et al., 2016). Plastic
deformation is well documented in diamond and, particularly, in SDDs (e.g., Cayzer et
al., 2008), consistent with its low yield strength (σY ) at high temperatures (Weidner
et al., 1994). Therefore, the Ptrap calculated from a purely elastic model is likely to
be underestimated. To account for plastic deformation, the elasto-plastic (EP) model
for barometry proposed by Campione (2018) (see Methods) was applied to these data.
The back-calculation of Ptrap,EP as a function of T was solved by adjusting the (σY ) of
diamond according to the experimental measurements of Weidner et al. (1994) and the
elastic parameters for diamond and Fe-rich periclase, previously noted. Since the EP
model assumes that the inclusion is spherical, we applied this method only to the most
rounded of the two inclusions, i.e. AZ1_1. The best agreement between the calcu-
lated Ptrap,EP (T ) and the geotherm is at 15.7(2.5) GPa and 1823(30) K [∼ 450(70) km
depth]. Considering the uncertainties, this result is compatible with an origin in the
lowermost upper mantle or in the upper transition zone (Fig. 2.4). Unfortunately, the
depth obtained is only an estimate restricted by a lack of experimental values of (σY )
for temperatures higher than ∼ 1850 K (Weidner et al. (1994) and the fact that the
EP model only considers the deformation caused by over-pressurization of the inclusion
with respect to the external lithostatic pressure (Campione, 2018). If external tectonic
stresses act on diamonds during uplift through the sub-lithospheric mantle, they may
promote additional plastic deformation, which may contribute to release of part of the
Pinc being built on the inclusion. Therefore, the Ptrap,EP value of 15.7(2.5) GPa for
AZ1_1, which corresponds to a depth of about 450(70) km, should be regarded as a
minimum estimate. In addition, models used in this work do not take into account
the e�ect that the magnesioferrite exsolution may have on Pinc and, in turn, the cal-
culated Ptrap. However, given the small contrast in elastic properties between Fe-rich
periclase and magnesioferrite (Reichmann and Jacobsen, 2014) and the small amount
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Table 2.1: Lattice parameter and unit-cell volume of the two Fe-rich periclase inclusions. The
residual pressure is calculated by comparing the volume before (V ) and after (V0) release from
the diamond host.

Inclusion a (Å) a0 (Å) V (Å3) V0 (Å3) Pinc (GPa)

AZ1_1 4.253(4) 4.2685(2) 76.91(12) 77.770(5) 1.84(65)
AZ1_2 4.256(8) 4.2689(3) 77.1(2) 77.795(9) 1.48(67)

Table 2.2: Isomeke calculations for the two diamond-Fe-rich periclase host-inclusion systems
studied in this work. Pressures in GPa.

Ptrap inclusion AZ1_1 Ptrap inclusion AZ1_2

T (K) Pinc - esd Pinc = 1.87 Pinc + esd Pinc - esd Pinc = 1.61 Pinc + esd

1448 10.26 11.74 13.25 9.54 11.15 12.81
1498 10.52 11.99 13.51 9.80 11.41 13.07
1548 10.77 12.25 13.76 10.05 11.66 13.32
1598 11.02 12.49 14.01 10.29 11.90 13.57
1648 11.26 12.73 14.25 10.53 12.14 13.81
1698 11.49 12.97 14.48 10.77 12.38 14.04
1748 11.72 13.20 14.71 11.00 12.61 14.27
1798 11.95 13.42 14.94 11.22 12.83 14.50
1848 12.16 13.64 15.16 11.44 13.05 14.72
1898 12.38 13.85 15.37 11.66 13.27 14.93
1948 12.59 14.06 15.58 11.87 13.48 15.14
1998 12.79 14.27 15.78 12.07 13.68 15.34

of magnesioferrite (∼ 6% by volume), the e�ect is probably limited and well within the
uncertainties already accounted for in the calculations.

2.4 Conclusions

The application of non-ideal elastic geobarometry, that incorporates the correction for
geometrical e�ects based on a real 3D model of the sample, may give hints to constrain
the origin of Fe-rich periclase inclusions found in diamonds. Results from purely elastic
models give an entrapment at the lower part of the upper mantle (Ptrap = 13.4(1.4)
GPa at Ttrap = 1790(30) K). At those entrapment conditions, however, the plasticity
of the diamond host may be high enough to accommodate part of the expansion of
the inclusion, resulting in the underestimation of the entrapment pressure by purely
elastic methods. Simple elasto-plastic model that assume a quasi-static isothermal
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and Ito (1989), Fei et al. (2004). The coesite-stishovite phase boundary (black broken line) is
after Zhang et al. (1996). The graphite-diamond phase boundary (thick grey dashed line) is
after Day (2012). The geotherm (black dashed line) is calculated for a typical cratonic surface
heat �ow of 40 mW/m2 (Hasterok and Chapman, 2011) and a mantle adiabat (Turcotte and
Schubert, 2014). The 410 and 660 km discontinuities enclosing the mantle transition zone
are indicated by bold lines. Entrapment pressures (Ptrap) calculated for inclusions AZ1_1 and
AZ1_2 at various T with the purely elastic model are represented by blue and green diamonds,
respectively. The Ptrap,EP calculated with the elasto-plastic model for inclusion AZ1_1 at T
consistent with the geotherm is represented by the red box. This Ptrap,EP provides a minimum
estimate for the pressure of formation of the diamond.
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uplift of the diamond, accounting for the variation of its yield strength (σY ) with T,
give an entrapment at Ptrap = 15.7(2.5) GPa and Ttrap = 1823(30) K, that corresponds
to the upper mantle-transition zone boundary (depth of 450(70) km). However, this
calculation only considers the plastic deformation of the diamond due to the over-
pressurization of the cavity. Non-lithostatic tectonic stresses acting on the diamond
during uplift may result in further plastic deformation that is not accounted by our
models, resulting in deeper entrapment conditions.
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3.1 Abstract

Raman spectroscopy provides information on the residual strain state of host-inclusion
systems that, coupled with the elastic geobarometry theory, can be used to retrieve the
P-T conditions of inclusion entrapment. In-situ Raman measurements of zircon and
coesite inclusions in garnet from the Ultrahigh-pressure Dora Maira Massif show that
rounded inclusions exhibit constant Raman shifts throughout their entire volume. In
contrast, we demonstrate that Raman shifts can vary from the center to the edges and
corners of faceted inclusions. Step-by-step polishing of the garnet host show that the
strain in both rounded and prismatic inclusions is gradually released as the inclusion
approaches the free surface of the host. More importantly our experimental results
coupled with selected numerical simulations demonstrate that the magnitude and the
rate of the strain release depends also on the contrast in elastic properties between the
host and the inclusion and on the inclusion crystallographic orientation with respect to
the external surface (anisotropy). These results allowed us to give new methodological
guidelines for determining the residual strain in host inclusion systems.

3.2 Introduction

Elastic geobarometry for host-inclusion systems is based on measurements of the resid-
ual strains produced during exhumation as a consequence of the contrast in elastic
properties between the host and the inclusion. The residual strain in the inclusions
can be measured by micro-Raman spectroscopy or X-ray di�raction and can be used
to calculate pressure and temperature (P-T) estimates for metamorphic rocks that are
not dependent on chemical equilibrium (e.g., Rosenfeld and Chase, 1961; Enami et al.,
2007; Angel et al., 2015; Anzolini et al., 2018; Murri et al., 2018). Models for elastic
geobarometry only apply to the simple case of elastically isotropic host-inclusion pairs
with a simple ideal geometry where a small spherical inclusion is trapped in an in�nite
host (Angel et al., 2015). Recent numerical models showed that any deviations from
the idealized geometry signi�cantly a�ects the estimation of �residual pressure� (Maz-
zucchelli et al., 2018). Indeed, gradients in non-spherical inclusions have been already
reported (e.g. Zhukov and Korsakov, 2015; Murri et al., 2018). Moreover, several stud-
ies pointed out the e�ects on the residual �pressure� determination of the inclusion size
and its partial exposure with respect to the mineral host surface (e.g. Rosenfeld and
Chase, 1961; Enami et al., 2007; Zhang, 1998; Mazzucchelli et al. 2018). Nevertheless,
open questions still remain, including: what is the e�ect of the inclusion anisotropy
in the residual strain release? How much can the contrast in properties between the
host and the inclusion and their geometry in�uence the residual strain? Therefore,
we propose an alternative way to test the e�ect of the geometry of the host-inclusion
system on the Raman signal and on the calculated residual pressure upon polishing: to
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collect spectra from selected inclusions with di�erent shape, size and crystallographic
orientation, while performing several steps of polishing of the rock thick section to bring
the inclusion closer to the external surface of the host. In this manuscript we report
the Raman spectra of rounded and elongated zircon inclusions and a rounded coesite
inclusion in pyrope from the ultrahigh-pressure (UHP) Alpine Dora Maira Massif mea-
sured before and after several subsequent steps of polishing. The measured �residual
pressures� are compared with the results of a set of Finite Element models following the
approach of Mazzucchelli et al. (2018). This allows us to provide new methodological
guidelines and examples of correction curves to adjust measurements carried out on
faceted and anisotropic inclusions and/or close to the host surface.

3.3 Sample description

We analyzed zircon and coesite inclusions within pyrope megablasts and porphyroblasts
respectively, from the whiteschist of the Brossasco-Isasca UHP unit in the Gilba local-
ity, whose petrography and petrology were reported by several authors (e.g. Chopin,
1984; Hermann, 2003). Whiteschists occur as lenses inside ortho-gneiss and para-gneiss
of the Monometamorphic Complex (supplementary materials, section 3.7) and mainly
consist of quartz, phengite, kyanite and porphyroblastic to megablastic pyrope-rich
garnet. The Dora Maira whiteschist shows a phengite, garnet and kyanite-bearing
foliation that wraps around the garnet megablasts (up to 15 cm across). The latter
contain numerous inclusions (from few microns to 1 mm in size) mainly of kyanite,
rutile and zircon. Garnet porphyroblasts (up to 2 mm in size) within the foliated rock
matrix contain rutile, zircon and coesite inclusions. Coesite grains are frequently sur-
rounded by quartz rims and palisade quartz structures (Chopin, 1984), but we only
measured the rare monocrystalline unaltered coesite inclusions. For the application of
elastic geobarometry we selected garnet-core and rim domains unaltered and free of
fractures. In these domains the coesite and zircon inclusions are surrounded by bire-
fringent haloes (Fig. 3.1), indicating that the structure of the garnet host around the
inclusions is anisotropically strained.

3.4 Methods

As pointed out previously (Zhang, 1998; Mazzucchelli et al., 2018), only small iso-
lated inclusions far from any free surface of the garnet thick sections (e.g. distance
> 3 radii of the inclusion) do not su�er potential strain release. Therefore, for this
study we prepared polished sections of 250-260 µm thickness. We performed Raman
spectroscopic measurements only on inclusions at the center of the section with a
mean linear size smaller than 50 µm, (i.e. considerably less than the distance to the
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Figure 3.1: A polished pyrope megablast section with partial talc + chlorite alteration along
fractures and rims. The red square shows an example of a mm-sized fracture-free garnet area
selected for this study, in which zircon and coesite crystalline inclusions exhibiting strain-
induced birefringent haloes in the surrounding host have been found. From Campomenosi et
al. (2018).
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host surface). Micro-Raman scattering measurements were conducted in backscatter-
ing geometry with a Horiba Jobin-Yvon T64000 triple-monochromator spectrometer
with a spectral resolution of ≈ 2 cm−1 and instrumental accuracy in peak positions of
≈ 0.35 cm−1. For each inclusion a series of spot measurements were carried out along
the equatorial plane of the inclusion as shown in Fig. 3.2. Details of the measurements
and data processing are given in the supplementary materials (section 3.7). We col-
lected Raman spectra before and after polishing of the garnet hosts by known amounts.
The inclusion distance from the surface (i.e. the distance between the equatorial plane
of the inclusion and the host external surface) was estimated by means of optical focus
coupled with the controlled z-position motorized microscope stage. We repeated the
procedure until the inclusion was half-exposed. This allowed us to observe the �real
time� evolution of the strains inside the inclusions in terms of changes in the Raman
frequencies. Here we show examples of single crystals of zircon: one rounded (≈ 20µm
in radius) and one prismatic (≈ 80µm along the long axis), labelled S2 and S3, respec-
tively) and one rounded single crystal of coesite (≈ 15µm in radius, sample S24) in the
garnet megablasts and porphyroblasts, respectively. No prismatic or idiomorphic co-
esite inclusions have been found. Since our inclusions are elastically anisotropic, their
orientation with respect to the polishing surface is critical for the interpretation of the
results by means of numerical simulations. The idiomorphic zircon grain S3 has the
c axis inclined with respect to the polishing surface by approximately 20◦ (estimated
optically). Analysis of the peak intensities in the polarized Raman spectra suggests
that the rounded zircon grain S2 has its c axis almost perpendicular to the surface.
The coesite crystal S24 was rounded and the absence of pronounced changes in the
Raman intensities measured in di�erent scattering geometries makes it impossible to
determine its orientation and therefore it was not possible to perform numerical simu-
lations for this inclusion. Finite element simulations have been carried out to support
the interpretation of our measurements of zircon inclusions S2 and S3 and to evaluate
the e�ect of the proximity of the inclusion to the external surface of the thick sec-
tion on the residual strain of the inclusion (procedures as in Mazzucchelli et al., 2018,
further details are reported in supplementary materials). Elastic anisotropy has been
incorporated in the model for the zircon inclusions. The pyrope host was treated as
isotropic because its universal anisotropic index (Ranganathan and Ostoja-Starzewski,
2008) is negligible (i.e. 9 · 10−4), based on the elastic moduli reported by Sinogeikin
and Bass (2002). The use of isotropic elastic properties for the host allows us to neglect
the mutual crystallographic orientation of the host and the inclusion. For our purposes
the only relevant orientation is that of the inclusion with respect to the surface of the
petrographic section.
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Figure 3.2: Position of the Raman peak
A1g ≈ 975 cm−1 in a rounded (A) and
an idiomorphic (B) zircon crystal before
and after the �nal step of polishing. The
solid lines in the plots are guides for the
eye; the dashed line in (B) traces the
data points measured after two days of
�nal exposure of the grain. From Cam-
pomenosi et al. (2018).
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3.5 Results and discussion

Both rounded and idiomorphic inclusions close to the center of the section display
Raman peak positions shifted toward higher wavelengths compared to free reference
crystals. Within the instrumental precision (±0.35 cm−1) the rounded zircon inclusion
S2 and the rounded coesite inclusion S24 showed no spatial variation of the Raman peak
positions within the inclusions. On the other hand, for idiomorphic crystals (zircon
inclusion S3 with well-developed corners and edges) there is a steady increase in the
peak positions of about 1 cm−1 from the center towards the edges of the inclusions (Fig.
3.2B). This is a direct consequence of strain heterogeneity in the inclusion, which can
be caused by chemical zonation, zoned radiation-induced damage and/or an imposed
strain gradient. The substitution of elements such as Th, U, or Hf for Zr, may cause
expansion (U, Th) or contraction (Hf) of the zircon unit cell (Nasdala et al., 1998),
leading to a change in the phonon wavenumbers. However, compositional analysis of
the exposed grain performed after the �nal step of polishing did not reveal any chemical
zonation (see supplementary material). Radioactive decay of elements such as U and
Th can induce structural damage, leading to Raman peak broadening and a shift
towards lower wavenumbers (Binvignat et al., 2018). However, the full-width-at-half-
maximum (FWHM) of our zircon inclusions is equal to that of full crystalline zircon
(≈ 4−5 cm−1), thus indicating a high degree of crystallinity throughout the entire grain
bulk. Since the zircon inclusion S3 is chemically homogeneous (see Appendix A.1) and
well-crystalline, the variable Raman shift in it is due to its faceted shape (Eshelby, 1957)
because the edges and corners act as stress concentrators (Zhang, 1998; Mazzucchelli et
al., 2018). Then, after polishing, the Raman spectra of S3 become homogeneous within
the fully exposed part of the sample (Fig. 3.2B), con�rming that the variation in the
peak position in a single crystal for all bands was caused by the shape of the crystal. A
decrease in the Raman band wavenumbers was measured at the center of the inclusions
upon polishing for all the investigated samples of zircon and coesite. As an example,
Fig. 3.3A shows the B1g mode near 1008 cm−1 measured on zircon sample S3 at three
di�erent steps of polishing. Strictly speaking, the phonon wavenumbers are directly
related to the strain, rather than to the applied pressure. Moreover, for elastically
anisotropic materials the same relative volume change can be obtained by di�erent
strains, for example as induced by hydrostatic or deviatoric stress. Therefore, the
commonly used direct proportionality between the Raman peak positions and residual
pressure is a strongly oversimpli�ed assumption (Murri et al., 2018). Nonetheless, if
we assume that the change in Raman wavenumber ω is linear with mean stress P
(i.e. ∂ω/∂P is constant), we can introduce the normalized change in the peak position
∆ωnorm as a parameter to express the relative release in �pressure� as the inclusion
becomes closer to the external surface of the host during polishing:
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∆ωnorm =
(ωI,d − ωI,0) ∂P

∂ω
− (ωI,∞ − ωI,0) ∂P

∂ω

(ωI,∞ − ωI,0) ∂P
∂ω

=

=
(ωI,d − ωI,∞)

ωI,∞ − ωI,0
≈ Pi,d − Pi,∞

Pi,∞
= Γ

(3.1)

Where ωI,0 is the wavenumber for a free crystal measured at ambient conditions, ωI,∞
and PI,∞ are the wavenumber and the corresponding pressure for an inclusion in an
in�nitely large host (i.e. before the polishing, when the inclusion was far away from the
surface of the host), while ωI,d and PI,d are the wavenumber measured on the inclusion
and its pressure after each polishing step and associated to a speci�c normalized dis-
tance d (i.e. the distance from the inclusion center to the host external surface divided
by the corresponding inclusion radius). Under these assumptions equation (3.1) shows
that ∆ωnorm becomes equivalent to the geometrical factor Γ de�ned by Mazzucchelli et
al, (2018). As can be seen in Fig. 3.3B and C, the normalized change in the peak po-
sition ∆ωnorm decreases progressively towards -1 (i.e. the Raman shift becomes equal
to that of the free inclusion), when the inclusion approaches the host surface. The
trends of �pressure� release estimated from the Raman spectra measured on our zir-
con samples show the same pattern with those calculated from numerical simulations
performed on similar geometries and crystallographic orientations (e.g. see the dotted
lines in Fig. 3.3B). However, the experimental data suggest a greater amount of stress
release compared to the numerical simulations. For example, at a normalized distance
of 1 (inclusion just in contact with the external surface), the calculated stress release is
approximately 50%, whereas that obtained from experimental data is about 70% (Fig.
3.3B). There are at least two contributions to this discrepancy: (i) for non-cubic inclu-
sions direct conversion of Raman shifts into pressures using a hydrostatic calibration
is incorrect; (ii) when the inclusion is close to the surface, strain gradients may be re-
laxed through plasticity or micro-fractures that are not considered in our purely elastic
numerical models. Interestingly, our experiments show that even after partial exposure
of the inclusion (i.e. for normalized distances ≤ 1) the Raman shift does not record
full strain release (i.e. the inclusion is not at ambient conditions). In Fig. 3.3C , for
example, the polished coesite inclusion still shows 40% of its residual strain. Finally,
the di�erence in the strain release between zircon and coesite inclusions is probably
due to the di�erent contrast in properties with respect the host garnet. Indeed, since
coesite is softer than zircon, the host garnet can still retain a greater amount of its
residual strain even if half of the inclusion is exposed. This implies the possibility to
have thinner hosts for softer inclusions such as coesite or quartz in garnet but, however,
the possibility of fracturing during polishing is high (Enami et al., 2007).
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Figure 3.3: (A) Raman scattering aris-
ing from the antisymmetric SiO4 stretch-
ing (the B1g crystal phonon mode ≈
1008 cm−1) measured when the grain was
fully entrapped (red line), at an inter-
mediate stage of polishing (yellow), and
when the inclusion was exposed at the �-
nal stage of polishing (green line). The
numbers are the measured Raman shifts.
(B) Measured normalized wavenumber
shifts ∆ωnorm for zircon S2 (green cir-
cles) and zircon S3 (blue squares) versus
the normalized distance d to the host sur-
face along with the �t to the correspond-
ing data A1g ≈ 975 and B1g ≈ 1008 cm−1

data sets (solid lines) as well as the calcu-
lated geometrical factor Γ (dashed lines)
from the FE model; ∆ωnorm (d) and Γ
(d) show the same trend within uncer-
tainties. (C) Measured ∆ωnorm (d) (cir-
cles) for the modes A1g ≈ 119 and ≈
521 cm−1 (solid line) for S24 coesite in-
clusion. Red line: �t trough the experi-
mental points. From Campomenosi et al.
(2018).
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3.6 Implications

Our measurements show that Raman shift is homogeneous only in rounded inclusions
while it is non-homogeneous in faceted ones (Fig. 3.2 A and B), in a full agreement with
numerical calculations (Mazzucchelli et al. 2018) and theory (Eshelby, 1957). There-
fore, multiple Raman spectra collected on faceted inclusions should not be averaged
if their di�erences are larger than the instrumental peak precision. Instead, to avoid
the e�ects of grain shape on Raman peak positions, only Raman spectra measured at
the center of the inclusions should be used because there we can apply the geometri-
cal correction (see Mazzucchelli et al., 2018). Our polishing experiments con�rm that
the Raman shift on the inclusion decreases as the inclusion gets closer to the external
surface (Rosenfeld and Chase, 1961; Zhang, 1998; Mazzucchelli et al., 2018). There-
fore, only inclusions whose centers are distant more than 4 radii (Fig. 3.3 B) from the
section surface and internal surfaces of the host should be used. If the Raman peak
positions vary from one inclusion to another, even when the inclusions are properly
selected, this indicates that some other factor is responsible, such as chemical variation
in the host or inclusions, or growth of the host and thus inclusion entrapment under
di�erent conditions, such as along a prograde subduction path. More importantly, our
results, coupled with our FE numerical simulations, show how anisotropy (i.e. crys-
tallographic orientation of the inclusion with respect to the external surface) and the
contrast between the inclusion and host physical properties in�uences the strain re-
lease during polishing. Furthermore, even when an inclusion is exposed at the surface
of the host grain, it can still exhibit a variation in the peak position with respect to
a free crystal, and thus residual strains and stresses (Fig. 3.3 C). Therefore, partially
entrapped grains to be used as a strain free standard against which to measure the
Raman shifts of unexposed inclusions should be avoided or chosen extremely carefully.
Finally, as an example, if we calculate from our experimental data on Raman shift
values the strain and then the mean stress in the inclusion after subsequent polishing
steps, following the approach given by Murri et al. (2018), we have for the zircon S3
an initial residual pressure (Pinc) of 0.5 GPa. After 55 microns of polishing (1.5 of
normalized distance in Fig. 3.3 B), when the inclusion is still buried in its garnet host
the Pinc is dropped at 0.2 GPa. A value of 0.06 GPa is recorded when the inclusion
is half exposed. For zircon S2 the initial Pinc was of about 0.9 GPa and of about
0.3 GPa when the inclusion was just touching the external surface of the host. In the
supplementary material a table showing the evolution of the Pinc as function of the
polishing for the two zircon inclusions is reported (Table 3.8) For coesite no reliable
data are presents to give the strain state of the inclusion by means of the Raman peak
positions.
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3.7 Supplementary materials

3.7.1 Sample provenance and geological background: the Dora
Maira massif

Our study focusses on solid inclusions in pyrope megablasts (up to 15 cm across) and
porphyroblasts (up to 2 cm across) from the Dora Maira Massif (DMM; Italian West-
ern Alps; Fig. 3.4), a slice of continental crust involved in Alpine subduction and
exhumation. Since the discovery of coesite inclusions in garnet from phengite white-
schists (Chopin, 1984), the DMM became a world-known setting for ultrahigh-pressure
(UHP) metamorphism and attracted interest of numerous scientists who de�ned its
structure, tectonic and metamorphic histories (e.g. Chopin, 1984; Hermann, 2003).
The DMM consists of Variscan orto- and para-gneiss involved in Alpine subduction
and exhumation (for a review see also Carswell and Compagnoni, 2005). The UHP,
coesite-bearing Brossasco-Isasca Unit of the DMM is tectonically sandwiched between
two lower pressure units (Rocca du Soleil and Pinerolo Units, Fig. 3.4). It consists of
two main litostratigraphic sub-units, the Monometamorphic and the Polymetamorphic
Complexes, made of orthogneiss and of amphibolite-facies basement rocks, respectively.
We investigated pyrope megablasts and porphyroblasts from whiteschist lenses hosted
in the Monometamorphic Complex (Gilba locality, Fig. 3.4). The whiteschist is inter-
preted to either derive from evaporite (Chopin, 1984), or from metasomatism of former
orthogneiss by Mg-rich �uids in�ltrating during UHP metamorphism (e.g. Ferrando et
al., 2009);. The P − T − t path of the DMM has been de�ned in a number of papers:
here we refer to Rubatto and Hermann, (2001), who combined P − T estimates with
in-situ U-Pb titanite dating. These authors de�ned a peak metamorphic stage at 3.5
GPa - 750 ◦C at 35.1 ± 0.9 Ma, and three decompression steps at 32.9 ± 0.9 Ma,
31.8 ± 06 Ma and 29.9 ± 1.4 Ma, respectively. Rubatto & Hermann (2001) proposed
di�erent exhumation velocities of the DMM, from 3.4 cm/yr during the �rst stage of
exhumation from peak conditions, to 1.6 cm/yr and 0.5 cm/yr during the last two
exhumation steps. More recently, further experimental and petrological studies carried
out on whiteschists by Hermann (2003) indicated that the peak metamorphic pressure
was in the diamond facies stability �eld at 43 kbar and 730 ◦.

3.7.2 Mineral chemistry of garnet and zircon

The mineral chemistry of garnets was determined by means of a TESCAN Vega-3 elec-
tron microprobe at the University of Genova (DISTAV department), using an energy-
dispersive technique with an acceleration voltage of 15 keV, a beam current of 14 nA.
The standard used were: K pyrope USNM 143968, MAC N◦ 10642 forsterite. Empir-
ical formula recalculation was computed based on 12 oxygens and the ferric iron was
estimated by �lling octahedral sites to the theoretical value of 2.0 per formula unit
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Figure 3.4: Tectono-metamorphic sketch map of the southern part of Dora Maira Massif
(modi�ed from Castelli et al. 2007). The white star indicates the locality from which garnet
bearing white schists come from (Gilba locality near Case Fapina). From Campomenosi et al.
(2018).

Figure 3.5: Chemical composition of garnet porphyroblasts and megablasts in the ternary
diagrams Py-Alm-Gr. In grey is reported the composition of garnets from literature data
(Ferrando et al. 2009). From Campomenosi et al. (2018).
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(see Table 3.1). The electron microprobe analysis and chemical element mapping of
the idiomorphic polished zircon was performed using a Cameca SX-100 SEM system
electron microprobe available at University of Hamburg (Earth Science department),
using a wavelength-dispersive technique with an acceleration voltage of 15 keV, a beam
current of 40 nA. The standard used were: Al2O3 for Al, ZrSiO4 for Si and Zr, apatite
for P, wollastonite for Ca, MnTiO3 for Mn, andradite for Fe, REE1 for Y, REE2 for Ce,
REE4 for Nd, Hf for Hf, Pb-Glass for Pb, Th-Glass for Th, UO2 for U. Where REE1 =
Si : 23.27%, Al : 6.23%, Ca : 13.43%, Y : 3.97%, Pr : 3.93%, Dy : 4.02%, Er : 3.97%,
O : 40.46%, REE2 = Si : 23.53%, Al : 6.3%, Ca : 13.49%, Ce : 3.93%, Eu : 3.99%, Ho :
3.92%, Tm : 4.01%, O : 40.47% and REE4 = Si : 24.76%, Al : 6.66%, Ca : 14.42%, Nd
: 3.89%, Tb : 4%, Lu : 3.97%, O : 41.8%. Empirical formula recalculation was com-
puted on the basis of 16 oxygens per formula unit. Garnets, with colours ranging from
pale to dark pink, occur either as megablasts (up to 15 cm across) and porphyroblasts
(up to 1 cm across) in coesite-bearing whiteschists from the Brossasco-Isasca UHP
unit. The garnet megablast (sample DMG.2), in which the selected polished zircon
inclusions have been studied, displays a pyrope-rich composition (up to 94 mol%) with
minor amounts of almandine (up to 5 mol%) and grossular (< 2 mol%) from the core
to the rim. Garnet porphyroblasts display a zonation characterized by almandine-rich
(up to 20 mol%) cores and almost pure pyrope rims (up to 95 mol%) (see Figure 3.5).
The variation of Mg and Fe components in garnet is antipathetic whereas the grossular
component seldom reaches 3 mol%. The most outer garnet rims often show an increase
in the almandine component that was already interpreted by previous authors as the
result of retrogression in the later metamorphic stages. Table 3.1 reports some rep-
resentative chemical analysis of both the garnet megablasts and porphyroblasts. We
performed chemical analysis on the idiomorphic elongated crystal of zircon in order to
understand if the heterogeneity in Raman peak position was caused by the presence of
heterogeneity in the chemical composition (i.e. zonation). It is important to stress that
Raman peak positions are commonly in�uenced by chemical variation greater than 1
wt % and therefore WDS microprobe analysis are su�cient for our purposes. Chemical
analyses performed on the same points in which Raman spectra were collected show
no signi�cant chemical heterogeneities for this zircon crystal. Zircon chemical analyses
results are reported in Table 3.1.

3.7.3 selection rules for phonon modes in zircon and coesite,
and data acquisition and evaluation

Zircon has tetragonal symmetry with space group I41/amd. According to group theory
analysis, the optic phonons at the Brillouin-zone center of zircon are (Kroumova et al.,
2003):
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Γopt = 2A1g + A1u + A2g + 3A2u + 4B1g +B1u +B2g + 2B2u + 5Eg + 4Eu

The A1g, B1g, B2g and Eg modes are Raman-active and therefore a total of 12 Raman
peaks can be observed in the spectrum of a randomly oriented zircon. According to pre-
vious experimental results (Knittle and Williams, 1993; Mihailova et al. unpublished
data) the B1g mode near 1008 cm−1, the A1g mode near 975 cm−1 and the Eg mode
near 357 cm−1 are the most pressure-sensitive peaks. For this reason, our discussion
is mainly focused on these vibrational modes. Note that the B1g modes are symmetry
allowed in ȳ(xx)y scattering geometry (Porto's notation), A1g in ȳ(xx)y , ȳ(zz)y, and
z̄(xx)z, whereas Eg in ȳ(xz)y, with x, y, z along the a, b and c crystallographic axes,
respectively. Coesite is a monoclinic crystal with space group C2/c (unique axis b).
The irreducible representation of the optical vibrations are (Kroumova et al., 2003):

Γopt = 16Ag + 18Au + 17Bg + 18Bu

The Ag and Bg modes are Raman-active and therefore a total of 33 Raman peaks
can be theoretically observed in the spectrum of a randomly oriented coesite crystal.
Experimental results by Hemley (1987) suggest that the Ag mode near 119 cm−1, near
183 cm−1 and near 521 cm−1 are the most pressure-sensitive Raman peaks and they
were used as our �sensors� for the polishing e�ect in coesite. However not all of the
peaks predicted by group theory were observed in our spectra because of their weak
intensities or because of partial overlap with the main garnet peaks. Micro-Raman
scattering measurements were conducted in backscattering geometry with a Horiba
Jobin-Yvon T64000 triple-monochromator spectrometer (holographic gratings of 1800
grooves/mm) equipped with an Olympus BX41 confocal microscope (Olympus LM
Plan FLN 50X objective with a numerical aperture of 0.5) and a Symphony liquid-
N2-cooled charge-coupled device detector. Raman spectra were excited either by the
488.0 or 514.532 nm line of a Coherent 90C Fred Ar+ laser, in order to achieve a mini-
mum level of continuum photoluminescence background. For both laser lines the laser
power on the sample surface was approximately 14 mW, to avoid sample overheating
during the experiment. The spectrometer was calibrated to the silicon Raman peak
at 520.5 cm−1. The spectral resolution was 2 cm−1 and the instrumental accuracy in
determining the peak positions was 0.35 cm−1. Parallel and cross polarized Raman
spectra were collected for all samples in the spectral range 15�1215 cm−1. In the case
of zircon S3, the grains were oriented with the c axis perpendicular to the polarization
of the incident light, which ensured maximum Raman intensity of the major peak near
1008 cm−1. Spectra were collected for 7 s averaging over 3 accumulations. For each
inclusion a series of spot measurements were carried out along the equatorial plane of
the inclusion as shown in Fig. 3.3. OriginLab-Pro 2018 software package was used
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for data �tting and evaluation. The collected spectra were baseline corrected for the
continuum luminescence background when necessary, temperature-reduced to account
for the Bose-Einstein occupation factor (Kuzmany, 2009) and normalized to the acqui-
sition time. Peak positions, full-widths at half maximum (FWHMs), and integrated
intensities were determined from �ts with pseudo-Voigt functions [PV = (1 � q)·Lorentz
+ q·Gauss, q is the weight coe�cient]. The criterion for the maximum number of �tted
peaks was ∆I < I/2, where I and ∆I are the calculated magnitude and uncertainty
of each peak intensity, respectively

3.7.4 Finite element (FE): computational details

We have used a commercially available engineering package, Abaqus Standard v.2016
(Dassault Systèmes, Simulia, Providence), to create and analyze 3D �nite-element mod-
els following the same procedures outlined in Mazzucchelli et al., 2018. The models
reproduce the geometry and the crystallographic orientations of our zircon inclusions
in pyrope (samples S2 and S3), at several steps of distance of the inclusion from the
external surface of the host. All our 3D models have at least one mirror plane, therefore
only half of the selected shape was created and the full model was obtained by re�ection
through that mirror plane. Since the mirror plane of the model corresponds to the [1 0
0] crystallographic plane, it does not restrict the deformation of zircon that is tetrago-
nal. The resulting model consisted of more than 400000 10-node quadratic tetrahedral
elements (element C3D10 in the Abaqus library). Material properties and boundary
conditions were assigned, and then a mesh convergence analysis was performed. The
mesh was re�ned in the areas with higher stress gradients until the calculated stress
distribution appeared smooth. An example of one model and the mesh used is reported
in Fig. 3.6. To simulate the external pressure, face loads were applied to the 3D ele-
ments on the external boundaries of the host. Boundary conditions were placed on the
appropriate edges and faces of the models to avoid rigid body rotation and translation
in the x, y and z directions.

The constitutive equation used by Abaqus for anisotropic linear elasticity is:

σij = Cijklεkl

where σij and εkl are the stress and the strain tensor respectively, and Cijkl are the
elastic sti�ness moduli. For the zircon inclusion the elastic sti�ness moduli at room
conditions reported by Ozkan et al. (1974) were used in FE analysis (Table 3.7).
The pyrope host was treated as isotropic because its universal anisotropic index (Ran-
ganathan and Ostoja-Starzewski, 2008) is only 9 · 10−4, essentially zero, based on the
elastic moduli reported by Sinogeikin and Bass (2002). The isothermal bulk modulus
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Figure 3.6: 3D Finite element meshes of a faceted inclusion partially exposed to the surface
of the host. Only half of the model is shown. The full model is obtained by re�ection through
the mirror plane, as described in the text. From Campomenosi et al. (2018).

at room conditions was derived from Milani et al. (2015) while the shear modulus was
obtained from the elastic moduli reported by Sinogeikin and Bass (2002).

3.7.5 Residual pressure estimation

Residual �pressure� estimation from Raman shift frequencies made using the approach
given by Murri et al., (2018) is reported in Table 3.8. The phonon frequencies taken as
reference for the B1g and the A1g modes refer to the zircon crystal S3 once completely
exposed to the external surface of the host (1008.68 cm−1 and 974.85 cm−1). Note
that these reference values are in agreement with free zircon crystals having similar
composition (Binvignat et al., 2018).
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Table 3.1: Representative chemical analysis of zircon sample S3 and garnet megablasts and porphyroblasts from whiteschists.

 

Mineral Zircon mineral garnet megablast garnet porphyroblasts 

p. analysis p1 p2 p3 p4 p5 p6 p. analysis core rim core rim 

oxide (wt%) (wt%) (wt%) (wt%) (wt%) (wt%) oxide (wt%) (wt%) (wt%) (wt%) 

Al2O3 0.01 0.00 0.00 0.00 0.00 0.01 SiO2 42.50 42.85 42.14 42.83 

SiO2 32.85 32.42 32.74 32.50 32.40 31.60 TiO2 b.d.l. b.d.l. 0.16 0.00 

P2O5 0.23 0.40 0.27 0.27 0.35 0.09 Al2O3 25.11 25.00 24.64 25.23 

CaO 0.02 0.02 0.01 0.02 0.02 0.02 Cr2O3 b.d.l. b.d.l. b.d.l. b.d.l. 

MnO 0.01 0.02 0.01 b.d.l. 0.01 b.d.l. Na2O b.d.l. b.d.l. b.d.l. b.d.l. 

Fe2O3 0.10 0.17 0.12 0.14 0.11 0.20 FeO 2.80 3.36 8.98 2.82 

Y2O3 b.d.l. 0.00 b.d.l. b.d.l. b.d.l. b.d.l. MgO 28.16 28.13 23.04 28.30 

ZrO2 66.11 64.04 65.44 64.55 65.17 66.51 MnO b.d.l. b.d.l. b.d.l. 0.09 

Ce2O3         b.d.l. b.d.l. 0.01 b.d.l. b.d.l. b.d.l. CaO 0.86 0.73 1.31 0.93 

HfO2 1.49 1.64 1.45 1.43 1.52 1.69 H2O+ b.d.l. b.d.l. b.d.l. b.d.l. 

PbO b.d.l.      b.d.l. b.d.l. 0.03 0.01 b.d.l. H2O- b.d.l. b.d.l. b.d.l. b.d.l. 

ThO2 0.02 b.d.l. b.d.l. 0.03 b.d.l. b.d.l. Sum 99.43 100.07 100.27 100.20 

UO2 0.07 0.14 0.03 0.09 0.07 0.04           

Nd2O3 b.d.l. 0.02 0.03 b.d.l. 0.01 0.03           

Sum 100.91 98.87 100.10 99.07 99.68 100.19           

Occupancy moles moles moles moles moles moles occupancy moles moles moles moles 

Zr 3.92 3.86 3.90 3.89 3.91 4.01 Si 2.92 2.93 2.95 2.92 

Hf 0.05 0.06 0.05 0.05 0.05 0.06 Al 0.08 0.07 0.05 0.08 

U - 0.01 - - - - Sum site IV 3.00 3.00 3.00 3.00 

Th - - - - - - Al 1.95 1.95 1.99 1.95 

Y - - - - - - Fe3+ 0.05 0.05 0.01 0.05 

Al - - - - - - Cr3+ - - - - 

Ca - - - - - - Sum site VI 2.00 2.00 2.00 2.00 

Mn - - - - - - Fe2+ 0.11 0.14 0.51 0.11 

Fe3+ 0.01 0.02 0.01 0.01 0.01 0.02 Mg 2.88 2.87 2.41 2.88 

Sum VIII site 3.98 3.94 3.97 3.96 3.98 4.09 Mn2+ - - - 0.01 

P 0.02 0.04 0.03 0.03 0.04 0.01 Ca 0.06 0.05 0.10 0.07 

Si 3.99 4.01 4.00 4.01 3.98 3.90 Na2O - - - - 

Sum IV site 4.01 4.05 4.03 4.04 4.02 3.91 Sum site VIII 3.06 3.06 3.01 3.06 
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Table 3.2: Raman shift heterogeneity inside one single crystal.
 
 

p. analysis* 
B1g 

 (cm-1) 
FWHM 
(cm-1) 

A1g  
(cm-1) 

FWHM 
(cm-1) 

Eg  
(cm-1) 

FWHM 
(cm-1) 

p6 1011.90(1) 5.30(2) 978.51(8) 4.84(12) 360.07(1) 7.44(8) 

p5 1012.09(2) 5.61(3) 977.66(9) 5.35(16) 358.90(2) 8.07(9) 

p4 1011.60(2) 6.02(3) 977.56(9) 5.34(16) 358.77(2) 7.82(9) 

p3 1011.18(2) 6.18(3) 978.10(7) 5.28(12) 359.65(2) 7.30(7) 

p2 1011.26(2) 6.31(5) 978.41(7) 5.15(12) 359.98(2) 7.51(6) 

p1 1012.18(2) 5.72(4) 978.34(7) 4.79(11) 360.08(2) 6.94(6) 

              

p. analysis† 
B1g  

(cm-1) 
FWHM 
(cm-1) 

A1g  
(cm-1) 

FWHM 
(cm-1) 

Eg  
(cm-1) 

FWHM 
(cm-1) 

p6 1010.03(1) 5.71(3) 976.23(5) 4.86(8) 358.37(1) 7.50(2) 

p5 1010.05(2) 6.38(3) 976.30(5) 5.50(8) 358.25(1) 7.77(3) 

p4 1009.37(2) 5.86(3) 975.60(5) 4.97(9) 357.51(1) 7.36(2) 

p3 1009.05(2) 6.63(4) 975.32(8) 5.39(16) 357.13(1) 8.08(3) 

p2 1008.99(2) 6.23(4) 975.37(8) 5.23(15) 357.17(1) 7.68(4) 

p1 1009.92(2) 5.92(4) 976.18(9) 4.77(14) 357.96(1) 6.78(4) 

              

p. analysis§ 
B1g  

(cm-1) 
FWHM 
(cm-1) 

A1g  
(cm-1) 

FWHM 
(cm-1) 

Eg  
(cm-1) 

FWHM 
(cm-1) 

p6 1009.58(2) 6.07(5) 976.40(5) 5.39(9) 358.23(2) 7.97(8) 

p5 1009.53(1) 6.50(1) 975.86(3) 5.54(5) 357.18(1) 7.75(2) 

p4 1009.01(1) 6.49(2) 975.61(4) 5.87(7) 357.31(1) 8.26(3) 

p3 1008.94(1) 7.34(2) 975.39(4) 6.40(7) 357.09(1) 8.86(4) 

p2 1008.85(1) 7.47(3) 975.33(5) 6.32(10) 356.60(9) 8.51(3) 

p1 1009.18(1) 7.25(2) 975.65(4) 6.07(7) 357.06(1) 8.14(4) 

Note: the errors in bracket are referred to the fit 
*Value measured before polishing 
† Value mesured just after polishing 
§ Value measured two days after polishing end 
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Table 3.3: Polishing e�ect on zircon sample S3.
 

p. analysis Shift  
(cm-1) 

Normalized 
shift 

Uncertainty  
norm. shift 

Shift  
(cm-1) 

Normalized 
shift 

Uncertainty  
norm. shift 

Distance  

(m) 

Normalized 
Distance 

Uncertainty       
norm. 

distance  

p0 1011.28 0.00 0.18 977.56 0.00 0.18 100 5.00 0.52 

p7 1011.34 0.02 0.18 977.63 0.02 0.18 85 4.25 0.44 

p13 1011.11 -0.06 0.17 977.31 -0.09 0.17 55 2.75 0.30 

p16_bis 1010.53 -0.27 0.16 976.65 -0.34 0.16 45 2.25 0.26 

p19 1009.68 -0.58 0.16 976.01 -0.57 0.16 30 1.50 0.20 

p36 1010.06 -0.44 0.16 976.36 -0.44 0.16 20 1.00 0.16 

p53 1009.04 -0.81 0.17 975.29 -0.84 0.17 15 0.75 0.15 

reference 1008.53 -1.00 0.18 974.85 -1.00 0.18       

 
 

Table 3.4: Polishing e�ect on zircon sample S2.
 

p. analysis 
Shift  

(cm-1) 
Normalized 

shift 
Uncertainty 
norm. shift 

Shift  
(cm-1) 

Normalized 
shift 

Uncertainty  
norm. shift 

Distance 
( m) 

Normalized 
distance 

Uncertainty       
nom. 

distance  

2 1013.16 0.00 0.11 979.80 0.00 0.10 90 4.50 0.47 

6 1013.13 -0.01 0.11 979.84 0.01 0.10 70 3.50 0.37 

8 1012.91 -0.05 0.10 979.40 -0.08 0.10 60 3.00 0.33 

9 1012.60 -0.12 0.10 978.92 -0.18 0.09 40 2.00 0.24 

27 1010.57 -0.56 0.09 976.98 -0.57 0.09 20 1.00 0.16 

reference 1008.53 -1.00 0.18 974.85 -1.00 0.18       
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Table 3.5: Polishing e�ect on coesite sample S24.

 
 

 

p. analysis 
Shift 

(cm-1) 
Norm.  
shift 

uncertainty  
norm. shift 

Shift 
(cm-1) 

Norm.  
shift 

uncertainty  
norm. shift 

Shift  
(cm-1) 

Norm.  
shift 

uncertainty  
norm. shift 

Distance 
(μm) 

Norm. 
Distance 

uncertainty       
norm. 

distance  

p0 127.21 0.00 0.07 183.84 0.00 0.091 524.18 0.00 0.22 145 14.5 2.9 

p1 127.01 -0.03 0.07 183.41 -0.08 0.088 524.03 -0.07 0.22 140 14 2.8 

p2 127.20 0.00 0.07 184.09 0.04 0.094 524.30 0.06 0.23 135 13.5 2.7 

p3 127.24 0.00 0.07 183.88 0.01 0.092 524.37 0.09 0.23 130 13 2.6 

p4 127.41 0.03 0.07 184.10 0.05 0.094 524.43 0.11 0.24 110 11 2.2 

p5 127.13 -0.01 0.07 183.71 -0.02 0.090 524.20 0.01 0.22 90 9 1.8 

p6 127.44 0.03 0.07 184.25 0.07 0.095 524.64 0.21 0.25 70 7 1.4 

p7 127.72 0.07 0.07 184.15 0.06 0.094 524.75 0.26 0.26 50 5 1 

p8 124.07 -0.42 0.06 181.35 -0.46 0.079 523.23 -0.43 0.19 30 3 0.6 

p9 123.82 -0.46 0.06 181.00 -0.52 0.079 523.37 -0.36 0.20 10 1 0.2 

p10 123.06 -0.56 0.06 180.50 -0.62 0.080 522.74 -0.65 0.20 5 0.5 0.1 

p11 122.95 -0.57 0.06 180.63 -0.59 0.080 522.82 -0.61 0.19 0 0 0 

reference 119.75 -1.00   178.42 -1.00   521.95 -1.00         
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Table 3.6: Polishing e�ect vs hydrostatic pressure calibration.
 

P. 
analysis 

Shift Delta shift dw/dP           Pressure  Schift Delta shift dw/dP           Pressure  Schift Delta shift dw/dP           Pressure  

 
(cm-1) (cm-1) (cm-1/GPa) (GPa) (cm-1) (cm-1) (cm-1/GPa) (GPa) (cm-1) (cm-1) (cm-1/GPa) (GPa) 

p0 127.21 7.46 7.40 1.01 183.84 5.42 5.26 1.03 524.18 2.23 2.90 0.77 

p0 127.01 7.26 7.40 0.98 183.41 4.99 5.26 0.95 524.03 2.08 2.90 0.72 

p1 127.20 7.45 7.40 1.01 184.09 5.67 5.26 1.08 524.30 2.35 2.90 0.81 

p2 127.24 7.49 7.40 1.01 183.88 5.46 5.26 1.04 524.37 2.42 2.90 0.83 

p3 127.41 7.66 7.40 1.04 184.10 5.68 5.26 1.08 524.43 2.48 2.90 0.86 

p4 127.13 7.38 7.40 1.00 183.71 5.29 5.26 1.01 524.20 2.25 2.90 0.77 

p5 127.44 7.69 7.40 1.04 184.25 5.83 5.26 1.11 524.64 2.69 2.90 0.93 

p6 127.72 7.97 7.40 1.08 184.15 5.73 5.26 1.09 524.75 2.80 2.90 0.96 

p7 124.07 4.32 7.40 0.58 181.35 2.93 5.26 0.56 523.23 1.28 2.90 0.44 

p8 123.82 4.07 7.40 0.55 181.00 2.58 5.26 0.49 523.37 1.42 2.90 0.49 

p9 123.06 3.31 7.40 0.45 180.50 2.08 5.26 0.39 522.74 0.79 2.90 0.27 

p11 122.95 3.20 7.40 0.43 180.63 2.21 5.26 0.42 522.82 0.87 2.90 0.30 

reference 119.75       178.42       521.95       
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Table 3.7: Elastic parameters at room conditions for zircon and pyrope used for �nite element
calculations.

 

Zircon 

(anisotropic elastic 

properties) 

C11 C33 C44 C66 C12 C13 

(GPa) 

 
423.7 490 113.6 48.5 70.3 149.5 

Pyrope 
(isotropic elastic 

properties) 

K0T 

 (GPa) 
 

G0T 

 (GPa) 

163.7  94.0 

 
 

Table 3.8: Residual pressures for the zircon S2.
 

 

N. Distance  975 
(cm-1) 

 1008 
(cm-1) 

e1-e2 e3 Pinc 

(GPa) 

4.5 4.96000 4.63000 -1.162525 -0.44395 0.923 

3.5 5.00000 4.60000 -1.1895 -0.40035 0.92645 

3.0 4.56000 4.38000 -1.027 -0.4618 0.8386 

2.0 4.08000 4.07000 -0.8892 -0.5382 0.7722 

1.0 2.13000 2.04000 -0.4888 -0.21595 0.39785 

      

 

Table 3.9: Residual pressures for the zircon S3.
 

N. Distance  975 
(cm-1) 

 1008 
(cm-1) 

e1-e2 e3 Pinc 

(GPa) 

5.0 2.78000 2.94017 -0.56355 -0.46095 0.52935 

4.2 2.78000 2.81077 -0.5928 -0.3588 0.5148 

2.7 2.46000 2.58099 -0.4992 -0.38205 0.46015 

2.2 1.81000 2.00278 -0.3562 -0.3754 0.3626 

1.5 1.16000 1.14690 -0.2717 -0.16445 0.23595 

1.0 1.52000 1.52951 -0.3211 -0.19435 0.27885 

0.7 0.44000 0.51245 -0.06435 -0.0789 0.0692 

 1 
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Chapter 4

Elastically anisotropic geobarometry:

theory

4.1 Unrelaxed strain in the inclusion: thermodynamic

calculation

We are interested in calculating the �nal strain and stress state in the inclusion after ex-
humation from entrapment conditions (Ptrap, Ttrap) to the Earth's surface (Proom, Troom).
A �rst approximation would be to consider the �nal strain in the inclusion as imposed
only by the deformation of the cavity (i.e. the host) during the exhumation, without
considering any mechanical coupling between the host and the inclusion. This is easily
illustrated for the case of a cubic host for which the deformation of the three equiv-
alent crystallographic axes of length li during exhumation from entrapment to room
conditions is given by: [

V 0
h

V Ttrap
h

]1/3

=
l0i,h

ltrapi,h

(4.1)

where V 0
h and V Ttrap

h are the volume of the host at room conditions (Proom, Troom) and
at entrapment (Ptrap, Ttrap), respectively, and l0i,h and l

trap
i,h are the lengths of the crys-

tallographic axes at room conditions and at entrapment respectively.

The deformation of the cavity induces an equal deformation on the inclusion given by:[
V 0
h

V Ttrap
h

]1/3

=
lthermoi,inc

ltrapi,inc

(4.2)
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where ltrapi,inc are the lengths of the crystallographic axes of the inclusion at entrapment
(Ptrap, Ttrap). lthermoi,inc are the lengths of the crystallographic axes of the inclusion after
the deformation of the cavity and in general they are not equal to those of a free
inclusion crystal at room conditions. This can be proved calculating the strain of
lthermoi,inc with respect to the length l0i,inc of the axes of a free inclusion at room conditions.
Equation (4.1) can be written as:

[
V 0
h

V Ttrap
h

]1/3

=
lthermoi,inc

ltrapi,inc

=
lthermoi,inc

l0i,inc

l0i,inc

ltrapi,inc

(4.3)

from which the unrelaxed strain in the inclusion is found as:

εunrelij =
lthermoi,inc

l0i,inc
− 1 =

[
V 0
h

V Ttrap
h

]1/3
ltrapi,inc

l0i,inc
− 1 for i = j

εunrelij = 0 for i 6= j

(4.4)

It follows from equation (4.4) that the normal components of the strain εunrelii are zero
only when the inclusion and the host are the same mineral, or when Ptrap = Proom and
Ttrap = Troom. The shear components of the strain εunrelij are always zero. The same
principle expressed in equation (4.3) can be applied to any host-inclusion pair with
any crystallographic symmetry, by replacing the left-hand side of the equation with
the lattice spacing of the direction in the host parallel to li,inc. When the host is at
room condition its stress state is hydrostatic with σ11 = σ22 = σ33 = P ≈ 0 GPa. On
the other hand, it follows from equation (4.4) that the inclusion is under the unrelaxed
strain εunrel which corresponds to a stress σunrel = Cincε

unrel. In this unrelaxed state
(i.e. before the relaxation) the host and the inclusion are not in mechanical equilibrium,
and the discontinuity in the traction at the interface between the host and the inclusion
forces the elastic relaxation of the system until the mechanical equilibrium is restored,
i.e. until the traction in the host and inclusion across the interface are equal. After
the elastic relaxation, the system is at the �nal condition.

Therefore, the calculation of the residual strain and stress state in the inclusion can
be divided into two steps: (i) the thermodynamic calculation of the deformation of the
inclusion, forced to be equal to that of the cavity (i.e. the host), during the exhumation
of the host from entrapment to room conditions; (ii) the calculation of the elastic
relaxation to restore the mechanical equilibrium. The �rst step of the calculation is
based on non-linear elasticity that takes into account explicitly the variation of the unit-
cell parameters of the host and of the inclusion with both P and T. For cubic minerals
this reduces to knowing the volume equation of state (the V -EoS, see equation 4.1). For
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minerals with lower symmetry, but higher than monoclinic, the EoS that describe the
behaviour of the unit-cell parameters must be known explicitly through their axial EoS.
For the case, discussed in the following chapters, of quartz and zircon that are trigonal
and tetragonal, respectively, this problem reduces to knowing the a-EoS of the a unit-
cell parameter. The EoS of the b parameter is equal to that of a by symmetry, while
the change in length of the c-axis at each P and T can be found as the value such that,
combined with the a-EoS, gives the V (from the V -EoS) at that conditions. On the
other hand, the calculation of the relaxation requires the knowledge of the unrelaxed
strain state, the full elastic properties of the host and the inclusion, including their
variation with direction, and the relative orientation of their crystallographic axes. As
shown in the following sections, the problem of calculating the change in strain upon
anisotropic relaxation can be solved analytically, but only in a few cases with speci�c
crystallographic symmetries, or numerically.

4.2 Relaxation tensor: numerical derivation

4.2.1 Finite element analysis with a prestress in the inclusion

The change in the strain state of the inclusion due to the anisotropic relaxation can
be calculated numerically with the Finite Element Method (FEM), without any re-
striction given by the elastic anisotropic properties of the host and of the inclusion,
their reciprocal crystallographic orientation and the geometry of the system. All the
proposed 3D FEM models were created and solved with Dassault Systèmes AbaqusR©,
a commercial software suite for �nite element analysis. In our models the inclusion is
spherical, sitting at the center of its host (assumed to be cubic) and with a radius at
least 50 times smaller than the distance between the center of the inclusion and the
external surface of the host in any direction. This ensures that the host is practically
in�nite with respect to the inclusion. Three concentric spherical shells surround the
inclusion to allow a gradual reduction of the elements size in the portions of the model
where stress gradients are higher. An iterative process was used to discretize the model
with di�erent mesh sizes (Fig. 4.1b-c). Smaller elements were used to discretize the
region around and inside the inclusion while larger elements were used for the remain-
ing part of the model. The mesh was re�ned in the areas with higher stress gradients
until the calculated stress distribution appeared smooth. Boundary conditions were
placed on the appropriate edges and faces of the models to avoid rigid body motions
(Fig. 4.1d). The resulting model consisted of about 500,000 ten-node second-order
tetrahedral elements (element C3D10 in the AbaqusR© library).

The anisotropic elastic properties of both the host (Chost
ijkl ) and the inclusion (Cinc

ijkl) are
de�ned. Two di�erent local reference systems, one for the host and one for the inclusion,
are speci�ed and they are oriented according to the desired relative crystallographic
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(a) (b)

(c) (d)

Figure 4.1: (a) 3D model with a spherical inclusion at the center of a host with cubic shape.
The radius of the inclusion and the length of the side of the host are in the ratio 1/100. Three
spherical shells surround the inclusion to allow a progressively reduction in the mesh size in
the portions of the model where stress gradients are higher. (b) A coarse mesh is applied to
the host. (c) Progressively �ner meshes are re�ned in the shells around the inclusion and in
the inclusion. (d) Boundary conditions of �xed displacements are applied to three of the six
faces of the host.
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orientation (see section 4.2.5 for further details). Since the host is at room conditions
(P ≈ 0 GPa), no face load is applied to the external surface of the host.

The aim of the FE analysis is to relax the unrelaxed strain εunrelkl obtained from the
thermodynamic calculation (see equation 4.4). The corresponding unrelaxed stress in
the inclusion is:

σunrelij = Cinc
ijklε

unrel
kl (4.5)

where Cinc
ijkl is the sti�ness tensor of the inclusion.

The inclusion is pre-stressed with the stress σunrelij . In the FE model the inclusion is
unstrained since no deformation has been applied to the inclusion at this stage. The
analysis in AbaqusR© starts with the inclusion under the speci�ed pre-stress, but with
no stress in the host. As discussed in section 4.1, this is a mechanical disequilibrium
because the forces at the host/inclusion interface are not balanced. The interface will
therefore move until the mechanical equilibrium is reached again forcing the elastic
relaxation of the inclusion.

The static FE analysis is run with a single step. At the end of the simulation AbaqusR©

gives as result the components of the stress (σFE) and of the strain (εFE) in the
inclusion. It is fundamental to note that in the output the strain does not correspond
to the stress:

σFEij 6= Cinc
ijklε

FE
kl (4.6)

The stress obtained from the FE analysis is the relaxed stress in the inclusion (σFEij =
σrelij ) and is related to the pre-stress as:

σrelij = Cinc
ijklε

FE
kl + σunrelij (4.7)

It follows from equation (4.7) that the strain obtained from the FE analysis is the
strain due to the relaxation:

Cijklε
FE
kl = Cijklε

rel
kl − Cijklεunrelkl = Cijklε

relaxation
kl (4.8)

Therefore, since the unrelaxed strain in the inclusion (from which the pre-stress σunrelij

was obtained) is known, the relaxed strain can be found as:
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εrelij = εunrelij + εFEij (4.9)

The strain εrelaxedij is the �nal relaxed strain in the inclusion referred to a free inclusion
at room condition.

The components of all the tensors that describe the unrelaxed and relaxed strain and
stress in the inclusion are speci�ed in the local reference system of the inclusion (see
section 4.2.5).

4.2.2 The relaxation matrix Rij

As shown above, the relaxed strain and stress in the inclusion after the relaxation can
be found numerically with a FE analysis, without any restriction given by the elastic
anisotropic properties of the host and of the inclusion and their reciprocal crystallo-
graphic orientation. However, this approach is extremely time consuming and would
greatly restrict the routine applicability of elastic geobarometry since a new analysis
is needed for each speci�c initial unrelaxed or relaxed strain state, requiring hours of
computational time. This can be avoided by assuming that the elastic properties of
both the host and the inclusion stay constant during the relaxation. Expressing the
strain states before and after relaxation as vectors in Voigt notation (see equation C.2
in Appendix C), we look for a linear mapping f : R6 7→ R6 such that:

f(εunrel) = εrel (4.10)

This linear mapping can be de�ned through a matrix R ∈ R6×6. Suppose that
{v1, ...,v6} is the canonical basis of R6, then any element v of R6 can be written
in a unique way as a1v1 + ...+ a6v6 and

f(v) = f(a1v1 + ...+ a6v6)

= a1f(v1) + ...+ a6f(v6)
(4.11)

Therefore the linear mapping f : R6 7→ R6 is completely determined by the vectors
f(v1), ..., f(v6).

The {f(v1), ..., f(v6)} are calculated numerically with six FE analyses, performed fol-
lowing the procedure outlined in section 4.2.1. For each of the six analyses, a vector
vi of the basis is selected as unrelaxed strain state and the corresponding pre-stress
is obtained from equation (4.5). Each analysis is run with a pre-stress and gives as a
result the strain wFE

i in the inclusion. The corresponding f(vi) (i.e. the relaxed strain
corresponding to the unrelaxed vi) is found as (compare with equation 4.9):
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f(vi) = vi +wFE
i (4.12)

The matrix R ∈ R6×6 with respect to the basis {v1, ...,v6} is the matrix whose j-th
column gives the coe�cients of f(vj) in terms of v1, ...,v6. if R = Rij

f(vj) =
6∑
i=1

Rijvi =

= R1j



1
0
0
0
0
0

+R2j



0
1
0
0
0
0

+R3j



0
0
1
0
0
0

+R4j



0
0
0
1
0
0

+R5j



0
0
0
0
1
0

+R6j



0
0
0
0
0
1


(4.13)

Since the {v1, ...,v6} are the vectors of the canonical basis, the components of the
relaxation matrix R can be found as:

R = {f(v1), ..., f(v6)} (4.14)

Therefore each of the six vectors {f(v1), ..., f(v6)} obtained from the six FE analyses
gives the corresponding column of the relaxation matrix R. This matrix in general is
not symmetric (Rij 6= Rji)

All the results are obtained in the local reference system of the inclusion that does
not necessarily correspond to that of the host (see section 4.2.5 for further details).
Therefore, also the Rij components are always calculated with respect to the reference
system of the inclusion. With this choice, the Rij can be applied without any further
transformation to "relax" the strains obtained from the thermodynamic calculation (see
chapter 4.1) or to "unrelax" the strains measured experimentally by X-ray di�raction
or Raman spectroscopy, before applying the thermodynamic calculation to �nd the
entrapment conditions.

Given any unrelaxed strain vector (in Voigt notation) εunrelj the corresponding relaxed
strain is found as:

εreli = Rijε
unrel
j (4.15)
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On the other hand, if the relaxed strain vector (in Voigt notation) εrelj is measured
from experiments the corresponding unrelaxed strain is found applying the inverse of
R as:

εunreli = R−1
ij ε

rel
j (4.16)

The relaxation tensor found with this procedure can only be used to convert between
the unrelaxed and the relaxed strain components, but it cannot be applied directly to
the conversion of stresses. The stress state can be found applying the sti�ness tensor
of the inclusion (Cijkl) to the corresponding strain state.

4.2.3 Conversion from matrix to tensor

The relaxation matrix Rij is the representation in Voigt notation of a fourth order
non-symmetric tensor (Rijkl) that relates the two 2nd-order tensors of the strain before
and after the relaxation. Here we show how the components of the matrix in Voigt
notation are related to those of the fourth order tensor.

From equation (4.15), the component εrel1 (in Voigt notation) can be found as:

εrel1 = R11ε
unrel
1 +R12ε

unrel
2 +R13ε

unrel
3 +R14ε

unrel
4 +R15ε

unrel
5 +R16ε

unrel
6 (4.17)

The same equation in tensor notation reads:

εrel11 =R1111ε
unrel
11 +R1112ε

unrel
12 +R1113ε

unrel
13 +

R1121ε
unrel
21 +R1122ε

unrel
22 +R1123ε

unrel
23 +

R1131ε
unrel
31 +R1132ε

unrel
32 +R1133ε

unrel
33

(4.18)

Substituting the strain in Voigt notation in equation (4.18) we obtain:

εrel1 = εrel11 =R1111ε
unrel
1 +R1112

εunrel6

2
+R1113

εunrel5

2
+

R1121
εunrel6

2
+R1122ε

unrel
2 +R1123

εunrel4

2
+

R1131
εunrel5

2
+R1132

εunrel4

2
+R1133ε

unrel
3

(4.19)
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Since R relates two second order symmetric tensors of the strain it possesses the minor
symmetries (Rijkl = Rjikl = Rijlk = Rjilk), but in general it does not possess the major
symmetries (Rijkl 6= Rklij). From the comparison of equations (4.17) and (4.19) it
follows that:

R1111 = R11
R1132 +R1123

2
= R1132 = R14

R1122 = R12
R1131 +R1113

2
= R1131 = R15

R1133 = R13
R1121 +R1112

2
= R1121 = R16

(4.20)

The same approach can be applied to calculate the component εunrel12 = εunrel6 of the
unrelaxed strain. In Voigt notation we have:

εrel6 = R61ε
unrel
1 +R62ε

unrel
2 +R63ε

unrel
3 +R64ε

unrel
4 +R65ε

unrel
5 +R66ε

unrel
6 (4.21)

The same equation in tensor notation becomes:

εrel12 =R1211ε
unrel
11 +R1212ε

unrel
12 +R1213ε

unrel
13 +

R1221ε
unrel
21 +R1222ε

unrel
22 +R1223ε

unrel
23 +

R1231ε
unrel
31 +R1232ε

unrel
32 +R1233ε

unrel
33

(4.22)

Substituting the strain in Voigt notation in equation (4.22) we obtain:

εrel6 = 2εrel12 =2R1211ε
unrel
1 + 2R1212

εunrel6

2
+ 2R1213

εunrel5

2
+

2R1221
εunrel6

2
+ 2R1222ε

unrel
2 + 2R1223

εunrel4

2
+

2R1231
εunrel5

2
+ 2R1232

εunrel4

2
+ 2R1233ε

unrel
3 =

2R1211ε
unrel
1 +R1212ε

unrel
6 +R1213ε

unrel
5 +

R1221ε
unrel
6 + 2R1222ε

unrel
2 +R1223ε

unrel
4 +

R1231ε
unrel
5 +R1232ε

unrel
4 + 2R1233ε

unrel
3

(4.23)

From the comparison of equations (4.21) and (4.23), and knowing that R possesses the
minor symmetries, it follows that:
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2R1211 = R61 R1232 +R1223 = 2R1232 = R64

2R1222 = R62 R1231 +R1213 = 2R1231 = R65

2R1233 = R63 R1221 +R1212 = 2R1221 = R66

(4.24)

The same procedure can be extended to all the other components of the unrelaxed
strain. The relations between all the components of the relaxation tensor R in tensor
and Voigt notation are reported in Table 4.1.

Table 4.1: Relations to convert the components of the relaxation tensor R from tensor to Voigt
notation.

Ri1 Ri2 Ri3 Ri4 Ri5 Ri6

R1j R1111 R1122 R1133 R1132 R1131 R1121

R2j R2211 R2222 R2233 R2232 R2231 R2221

R3j R3311 R3322 R3333 R3332 R3331 R3321

R4j 2R2311 2R2322 2R2333 2R2332 2R2331 2R2321

R5j 2R1311 2R1322 2R1333 2R1332 2R1331 2R1321

R6j 2R1211 2R1222 2R1233 2R1232 2R1231 2R1221

4.2.4 Proof that Rijkl is a tensor

A tensor represents a physical quantity independently of the particular choice of refer-
ence axesXi. However, the components of a tensor express that physical quantity with
respect to a speci�c set of axesXi and therefore they must change with another choice
of the reference axes, even if the physical quantity does not change. The components
of tensors of the second and of the fourth order transform according to (Nye, 1985)

ε
′

ij = aikajlεkl (4.25)

R
′

ijkl = aimajnakpalqRmnpq (4.26)

where a is the transformation matrix, R is the initial tensor and R
′
is the tensor

after the transformation. Equations (4.25) and (4.26) can be used as a de�nition of
tensor (Nye, 1985). For the case of the relaxation tensor, if the 81 coe�cients of Rijkl

transform according to equation (4.26) and for any choice of reference axes they relate
the components of two second order tensors in linear relationships, the Rijkl form a
fourth order tensor.

To show that equation (4.26) holds for the relaxation tensor we take the example of
a quartz inclusion in a pyrope host that share the same orientation (aqtz||apyr||X1,
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cqtz||cpyr||X3 ). The components of the relaxation tensor expressed in Voigt notation
are:

Rij =


0.7324 0.0348 0.0242 −0.0933 1.8275 1.6470
0.2588 0.5085 0.0242 1.4515 0.3566 1.3924
0.2245 −0.1965 0.6985 1.2767 1.6714 0.0293
−0.0268 0.0268 0 0.8376 −0.2337 −0.1368
−0.0111 0.0111 0 −0.0674 0.7059 −0.1569
−0.0113 0.0113 0 −0.0686 −0.2250 0.7714


Given any unrelaxed strain, the �nal relaxed strain can be found as εreli = Rijε

unrel
j .

For example:

εunrelj =


−0.1
−0.2
−0.3
−0.4
−0.5
−0.6

 εreli = Rijε
unrel
j =


−1.95211
−1.72916
−1.55663
−0.13883
−0.23295
−0.32400



The reference system is transformed according to the following transformation matrix:

aij =

 0.5567 −0.3144 0.7689
0.6634 0.7254 −0.1837
−0.5000 0.6124 0.6124


Note that the transformation must be applied to the components in tensor notation
and not in Voigt notation (see equation 4.26). Therefore the R matrix and the εrel

and εunrel strain vectors must be converted back to the original tensor notation before
applying the transformation.

The components R
′

ijkl of the relaxation tensor with respect to the new orientation of
the reference system can be found from equation 4.26. In Voigt notation they become:

R
′

ij =


1.5785 −0.0256 −0.7998 1.0247 0.4437 1.4051
−0.0007 1.7655 −0.9756 0.6942 0.9058 1.2150
0.2272 0.3144 0.2255 0.8760 0.6910 1.4376
−1.6514 0.0536 1.6124 0.2737 0.3552 0.1935
0.3642 −1.6411 1.2158 0.2149 0.1659 0.3139
0.7737 0.5941 −1.3495 0.0797 −0.0793 0.2453


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The same transformation is applied to the strain. The components εunrel
′

ij and εrel
′

ij of
the strain tensors with respect to the new orientation of the reference system are found
through equation (4.25). In Voigt notation they are:

εunrel
′

j =


−0.24044
−0.33387
−0.02570
−0.45172
−0.53825
−0.46515

 εrel
′

i


−1.70568
−1.93049
−1.60173
−0.06711
0.09671
−0.45711



If R is a tensor and transforms according to equation (4.26), the components of the
relaxed strain in the new reference system can be also found as εrel

′′
i = R

′
ijε

unrel′
j and

εrel
′′

i must be equal to εrel
′

i found above as transformation of the initial unrelaxed strain.
This can be proved numerically in our example:

εrel
′

i = εrel
′′

i = R
′

ijε
unrel′

j =


−1.70568
−1.93049
−1.60173
−0.06711
0.09671
−0.45711


4.2.5 Reciprocal crystallographic orientation of the host and

the inclusion

In the general case, when there are no simpli�cations given by the crystallographic
symmetry of the host and of the inclusion (i.e. both the host and the inclusion are
elastically anisotropic), one R tensor is only valid for a speci�c reciprocal orientation
between the host and the inclusion. The components of R must be recalculated for
another orientation. To handle the reciprocal orientations of the host and of the inclu-
sion, �ve sets of reference system axis must be considered during the calculation: two
sets of crystallographic axes (for the host and the inclusion), two sets of orthonormal
axes in which the components of the elastic tensors are written (for the host and the
inclusion), and one set of orthonormal axes to express the global reference system of
the FE model. The crystallographic axes of the host and of the inclusion are de�ned
by their directions a, b, c. The components of the tensors that represent the physical
properties of crystals are de�ned with respect to a set of Cartesian axes (in our notation
Oxh, Oyh, Ozh for the host and Oxi, Oyi, Ozi for the inclusion). The orientation
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of the Ox, Oy, Oz in relation to the a, b, c of the crystal is a convention. For each
mineral we follow the convention that was assumed at the moment of the experimental
determination of its sti�ness tensor Cijkl, and we maintain it for all of our calculations.
This convention is usually reported together with the experimental results, because
the components Cijkl are expressed in terms of the chosen orientation of the reference
system Ox, Oy, Oz. The FE model is designed with respect to a Cartesian reference
system X, Y, Z that is assumed to be the global reference system since the geometry
and the property tensors of the minerals de�ned in the analysis are referred to it. The
reciprocal orientation between the host and the inclusion is also expressed in the global
reference systemX,Y,Z. Since the absolute orientation of the two minerals in the sys-
tem is not relevant, a convenient way to proceed is to assume that the Oxh, Oyh, Ozh

are parallel to the global X, Y, Z, while the local reference system of the inclusion
(Oxi, Oyi, Ozi) is free to have any orientation imposed by the user. The orientation
of the Oxi, Oyi, Ozi with respect to the X, Y, Z (and therefore with respect to the
Oxh, Oyh, Ozh of the host) is de�ned by a rotation matrix.
Before the FE analysis the components of the sti�ness tensor of the inclusion Cinc

ijkl

and those of the pre-stress to be applied to the inclusion are �rst transformed to the
global reference system X, Y, Z (for the choice we made above, the Chost

ijkl of the host
are already expressed in the global reference system). After the FE analysis, the out-
put tensors (strain and stress) must be converted back to the initial local reference
system of the inclusion (i.e. the Oxi, Oyi, Ozi). This procedure can be performed
automatically in FE softwares such as AbaqusR©, or externally during the pre- and
the post-processing (for example with MatlabR©). The R tensor is calculated from the
components of the relaxed strain (see section 4.2.1) expressed in the local reference
system of the inclusion. With this choice the R tensor (and its inverse) can be directly
applied to "relax" or "unrelax" the components of the strain in the inclusion that are
also expressed in the system Oxi, Oyi, Ozi.

4.3 The Eshelby's approach

John D. Eshelby in 1957 (Eshelby, 1957) proposed a thought experiment to determine
the possible stress, strain, and displacement �elds in a linear elastic body containing
an inclusion. In particular, he considered the situation in which the inclusion has
undergone a transformation (such as twinning or localized thermal expansion) but
its change in shape and size are restricted because of the surrounding material. In
that situation, the inclusion and the surrounding material remains in a stressed state
and the strain states in the body and the inclusion are potentially inhomogeneous
and complicated. Eshelby found that the resulting elastic �eld can be found using a
"sequence of imaginary cutting, straining and welding operations" (Eshelby, 1957), and
he proposed analytical solutions for the case of an ellipsoidal inclusion. This situation
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is analogous to the calculation of the elastic relaxation. In our approach for elastic
geobarometry (outlined in section 4.1) we �rst imagine that during the exhumation
the host constrains the change in shape and size of the inclusion, and when the host
is at room conditions the inclusion is deformed and stressed (unrelaxed state). The
aim is to calculate the �nal ("relaxed") elastic strain state in the inclusion. We will
outline the approach proposed by Eshelby (1957) following the derivation reported by
Weinberger et al. (2005). We will also show the analogies with our method based on
FE (section 4.2).

4.3.1 The inclusion problem: Eshelby tensor

In this approach a region of an in�nite homogeneous isotropic elastic medium (the
inclusion) undergoes a deformation that leads to a state of internal stress. The inclusion
is de�ned by its volume V inc and its surface area Sinc and is surrounded by a matrix.
Both the inclusion and the matrix have the same elastic properties. The aim is to �nd
the �nal elastic state (stress and strain �eld) of the inclusion and of the matrix. The
problem is solved in a series of imaginary steps where the inclusion is removed form the
matrix, deformed and put back into the matrix, applying the superposition principle
of linear elasticity.

Step 1. The inclusion is removed from the matrix. The inclusion will assume a uniform
strain ε∗ij (referred to the initial constrained state) but will experience no stress. The
uniform strain state ε∗ij is called the eigenstrain. In this step the matrix is under no
strain and stress.

Figure 4.2: Step 1

Step 2. A surface traction is applied to the surface Sinc to deform the inclusion to
its original shape. The elastic strain applied on the inclusion is εelij = −ε∗ij and exactly
cancels the eigenstrain. Therefore, at this stage the strain �eld in the inclusion is:

εij = εelij + ε∗ij = 0 (4.27)
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The inclusion is in a state of internal stress:

σelij = Cijklε
el
kl = −σ∗ij = −Cijklε∗kl (4.28)

where Cijkl = Chost
ijkl = Cinc

ijkl is the sti�ness tensor of the host and of the inclusion since
they are the same material. The traction force applied to Sinc is Tj = −σ∗ijni, where
ni is the normal to the surface.

This situation corresponds to that expressed in equation (4.5), under the assumption
that the host and the inclusion are the same material. Therefore:

σelij = Cijklε
el
kl = σunrelij

Figure 4.3: Step 2

Step 3. The inclusion is put back into the matrix. No change in the strain and stress
�elds with respect to step 2

Figure 4.4: Step 3

Step 4. The traction T is removed, and we go back to the initial problem. This is
equivalent to applying a cancelling body force F = −T to the internal surface Sinc
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of the inclusion. In this step the strain �eld in the inclusion is εcij 6= εelij. Note that
εcij is the �nal relaxed strain in the inclusion taking the initial constrained state of the
inclusion as the undeformed state.

Figure 4.5: Step 4

The �nal strain state in the inclusion referred to a free crystal is:

εij = εcij − ε∗ij = εcij + εelij (4.29)

and the corresponding stress �eld is:

σij = Cijkl(ε
c
kl + εelkl) (4.30)

where Cijkl = Chost
ijkl = Cinc

ijkl is the sti�ness tensor of the host and of the inclusion.
This situation corresponds to that described by equation (4.7) when the host and the
inclusion are the same material: the stress found with equation (4.30) is the relaxed
stress in the inclusion (σrelij ), while ε

c
kl corresponds to the strain obtained from the FE

analysis (εFEkl ).

Eshelby (1957) demonstrated that a fourth order tensor (the Eshelby tensor) can be
introduced to relate the constrained strain in the inclusion to the eigenstrain:

εcij = Sijklε
∗
kl (4.31)

The Eshelby tensor is a fourth order tensor with minor symmetries because it relates
two symmetric second order tensors

Sijkl = Sjikl = Sijlk = Sjilk

but it does not possess the major symmetries
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Sijkl 6= Sklij

It should be noted that for an ellipsoidal inclusion in an homogeneous in�nite matrix
the Eshelby tensor is a constant tensor and therefore the stress and strain �elds in the
inclusion are uniform.

4.3.2 The inhomogeneity problem

In the applications of elastic geobarometry we are interested in the situation where
the inclusion has di�erent elastic properties with respect to the host. In the original
work of Eshelby (1957) the inclusion with di�erent properties with respect to the host
is called an inhomogeneity. The inhomogeneity problem can be de�ned when the
inhomogeneity has a general shape but it can be solved using the Eshelby's equivalent
inclusion method only when the inhomogeneity is an ellipsoid (Eshelby, 1957).

The idea is to replace the inhomogeneity with an inclusion (the equivalent inclusion)
whose eigenstrain is chosen such that the stress and the strain �elds in the inclusion
are equal to those in the inhomogeneity. In the following discussion all the properties
referred to the inhomogeneity will be identi�ed with '.

The �nal stress inside the inhomogeneity is (see equation 4.30):

σ
′

ij = C ′ijkl(ε
c′

kl − ε∗
′

kl) = σc
′

ij − σ∗
′

ij (4.32)

where C ′ijkl is the sti�ness tensor of the inhomogeneity, that might be di�erent from
that of the matrix. This situation corresponds to that described by equation (4.7)
under the assumption that the host and the inclusion are di�erent materials, with:

σ
′

ij = σrelij

εc
′

kl = εFEkl

−ε∗′kl = εunrelkl

The stress in the equivalent inclusion is:

σij = Cijkl(ε
c
kl − ε∗kl) = σcij − σ∗ij (4.33)

where Cijkl is the sti�ness tensor of the equivalent inclusion that is equal to that of the
matrix.
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The stress in the inhomogeneity and in the inclusion must be equal, therefore:

C ′ijkl(ε
c′

kl − ε∗
′

kl) = Cijkl(ε
c
kl − ε∗kl) (4.34)

Applying the Eshelby tensor we have that εcij = Sijklε
∗
kl and therefore:

[(C
′

ijkl − Cijkl)Sklmn + Cijmn]ε∗mn = C
′

ijklε
∗′
kl (4.35)

from which the equivalent strain in the inclusion ε∗mn can be found in terms of the
eigenstrain of the inhomogeneity (ε∗

′

kl). Rearranging equation (4.35) we can �nd another
fourth order tensor (Dijkl) that relates the equivalent strain in the inclusion ε∗ij to the
eigenstrain of the inhomogeneity (ε∗

′

kl) :

ε∗ij = [(C
′

ijmn − Cijmn)Smnpq + Cijpq]
−1C

′

pqklε
∗′
kl = Dijklε

∗′
kl (4.36)

The strain in the inhomogeneity is equal to that in the equivalent inclusion:

εc
′

ij = εcij = Sijklε
∗
kl = SijklDklmnε

∗′
mn (4.37)

Note that εc
′
is the strain in the inhomogeneity referred to the initial constrained state.

The �nal relaxed strain state in the inhomogeneity referred to the undeformed state at
room condition is (compare with equation 4.9):

εrelij = εc
′

ij − ε∗
′

ij (4.38)

Therefore, equations (4.37 - 4.38) can be rearranged into an equation that relates the
eigenstrain in the homogeneity (ε∗

′
ij = −εunrelij ) to the corresponding �nal relaxed strain

state referred to the undeformed state at room condition.

εrelij = SijklDklmnε
∗′
mn − ε∗

′

mn = (Iijmn − SijklDklmn)εunrelmn (4.39)

Where Iijmn is the fourth order identity tensor. Therefore the relaxation tensor can be
found analytically as:

Ran
ijmn = (Iijmn − SijklDklmn) (4.40)

The relation expressed by equation (4.39) corresponds to equation (4.9), where εFEij
was found numerically with FE. The possibility of using practically equations (4.39)
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and (4.40) and solve analytically for the components of Ran however is limited by the
computation of the Eshelby tensor S, since its components can be found analytically
only for ellipsoidal inclusions and only for speci�c crystallographic symmetry of the
host, such as transversely isotropic materials (Parnell, 2016) that belong to the hexag-
onal crystal system. With these restrictions, even assuming a spherical shape of the
inclusion, the relaxation tensor cannot be calculated for host minerals typical in high-
pressure metamorphic rocks (e.g. garnets, zircon...). Therefore, the numerical solution
base on FE must be applied. To check the reliability of RFE as obtained from FE,
in Chapter 5 the analytical and the numerical solutions will be compared for several
cases for which the analytical Ran can be calculated (e.g. for an ideal isotropic host).





Chapter 5

Test of the anisotropic relaxation

tensor R

As shown in section 4.2 the relaxation tensor can be calculated numerically with a
set of six FE analysis. The calculated RFE therefore is strongly dependent on the
accuracy of the FE model (i.e. the geometry, the choice of the boundary conditions
with respect to the symmetry elements of the host and of the inclusion...). To test the
reliability of our FE models that generated the RFE tensor, in this chapter we compare
the analytical and the numerical solutions for several cases for which the analytical Ran

can be calculated. To this aim we compare the relaxation calculated applying three
di�erent approaches, starting from the same unrelaxed strain state. The �rst approach
consists in performing a FE analysis with a pre-stress in the inclusion corresponding
to the unrelaxed strain state (see section 4.2.1 and equation 4.5). In the other two
approaches the relaxed strain states are calculated applying respectively the Ran

ij and
the RFE

ij to the unrelaxed strain.

5.1 Elastically isotropic host

For a spherical inclusion in a isotropic materials the Eshelby's tensor is expressed as
(Weinberger et al., 2005):

Sijkl =
5ν − 1

15(1− ν)
δijδkl +

4− 5ν

15(1− ν)
(δikδjl + δilδjk) (5.1)

where ν is the Poisson's ratio of the host

The components in Voigt notation of the Eshelby tensor for isotropic pyrope (properties
in Table B.6) are:
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S =


0.51327 0.02655 0.02655 0.00000 0.00000 0.00000
0.02655 0.51327 0.02655 0.00000 0.00000 0.00000
0.02655 0.02655 0.51327 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.48673 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.48673 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.48673

 (5.2)

5.1.1 Elastically isotropic inclusion

The components of the analytical Ran tensor for an ideally isotropic quartz inclusion
in isotropic pyrope can be calculated from equation 4.40, knowing the Eshelby tensor
reported in equation (5.2) and the isotropic elastic constants of quartz reported in
Table B.9:

Ran =


0.71884 0.02626 0.02626 0.00000 0.00000 0.00000
0.02626 0.71884 0.02626 0.00000 0.00000 0.00000
0.02626 0.02626 0.71884 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.69258 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.69258 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.69258


Using the same elastic properties, the numerical R can be obtained from FE:

RFE =


0.71886 0.02625 0.02625 0.00000 0.00000 0.00000
0.02625 0.71886 0.02625 0.00000 0.00000 0.00000
0.02625 0.02625 0.71886 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.69261 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.69261 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.69261


The discrepancy between the components of Ran

ij and RFE
ij is less than 0.05%.

Test on strain
The relaxed strain was calculated for several initial unrelaxed strain states applying
the three approaches outlined above. Results are compared in Table 5.1. All the three
approaches lead to the same results with discrepancies on the strain components lower
than 10−6, both when the unrelaxed strain is isotropic (Test 1) or deviatoric with shear
components di�erent from zero (Test 2).
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Table 5.1: Relaxed strain for isotropic quartz in isotropic pyrope.

Unrelaxed
strain

Relaxed
strain (FE
calculation)

Relaxed
strain (Ran)

Relaxed
strain (RFE)

Test 1

εi =
−0.010000
−0.010000
−0.010000
0.000000
0.000000
0.000000



εi =
−0.007714
−0.007714
−0.007714
0.000000
0.000000
0.000000



εi =
−0.007714
−0.007714
−0.007714
0.000000
0.000000
0.000000



εi =
−0.007714
−0.007714
−0.007714
0.000000
0.000000
0.000000



Test 2

εi =
−0.000658
−0.001795
−0.002931
−0.013636
−0.011364
−0.009091



εi =
−0.000597
−0.001384
−0.002171
−0.009445
−0.007871
−0.006296



εi =
−0.000597
−0.001384
−0.002171
−0.009444
−0.007870
−0.006296



εi =
−0.000597
−0.001384
−0.002171
−0.009445
−0.007871
−0.006296


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5.1.2 Elastically anisotropic inclusion

The components of the analytical Ran tensor for an elastically anisotropic quartz in-
clusion in isotropic pyrope can be calculated from equation 4.40, knowing the Eshelby
tensor reported in equation (5.2) and the anisotropic elastic constants of quartz re-
ported in Table B.7:

Ran =


0.74247 0.02459 0.02435 −0.03048 0.00000 0.00000
0.02459 0.74247 0.02435 0.03048 0.00000 0.00000
0.01411 0.01411 0.69817 0.00000 0.00000 0.00000
−0.06096 0.06096 0.00000 0.63008 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.63008 −0.06096
0.00000 0.00000 0.00000 0.00000 −0.06096 0.71788


Using the same elastic properties, the numerical R can be obtained from FE:

RFE =


0.74249 0.02458 0.02434 −0.03048 0.00000 0.00000
0.02458 0.74249 0.02434 0.03048 0.00000 0.00000
0.01410 0.01410 0.69819 0.00000 0.00000 0.00000
−0.06096 0.06096 0.00000 0.63012 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.63012 −0.06096
0.00000 0.00000 0.00000 0.00000 −0.06096 0.71791


The discrepancy between the components of Ran

ij and RFE
ij is less than 0.05%.

Test on strain
The relaxed strain was calculated for several initial unrelaxed strain states applying
the three approaches outlined above. Results are compared in Table 5.2. All the three
approaches always lead to the same results with discrepancies on the strain components
lower than 10−6.
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Table 5.2: Relaxed strain for anisotropic quartz in isotropic pyrope.

Unrelaxed
strain

Relaxed
strain (FE
calculation)

Relaxed
strain (Ran)

Relaxed
strain (RFE)

Test 1

εi =
−0.010000
−0.010000
−0.010000
0.000000
0.000000
0.000000



εi =
−0.007914
−0.007914
−0.007264
0.000000
0.000000
0.000000



εi =
−0.007914
−0.007914
−0.007264
0.000000
0.000000
0.000000



εi =
−0.007914
−0.007914
−0.007264
0.000000
0.000000
0.000000



Test 2

εi =
−0.002100
−0.002100
−0.002900
0.000000
0.000000
0.000000



εi =
−0.001681
−0.001681
−0.002084
0.000000
0.000000
0.000000



εi =
−0.001681
−0.001681
−0.002084
0.000000
0.000000
0.000000



εi =
−0.001681
−0.001681
−0.002084
0.000000
0.000000
0.000000



Test 3

εi =
−0.001000
−0.003000
−0.005000
−0.012000
−0.004000
−0.008000



εi =
−0.000572
−0.002739
−0.003547
−0.007683
−0.002033
−0.005499



εi =
−0.000572
−0.002739
−0.003547
−0.007683
−0.002033
−0.005499



εi =
−0.000572
−0.002739
−0.003547
−0.007683
−0.002033
−0.005499







Chapter 6

Relaxed strain and stress in the

inclusion as a function of the

entrapment conditions

6.1 Contour plots

Once the relaxation tensor R is calculated for a speci�c reciprocal orientation of the
host and the inclusion it can be applied to relax any unrelaxed strain state for that
system, without the need of new FE analyses. This is particularly useful, since the �nal
relaxed strain and stress state developed in the inclusion after exhumation to room
conditions strongly depends on the initial Ptrap and Ttrap of entrapment. Therefore,
the response of a speci�c host-inclusion system given by their anisotropic elasticity can
only be understood investigating a wide range of entrapment conditions. To this aim
I developed an algorithm in MatlabR© that combines the thermodynamic calculation
based on non-linear elasticity and the elastic relaxation (outlined in chapter 4).
With this code the user can set the range of Ptrap, Ttrap to be investigated and the
resolution of the contour plot (i.e. the steps in Ptrap and Ttrap). The algorithm �rst
discretizes the P-T range of entrapment conditions generating a grid of equally-spaced
points of entrapment according to the requested resolution. For each of the entrapment
points the thermodynamic calculation, based on a new implementation of the EosFit-
7c code (Angel et al., 2017b), is performed to �nd the unrelaxed strain and stress. The
relaxation tensor is then applied to �nd the relaxed strain in the inclusion, from which
the relaxed stress and all the other related quantities (e.g. volume strain, residual
pressure. . . ) are obtained. The average residual pressure and the volume strain in the
inclusion are obtained from the anisotropic calculation as:
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P aniso
inc = −σ

rel
11 + σrel22 + σrel33

3

(
∆V

V

)aniso
inc

= εrel11 + εrel22 + εrel33

These results are compared to the P iso
inc and (∆V / V )isoinc predicted for the same exhuma-

tion by currently available isotropic models for geobarometry (Angel et al., 2017b)
where the relaxation is calculated with linear (i.e. the elastic properties are constant
during the relaxation, model 2 in Eos�t-7c) and non-linear (i.e. the elastic properties
are allowed to change with P, model 5 in Eos�t-7c) elasticity. Throughout the following
discussion, all the results from isotropic geobarometry will be referred to as linear or
non-linear referring to the assumption used in the calculation of the relaxation. The
thermodynamic part of the calculation is always performed with non-linear elasticity
(i.e assuming �nite strains and allowing the elastic properties of the minerals to change
with P and T ). The full procedure is summarized in Fig. 6.1.

All the calculations can be replicated over a wide range of entrapment conditions and
several contour plots are generated to show synthetically all the relevant results (the
relaxed strain and stress state in the inclusion and the discrepancy between the volume
strain and the residual pressure predicted by the isotropic and the anisotropic models)
as a function of the entrapment Ptrap, Ttrap. In the next chapter these contour plots,
each based on more than ten thousand calculations, will be used to summarize the
e�ect of the anisotropic elasticity for several geologically relevant host-inclusion pairs.

6.2 Uncertainties on the calculations

The uncertainties on the components of the relaxed strain and stress are given by:

δ(εreli ) =
6∑
j=1


(δ(Rij)

Rij

)2

+

(
δ(εunrelj )

εunrelj

)2
1/2

|Rijε
unrel
j |

 (6.1)

δ(σreli ) =
6∑
j=1


(δ(Cij)

Cij

)2

+

(
δ(εrelj )

εrelj

)2
1/2

|Cijεrelj |

 (6.2)

where Rij is the relaxation tensor and Cij is the sti�ness of the inclusion.
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Figure 6.1: Flowchart summarizing the procedure to calculate the residual strain and stress in
the inclusion (and all the other related quantities) and to produce synthetic contour plots that
summarize the results.
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The uncertainties on the components of the stress and on those of the strain might
be not independent, but in general their variance-covariance matrix ((V cV )ij) is not
known. Assuming the worst possible case, with a correlation coe�cient r =

δij
δiδj

= 1,
the upper limit on the uncertainties propagated on the pressure and on the volume
strain can be found as a simple sum with equations (6.3) and (6.4), respectively:

δ(Pinc) =

(
δ(σrel1 ) + δ(σrel2 ) + δ(σrel3 )

)
3

(6.3)

δ

(
∆V

V

)
=
(
δ(εrel1 ) + δ(εrel2 ) + δ(εrel3 )

)
(6.4)

The numerical precision on the components of the unrelaxed strain obtained from the
thermodynamic calculation is δ(εunreli ) ≈ 1 · 10−6. The relative uncertainties on the
components of the tensors Cij are assumed to be 1% (typical experimental uncertainty),
and, since the uncertainties on the calculation of the relaxation are dominated by those
on the elastic constants, the same uncertainty is assumed for the Rij. Equations (6.1
- 6.4) give the numerical precision of our calculations.



Chapter 7

Examples of anisotropic

geobarometry: spherical inclusions in

garnet

In this chapter we evaluate the strain and the stress developed during exhumation
for geologically relevant systems with garnets as hosts. Garnets are minerals with cu-
bic crystallographic symmetry that are common hosts in Ultra-High Pressure (UHP)
metamorphic rocks. The strain and the stress developed in the inclusion during the ex-
humation of the host inclusion pair from entrapment to room conditions were calculated
combining the thermodynamic calculation and the elastic relaxation (chapter 4). These
calculations were repeated over a wide range of entrapment conditions (Ptrap, Ttrap) to
generate contour plots that summarize the relevant results, following the procedure
outlined in chapter 6.1. Results are reported for a range that spans to temperatures up
to 1600 ◦C, much higher than what expected for P-T path of UHP metamorphic rocks.
Such a large P-T window allows us to test the internal reliability of the calculation,
even when extrapolated to high P and T. However, the signi�cance of the residual
strains and stresses calculated with anisotropic elastic geobarometry for entrapment
at high pressure and temperature conditions depends on the rheology of the minerals
involved. The resistance to plastic deformation of garnets is larger than most other
minerals in UHP metamorphic rocks (Karato et al., 1995), and experiments and natu-
ral observations suggest that silicate garnets start to deform plastically at T > 900 ◦C
(Martelat et al., 2012; Voegelé et al., 1998), depending on the strain rate. Entrapment
at temperature conditions higher than this limit would therefore likely result in the
plastic resetting of the strain in the inclusion, that cannot be predicted with the elastic
model presented so far (e.g. Zhong et al., 2018). Therefore, geological implications
can only be derived from the contour plots presented in this chapter for entrapment
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conditions at which no plastic deformation of the minerals occurs.

7.1 Cubic inclusion in cubic host

7.1.1 Diamond in pyrope

Pyrope (Mg3Al2Si3O12) is one of the pure end-members of garnet and is a main com-
ponent of garnets in UHP metamoprhic rocks. It crystallizes in the cubic system and
is elastically isotropic with an universal anisotropic index (Ranganathan and Ostoja-
Starzewski, 2008) AU=0.0009. The anisotropic relaxation tensor was calculated for a
spherical diamond inclusion in pyrope garnet with the elastic properties reported in
Tables B.1 and B.5 and with relative orientation adiam||apyr, bdiam||bpyr, cdiam||cpyr:

Rij =


0.18856 0.01580 0.01580 0.00000 0.00000 0.00000
0.01580 0.18856 0.01580 0.00000 0.00000 0.00000
0.01580 0.01580 0.18857 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.14674 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.14674 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.14674



To investigate how the symmetry of the host and of the inclusion a�ect the change in
strain during the relaxation, we test several cases with di�erent initial strain and stress
states that range from isotropic to deviatoric. The results are reported in Table 7.1.
When the unrelaxed strain and stress are isotropic (cases 1 and 2) the relaxation of the
diamond inclusion is equal along the three crystallographic axis. This follows from the
fact that, for both diamond and pyrope, the a, b and c crystallographic directions are
equally sti�, and with the current orientation each crystallographic axis of the inclusion
points toward the correspondent axis of the host. Cases 1 and 2 also show that, as a
consequence of the assumption of constant elastic properties in the derivation of the
Rij, the amount of relaxation starting from an initial compressive unrelaxed strain is
equal to that calculated from an initial tensional strain. Cases 3, 4 and 5 show that the
relaxation, even if in principle should be equal along the three principal directions, is
actually larger along the directions that are initially more strained and stressed. This
leads to the consequence that the deviatoric strain and stress in the inclusion decrease
upon relaxation. Moreover, even if one of the normal components of the stress is
extensional in the unrelaxed state, it can become compressive after relaxation as a
consequence of the complete stress �eld acting on the inclusion (case 5).
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Table 7.1: Relaxation calculated from a known unrelaxed strain state for diamond in pyrope with relative orientation
adiam||apyr, bdiam||bpyr, cdiam||cpyr. Stresses in GPa.

Case 1 Case 2 Case 3 Case 4 Case 5

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

ε11 -0.00080 -0.00018 0.00062 0.00080 0.00018 -0.00062 -0.00060 -0.00014 0.00046 -0.00010 -0.00010 0.00000 0.00000 -0.00004 -0.00004
ε22 -0.00080 -0.00018 0.00062 0.00080 0.00018 -0.00062 -0.00080 -0.00018 0.00062 -0.00600 -0.00112 0.00488 0.00000 -0.00004 -0.00004
ε33 -0.00080 -0.00018 0.00062 0.00080 0.00018 -0.00062 -0.00100 -0.00021 0.00079 0.00100 0.00009 -0.00091 -0.00240 -0.00045 0.00195
2ε23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2ε13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2ε12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Di�erential
strain

(εmax − εmin)
0.00000 0.00000 � 0.00000 0.00000 � 0.00040 0.00007 � 0.00700 0.00121 � 0.00240 0.00041 �

σ11 -1.066 -0.235 0.831 1.066 0.235 -0.831 -0.875 -0.202 0.674 -0.742 -0.236 0.506 -0.304 -0.103 0.201
σ22 -1.066 -0.235 0.831 1.066 0.235 -0.831 -1.066 -0.235 0.831 -6.356 -1.205 5.151 -0.304 -0.103 0.201
σ33 -1.066 -0.235 0.831 1.066 0.235 -0.831 -1.256 -0.267 0.988 0.305 -0.055 -0.360 -2.588 -0.498 2.090
σ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
σ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
σ12 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0

Di�erential
stress

(σmax − σmin)
0.000 0.000 � 0.000 0.000 � 0.381 0.066 � 6.661 1.151 � 2.284 0.395 �
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Relaxed strain, stress and pressure in the inclusion as a function of the
entrapment conditions
The strain and the stress developed in the inclusion during the exhumation were inves-
tigated as a function of a wide range of entrapment conditions (Ptrap, Ttrap) following
the procedure outlined in chapter 6.1. The EoS for diamond and pyrope used for the
thermodynamic part of the anisotropic calculation and for the isotropic calculation are
from Angel et al. (2015a) and Milani et al. (2015), respectively. Diamond and py-
rope have both cubic crystallographic symmetry and, as a consequence, the unrelaxed
strain in the diamond inclusion is isotropic for any choice of the initial Ptrap, Ttrap (see
equation 4.4). This together with the fact that the top left block of the R tensor
is symmetric with R11 = R22 = R33 and R12 = R13 = R23 guarantees that also the
�nal relaxed strain in the diamond inclusion is isotropic for any entrapment P and T.
Since the strain is isotropic and the inclusion is cubic the �nal relaxed stress is always
hydrostatic.
The numerical precision on the calculation (see section 6.2 and equations 6.1 - 6.4) is
δ(εreli ) ≈ 2 · 10−7 on the components of the relaxed strain, δ(σreli ) ≈ 3 · 10−4 GPa on
the components of the relaxed stress, δ(Pinc) ≈ 3 · 10−4 GPa on the residual pressure,
δ
(

∆V
V

)
≈ 7 · 10−7 on the relaxed volume strain.

Residual pressure (Pinc)
Fig. 7.1 shows the residual pressure in the inclusion obtained from the relaxed stress
(P aniso

inc = −(σ11 +σ22 +σ33)/3) as a function of the entrapment conditions (Ptrap, Ttrap).
The isomeke passing through room conditions is also reported. For an entrapment at
Ptrap and Ttrap conditions lying on this isomeke the isotropic model would predict zero
residual pressure in the inclusion after exhumation to room conditions (Angel et al.,
2014). Since the inclusion (diamond) is sti�er than the host (pyrope) the Pinc is positive
below this isomeke and negative above. As shown in Fig. 7.1, the line of Pinc = 0 GPa
obtained from the anisotropic calculation overlaps perfectly with the zero-Pinc isomeke,
that is based on isotropic elasticity, indicating a close agreement between the isotropic
and the anisotropic calculations.

Discrepancy between the isotropic and the anisotropic volume strain
Fig. 7.2a shows the discrepancy between the volume strain in the inclusion calculated
assuming linear isotropic elasticity ((∆V / V )iso,linearinc ) and linear anisotropic elasticity
((∆V / V )anisoinc ) for the relaxation. At Ptrap, Ttrap conditions below the isomeke the
volume strains are negative (i.e. compressive) and the discrepancy (∆V / V )iso,linearinc −
(∆V / V )anisoinc is negative meaning that the isotropic inclusion is more compressed than
the anisotropic case. This implies that the anisotropic inclusion tends to relax more
than the isotropic inclusion when both the calculations assume linear elasticity for the
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Figure 7.1: Diamond in pyrope: residual pressure in the inclusion obtained from the relaxed
stress (Pinc = −(σ11 +σ22 +σ33)/3) as a function of the entrapment conditions (Ptrap, Ttrap).
Solid line: zero-Pinc isomeke.
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(a)

(b)

Figure 7.2: Diamond in pyrope: discrepancy between the relaxed volume strain of the inclusion
calculated with isotropic and anisotropic elasticity as a function of the entrapment conditions
(Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear elasticity
(i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic properties
are allowed to change). Solid line: zero-Pinc isomeke.
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(a)

(b)

Figure 7.3: Diamond in pyrope: discrepancy between the residual pressure in the inclusion
calculated with isotropic (P isoinc) and anisotropic (P

aniso
inc ) elasticity as a function of the entrap-

ment conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a)
linear elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the
elastic properties are allowed to change). Solid line: zero-Pinc isomeke.
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relaxation.
The opposite behavior is found in Fig. 7.2b where the isotropic strain is calculated
applying non-linear elasticity for the relaxation. At Ptrap, Ttrap conditions above the
isomeke the volume strain are still negative (i.e. compressive) but the discrepancy
(∆V / V )iso,nonlinearinc − (∆V / V )anisoinc is positive meaning that the isotropic inclusion is
less compressed than the anisotropic case.
The discrepancies between the isotropic and the anisotropic calculations are smaller
than the typical experimental uncertainties on the determination of the volume strain
in natural inclusions (δ

(
∆V
V

)
≈ 3 · 10−4) for all the entrapment conditions investi-

gated. This suggests that for a diamond inclusion in pyrope the use of an elastically
isotropic model for geobarometry should still lead to a reliable estimation of the en-
trapment pressure. This is particularly relevant when the experimental measurement
is performed with Raman spectroscopy, that for cubic minerals only gives the volume
strain and therefore only allows the application of isotropic geobarometry (Angel et al.,
2018).

Discrepancy between the isotropic and the anisotropic Pinc

Fig. 7.3a shows the discrepancy between the relaxed pressure calculated assuming lin-
ear isotropic elasticity (P iso,linear

inc ) and linear anisotropic elasticity (P aniso
inc = −(σ11 +

σ22 + σ33)/3) for the relaxation. At Ptrap, Ttrap conditions below the isomeke the Pinc
is positive and the discrepancy P iso,linear

inc − P aniso
inc is positive meaning that the resid-

ual pressure of the isotropic calculation is higher than the pressure obtained form the
anisotropic calculation. As an example, for a Pinc less than 1 GPa the discrepancy is
smaller than 0.03 GPa.
The opposite behaviour is observed in Fig. 7.3b where the residual pressure calculated
with non-linear isotropic elasticity is lower than the anisotropic calculation at meta-
morphic conditions, in agreement with what observed in Fig. 7.2b where the non-linear
isotropic calculation gives a less compressed inclusion compared to the anisotropic cal-
culation. For a Pinc less than 1 GPa the discrepancy is smaller in magnitude than 0.008
GPa.

7.1.2 Diamond in grossular

Grossular (Ca3Al2Si3O12) is one of the end-members of garnet and is a main compo-
nent of garnets in UHP metamoprhic rocks. It crystallizes in the cubic system and
is elastically more anisotropic than pyrope (universal anisotropic index AU=0.01124
compared to AU=0.0009 of pyrope). The use of grossular as host allows as to test the
behaviour of a cubic inclusion when it is included in a cubic host that is not elastically
isotropic. The anisotropic relaxation tensor was calculated for a spherical diamond
inclusion in grossular garnet with the elastic properties reported in Tables B.1 and B.3
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and with relative orientation adiam||agrs, bdiam||bgrs, cdiam||cgrs:

Rij =


0.20639 0.01772 0.01772 0.00000 0.00000 0.00000
0.01772 0.20639 0.01772 0.00000 0.00000 0.00000
0.01772 0.01772 0.20639 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.15939 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.15939 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.15939



Relaxed strain, stress and pressure in the inclusion as a function of the
entrapment conditions
The EoS for diamond and grossular used for the thermodynamic part of the anisotropic
calculation and for the isotropic calculation are from Angel et al., 2015a and Mi-
lani et al., 2017, respectively. As for diamond in pyrope, also in this case the strain
and the stress in the inclusion are isotropic for any choice of the initial Ptrap, Ttrap.
The numerical precision on the calculation (see section 6.2 and equations 6.1 - 6.4) is
δ(εreli ) ≈ 3 · 10−7 on the components of the relaxed strain, δ(σreli ) ≈ 3 · 10−4 GPa on
the components of the relaxed stress, δ(Pinc) ≈ 3 · 10−4 GPa on the residual pressure,
δ
(

∆V
V

)
≈ 7 · 10−7 on the relaxed volume strain.

Residual pressure (Pinc)
Fig. 7.4 shows the residual pressure (Pinc = −(σ11 + σ22 + σ33)/3) in the inclusion ob-
tained from the relaxed stress as a function of the entrapment conditions (Ptrap, Ttrap).
The isomeke passing through room conditions is also reported. For an entrapment at P
and T conditions lying on this isomeke the isotropic model would predict zero residual
pressure in the inclusion after exhumation to room conditions (Angel et al., 2014). As
for diamond in pyrope, the line of Pinc = 0 GPa obtained from the anisotropic calcula-
tion overlaps perfectly with the zero-Pinc isomeke, that is based on isotropic elasticity,
indicating a close agreement between the isotropic and the anisotropic calculations.

Discrepancy between the isotropic and the anisotropic calculations
The comparison of Fig. 7.2 and 7.5 shows that the discrepancy between the isotropic
(linear and non-linear) and the anisotropic volume strain in the inclusion ((∆V / V )isoinc−
(∆V / V )anisoinc ) is slightly smaller in magnitude compared to the case of a pyrope host.
The same is observed for the discrepancy in the residual pressure (P iso

inc −P aniso
inc ). This

is a consequence of grossular being slightly sti�er than pyrope (cf. Tables B.6 and B.4).
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Figure 7.4: Diamond in grossular: residual pressure in the inclusion obtained from the relaxed
stress (Pinc = −(σ11 +σ22 +σ33)/3) as a function of the entrapment conditions (Ptrap, Ttrap).
The solid line is the isomeke passing through room conditions.
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(a)

(b)

Figure 7.5: Diamond in grossular: discrepancy between the relaxed volume strain of the in-
clusion calculated with isotropic and anisotropic elasticity as a function of the entrapment
conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear
elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic
properties are allowed to change). Solid line: zero-Pinc isomeke.
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(a)

(b)

Figure 7.6: Diamond in grossular: discrepancy between the residual pressure in the inclusion
calculated with isotropic (P isoinc) and anisotropic (P

aniso
inc ) elasticity as a function of the entrap-

ment conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a)
linear elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the
elastic properties are allowed to change). Solid line: zero-Pinc isomeke.
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7.2 Non cubic inclusion in cubic host

7.2.1 Quartz in pyrope

The anisotropic relaxation tensor was calculated for a spherical quartz inclusion in py-
rope with the elastic properties reported in Tables B.7 and B.5 with relative orientation
aqtz||apyr and cqtz||cpyr:

Rij =


0.74280 0.02442 0.02417 −0.03041 0.00000 0.00000
0.02442 0.74280 0.02417 0.03041 0.00000 0.00000
0.01397 0.01397 0.69855 0.00000 0.00000 0.00000
−0.06105 0.06105 0.00000 0.62979 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.62980 −0.06099
0.00000 0.00000 0.00000 0.00000 −0.06099 0.71763


To investigate how the symmetry of the host and of the inclusion a�ect the change
in strain during the relaxation, we test several cases with di�erent initial strain and
stress states that range from isotropic to deviatoric. The results are reported in Ta-
ble 7.2. When the initial unrelaxed strain is isotropic (Case 1) the relaxation of the
quartz inclusion is larger along the c-axis. This follows from the fact that, the a, b
and c crystallographic axes of the pyrope host are equally sti�, while c is the sti�est
crystallographic axis of quartz that is therefore more stressed and relaxes more. The
results in case 1 in Table 7.2 also show that the relaxation does not decrease the dif-
ferential strain in the inclusion if the initial unrelaxed strain is isotropic. Case 3 shows
that if the normal components σunrel11 = σunrel22 are more compressive than σunrel33 , the
relaxation along the c axis of the inclusion may be smaller than along a and b, even
if c is the sti�est direction. Therefore, the relaxation in the inclusion depends on the
overall balance between the sti�ness of the inclusion along each direction and the mag-
nitude of the component of the unrelaxed stress along that direction. Case 5 shows that
one component of the normal stress (i.e. σunrel33 in case 5) may turn from extensional
to compressive as a consequence of the relaxation if the other two components (i.e.
σunrel11 = σunrel22 in case 5) are su�ciently compressive.
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Table 7.2: Relaxation calculated from a known unrelaxed strain state for quartz in pyrope with relative orientation aqtz||apyr
and cqtz||cpyr. Stresses in GPa.

Case 1 Case 2 Case 3 Case 4 Case 5

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

Unrelaxed
state

Relaxed
state

Change
upon
relax

ε11 -0.00900 -0.00712 0.00188 -0.00850 -0.00676 0.00174 -0.01200 -0.00928 0.00272 -0.01200 -0.00911 0.00289 -0.01200 -0.00913 0.00287
ε22 -0.00900 -0.00712 0.00188 -0.00850 -0.00676 0.00174 -0.01200 -0.00928 0.00272 -0.01200 -0.00911 0.00289 -0.01200 -0.00913 0.00287
ε33 -0.00900 -0.00654 0.00246 -0.01000 -0.00722 0.00278 -0.00300 -0.00243 0.00057 0.00400 0.00246 -0.00154 0.00300 0.00176 -0.00124
2ε23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2ε13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2ε12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Di�erential
strain

(εmax − εmin)
0.00000 -0.00058 � 0.00150 0.00046 � -0.00900 -0.00685 � -0.01600 -0.01157 � -0.01500 -0.01089 �

σ11 -0.944 -0.741 0.204 -0.909 -0.715 0.194 -1.157 -0.896 0.261 -1.078 -0.825 0.253 -1.089 -0.835 0.254
σ22 -0.944 -0.741 0.204 -0.909 -0.715 0.194 -1.157 -0.896 0.261 -1.078 -0.825 0.253 -1.089 -0.835 0.254
σ33 -1.161 -0.857 0.304 -1.256 -0.921 0.335 -0.590 -0.468 0.122 0.154 0.056 -0.099 0.048 -0.019 -0.067
σ23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
σ13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
σ12 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 0

Di�erential
stress

(σmax − σmin)
0.217 0.116 � 0.348 0.207 � -0.567 -0.428 � -1.232 -0.881 � -1.137 -0.816 �
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Relaxed strain, stress and pressure in the inclusion as a function of the
entrapment conditions
The strain and the stress developed in the inclusion during the exhumation were inves-
tigated as a function of a wide range of entrapment conditions (Ptrap, Ttrap) following
the procedure outlined in chapter 6.1. The EoS for quartz and pyrope used for the
thermodynamic part of the anisotropic calculation and for the isotropic calculation are
from (Angel et al., 2017a; Alvaro et al., 2019) and Milani et al. (2015), respectively.
Since pyrope has cubic crystallographic symmetry, it follows from equation (4.2) that
the strain imposed on quartz during the exhumation under an external lithostatic load,
is isotropic if referred to the initial state at Ptrap, Ttrap. The unrelaxed strain on the
quartz inclusion referred to a free quartz at room conditions can be found from equa-
tion (4.4) and in general is anisotropic (Fig. 7.7a).
The numerical precision on the calculation (see section 6.2 and equations 6.1 - 6.4) is
δ(εreli ) ≈ 6 · 10−6 on the components of the relaxed strain, δ(σreli ) ≈ 7 · 10−4 GPa on
the components of the relaxed stress, δ(Pinc) ≈ 7 · 10−4 GPa on the residual pressure,
δ
(

∆V
V

)
≈ 1 · 10−5 on the relaxed volume strain.

Di�erential strain and stress in the inclusion
Fig. 7.7 shows the di�erential strain ε3 − ε1 before and after the elastic relaxation.
Since ε3 is not necessarily the maximum strain in the inclusion, the di�erence ε3 − ε1

can be either positive or negative depending on the entrapment conditions. The strain
in the inclusion is isotropic only for a limited range of entrapment Ptrap, Ttrap conditions
(Fig. 7.7). As shown in Table 7.2, for an initial isotropic unrelaxed strain the �nal
relaxed strain becomes slightly anisotropic due to the elastic anisotropy of quartz. As
a consequence the lines of isotropic strain in Fig. 7.7a and b do not correspond. The
line of isotropic strain divides the P-T space in two �elds, one with ε3 − ε1 > 0 when
the Ptrap is increased or the Ttrap decreased, and one with ε3 − ε1 < 0 when the Ptrap
is decreased or the Ttrap increased. This is due to the c axis of quartz having a lower
compressibility and thermal expansion compared to the a and b axes (Mc0 = 136.77
GPa, M ′

c0 = 29.56, αc0 = 1.0212 10−5 K−1 vs. Ma0 = 102 GPa, M ′
a0 = 16.4, αa0 =

1.3587 10−5 K−1 ). As a consequence, for an entrapment at high Ptrap and low Ttrap
(i.e above the line of �nal isotropic strain) the ratio ctrap/c0 is larger than atrap/a0, and
it follows from equation (4.4) that ε3− ε1 > 0. For an entrapment at conditions below
the line of �nal isotropic strain (i.e. at low Ptrap and high Ttrap), we �nd the opposite
behaviour with ctrap/c0 < atrap/a0 and therefore ε3 − ε1 < 0.

Since the inclusion is not cubic but trigonal, when the relaxed strain is isotropic the
relaxed stress is not hydrostatic. For quartz, when the strain is compressive (i.e.
negative components) and isotropic, the σ3 component of the stress is more negative
than σ1 = σ2 (because quartz c axis is sti�er than a = b axes). As a consequence, the
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(a)

(b)

Figure 7.7: Quartz in pyrope: di�erential strain (ε3 − ε1) in the quartz inclusion before (a)
and after (b) the elastic relaxation, as a function of the entrapment conditions (Ptrap, Ttrap).
Dashed line: quartz-coesite phase transition (Bose and Ganguly, 1995); dotted line: α − β
quartz phase transition (Angel et al., 2017a); solid line: zero-Pinc isomeke. The quartz-coesite
phase transition is not included in the thermodynamic calculation, and all the results calculated
for Ptrap, Ttrap conditions above the phase boundary do not represent the real behaviour.
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(a)

(b)

Figure 7.8: Quartz in pyrope: di�erential stress (σ3 − σ1) in the quartz inclusion before (a)
and after (b) the elastic relaxation, as a function of the entrapment conditions (Ptrap, Ttrap).
Dashed line: quartz-coesite phase transition (Bose and Ganguly, 1995); dotted line: α − β
quartz phase transition (Angel et al., 2017a); solid line: zero-Pinc isomeke. The quartz-coesite
phase transition is not included in the thermodynamic calculation, and all the results calculated
for Ptrap, Ttrap conditions above the phase boundary do not represent the real behaviour.
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σ3 − σ1 is negative. This is con�rmed by comparing the position of bands of isotropic
strain from Fig.7.7b to the value of σ3−σ1 in the same area in Fig.7.8(b). On the other
hand, when the compressive stress in quartz is isotropic the strain components ε1 = ε2

are more negative than ε3, and ε3− ε1 is positive. This is con�rmed by comparing the
position of the band of isotropic stress from Fig. 7.8b to the ε3−ε1 in the corresponding
region of Fig.7.7b. As for the strain, Fig. 7.8 shows that the band of isotropic stress
divides the P-T space in two �elds, one with σ3−σ1 > 0 when the Ptrap is increased or
the Ttrap decreased, and one with σ3 − σ1 < 0 when the Ptrapis decreased or the Ttrap
increased, and, as shown above, this is a consequence of the c axis in quartz having a
lower compressibility and thermal expansion compared to the a and b axes.

By comparing the strain (Fig. 7.7) and the stress (Fig. 7.8) before and after the elastic
relaxation it can be seen that the maximum di�erential strain and di�erential stress
are reduced after the elastic relaxation.

Residual pressure (Pinc)
The residual pressure in the inclusion, obtained form the anisotropic calculation as
P aniso
inc = −(σ11 + σ22 + σ33)/3, is positive above the zero-Pinc isomeke and negative

below as expected for a soft inclusion in a sti� host (Fig. 7.9). The line of Pinc = 0
GPa obtained from the anisotropic calculation overlaps perfectly with the zero-Pinc
isomeke, that is based on isotropic elasticity, indicating a close agreement between the
isotropic and the anisotropic calculations.

Discrepancy between the isotropic and the anisotropic volume strain
Fig. 7.10a shows the discrepancy between the volume strain in the inclusion calculated
assuming linear isotropic elasticity ((∆V / V )iso,linearinc ) and linear anisotropic elasticity
((∆V / V )anisoinc = ε11 + ε22 + ε33) for the relaxation. At Ptrap, Ttrap conditions above
the isomeke the volume strains are negative (i.e. compressive) and the discrepancy
(∆V / V )iso,linearinc − (∆V / V )anisoinc is negative meaning that the isotropic inclusion is
more compressed than the anisotropic case. This implies that the anisotropic inclusion
tends to relax more than the isotropic inclusion when both the calculations assume
linear elasticity for the relaxation. The discrepancy between the isotropic and the
anisotropic calculation are expected to be only slightly larger than the typical exper-
imental uncertainties on the determination of the volume strain in natural inclusions
(δ
(

∆V
V

)
≈ 3 · 10−4 corresponding to about 0.01 GPa of residual pressure) for most of

entrapment conditions. This suggests that for a quartz inclusion in pyrope the use of
an elastically isotropic model for geobarometry leads to small errors in the estimation
of the entrapment pressure.
The opposite behavior is found in Fig. 7.10b where the isotropic strain is calculated
applying non-linear elasticity for the relaxation. At Ptrap, Ttrap conditions above the
isomeke the volume strain are still negative (i.e. compressive) but the discrepancy
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Figure 7.9: Quartz in pyrope: residual pressure in the inclusion obtained from the relaxed
stress (Pinc = −(σ11 +σ22 +σ33)/3) as a function of the entrapment conditions (Ptrap, Ttrap).
Dashed line: quartz-coesite phase transition (Bose and Ganguly, 1995); dotted line: α − β
quartz phase transition (Angel et al., 2017a); solid line: zero-Pinc isomeke. The quartz-coesite
phase transition is not included in the thermodynamic calculation, and all the results calculated
for Ptrap, Ttrap conditions above the phase boundary do not represent the real behaviour.
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(a)

(b)

Figure 7.10: Quartz in pyrope: discrepancy between the relaxed volume strain of the inclusion
calculated with isotropic and anisotropic elasticity as a function of the entrapment conditions
(Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear elasticity (i.e.
the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic properties are
allowed to change). Dashed line: quartz-coesite phase transition (Bose and Ganguly, 1995);
dotted line: α− β quartz phase transition (Angel et al., 2017a); solid line: zero-Pinc isomeke.
The quartz-coesite phase transition is not included in the thermodynamic calculation, and all
the results calculated for Ptrap, Ttrap conditions above the phase boundary do not represent the
real behaviour.
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(a)

(b)

Figure 7.11: Quartz in pyrope: discrepancy between the residual pressure in the inclusion
calculated with isotropic (P isoinc) and anisotropic (P

aniso
inc ) elasticity as a function of the entrap-

ment conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a)
linear elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the
elastic properties are allowed to change). Dashed line: quartz-coesite phase transition (Bose
and Ganguly, 1995); dotted line: α−β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transition is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.



128 Examples of anisotropic geobarometry: spherical inclusions in garnet

(∆V / V )iso,nonlinearinc − (∆V / V )anisoinc is positive meaning that the isotropic inclusion is
less compressed than the anisotropic case.

Discrepancy between the isotropic and the anisotropic Pinc

Fig. 7.11a shows the discrepancy between the relaxed pressure calculated assum-
ing linear isotropic elasticity (P iso,linear

inc ) and linear anisotropic elasticity (P aniso
inc =

−(σ11 + σ22 + σ33)/3) for the relaxation. At Ptrap, Ttrap conditions above the isomeke
the Pinc is positive and the discrepancy P iso,linear

inc −P aniso
inc is positive meaning that the

residual pressure of the isotropic calculation is higher than the pressure obtained form
the anisotropic calculation. For a Pinc of 1 GPa the discrepancy is up to 0.15 GPa.
This discrepancy is large compared to the relatively small discrepancy on the volume
strain reported in Fig. 7.10a because of the bulk modulus of quartz used in isotropic
solution that becomes rapidly sti�er with increasing Pinc (see example in Table 7.3).
Fig. 7.11b shows that the residual pressure calculated with non-linear isotropic elastic-
ity is also higher then the anisotropic calculation at metamorphic conditions. This last
result seems to disagree with what observed in Fig. 7.10b where the non-linear isotropic
calculation gives a less compressed inclusion compared to the anisotropic calculation.
This is shown with an example in Table 7.3 where the residual pressure and volume
strain in the inclusion are reported for an entrapment at Ptrap=2.5 GPa and Ttrap=700
◦C. This behavior is a consequence of the P -dependent isotropic elastic properties of
the inclusion used to translate the volume strain into the P iso

inc that are sti�er than
the room-P anisotropic properties used to convert the relaxed strain into the relaxed
stress, resulting in a P iso,nonlinear

inc > P aniso
inc .

These results show that, for a soft inclusion such as quartz, the discrepancy P iso
inc−P aniso

inc

is more a�ected by the assumption of constant elastic properties in the anisotropic re-
laxation rather than being a consequence of the anisotropic elasticity.
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Table 7.3: Residual pressure and volume strain in the inclusion for an entrapment at Ptrap=2.5
GPa and Ttrap=700 ◦C. Pressures in GPa.

(∆V / V )anisoinc (∆V / V )iso,linearinc (∆V / V )iso,nonlinearinc

-0.0262 -0.0266 -0.0256

P anisoinc P iso,linearinc P iso,nonlinearinc

0.979 1.091 1.048

(∆V / V )iso,linearinc − (∆V / V )anisoinc (∆V / V )iso,nonlinearinc − (∆V / V )anisoinc

-0.0004 0.0006

P iso,linearinc − P anisoinc P iso,nonlinearinc − P anisoinc

0.112 0.069

7.2.2 Quartz in grossular

The anisotropic relaxation tensor was calculated for a spherical quartz inclusion in
grossular garnet with the elastic properties reported in Tables B.7 and B.3 and with
relative orientation aqtz||agrs, cqtz||cgrs (i.e. the host and the inclusion have the same
orientation):

Rij =


0.76332 0.02405 0.02385 −0.02912 0.00000 0.00000
0.02405 0.76332 0.02385 0.02912 0.00000 0.00000
0.01398 0.01398 0.72146 0.00000 0.00000 0.00000
−0.05904 0.05904 0.00000 0.65187 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.65192 −0.05883
0.00000 0.00000 0.00000 0.00000 −0.05883 0.73665


Relaxed strain, stress and pressure in the inclusion as a function of the
entrapment conditions
The EoS for quartz and grossular used for the thermodynamic part of the anisotropic
calculation and for the isotropic calculation are from Angel et al. (2017a) and Milani
et al., 2017, respectively. As for quartz in pyrope, the unrelaxed strain on the quartz
inclusion referred to a free quartz at room conditions can be found from equation (4.4)
and in general is anisotropic. The relaxed strain in the inclusion is isotropic only for a
limited range of entrapment Ptrap, Ttrap conditions (Fig. 7.12). Compared to the case
of a pyrope host, the strain is slightly more deviatoric due to grossular being more
anisotropic than pyrope (Universal anisotropic index AU : 0.011 for grossular compared
to 0.001 for pyrope).
The numerical precision on the calculations (see section 6.2 and equations 6.1 - 6.4) is
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δ(εreli ) ≈ 6 · 10−6 on the components of the relaxed strain, δ(σreli ) ≈ 7 · 10−4 GPa on
the components of the relaxed stress, δ(Pinc) ≈ 7 · 10−4 GPa on the residual pressure,
δ
(

∆V
V

)
≈ 1 · 10−5 on the relaxed volume strain.

Discrepancy between the isotropic and the anisotropic calculations The
comparison of Fig. 7.10 and 7.13 shows that the discrepancy between the isotropic
(linear and non-linear) and the anisotropic volume strain in the inclusion ((∆V / V )isoinc−
(∆V / V )anisoinc ) is slightly smaller in magnitude compared to the case of a pyrope host.
The same is observed in Fig. 7.14 for the discrepancy in the residual pressure (P iso

inc −
P aniso
inc ). This is a consequence of grossular being slightly sti�er than pyrope (cf. Tables

B.6 and B.4). These results suggest that for a quartz inclusion in grossular the use of
an elastically isotropic model for geobarometry leads to small errors in the estimation
of the entrapment pressure.
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(a)

(b)

Figure 7.12: Quartz in grossular: di�erential strain (ε3−ε1) in the quartz inclusion before (a)
and after (b) the elastic relaxation, as a function of the entrapment conditions (Ptrap, Ttrap).
Dashed line: quartz-coesite phase transition (Bose and Ganguly, 1995); dotted line: α − β
quartz phase transition (Angel et al., 2017a); solid line: zero-Pinc isomeke. The quartz-coesite
phase transition is not included in the thermodynamic calculation, and all the results calculated
for Ptrap, Ttrap conditions above the phase boundary do not represent the real behaviour.
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(a)

(b)

Figure 7.13: Quartz in grossular: discrepancy between the relaxed volume strain of the in-
clusion calculated with isotropic and anisotropic elasticity as a function of the entrapment
conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear
elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic
properties are allowed to change). Dashed line: quartz-coesite phase transition (Bose and
Ganguly, 1995); dotted line: α − β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transition is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.



Examples of anisotropic geobarometry: spherical inclusions in garnet 133

(a)

(b)

Figure 7.14: Quartz in grossular: discrepancy between the residual pressure in the inclusion
calculated with isotropic (P isoinc) and anisotropic (P

aniso
inc ) elasticity as a function of the entrap-

ment conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a)
linear elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the
elastic properties are allowed to change). Dashed line: quartz-coesite phase transition (Bose
and Ganguly, 1995); dotted line: α−β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transition is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.
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7.2.3 Zircon in pyrope

The anisotropic relaxation tensor was calculated for a spherical zircon inclusion in
pyrope with the elastic properties reported in Tables B.10 and B.5 with relative orien-
tation azrc||apyr and czrc||cpyr:

Rij =


0.38440 0.02445 −0.01846 0.00000 0.00000 0.00000
0.02445 0.38440 −0.01846 0.00000 0.00000 0.00000
−0.03501 −0.03501 0.35508 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.46567 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.46567 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.67120


Relaxed strain, stress and pressure in the inclusion as a function of the
entrapment conditions
The strain and the stress developed in the inclusion during the exhumation were inves-
tigated as a function of a wide range of entrapment conditions (Ptrap, Ttrap) following
the procedure outlined in chapter 6.1. The EoS for zircon and pyrope used for the
thermodynamic part of the anisotropic calculation and for the isotropic calculation are
from Za�ro (personal communication) and Milani et al. (2015), respectively. Since
pyrope has cubic crystallographic symmetry, it follows from equation (4.2) that the
strain imposed on zircon during the exhumation under an external lithostatic load, is
isotropic if referred to the initial state at Ptrap, Ttrap. The unrelaxed strain on the zircon
inclusion referred to a free zircon at room conditions can be found from equation (4.4)
and in general is anisotropic (Fig. 7.15a).
The numerical precision on the calculations (see section 6.2 and equations 6.1 - 6.4) is
δ(εreli ) ≈ 4 · 10−7 on the components of the relaxed strain, δ(σreli ) ≈ 3 · 10−4 GPa on
the components of the relaxed stress, δ(Pinc) ≈ 3 · 10−4 GPa on the residual pressure,
δ
(

∆V
V

)
≈ 1 · 10−6 on the relaxed volume strain.

Di�erential strain and stress in the inclusion
Fig. 7.15 shows the di�erential strain ε3 − ε1 before and after the elastic relaxation.
The strain in the inclusion is isotropic only for an entrapment at room conditions
(Fig. 7.15). For any other entrapment Ptrap, Ttrap the di�erence ε3 − ε1 is always
positive. This is a consequence of the c axis in zircon having a lower compressibility
(M0,c = 0.994 · 10−3 GPa−1, M0,a = 1.73 · 10−3 GPa−1) but larger thermal expansion
(α0,c = 0.4635 · 10−5 K−1, α0,a = 0.2956 · 10−5 K−1) compared to the a and b axes.

Comparing Fig. 7.15b and 7.16b it can be seen that when the di�erential strain is
low (i.e. for entrapment at Ptrap, Ttrap close to room conditions) also the di�erential
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(a)

(b)

Figure 7.15: Zircon in pyrope: di�erential strain (ε3−ε1) in the inclusion before (a) and after
(b) the elastic relaxation, as a function of the entrapment conditions (Ptrap, Ttrap). Solid line:
zero-Pinc isomeke.
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(a)

(b)

Figure 7.16: Zircon in pyrope: di�erential stress (σ3 − σ1) in the zircon inclusion before (a)
and after (b) the elastic relaxation, as a function of the entrapment conditions (Ptrap, Ttrap).
Solid line: zero-Pinc isomeke.
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Figure 7.17: Zircon in pyrope: residual pressure in the inclusion obtained from the relaxed
stress (Pinc = −(σ11 +σ22 +σ33)/3) as a function of the entrapment conditions (Ptrap, Ttrap).
Solid line: zero-Pinc isomeke.

stress is low. Since the inclusion is not cubic but tetragonal, when the relaxed strain is
isotropic the relaxed stress is not hydrostatic. Therefore, even if both the areas of small
di�erential strain (Fig. 7.15b) and those of small di�erential stress (Fig. 7.15b) fall
at low Ptrap, Ttrap conditions, they do not overlap perfectly. By comparing the strain
(Fig. 7.15) and the stress (Fig. 7.16) before and after the elastic relaxation it can be
seen that the maximum di�erential strain and di�erential stress are reduced after the
elastic relaxation.

Residual pressure (Pinc)
The residual pressure in the inclusion, obtained form the anisotropic calculation as
P aniso
inc = −(σ11 + σ22 + σ33)/3, is negative above the zero-Pinc isomeke and positive

below as expected for a sti� inclusion in a soft host (Fig. 7.17). The line of Pinc = 0
GPa obtained from the anisotropic calculation overlaps perfectly with the zero-Pinc
isomeke, that is based on isotropic elasticity, indicating a close agreement between the
isotropic and the anisotropic calculations.

Discrepancy between the isotropic and the anisotropic volume strain
Fig. 7.18a shows the discrepancy between the volume strain in the inclusion calculated
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(a)

(b)

Figure 7.18: Zircon in pyrope: discrepancy between the relaxed volume strain of the inclusion
calculated with isotropic and anisotropic elasticity as a function of the entrapment conditions
(Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear elasticity
(i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic properties
are allowed to change). Solid line: zero-Pinc isomeke.
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(a)

(b)

Figure 7.19: Zircon in pyrope: discrepancy between the residual pressure in the inclusion cal-
culated with isotropic (P isoinc) and anisotropic (P

aniso
inc ) elasticity as a function of the entrapment

conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear
elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic
properties are allowed to change). Solid line: zero-Pinc isomeke.
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assuming linear isotropic elasticity ((∆V / V )iso,linearinc ) and linear anisotropic elasticity
((∆V / V )anisoinc = ε11 + ε22 + ε33) for the relaxation. At Ptrap, Ttrap conditions be-
low the isomeke the volume strains are negative (i.e. compressive) and the discrepancy
(∆V / V )iso,linearinc −(∆V / V )anisoinc is negative meaning that the isotropic inclusion is more
compressed than the anisotropic case. This implies that the anisotropic inclusion tends
to relax more than the isotropic inclusion when both the calculations assume linear elas-
ticity for the relaxation. The discrepancy between the isotropic and the anisotropic
calculation are expected to be smaller than the typical experimental uncertainties on
the determination of the volume strain in natural inclusions (δ

(
∆V
V

)
≈ 3 · 10−4) for

most of entrapment conditions. This suggests that for a zircon inclusion in pyrope
the use of an elastically isotropic model for geobarometry leads to small errors in the
estimation of the entrapment pressure.
The opposite behavior is found in Fig. 7.18b where the isotropic strain is calculated
applying non-linear elasticity for the relaxation. At Ptrap, Ttrap conditions above the
isomeke the volume strain are still negative (i.e. compressive) but the discrepancy
(∆V / V )iso,nonlinearinc − (∆V / V )anisoinc is positive meaning that the isotropic inclusion is
less compressed than the anisotropic case.

Discrepancy between the isotropic and the anisotropic Pinc

Fig. 7.19a shows the discrepancy between the relaxed pressure calculated assum-
ing linear isotropic elasticity (P iso,linear

inc ) and linear anisotropic elasticity (P aniso
inc =

−(σ11 + σ22 + σ33)/3) for the relaxation. At Ptrap, Ttrap conditions below the isomeke
the Pinc is positive and the discrepancy P iso,linear

inc −P aniso
inc is positive meaning that the

residual pressure of the isotropic calculation is higher than the pressure obtained form
the anisotropic calculation. As an example, for a Pinc less than 1 GPa the discrepancy
is smaller than 0.05 GPa.
The opposite behaviour is observed in Fig. 7.19b where the residual pressure calculated
with non-linear isotropic elasticity is lower than the anisotropic calculation at metamor-
phic conditions, in agreement with what observed in Fig. 7.18b where the non-linear
isotropic calculation gives a less compressed inclusion compared to the anisotropic cal-
culation. For a Pinc less than 1 GPa the discrepancy is smaller in magnitude than 0.015
GPa.

7.2.4 Zircon in grossular

The anisotropic relaxation tensor was calculated for a spherical zircon inclusion in
grossular garnet with the elastic properties reported in Tables B.10 and B.3 and with
relative orientation aZrc||agrs, cZrc||cgrs (i.e. the host and the inclusion have the same
orientation):
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Rij =


0.41121 0.02614 −0.01755 0.00000 0.00000 0.00000
0.02614 0.41121 −0.01755 0.00000 0.00000 0.00000
−0.03491 −0.03491 0.38090 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.49003 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.49003 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.69237


Relaxed strain, stress and pressure in the inclusion as a function of the
entrapment conditions

The EoS for zircon and grossular used for the thermodynamic part of the anisotropic
calculation and for the isotropic calculation are from Angel et al. (2017a) and Milani
et al. (2017), respectively. As for zircon in pyrope, the unrelaxed strain on the zircon
inclusion referred to a free zircon at room conditions can be found from equation (4.4)
and in general is anisotropic. The relaxed strain in the inclusion is isotropic only for a
limited range of entrapment Ptrap, Ttrap conditions (Fig. 7.20).

Discrepancy between the isotropic and the anisotropic calculations
The comparison of Fig. 7.18 and 7.21 shows that the discrepancy between the isotropic
(linear and non-linear) and the anisotropic volume strain in the inclusion ((∆V / V )isoinc−
(∆V / V )anisoinc ) is slightly smaller in magnitude compared to the case of a pyrope host.
The same is observed in Fig. 7.22 for the discrepancy in the residual pressure (P iso

inc −
P aniso
inc ). This is a consequence of grossular being slightly sti�er than pyrope (cf. Tables

B.6 and B.4). These results suggest that for a zircon inclusion in grossular the use of
an elastically isotropic model for geobarometry leads to small errors in the estimation
of the entrapment pressure.
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(a)

(b)

Figure 7.20: Zircon in grossular: di�erential strain (ε3− ε1) in the zircon inclusion before (a)
and after (b) the elastic relaxation, as a function of the entrapment conditions (Ptrap, Ttrap).
Solid line: zero-Pinc isomeke.



Examples of anisotropic geobarometry: spherical inclusions in garnet 143

(a)

(b)

Figure 7.21: Zircon in grossular: discrepancy between the relaxed volume strain of the inclusion
calculated with isotropic and anisotropic elasticity as a function of the entrapment conditions
(Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a) linear elasticity
(i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the elastic properties
are allowed to change). Solid line: zero-Pinc isomeke.
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(a)

(b)

Figure 7.22: Zircon in grossular: discrepancy between the residual pressure in the inclusion
calculated with isotropic (P isoinc) and anisotropic (P

aniso
inc ) elasticity as a function of the entrap-

ment conditions (Ptrap, Ttrap). In the isotropic model the relaxation is calculated with: (a)
linear elasticity (i.e. the elastic properties are constant); (b) non-linear elasticity (i.e. the
elastic properties are allowed to change). Solid line: zero-Pinc isomeke.



Chapter 8

Relative orientations between the host

and the inclusion

The strain and the stress �elds developed in an inclusion entrapped in an elastically
isotropic host are not a�ected by the relative orientation between the two minerals.
If the initial (Ptrap, Ttrap at entrapment) and the �nal (Proom, Troom) conditions are
under external lithostatic stress, an isotropic host will always impose an isotropic strain
�eld on the inclusion, and therefore the strain in the inclusion is not a�ected by its
orientation within the host. An elastically isotropic host would allow the inclusion to
relax equally in every direction and therefore in the inclusion the di�erence between the
principal components of the relaxed strain is only a consequence of its elastic anisotropy,
that is not a�ected by its orientation within the host. On the contrary, if both the
host and the inclusion are elastically anisotropic the strain and the stress calculated in
the inclusion are function of the relative crystallographic orientation between the two
crystals. In the most general case both the thermodynamic calculation (section 4.1)
and the relaxation (section 4.2.5) are a�ected by the orientation.

We will illustrate the e�ect of the relative orientation for garnet-inclusion systems.
Since garnets are cubic minerals, the relative orientation between the host and the
inclusion does not a�ect the thermodynamic calculations. If the initial (entrapment)
and �nal (Proom, Troom) conditions are under external lithostatic stress, a cubic host will
always impose an isotropic strain �eld on the inclusion (see equation (4.2) in section
4.1), and therefore the strain in the inclusion is not a�ected by its orientation within
the host. However, the orientation becomes relevant when calculating the change in
strain upon relaxation because the amount of relaxation in a given direction in the in-
clusion depends on the full state of stress/strain in the inclusion, the anisotropic elastic
properties of the host and of the inclusion, including their variation with direction, and
the relative orientation of their crystallographic axes. Therefore, the 36 components
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of the relaxation tensor must be recalculated for each orientation, a procedure that
can be extremely demanding from a computational point of view since it requires six
FE analyses. We show that for garnet hosts, that are almost isotropic, the relative
orientation of the inclusion introduces deviation in the residual strain and stress that
are insigni�cant compared to the uncertainties on the experimental measurements. For
each inclusion-garnet pair we investigate two representative orientations. For elasti-
cally anisotropic crystals the Young modulus (E), that represents the behavior of a
material under simple tension, varies as a function of the direction in the crystal and
its directional dependency can be calculated as (Nye, 1985):

E =
1

S
′
1111

=
1

a1ma1na1pa1qSmnpq
(8.1)

where aij is the transformation matrix, Smnpq are the components of the compliance
tensor of the mineral (where the compliance is the inverse of the sti�ness tensor: S =
C−1) before the transformation and S

′
1111 is the component after the transformation.

An automatic procedure has been implemented in MatlabR© to �nd the directions in
a crystal associated with the maximum and the minimum values of the Young modu-
lus. The algorithm then �nds the two extreme conditions for the relaxation aligning
the sti�est direction (i.e. where the Young modulus is highest) of the inclusion with
the directions of lowest and highest Young moduli of the host. The anisotropic re-
laxation tensor is calculated for these two relative orientations. The full calculation
that combines the thermodynamic calculation and the anisotropic relaxation is then
performed to determine how the change in relative orientation a�ects the �nal strain
in the inclusion, as a function of the entrapment conditions (Ptrap, Ttrap).

For the following examples we consider pyrope and grossular as garnets end-members.
Pyrope is almost elastically isotropic with a Universal anisotropic index (Ranganathan
and Ostoja-Starzewski, 2008) AU = 0.001 while grossular is more anisotropic with
AU = 0.011

8.1 Diamond in pyrope and grossular

The Young modulus of pyrope is highest along the <100> directions (E = 240 GPa)
and lowest along the <111> directions (E = 236 GPa). The Young modulus of grossu-
lar is highest along the <100> directions (E = 276 GPa) and lowest along the <111>
directions (E = 260 GPa). For diamond the sti�est direction is the <111> (E = 1163
GPa) while the softest is the <100> (E = 1052 GPa)

Here we compare the strain and the stress calculated with the two relative orientations:
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• Orientation 1: direction [111] of diamond aligned with the [111] of pyrope and
grossular

• Orientation 2: direction [111] of diamond aligned with the [010] of pyrope and
grossular

The anisotropic relaxation tensors were calculated for a spherical diamond inclusion in
pyrope and grossular garnets with the elastic properties reported in Tables B.1, B.5
and B.3, for relative orientations 1 and 2. Results are reported in Table 8.1.

Table 8.1: Diamond in pyrope: relaxation tensor R calculated with relative orientations 1 and
2 as described in the main text.

Orientation 1

Rij =


0.18856 0.01580 0.01580 0.00000 0.00000 0.00000
0.01580 0.18856 0.01580 0.00000 0.00000 0.00000
0.01580 0.01580 0.18857 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.14674 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.14674 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.14674


Orientation 2

Rij =


0.18824 0.01592 0.01600 0.00003 −0.00006 0.00003
0.01592 0.18833 0.01592 −0.00006 0.00012 −0.00006
0.01600 0.01592 0.18824 0.00003 −0.00006 0.00003
0.00005 −0.00010 0.00005 0.14694 0.00005 0.00021
−0.00010 0.00020 −0.00010 0.00005 0.14710 0.00005
0.00005 −0.00010 0.00005 0.00021 0.00005 0.14694



The relaxed strain and the stress �elds developed in the diamond inclusion with relative
orientation 1 have already been discussed in sections 7.1.1 and 7.1.2. Since both the
host and the inclusion are cubic the strain �eld in the inclusion remains isotropic for
any relative orientation between the host and the inclusion. Fig. 8.1 shows that the
volume strain (found as (∆V / V ) = ε1 + ε2 + ε3) is practically not a�ected by the
relative orientation since the discrepancy is smaller than the typical uncertainties on
the experimental determination of the strain components by X-ray di�raction or Raman
spectroscopy (δ

(
∆V
V

)
≈ 3·10−4). For Ptrap, Ttrap conditions below the zero-Pinc isomeke
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Table 8.2: Diamond in grossular: relaxation tensor R calculated with relative orientations 1
and 2 as described in the main text.

Orientation 1

Rij =


0.20639 0.01772 0.01772 0.00000 0.00000 0.00000
0.01772 0.20639 0.01772 0.00000 0.00000 0.00000
0.01772 0.01772 0.20639 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.15939 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.15939 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.15939


Orientation 2

Rij =


0.20513 0.01818 0.01852 0.00012 −0.00024 0.00012
0.01818 0.20548 0.01818 −0.00024 0.00047 −0.00024
0.01852 0.01818 0.20513 0.00012 −0.00024 0.00012
0.00020 −0.00039 0.00020 0.16020 0.00020 0.00081
−0.00039 0.00078 −0.00039 0.00020 0.16081 0.00020
0.00020 −0.00039 0.00020 0.00081 0.00020 0.16020



the volume strain in the inclusion is negative because diamond is over-pressurized (see
Fig. 7.1). At these conditions the change in volume strain is negative meaning that the
inclusion with orientation 1 is less compressed, since with this orientation the sti�est
direction of diamond points toward the softest direction of garnet allowing the inclusion
to expand more. The comparison of Fig. 8.1 and 8.2 shows that for a grossular host
the change in volume strain due to the relative orientation has a trend similar to the
case of a pyrope host, but is lower in magnitude since grossular is sti�er than pyrope.
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Figure 8.1: Diamond in pyrope: comparison between the volume strain in the inclusion (
(∆V / V ) = ε1 + ε2 + ε3) calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Solid line: zero-Pinc isomeke.
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Figure 8.2: Diamond in grossular: comparison between the volume strain in the inclusion (
(∆V / V ) = ε1 + ε2 + ε3) calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Solid line: zero-Pinc isomeke.
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8.2 Quartz in pyrope and grossular

The Young modulus of pyrope is highest along the <100> directions (E = 240 GPa)
and lowest along the <111> directions (E = 236 GPa). The Young modulus of grossu-
lar is highest along the <100> directions (E = 276 GPa) and lowest along the <111>
directions (E = 260 GPa). For quartz the sti�est crystallographic axis is the c-axis
(E = 104 GPa).

Here we compare the strain calculated with two relative orientations:

• Orientation 1: c-axis of quartz aligned with the [001] of pyrope and grossular

• Orientation 2: c-axis of quartz aligned with the [111] of pyrope and grossular

The anisotropic relaxation tensors were calculated for a spherical quartz inclusion in
pyrope and grossular garnets with the elastic properties reported in Tables B.7, B.5,
B.3 for relative orientations 1 and 2. Results are reported in Tables 8.3 and 8.4.

Table 8.3: Quartz in pyrope: relaxation tensor R calculated with relative orientations 1 and
2 as described in the main text.

Orientation 1

Rij =


0.74280 0.02442 0.02417 −0.03041 0.00000 0.00000
0.02442 0.74280 0.02417 0.03041 0.00000 0.00000
0.01397 0.01397 0.69855 0.00000 0.00000 0.00000
−0.06105 0.06105 0.00000 0.62979 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.62980 −0.06099
0.00000 0.00000 0.00000 0.00000 −0.06099 0.71763


Orientation 2

Rij =


0.74243 0.02456 0.02446 −0.03049 −0.00023 −0.00005
0.02456 0.74243 0.02446 0.03049 0.00023 0.00005
0.01419 0.01419 0.69800 0.00000 0.00000 0.00000
−0.06091 0.06091 0.00000 0.63037 0.00011 0.00032
−0.00032 0.00032 0.00000 −0.00011 0.63037 −0.06091
0.00011 −0.00011 0.00000 0.00047 −0.06099 0.71788



The relaxed strain and the stress �eld developed in the quartz inclusion with relative
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Table 8.4: Quartz in grossular: relaxation tensor R calculated with relative orientations 1 and
2 as described in the main text.

Orientation 1

Rij =


0.76332 0.02405 0.02385 −0.02912 0.00000 0.00000
0.02405 0.76332 0.02385 0.02912 0.00000 0.00000
0.01398 0.01398 0.72146 0.00000 0.00000 0.00000
−0.05904 0.05904 0.00000 0.65187 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.65192 −0.05883
0.00000 0.00000 0.00000 0.00000 −0.05883 0.73665


Orientation 2

Rij =


0.76203 0.02454 0.02487 −0.02941 −0.00083 −0.00019
0.02454 0.76203 0.02487 0.02941 0.00083 0.00019
0.01475 0.01475 0.71953 0.00000 0.00000 0.00000
−0.05856 0.05856 0.00000 0.65394 0.00037 0.00112
−0.00112 0.00112 0.00000 −0.00037 0.65395 −0.05856
0.00037 −0.00037 0.00000 0.00165 −0.05882 0.73749



orientation 1 have already been discussed in sections 7.2.1 and 7.2.2 for pyrope and
grossular hosts, respectively. Fig. 8.3 and 8.5 show the variation of the two independent
components (ε1 and ε3) of the relaxed strain in the quartz inclusion changing the
relative orientation. The variation is larger for the component ε3 of the strain, since
it is parallel to the c-axis that is the sti�est direction in quartz. For both pyrope
and grossular hosts the discrepancy is smaller than the typical uncertainties on the
experimental determination of the strain components by X-ray di�raction or Raman
spectroscopy (δ(εreli ) ≈ 1 · 10−4), meaning that the relative orientation between the
quartz inclusion and the host does not signi�cantly a�ect the strain in the inclusion.
The variation of the strain due to the orientation is slightly less for a pyrope host since
it is elastically more isotropic than grossular. This is con�rmed by the comparison
of Fig. 8.4 and 8.6 which also show that in both the variation of the volume strain
in the inclusion (found as (∆V / V ) = ε1 + ε2 + ε3) is much smaller than the typical
experimental uncertainties (δ

(
∆V
V

)
≈ 3 · 10−4).
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(a)

(b)

Figure 8.3: Quartz in pyrope: comparison between the components ε1 (a) and ε3 (b) of the
relaxed strain of the inclusion calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Dashed line: quartz-coesite phase transition (Bose and
Ganguly, 1995); dotted line: α − β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transtion is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.
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Figure 8.4: Quartz in pyrope: comparison between the volume strain in the inclusion (
(∆V / V ) = ε1 + ε2 + ε3) calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Dashed line: quartz-coesite phase transition (Bose and
Ganguly, 1995); dotted line: α − β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transtion is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.
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(a)

(b)

Figure 8.5: Quartz in grossular: comparison between the components ε1 (a) and ε3 (b) of the
relaxed strain of the inclusion calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Dashed line: quartz-coesite phase transition (Bose and
Ganguly, 1995); dotted line: α − β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transtion is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.



156 Relative orientations between the host and the inclusion

Figure 8.6: Quartz in grossular: comparison between the volume strain in the inclusion (
(∆V / V ) = ε1 + ε2 + ε3) calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Dashed line: quartz-coesite phase transition (Bose and
Ganguly, 1995); dotted line: α − β quartz phase transition (Angel et al., 2017a); solid line:
zero-Pinc isomeke. The quartz-coesite phase transtion is not included in the thermodynamic
calculation, and all the results calculated for Ptrap, Ttrap conditions above the phase boundary
do not represent the real behaviour.
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8.3 Zircon in pyrope and grossular

The Young modulus of pyrope is highest along the <100> directions (E = 240 GPa)
and lowest along the <111> directions (E = 236 GPa). The Young modulus of grossu-
lar is highest along the <100> directions (E = 276 GPa) and lowest along the <111>
directions (E = 260 GPa). The c-axis is the sti�est crystallographic direction in zircon
(E = 400 GPa).

Here we compare the strain calculated with two relative orientations:

• Orientation 1: c-axis of zircon aligned with the [001] of pyrope and grossular

• Orientation 2: c-axis of zircon aligned with the [111] of pyrope and grossular

The anisotropic relaxation tensors were calculated for a spherical zircon inclusion in
pyrope and grossular garnets with the elastic properties reported in Tables B.10, B.5,
B.3 for relative orientations 1 and 2. Results are reported in Tables 8.5 and 8.6.

Table 8.5: Zircon in pyrope: relaxation tensor R calculated with relative orientations 1 and 2
as described in the main text.

Orientation 1

Rij =


0.38440 0.02445 −0.01846 0.00000 0.00000 0.00000
0.02445 0.38440 −0.01846 0.00000 0.00000 0.00000
−0.03501 −0.03501 0.35508 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.46567 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.46567 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.67120


Orientation 2

Rij =


0.38397 0.02459 −0.01811 0.00000 −0.00017 0.00000
0.02459 0.38397 −0.01811 0.00000 0.00017 0.00000
−0.03476 −0.03476 0.35448 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.46629 0.00000 0.00027
−0.00052 0.00052 0.00000 0.00000 0.46629 0.00000
0.00000 0.00000 0.00000 0.00062 0.00000 0.67147



The relaxed strain and the stress �eld developed in the zircon inclusion with relative
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Table 8.6: Zircon in grossular: relaxation tensor R calculated with relative orientations 1 and
2 as described in the main text.

Orientation 1

Rij =


0.41121 0.02614 −0.01755 0.00000 0.00000 0.00000
0.02614 0.41121 −0.01755 0.00000 0.00000 0.00000
−0.03491 −0.03491 0.38090 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.49003 0.00000 0.00000
0.00000 0.00000 0.00000 0.00000 0.49003 0.00000
0.00000 0.00000 0.00000 0.00000 0.00000 0.69237


Orientation 2

Rij =


0.40961 0.02668 −0.01627 0.00000 −0.00062 0.00000
0.02668 0.40961 −0.01627 0.00000 0.00062 0.00000
−0.03399 −0.03399 0.37865 0.00000 0.00000 0.00000
0.00000 0.00000 0.00000 0.49228 0.00000 0.00096
−0.00194 0.00193 0.00000 0.00000 0.49229 0.00000
0.00000 0.00000 0.00000 0.00225 0.00000 0.69333



orientation 1 have already been discussed in sections 7.2.3 and 7.2.4 for pyrope and
grossular hosts, respectively. Fig. 8.7 and 8.9 show the variation of the two independent
components (ε1 and ε3) of the relaxed strain in the zircon inclusion changing the relative
orientation. The variation is larger in magnitude and negative for the component ε3 of
the strain that is parallel to the c-axis, i.e. the sti�est direction in zircon. The variation
of the components ε1 = ε2 is smaller and positive. For both pyrope and grossular
hosts the discrepancy is smaller than the typical uncertainties on the experimental
determination of the strain components by X-ray di�raction or Raman spectroscopy
(δ(εreli ) ≈ 1 · 10−4), meaning that the relative orientation between the quartz inclusion
and the host does not signi�cantly a�ect the strain in the inclusion. The variation
of the strain due to the orientation is less for a pyrope host since it is elastically
more isotropic than grossular. This is con�rmed by the comparison of Fig. 8.8 and
8.10 which also show that in both the variation of the volume strain in the inclusion
(found as (∆V / V ) = ε1 + ε2 + ε3) is much smaller than the typical experimental
uncertainties (δ

(
∆V
V

)
≈ 3 · 10−4). In both cases (pyrope and grossular host) the

variation of the volume strain is positive meaning that the inclusion with orientation



Relative orientations between the host and the inclusion 159

2 is less compressed, since with this orientation the sti�est direction of zircon points
toward the softest direction of garnet allowing the inclusion to expand more.
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(a)

(b)

Figure 8.7: Zircon in pyrope: comparison between the components ε1 (a) and ε3 (b) of the
relaxed strain of the inclusion calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Solid line: zero-Pinc isomeke.
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Figure 8.8: Zircon in pyrope: comparison between the volume strain in the inclusion (
(∆V / V ) = ε1 + ε2 + ε3) calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Solid line: zero-Pinc isomeke.
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(a)

(b)

Figure 8.9: Zircon in grossular: comparison between the components ε1 (a) and ε3 (b) of the
relaxed strain of the inclusion calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Solid line: zero-Pinc isomeke.
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Figure 8.10: Zirconin grossular: comparison between the volume strain in the inclusion (
(∆V / V ) = ε1 + ε2 + ε3) calculated for relative orientations 1 and 2 as a function of the
entrapment conditions (Ptrap, Ttrap). Solid line: zero-Pinc isomeke.





Conclusions

Even if more recent models for elastic geobarometry (Angel et al., 2017b) incorporate
non-linear elasticity, still they make several assumptions such as the simpli�ed geometry
of the system (the inclusion is spherical and isolated at the center of an e�ectively
in�nite host) and the use of isotropic elastic properties for both the host and the
inclusion. These conditions mean that during the exhumation the stress in the inclusion
is homogeneous and hydrostatic allowing for a simple analytical solution of the problem
(Goodier, 1933; Eshelby, 1957; Zhang, 1998). However, none of these conditions apply
in natural systems: no mineral is perfectly elastically isotropic and inclusions are often
close to grain boundaries or other inclusions, and they might be not spherical.

In general, the e�ects of these deviations from the "ideal" case can be evaluated only
through numerical calculations. With the Finite Element Method (FEM) I �rst in-
vestigated, keeping the assumption of isotropic elasticity, how the non-ideal geometry
a�ects the residual pressure Pinc in the inclusion during the exhumation of the rock
from entrapment conditions to the Earth's surface. With this approach a geometrical
factor (Γ) can be introduced, de�ned as the normalized deviation of the actual inclu-
sion pressure from that expected for an ideal isolated spherical inclusion, for the same
decompression (Fig. 1.1). The quanti�cation of Γ provides, as a �rst approximation,
guidelines as to which geometries of host-inclusion systems lead to deviations in the
�nal Pinc smaller than the typical experimental uncertainties in inclusion pressures ob-
tained from conventional experimental measurements, and can therefore be safely used
for geobarometry without any correction. On the other hand, when the deviation due
to the geometry is not small, the Γ factor can be used to correct the residual pressure
measured experimentally accounting for the geometric e�ects. The corrected Pinc can
then be used with available isotropic geobarometric methods to calculate entrapment
conditions. Regardless of the relative sti�ness of host and inclusion, for a big inclusion
in a small host and for an inclusion close to the external surface of the host, the residual
pressure is reduced relative to the ideal case (Γ < 0, Fig. 1.2). For isotropic elasticity,
our FEM results show that 'isolated' means that the inclusion must be at least 3 radii
from external surfaces or other inclusions, for the geometric e�ects on Pinc to be below
1 %. Under these conditions the shape e�ects then dominate the geometric correc-
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tions to the measured Pinc. For soft inclusions in a sti� host (e.g., quartz in garnet)
non-spherical inclusions (Γ < 0), will exhibit a lower pressure than spherical inclusions
(Fig. 1.3). The opposite is found for sti� inclusions in soft hosts for which Γ > 0.
Pressures from inclusions for which the geometrical e�ects on the residual pressure are
less than 5% will provide reliable estimates of Pinc, and hence Ptrap, without the need
for correction. For soft inclusions in sti� hosts, such as quartz in garnet, this means
the following:

1. The radius of the inclusion must be smaller than one-half of that of the host.

2. The distance from the external surface is larger than one-half the radius of the
inclusion.

3. The inclusion aspect ratio is lower than 1:3:3, with few sharp edges and corners.

These guidelines do not apply to inclusions sti�er than the host (e.g., diamond in gar-
net, zircon in garnet) that usually require larger corrections.

When the shape of the inclusion is not ellipsoidal, or it is not isolated within an in�nite
host but is close to the external surface of the host or to other inclusions, the stress
and the strain �elds in the inclusion are not homogeneous (Fig. 1.6). Also, the residual
�pressure� (de�ned as the negative of the mean normal stress P = −(σ11 +σ22 +σ33)/3)
is not constant within the inclusion (Fig. 1.2 and 1.5), and, as a consequence, the ge-
ometrical factor may change in value from point to point within the inclusion. In
these cases Γ was calculated as a local factor arbitrarily referred to the geometrical
center of the inclusion. The correction factor Γ must be de�ned keeping in mind the
experimental measurement that needs to be interpreted and corrected. Γ as a local
factor is especially appropriate for experimental measurement obtained from Raman
spectroscopy. With this technique point measurements are obtained, and, if the crys-
tal is su�ciently large compared to the section of the laser beam, it can be used to
e�ectively track the variation of the strain �eld within an inclusion (e.g. Fig. 3.2 and
A.4). On the other hand, X-ray di�raction gives the average state of strain of the
inclusion since the information on its deformation is averaged over all the unit-cells in
the crystal, and the interpretation of such results requires Γ to be de�ned as a bulk
factor averaged over the entire volume of the sample. Moreover, since the geometrical
factor incorporates the e�ects of several deviations from the ideal geometry (shape,size
and position of the inclusion), for more accurate results it should be evaluated on a
case-by-case basis with �nite element method (FEM) analysis carried out on realistic
digital models of the system. This approach was applied to a sub-lithospheric diamond
containing two ferropericlase inclusions. A FE model was created based on the CAD
model of the diamond obtained from X-ray micro-tomography, preserving the shape
of the inclusions and their reciprocal position and orientation. The X-ray di�raction
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measurements give a lower Pinc for the platy inclusion compared to that more rounded
(Fig. 2.2 and Table 2.1), consistent with the prediction of the FE analysis that assumes
that both the inclusions were entrapped under the same external conditions. For each
inclusion the average Γ factor, integrated over their entire volume, was obtained and
then applied to correct the measured Pinc. The entrapment pressures calculated with
isotropic elasticity after the correction are 13.4(1.4) and 12.8(1.6) GPa at a tempera-
ture Ttrap = 1790(30) K (Fig. 2.4) placing the formation of this diamond at least at
the lower part of the upper mantle.

Experimental measurements performed with Raman spectroscopy on zircon and co-
esite inclusions in pyrope from the ultrahigh-pressure (UHP) Alpine Dora Maira Mas-
sif showed that Raman shift is homogeneous only in rounded inclusions while it is
non-homogeneous in faceted ones (Fig. 3.2 A and B), in agreement with the results
from FEM calculations. Therefore, multiple Raman spectra collected on faceted inclu-
sions should not be averaged if their di�erences are larger than the instrumental peak
precision. Instead, to avoid the e�ects of grain shape on Raman peak positions, only
Raman spectra measured at the center of the inclusions should be used because there
the stress perturbation given by corners and edges is less and we can apply the local
geometrical correction. The e�ect of the proximity of the inclusion to the external
surface of the host is particularly crucial for high-pressure metamorphic rocks that are
investigated on thick (thickness 100 µm) or thin (thickness 30 µm) sections cut from
the rock specimen, possibly leading to large errors in the back-calculation of the en-
trapment conditions. To quantify this e�ect, Raman spectra were collected on a zircon
inclusion initially entrapped at the center of the rock thick section and after performing
several steps of polishing to expose the inclusion towards the external surface of the
host. The residual pressure was obtained from the Raman shifts using a hydrostatic
calibration. The Raman shifts measured on the inclusion, and as a consequence its
residual pressure, decrease as the inclusion gets closer to the external surface (e.g. Fig.
3.3A). Results show that only inclusions whose centers are distant more than 4 radii
(Fig. 3.3 B) from the surface of the host should be used for the back calculation of
the entrapment pressure. Even when an inclusion is exposed at the surface of the host
grain, it can still exhibit a variation in the peak position with respect to a free crystal,
and thus residual strains and stresses. Therefore, partially entrapped grains should
never be used as a strain free standard against which to measure the Raman shifts of
unexposed inclusions. The residual pressures obtained from the Raman spectra were
compared with the results of a set of FEM models that closely reproduce the shape of
the inclusion and its proximity to the external surface, and that also account for the
elastic anisotropy of the inclusion and its crystallographic orientation within the sec-
tion. The trends of �pressure� release estimated from experimental measurements agree
with those calculated from numerical simulations (Fig. 3.3B), but the experimental
data suggest a greater amount of stress release. For example, at a normalized distance
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of 1 (inclusion just in contact with the external surface), the calculated stress release
is approximately 50%, whereas that obtained from experimental data is about 70%
(Fig. 3.3B). There are at least two contributions to this discrepancy: (i) for non-cubic
inclusions (such as zircon) direct conversion of Raman shifts into pressures using a hy-
drostatic calibration is incorrect; (ii) when the inclusion is close to the surface, strain
gradients may be relaxed through plasticity or micro-fractures that are not considered
in our purely elastic numerical models. However, both experiments and calculations
show that the elastic anisotropy coupled with the crystallographic and the morpho-
logical orientation of the inclusion with respect to the external surface have a large
in�uence on the strain release during polishing.

Elastic geobarometry can be extended to include elastic anisotropy, and to this aim
the calculation of the �nal residual strain developed in the inclusion after exhuma-
tion must be split into two steps: thermodynamic calculation and relaxation. The
thermodynamic step considers the �nal strain in the inclusion as imposed only by the
deformation of the cavity (i.e. the host) during the exhumation, without considering
any mechanical coupling between the host and the inclusion. The calculation is based
on non-linear elasticity and requires the knowledge of the volume and axial Equations
of State (EoS) of both the host and of inclusion to describe how their crystallographic
axes change in length with changing pressure and temperature. If the host and the
inclusion are di�erent minerals, after the exhumation to room conditions the host and
the inclusion are not in mechanical equilibrium, and the discontinuity in traction at
the interface between the host and the inclusion forces the elastic relaxation of the
system until the mechanical equilibrium is restored. The calculation of the change
in strain upon anisotropic relaxation requires the knowledge of the unrelaxed strain
state, the full elastic properties of the host and the inclusion, including their varia-
tion with direction, and the relative orientation of their crystallographic axes. This
problem is related to the Eshelby's equivalent inclusion problem and can be solved
analytically for a few cases with speci�c crystallographic symmetries (e.g. transversely
isotropic symmetry), but not for host minerals typical of high-pressure metamorphic
rocks (e.g. garnets, zircon). The strain and stress in the inclusion after the relaxation
can be found numerically with FE analyses, without any restriction given by the elastic
anisotropic properties of the host and of the inclusion and their reciprocal orientation.
However, this approach is extremely time consuming and would greatly restrict the
routine applicability of elastic geobarometry since a new analysis is needed for any
speci�c initial unrelaxed strain state, requiring hours of computational time. This can
be avoided assuming that the elastic properties of both the host and the inclusion stay
constant during the relaxation. Under this assumption, I demonstrated that a linear
mapping represented by a fourth order non-symmetric tensor (the relaxation tensor
R) exists that transforms the unrelaxed strain into the relaxed strain (section 4.2.2).
The 36 independent components of R can be found with a set of only six FE analyses.
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A semi-automatic procedure was developed in MatlabR©, in which the user can select
the elastic properties for the host and the inclusion and set their relative orientation.
For each of the six analyses, AbaqusR© is called as FEM solver, and the outputs are
automatically processed to obtain the components of the relaxation tensor. Once the
relaxation tensor is calculated for a speci�c reciprocal orientation of the host and the
inclusion it can be applied to relax any unrelaxed strain state for that system, without
the need of new FE analyses. With this approach the �nal residual strain and stress in
the inclusion can be predicted after exhumation from any entrapment condition. Our
results show that on a �rst approximation, the amount of relaxation along a speci�c
direction in the inclusion is a consequence of the combined sti�ness of the host and of
the inclusion along that direction. If the inclusion and the host both have cubic sym-
metry the relaxation is equal along each of the crystallographic axes of the inclusion
(e.g. Table 7.1). If the inclusion has a symmetry lower than cubic and the host is
cubic, the largest relaxation is along the sti�est direction of the inclusion (e.g. Table
7.2). However, more strained directions tend to relax more. Therefore, the amount of
the elastic relaxation depends on the overall balance between the sti�nesses of the host
and of inclusion and the magnitude of the component of the unrelaxed strain along
each direction. The former is the contrast of the elastic properties at room T and low
stresses, the latter is the result of the contrast in thermal expansion and compressibil-
ities from entrapment to room conditions.

I have shown the application of these calculations to several cases typical of UHP
metamorphic rocks, using garnet as hosts. The geometry is kept simple with a spherical
inclusion at the center of an �in�nite� host. I developed an algorithm in MatlabR© to
generate a grid of equally-spaced points of entrapment within a desired range of Ptrap,
Ttrap and the exhumation of the host-inclusion system from each of these points to
room conditions is simulated combining the thermodynamic and the relaxation steps.
The calculations provide the relaxed strain in the inclusion, from which the relaxed
stress and all the other related quantities (e.g. volume strain, residual pressure ecc.)
are obtained. Results show that the deviatoric strain and stress obtained from the
thermodynamic calculation are reduced by the elastic relaxation. For example, for
quartz in pyrope there is a large di�erence between the unrelaxed and the relaxed strain
states (Fig. 7.7). This demonstrates that the contribution given by the anisotropic
relaxation is relevant and must be included in the calculation. Calculations con�rm the
expected result that when both the host and the inclusion have cubic crystallographic
symmetry the residual strain and stress in the inclusion are always isotropic. If at least
one of the host or the inclusion has a crystallographic symmetry less than cubic, the
relaxed strain and stress in the inclusion are generally anisotropic. They are expected
to be isotropic only for extremely limited range of entrapment conditions Ptrap, Ttrap
(e.g. for quartz in pyrope see Fig. 7.7 and 7.8). This is in agreement with the



170 Conclusions

experimental measurements performed with Raman spectroscopy on a natural quartz
inclusion in eclogitic garnet from Mir kimberlite that showed that the residual strain is
anisotropic at its central point (see appendix A). The volume in the inclusion obtained
from the residual strain in the inclusion (∆V/V = ε11 + ε22 + ε33) can be compared
to the (∆V/V )isoinc calculated for the same exhumation with geobarometric models that
assume isotropic elastic properties for the host and the inclusion. The comparison
shows that when both the host and the inclusion have cubic crystallographic symmetry
the discrepancy is small, and generally well within the experimental uncertainties on the
determination of (∆V/V )inc in natural inclusions. For a diamond inclusion in pyrope
the discrepancy on volume strain is less than 3 ·10−4 for any entrapment condition
up to 3.5 GPa and 1600◦C (Fig. 7.2). This suggests that for a cubic inclusion in
a cubic host, the use of an elastically isotropic model for geobarometry leads to a
reliable estimation of the entrapment pressure. This is particularly relevant when
the experimental measurement is performed with Raman spectroscopy, that for cubic
minerals only gives the volume strain (Angel et al., 2018), and therefore only allows
the application of isotropic geobarometry. The discrepancy between the isotropic and
the anisotropic (∆V/V )inc increases when the symmetry of the inclusion is lower than
cubic (e.g. quartz). Taking quartz in pyrope as an example, for an entrapment within
the quartz stability �eld the discrepancy is up to 8 ·10−4, larger than the typical
experimental uncertainties on the determination of the volume strain ( ≈ 3 · 10−4).
Therefore, in this case using the measured residual volume strain in an elastically
isotropic model could lead to incorrect estimates of the entrapment pressure. The
discrepancy in general becomes smaller for sti�er hosts, since they can better constrain
the inclusion and limit the amount of elastic relaxation (cf. for example Fig. 7.10 and
7.13 with pyrope and grossular as hosts, respectively).

In general, the stress and the strain developed in the inclusion change with di�erent
mutual crystallographic orientations between the host and the inclusion, and in real
samples a new calculation would be required for each orientation. When the host is
cubic, in principle only the relaxation step is a�ected. However, when the host is a
garnet, a typical host in high-pressure metamorphic rocks, the orientation does not
a�ect the strain in the inclusion. This has been demonstrated for inclusions with a
wide range of sti�ness and anisotropy (diamond, quartz and zircon) in garnet (see Fig.
8.1 - 8.10). Calculations on a single orientation are therefore enough to constrain the
behavior of garnet-inclusion systems.

The approach outlined so far that includes the anisotropic elasticity of minerals can
be also used to back calculate the entrapment conditions if the residual strain in the
inclusion is measured with X-ray di�raction or Raman spectroscopy. Its application to
real samples, both natural and synthetic, is currently under testing.
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Future challenges

The solution for anisotropic geobarometry presented in this thesis is restricted to sys-
tems with ideal geometry (the inclusion is spherical and in�nitesimally small compared
to the host). In principle, the relaxation tensor can be calculated also for non-spherical
inclusions, or, more in general, for non-ideal geometries applying the procedure out-
lined in this thesis using FEM models that reproduce the real geometry of the system.
However, whenever the geometrical symmetry is less than the crystallographic symme-
try of the inclusion, the relaxation is associated with a break of the crystallographic
symmetry of the inclusion. This adds complexity to the problem, because the nu-
merical calculation is based on elastic properties that are associated with the initial
crystallographic symmetry and cannot account for the break in symmetry. However,
small symmetry breaking can still be described starting from the high symmetry phase
since the new components of the elastic tensor Cij will be initially equal to zero and
the others equal to the corresponding components of the high symmetry phase tensor.
For example, after a small deformation that reduces the symmetry from cubic to or-
thorhombic is still true that C11 ≈ C22 ≈ C33, C44 ≈ C55 ≈ C66 and C12 ≈ C13 ≈ C23.
When the degree of symmetry breaking is large, a conceptually di�erent approach has
to be found. In simple cases, the new elastic constants can be found with ab-initio
methods, such as Density Functional Theory (DFT), that can explicitly calculate the
second derivative of the energy with respect to the applied strain (Perger et al., 2009).

Moreover, the formulation of the relaxation tensor R requires that the elastic prop-
erties of the host and of the inclusion stay constant with pressure. This is a good
approximation only for sti� minerals (e.g diamond, garnets), and for other minerals
if the change in stress due to the relaxation is not larger than 1 GPa. A more accu-
rate solution of the problem would require the knowledge of how the elastic constants
(Cij) of the two minerals changes with pressure and stress. In principle this can be
implemented in FEM models, but the pressure dependency of the the elastic constants
need �rst to be determined experimentally, and at the moment it is known only for
few minerals typical of high-pressure rocks (e.g. quartz, Wang et al., 2015), while the
stress dependency can only be evaluated theoretically through DFT calculations.

The solution presented here is purely elastic. While this is usually considered a good
approximation at low T regimes and for strong minerals such as garnet (Karato et
al., 1995), recent studies pointed out that high-pressure metamorphic rocks may have
experienced thermal regimes high enough to induce viscous relaxation (Zhong et al.,
2018). The models presented are however limited to the isotropic case, and the exten-
sion to include anisotropic viscoelasticity would require an extensive reformulation of
the problem (e.g Nguyen et al., 2007).

In this thesis several examples were presented in which the computational results were
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compared to experimental measurements. Calculations were able to reproduce, at least
qualitatively, the pressure release measured on a pressurized inclusion that is close to
the external surface of its host. They were also successful in predicting which shapes of
the inclusion lead to higher or lower residual pressure after the exhumation. However,
to evaluate the shortcomings of our models a higher statistical signi�cance is required.
To this aim systematic experiments have been performed in piston-cylinder apparatus
to reproduce the entire exhumation process from known entrapment conditions (up to
Ptrap = 3 GPa and Ttrap = 800 ◦C) to room conditions (�Assessing the reliability of
elastic geobarometry methods�). It will provide us a unique controlled environment to
test if our models are able to predict, with su�cient precision compared to experimental
uncertainties, the change in stress in the inclusion during the exhumation of the rock.
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leased under the terms of the CC-BY license.

A.1 Abstract

Elastic geobarometry for host-inclusion systems can provide new constraints to as-
sess the pressure and temperature conditions attained during metamorphism. Current
experimental approaches and theory are developed only for crystals immersed in a
hydrostatic stress �eld whereas inclusions experience deviatoric stress. We have devel-
oped a method to determine the strains in quartz inclusions from Raman spectroscopy
using the concept of the phonon-mode Grüneisen tensor. We used ab initio Hartree-
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Fock/Density Functional Theory to calculate the wavenumbers of the Raman-active
modes as a function of di�erent strain conditions. Least-squares �ts of the phonon-
wavenumber shifts against strains have been used to obtain the components of the
mode Grüneisen tensor of quartz (γm1 and γm3 ) that can be used to calculate the strains
in inclusions directly from the measured Raman shifts. The concept is demonstrated
with the example of a natural quartz inclusion in eclogitic garnet from Mir kimberlite
and has been validated against direct X-ray di�raction measurement of the strains in
the same inclusion.

A.2 Introduction

Mineral inclusions entrapped in ultra-high-pressure metamorphic rocks can provide
fundamental information about geological processes such as subduction and continen-
tal collision. When a host-inclusion pair is exhumed from depth to the Earth's surface
non-lithostatic stresses are developed in the inclusion because of the contrast in their
elastic properties (Angel et al. 2015 and references therein). The inclusion is un-
der compressive stress if it is more compressible than the host. If correctly interpreted,
these stresses on the inclusion allow the stress conditions at entrapment to be estimated.
However, the theory for elastic geobarometry for host-inclusion pairs is only developed
for crystals immersed in a hydrostatic stress �eld. This is valid for an isotropic and
spherical inclusion entrapped in an isotropic host as it is subject to isotropic strains
imposed by the host and will therefore exhibit isotropic stresses; that means the inclu-
sion will be under hydrostatic pressure. However, if inclusions of elastically anisotropic
minerals such as quartz or coesite, are entrapped in a cubic host such as garnet the
same isotropic strain imposed by the garnet will result in anisotropic (i.e. deviatoric)
stresses in the inclusion (see Fig. A.1). Thus, the stress state of the inclusion will be
di�erent from the hydrostatic case, and it cannot be characterized by a single �pressure�
value (Anzolini et al. 2018). Further, the shifts of Raman mode frequencies under de-
viatoric stress are unknown in general. The limited experimental evidence (e.g.Briggs
& Ramdas 1977) is that the Raman modes change di�erently from those measured
under hydrostatic pressure. Therefore, the key question remains that posed by Kor-
sakov et al. (2010), can shifts of Raman modes measured in hydrostatic experiments
be used to interpret the Raman shifts from an inclusion under non-hydrostatic stress?
And what errors does this introduce into estimates of inclusion stress and entrapment
conditions? Since it is challenging to perform experiments under controlled deviatoric
stress conditions, we have performed ab initio HF/DFT (Hartree-Fock/Density Func-
tional Theory) calculations to determine how the Raman modes of quartz change under
both hydrostatic pressure and deviatoric stress conditions. We show how the HF/DFT
simulations can be used to determine the strains (and by inference the stresses) within
a crystal inclusion via mode Grüneisen tensors and measurement of its Raman shifts.
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A.3 Grüneisen tensor and strains

It is well known that when stresses are applied to a crystal, for example by changing
the pressure, the phonon wavenumbers are shifted. This is most easily seen in the
change in Raman peak positions measured under hydrostatic pressure. The shifts of
certain modes of materials (e.g. the 464 cm−1 mode of quartz) have frequently been
used as secondary pressure standards. However, there is a common misconception that
the observed wavenumber shifts of the Raman-active modes are directly related to the
magnitude of the applied pressure or stress. If that were true, then Raman modes
would not show a change in wavenumber when the temperature of a free crystal is
changed at ambient pressure. Instead, Raman modes generally exhibit a decrease in
wavenumber as temperature is increased. As Fig. A.2 shows, the shift of the 464 cm−1

mode of quartz with both pressure and temperature shows the same dependence upon
volume. These observations point to the correct interpretation that the shift ∆ω of
the wavenumber ω of a vibrational mode is primarily due to the strains of the crystal
induced by the applied temperature or pressure. Thus, the Raman peak position of a
crystal under a strain ε (i.e. the full strain tensor) is determined by the second-rank
symmetric tensor: the mode Grüneisen tensor γm (Ziman 1960, Key 1967, Cantrell
1980) characteristic of each phonon mode m, which can be written in Voigt (1910)
notation as:

− ∆ω

ω
= γm1 ε1 + γm2 ε2 + γm3 ε3 + γm4 ε4 + γm5 ε5 + γm6 ε6 (A.1)

This equation means that the changes in the Raman peak positions in general depend
on all the components of the strain tensor (see supplementary materials), not just on
the relative change in the volume (i.e. ε1 + ε2 + ε3). Because the mode Grüneisen
tensor is a symmetric second-rank property tensor, it is subject to the same symmetry
constraints on its component values as other second-rank property tensors, such as the
thermal expansion and compressibility tensors. For the trigonal symmetry of quartz
γm1 = γm2 6= γm3 , and γm4 = γm5 = γm6 = 0. Garnet is almost elastically isotropic
(Sinogeikin and Bass 2002) so the strain imposed by the garnet host does not break
the symmetry of the quartz inclusion. Therefore, we are interested speci�cally in the
cases when ε1 = ε2, for which the shift in the phonon wavenumbers should be given
by:

− ∆ω

ω
= 2γm1 ε1 + γm3 ε3 (A.2)

To determine the values of γm1 and γm3 independently of one another it is not su�cient
to measure the Raman shifts under hydrostatic pressure, because only a single series of
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values of ε1 and ε3 are measured. We therefore use HF/DFT simulations to calculate
the Raman modes at di�erent imposed strains on the crystal to determine its structure
and properties at those strains.

A.4 Raman shifts and strains from ab initio calcula-

tions

Ab initio HF/DFT simulations have been performed by means of CRYSTAL 14 code
(Dovesi et al. 2014) employing the hybrid Hamiltonian WC1LYP (Wu and Cohen 2006)
which has been demonstrated to be particularly suitable for the accurate reproduction
of the elastic and vibrational properties (Prencipe et al. 2014; Zicovich-Wilson et al.
2004). Further computational details are reported in the supplementary materials.

We will only discuss in detail the Raman-active modes near 464 cm−1 (non-degenerate
A1 mode) and 696 cm−1 (doubly degenerate E mode) because they give peaks in the
Raman spectra that are easily-resolved from the peaks of the host garnets. Note
that all E modes in quartz are polar, and therefore have longitudinal optical (LO)
and transverse optical (TO) components that generate two separate Raman peaks,
whose intensity ratio varies depending on the scattering geometry. Because of the
polarization mixing (Loudon 1964), the wavenumber of the LO component depends
on the angle between the triad axis of quartz and the phonon-propagation direction
that in the case of backscattering geometry coincides with the direction of the laser
beam. For the E mode of interest in this study, the LO-TO splitting is rather small.
At ambient conditions ωETO = 696 cm−1, while the maximum ωETO ∼ 697.5 cm−1 and
it corresponds to the case when the c axis is perpendicular to the laser beam. The two
components are thus very close to each other and in speci�c experimental geometries
may generate peaks of similar intensity. To avoid possible contribution from the LO
component that may lead to a subtle arti�cial shift of the corresponding Raman peak
towards higher wavenumbers, one should either rotate the sample about the direction of
the laser beam to verify that the peak position does not change, or �nd the orientation
at which the wavenumber of the Raman peak is lowest (which should be when the c
axis is perpendicular to the polarization of the incident light).

Fig. A.3a, b are contour maps that display the HF/DFT wavenumber shifts of the A1

mode near 464 cm−1 and ETO mode near 696 cm−1 as a function of the two indepen-
dent strain components. For small strains (close to the origin) the iso-shift lines are
parallel to one another and equally spaced, con�rming that the values of γm1 and γm3 are
constants over these strain ranges. The contour lines for the two modes have di�erent
slopes (e.g Fig. A.3a,b and c) indicating that the values of their Grüneisen compo-
nents are di�erent. Further, Fig. A.3a shows that the iso-shift lines are not parallel to
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isochors which are represented by lines of equal volume strain (εV = 2ε1 + ε3). If the
wavenumber shifts are plotted against the stress components σ1 and σ3 (see Fig. A.8 in
supplementary material) then the iso-shift lines are not parallel to isobars (lines of con-
stant pressure (2σ1 +σ3)/3 = −P . Therefore, in general, Raman shifts do not measure
either volume or pressures; for uniaxial crystals like quartz they indicate the principal
normal strain components ε1 and ε3. The Grüneisen tensor components for all modes
were then determined by �tting equation (A.2) by least-squares to the wavenumber
shifts at di�erent strain states simulated by HF/DFT calculations. For the 464 mode,
the maximum mis�t was 1.76 cm−1 (see supplementary materials for residual plots and
full details). HF/DFT calculations are performed under static stress at absolute-zero
temperature. Inclusions are measured at room temperature. In order to use the mode
Grüneisen tensors to determine strains in inclusions, one has to also demonstrate that
their values are independent of P and T. This is equivalent to the solid behaving ac-
cording to the quasi-harmonic approximation (QHA). We achieve this by calculating
the strains of a free quartz crystal relative to room conditions from the known unit-cell
parameter variation of quartz (Angel et al. 2017a) with P and T. We then compare the
wavenumber shifts from room-condition values using the Grüneisen components (γm1
and γm3 ) for the two modes at 464 cm−1 and 696 cm−1 (i.e. 0.60 and 1.19; 0.50 and
0.36) determined by HF/DFT and equation 2 with experimental data. The line in Fig.
A.2 shows that for the mode near 464 cm−1 the experimentally-measured wavenumber
shifts under high pressure at room T and those up to ∼400◦C at room P are repro-
duced by the Grüneisen components determined by HF/DFT. At higher temperatures
the predicted shifts di�er from the experimental data because of pre-transition e�ects
associated with the α − β quartz transition that cannot be accounted using QHA.
Further, the fundamental soft mode near 206 cm−1, which is heavily involved in the
temperature α− to β−quartz phase transition (Scott, 1968), clearly violates the QHA,
and HF/DFT simulations cannot be used to determine the mode Grüneisen compo-
nents. In order to use this band to determine strains in inclusions, the variation of its
position with strain must be determined experimentally.

A.5 Validation from Raman scattering and X-ray di�rac-

tion

To validate this approach, we performed micro-Raman spectroscopy and X-ray di�rac-
tion measurements on quartz inclusion in garnet from a diamond-grade eclogite xeno-
lith (TM90-1) from the Mir kimberlite pipe (Yakutiya). We selected this example as it
has the highest Raman shifts reported for quartz inclusions in garnet (Korsakov et al.
2009; Zhukov and Korsakov 2015). Parallel polarized Raman spectra were collected in
backscattering geometry with a Horiba Jobin-Yvon T64000 triple-monochromator spec-
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Figure A.1: Deviatoric stress |σ3−σ1| in a quartz inclusion in a pyrope garnet (where σ1 and
σ3 are parallel to the a and c axes in quartz, respectively) at room conditions as a function
of P (GPa) and T (◦C) of entrapment. The EoS of quartz and pyrope are from Angel et al.
(2017) and Milani et al. (2015). The anisotropic relaxation was calculated using the elastic
tensors for quartz and pyrope (Lakshtanov et al. 2007; Sinogeikin and Bass 2002). Red dashed
line: α-quartz to coesite phase boundary; black dashed line: α to β quartz phase boundary.
From Murri et al. (2018).
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Figure A.2: The wavenumber shift (∆ω) of the 464 cm−1 mode of a free quartz crystal mea-
sured under di�erent P, T and stress conditions form a single trend with volume strain εV .
The deviation at positive strains is caused by the transition from α to β quartz that occurs at
573 ◦C. The deviation becomes relevant from 400 ◦C, at εV = 0.02. Away from the transi-
tion, the experimental data are reproduced by both the HF/DFT simulations under hydrostatic
pressure [red �lled squares], and the prediction from the mode Grüneisen parameters (line).
From Murri et al. (2018).
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trometer (spectral resolution of ∼2 cm�1, instrumental accuracy in peak positions of
∼0.35 cm�1 and 2 µm spot size) following the same protocol reported in Campomenosi
et al. (2018). Fig. A.4 shows that the shift of the 464 cm−1 Raman line changes sig-
ni�cantly across the crystal as a consequence of edge and corner e�ects (Campomenosi
et al. 2018 and Mazzucchelli et al. 2018), and is lowest at the center of the inclusion.
We determined the unit-cell parameters of the inclusion by single crystal X-ray di�rac-
tion measurements using the 8-position centering method (SINGLE, Angel and Finger,
2011) using a newly developed Huber 4-circle Eulerian cradle di�ractometer equipped
with point detector and microfocus source (120 µm spot size). The di�erence between
the unit cell parameters of the inclusion a = 4.86669(44) Å, c = 5.35408(14) Å and those
of a free crystal measured on the same instrument (a = 4.91160(7) Å, c = 5.40325(9)
Å) shows that the inclusion is under strains ε1 = −0.00914(9), ε3 = −0.00910(26),
and εV = −0.02714(30). Relative to room conditions the quartz inclusion is currently
under isotropic strain within the experimental uncertainties. From these strains and
the Grüneisen-tensor components for the mode near 464 cm−1 (i.e. γ464

1 = 0.60 and
γ464

3 = 1.19), we calculate an expected wavenumber shift of 10.12 cm−1. This is be-
tween the minimum and maximum shifts actually measured on the inclusion (Fig. A.4)
because the unit-cell parameters measured by X-ray di�raction are an average over the
entire volume of the inclusion. Conversely, if we take the shifts of the Raman modes
near 464 and 696 cm−1 measured at the center of the inclusion and the calculated
mode Grüneisen components we predict the following strains: ε1 = −0.0093(5) and
ε3 = −0.0070(5). In this case the total strain that is lower than that measured by
X-ray di�raction, again because this method provides an average over the inclusion.

A.6 Implications

We have demonstrated by a combination of HF/DFT simulations and comparison to
experimental Raman data that quartz has some Raman-active modes whose wavenum-
bers are only a function of strain (for small strains) and are not directly dependent on
P and T. The HF/DFT simulations show also that in general the shift of a Raman
line does not indicate either the volume change (or volume strain) or the mean nor-
mal stress but is a more complex function of the linear strains (Fig. A.3). The linear
strains of a quartz inclusion can be determined from the wavenumber shifts of at least
two Raman peaks by using the mode Grüneisen components determined by HF/DFT.
Conversely, a wavenumber shift for a speci�c Raman-active mode can be determined
from the linear strains measured by X-ray di�raction and by using the mode Grüneisen
components determined by HF/DFT. We proved that strains and Raman shifts vary
signi�cantly across an inclusion (Fig. A.4) as a result of the in�uence of shape com-
bined with elastic anisotropy (Mazzucchelli et al. 2018, Campomenosi et al. 2018),
and should never be averaged. The Raman shifts measured in the center of inclusions
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Figure A.3: (a,b,c) Wavenum-
ber shifts ∆ω (cm−1) of quartz
calculated by HF/DFT as a
function of the two independent
strain components ( ε1 = ε2 6=
ε3). The reference value at
zero strain is the ab initio da-
tum at 0 K and 0 GPa (static
pressure). The symbols indicate
strains at which HF/DFT sim-
ulations were performed. The
colored bands are the iso-shift
lines (lines with the same fre-
quency shift for a speci�c Ra-
man mode). The iso-shift lines
are approximately parallel to
one another and equally spaced.
The iso-shift lines are not par-
allel to isochors de�ned by con-
stant volume strain εV = 2ε1 +
ε3. From Murri et al. (2018).
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Figure A.4: Wavenumber shifts of the 464 cm−1 and 696 cm−1 modes measured in a traverse
across a quartz inclusion in pyrope from the eclogite xenolith TM90-1 (Korsakov et al.2009).
The phonon wavenumber shifts calculated from the strains determined by X-ray di�raction
and the mode Grüneisen tensor are in good agreement with the average of the measured shifts.
From Murri et al. (2018).
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are least a�ected by the presence of edges and should be the only ones used to infer,
after shape corrections (Mazzucchelli et al. 2018), the entrapment conditions. On the
other hand, X-ray di�raction measurements give strain components that are averaged
over the entire volume of the investigated crystal. For the example discussed, the in-
terpretation of wavenumber shift of the mode near 464 cm−1 measured at the center
of the quartz inclusion with the hydrostatic calculation (Schmidt and Ziemann 2000)
leads to only a small error in the estimation of the mean normal stress (i.e. pressure)
of ca. 0.03 GPa. This would lead to an error in the calculated entrapment pressure
of 0.06 GPa. However, this is not always the case. When the deviatoric stress (Fig.
A.1) in the inclusion is higher, the error is larger. For example, a quartz inclusion in
garnet reset at 1.5 GPa and 1100◦C during exhumation will have a wavenumber shift
of the Raman mode near 464 cm−1 that would yield an entrapment pressure of 0.6 GPa
too low when the hydrostatic calibration is used. In anisotropic hosts the discrepancy
from the hydrostatic calibration also depends on the relative orientation of the host
and inclusion. For example, for quartz in zircon the error in the calculated entrapment
pressure can vary from 0.2 to 0.6 GPa for the same entrapment condition (i.e. 0.3 GPa
and 800◦C) depending on orientation.

A.7 Supplementary materials

A.7.1 Voigt notation

The band position under a strain ε is determined by the second-rank symmetric mode
Grüneisen tensor γm (Ziman, 1960; Key, 1967; Cantrell, 1980) for each Raman mode:

−∂ω
ω

= γm : ε (A.3)

The �:� in equation (A.3) is a double-scalar product between the two tensors. Because
both tensors are second-rank and symmetric this can be written out in full in Voigt
(1910) notation as:

−∂ω
ω

= γm1 ε1 + γm2 ε2 + γm3 ε3 + γm4 ε4 + γm5 ε5 + γm6 ε6 (A.4)

Note that under the Voigt convention here for strains, the values of the shear strains
ε4,ε5,ε6 are one-half of the values of the corresponding tensor components ε23,ε13,ε12.
Instead, γm4 ,γ

m
5 and γm6 are equal of the values of the corresponding tensor components

γ23, γ13,γ12. This equation means that the changes in the Raman peak positions in
general depend on all of the strains in three dimensions experienced by the crystal, not
just the volume. In principle, the values of the six components, γmi with i = 1 to 6,



192 Raman elastic geobarometry for anisotropic mineral inclusions

of a mode Grüneisen tensor may change with pressure and temperature, and with the
magnitude of the strains. And, as we will show for quartz, the values of γmi are di�erent
for di�erent modes. The mode will be indicated by the superscript m, in various forms.
Because the mode Grüneisen tensor is a symmetric second-rank property tensor, it is
subject to the same symmetry constraints on its component values as other second-
rank property tensors, such as the thermal expansion and compressibility tensors. This
is required to make the frequency shift given by equations (A.3) and (A.4) invariant
under coordinate transformations. Thus, in all crystals with orthorhombic symmetry
or higher, γm4 = γm5 = γm6 = 0. For uniaxial crystals in the standard setting γm1 = γm2 ,
and for cubic crystals and isotropic materials γm1 = γm2 = γm3 . Therefore, for the
trigonal symmetry of quartz γm1 = γm2 . For the speci�c case of quartz inclusions in
an isotropic host, such as garnet, the strain imposed by the garnet does not break the
symmetry of the quartz crystal. Therefore, we are interested speci�cally in the cases
when ε1 = ε2, for which the shift in the wave numbers of modes should be given by:

−∂ω
ω

= 2γm1 ε1 + γm3 ε3 (A.5)

A.7.2 Computational details

The hybrid Hamiltonian WC1LYP is based on the generalized gradient approximation
(GGA) exchange functional WC (Wu and Cohen 2006), mixed with 16% of the exact
non-local Hartree�Fock exchange to correct for the self-interaction error (the interac-
tion of an electron with itself), which is typical of both pure DFT local density (LDA)
and generalized gradient approximation functionals. The Hamiltonian also includes the
LYP correlation functional (Lee et al. 1988). The grid for the evaluation of the DFT
exchange�correlation functionals was chosen by the keyword XLGRID of the CRYS-
TAL14 user manual (Dovesi et al. 2014) and corresponds to a total of 37547 points
in the unit cell. A measure of the numerical accuracy provided by such a grid is the
evaluation of the total number of electrons in the unit cell, by the numerical integra-
tion of the electron density over the cell volume. For quartz we obtained 90.00003
electrons out of 90 for the reference volume at 0 K and 0 GPa static pressure. The
localised contracted atomic basis sets used were Si 86-311G** (Pascale et al. 2005) and
8-411G(2d) (Valenzano et al. 2006) for Si and O, respectively, which were successfully
employed to calculate ab initio structures and properties of silicates (e.g. Stangarone
et al. 2017). Within the CRYSTAL code the accuracy in evaluating the Coulomb and
Hartree-Fock exchange series is controlled by the keyword TOLINTEG, for which we
set the �ve parameters to 8 (T1, T2, T3 and T4) and 18 (T5) (Dovesi et al. 2014). The
diagonalization of the Hamiltonian matrix was performed at 7 independent k vectors
in the reciprocal space (Monkhorst net; Monkhorst and Pack 1976) by setting to 3
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Figure A.5: Residual plot from the �tting procedure for the Raman line near 464 cm−1. From
Murri et al. (2018).
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Figure A.6: Residual plot from the �tting procedure for the Raman line near 696 cm−1. From
Murri et al. (2018).

the shrinking factor IS (Dovesi et al. 2014). Cell parameters and fractional coordi-
nates were optimized by analytical gradient methods, as implemented in CRYSTAL14
(Civalleri et al. 2001; Dovesi et al. 2014). Geometry optimization was considered con-
verged when each component of the gradient (TOLDEG parameter in CRYSTAL14)
was smaller than 0.00003 hartree/bohr and displacements (TOLDEX) were smaller
than 0.00012 bohr with respect to the previous step. Lattice parameters and fractional
coordinates were optimized at the WC1LYP level (static values: no zero point and
thermal e�ects included), at the static pressures from 0 to 10 GPa (with step of 0.5
GPa from 0 to 5 GPa and then a simulation at 10 GPa). For the non-hydrostatic
simulations, the cell parameters were �xed at the chosen strain conditions and only the
fractional coordinates were optimized with the keyword ATOMONLY (Civalleri et al.
2001; Dovesi et al. 2014). Vibrational wavenumbers of all of the normal modes were
calculated at the Γ point within the limit of the harmonic approximation, by diagonal-
izing a mass-weighted Hessian matrix, whose elements are the second derivatives of the
full potential of the crystal with respect to the mass-weighted atomic displacements
(Pascale et al. 2004).
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A.7.3 Residual plots from the �tting procedure

The Grüneisen tensor components for all modes were then determined by �tting equa-
tion (A.2) by least-squares to the wavenumber shifts at di�erent strain states simulated
by HF/DFT calculations. The maximum mis�ts (i.e. ∆ωobs −∆ωcalc) are -1.76 cm−1

and -3.41 cm−1 and for the 464 and 696 cm−1 bands, respectively, considering only the
values in the black box because is where we could assume this surface to be planar
(area of small strains). Outside from this box the mis�t increases and therefore we did
not include the other values in the �tting.

A.7.4 Raman spectroscopy details

Raman spectra were excited by the 514.532 nm line of a Coherent 90C Fred Ar+ laser.
The laser power on the sample surface was approximately 14 mW, while the laser spot
on the sample surface was approximately 2 micrometers. Spectra were collected for
15 s averaging over 3 accumulations. These conditions were proven not to cause over-
heating of the sample. The spectrometer was calibrated to the silicon Raman peak
at 520.5 cm−1. The spectral resolution was 2 cm−1, while the precision in measuring
the peak positions was 0.35 cm−1. In the case of the quartz inclusion i6, the angle
between the c axis of the quartz inclusion and the polarization of the incident light
was 30◦. For the inclusion a series of spot measurements were carried out along the
two crystallographic axes. The OriginLab-Pro 2018 software package was used for
data �tting and evaluation. The collected spectra were baseline corrected for the con-
tinuum luminescence background when necessary, temperature-reduced to account for
the Bose-Einstein occupation factor (Kuzmany, 2009) and normalized to the acquisition
time. Peak positions, full-widths at half maximum (FWHMs), and integrated intensi-
ties were determined from �ts with pseudo-Voigt functions [PV = (1 � q)·Lorentz +
q·Gauss, q is the weight coe�cient]. The criterion for the maximum number of �tted
peaks was ∆I < I/2, where I and ∆I are the calculated magnitude and uncertainty
of each peak intensity, respectively.
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Figure A.7: Raman spectrum of the quartz inclusion (i6) in the garnet host measured at the
center of the inclusion. The two selected peaks of quartz are those at 474 and 704 cm−1

(highlighted in red). The peaks are shifted towards higher wavenumbers since the inclusion is
strained. For un unstrained quartz they appear at 464 and 696 cm−1. The non-labelled peaks
are those of quartz. From Murri et al. (2018).
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Figure A.8: The iso-shift lines are not parallel to isobars, which are lines of equal pressure
(2σ1 + σ3)/3 = −P (GPa), meaning that, in general, Raman shifts do not measure either
pressure or stresses. From Murri et al. (2018).
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Appendix B

Elastic properties

This appendix reports the anisotropic elastic properties and the isotropic averages of
the minerals used in the calculations reported in this thesis. The anisotropic elastic
properties are described by the 4th-order sti�ness tensor (Cijkl, with components in
GPa), here are reported as the components Cij of the corresponding matrix in Voigt
notation. The isotropic averages are described through the bulk (K) and the shear (G)
moduli at room conditions as obtained from their P-V-T equation of state (EoS). The
elastic constants and the EoS usually are not determined experimentally on the same
crystal and with the same experimental settings. Moreover, the experimental determi-
nation of the EoS is an isothermal measurement while that of the elastic constants is
adiabatic (Angel et al., 2009). This leads to the consequence that the isothermal Reuss
bulk modulus determined at room conditions (KTR,0) from the EoS does not coincide
exactly with the adiabatic Reuss bulk modulus that can be calculated from the elastic
tensor as KSR,0 = (S11 + S22 + S33 + 2 · (S12 + S13 + S23)), where Sij = C−1

ij are the
components of the compliance matrix (in GPa−1).

The calculations performed in this thesis combine thermodynamic calculations based
on the EoS and mechanical calculations performed with FE that require the elastic
constants Cij of the minerals involved (see section 4.1). To keep the consistency among
the di�erent steps of the calculations, the Cij of the minerals were rescaled to obtain
a new elastic tensor that gives a KR,0 equal to that obtained from the EoS. To this
aim, all the Cij were multiplied by a scalar value (close to 1) that was adjusted until
the agreement in the value of KTR,0 was reached. This approach guarantees that the
anisotropy of the mineral is not changed by the rescaling.

203
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B.1 Diamond

The elastic properties of diamond were measured by Zouboulis et al. (1998) with Bril-
louin scattering in the temperature range 300�1600 K. The room P,T adiabatic elastic
constants were rescaled by the same small factor (0.9985) to obtain a new elastic
tensor that gives a KTR,0= 444.0 GPa (Table B.2), to be consistent with the non-
linear EoS reported by Angel et al., 2015a. The close-to-isothermal elastic constants
(Cij) obtained with this procedure were then used in FE analysis (Table B.1). The
anisotropy of diamond was not modi�ed with respect to the original experimental sti�-
ness tensor, as evaluated through the universal anisotropic index (Ranganathan and
Ostoja-Starzewski, 2008) AU=0.0438.

Table B.1: Elastic constants (Cij, GPa) of diamond. Modi�ed from Zouboulis et al. (1998)
as described in the text.

C11 C12 C44

1078.4 126.8 575.7

Table B.2: Isotropic elastic bulk properties (GPa) of diamond.

KTR,0 KTV,0 GTR,0 GTV,0

444.0 444.0 531.1 535.8

B.2 Grossular

The elastic properties of a natural 97%-pure grossular single crystal were measured
by Isaak et al. (1992) with rectangular parallelepiped resonance (RPR) method, from
room temperature to 1350 K. The room P,T adiabatic elastic constants were rescaled
by a small factor (0.993465) to obtain a new elastic tensor that gives a KTR,0= 166.57
GPa (Table B.4), consistent with the non-linear EoS reported by Milani et al., 2017.
The elastic constants (Cij) obtained with this procedure were then used in FE analysis
(Table B.3). The anisotropy of grossular was not modi�ed with respect to the origi-
nal experimental sti�ness tensor, as evaluated through the universal anisotropic index
(Ranganathan and Ostoja-Starzewski, 2008) AU=0.01124.
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Table B.3: Elastic constants (Cij, GPa) of grossular. Modi�ed from Isaak et al. (1992) as
described in the text.

C11 C12 C44

316.72 91.50 102.23

Table B.4: Isotropic elastic bulk properties (GPa) of grossular.

KTR,0 KTV,0 GTR,0 GTV,0

166.57 166.57 106.14 106.38

B.3 Pyrope

The elastic properties of a pure synthetic pyrope were measured by Sinogeikin and
Bass (2002) with Brillouin scattering. They determined the variation of the adiabatic
elastic constants from room temperature up to 1073 K. The room P,T adiabatic elas-
tic constants were modi�ed (Table B.5) to obtain a KTR,0= 163.7 GPa (as in Milani
et al., 2015) and a GTR,0= 94 GPa (Table B.6), to be consistent with the non-linear
EoS implemented in Eos�t. The anisotropy of pyrope was not modi�ed with respect
to the original experimental sti�ness tensor, and the universal anisotropic index (Ran-
ganathan and Ostoja-Starzewski, 2008) AU=0.0009 means that pyrope is practically
isotropic.

Table B.5: Elastic constants (Cij, GPa) of anisotropic pyrope. Modi�ed from Sinogeikin and
Bass (2002) as described in the text

C11 C12 C44

291.1 100 93
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Table B.6: Isotropic elastic bulk properties (GPa) of pyrope.

KTR,0 KTV,0 GTR,0 GTV,0

163.7 163.7 94.0 94.0

B.4 Quartz

The adiabatic elastic constants (Cij) of a natural quartz were determined by Lakshtanov
et al. (2007). The room P,T adiabatic elastic constants were multiplied by a small
correction factor to obtain a bulk modulus equal to to the isothermal valueKTR,0=37.15
GPa of the P − T − V EoS reported in Angel et al., 2017a. This small correction can
be considered an appropriate approximation to convert the original constants from
adiabatic into isothermal (Table B.7). Moreover it allows the use of the anisotropic
relaxation obtained from FE calculations in the modeling of the entrapment conditions
performed with the non-linear EoS.

Table B.7: Elastic constants (Cij, GPa) of quartz. Modi�ed from Lakshtanov et al. (2007) as
described in the text.

C11 C33 C44 C66 C12 C13 C14

86.9 106.4 59.5 40.1 6.7 11.3 13.5

Table B.8: Isotropic elastic bulk properties (GPa) of quartz.

K0TR K0TV G0TR G0TV

37.2 37.6 44.0 48.5
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Table B.9: Isotropic elastic bulk properties (GPa) of quartz.

K0TR K0TV G0TR G0TV

37.2 37.6 44.0 48.5

B.5 Zircon

The elastic properties of nonmetamict natural and synthetic crystals of zircon were
measured by Özkan et al., 1974 using the pulse superposition and the phase comparison
method. The adiabatic elastic constants measured at room conditions on the two
samples were averaged and are reported in Table B.10. Since the Reuss bulk modulus
agrees with the isothermal Reuss bulk modulus reported in the EoS by Za�ro (personal
communication), we did not rescale the experimental Cij. The anisotropy of zircon is
evaluated through its universal anisotropic index (Ranganathan and Ostoja-Starzewski,
2008) AU=1.115.

Table B.10: Elastic constants (Cij, GPa) of zircon from Özkan et al. (1974).

C11 C33 C44 C66 C12 C13

423.7 490.0 113.6 48.5 70.3 149.5
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Table B.11: Isotropic elastic bulk properties (GPa) of zircon.

K0TR K0TV G0TR G0TV

225.3 230.7 98.2 119.7



Appendix C

Conventions for stress and strain

Throughout the text and in the development of the MatlabR© code to automate the FE
analysis that are solved with Dassault Systemes AbaqusR©, the Voigt convention has
been used to convert from tensors to vectors/matrices. The Voigt convention used for
stresses is:


σ11

σ22

σ33

σ23

σ13

σ12

 =


σ1

σ2

σ3

σ4

σ5

σ6

 (C.1)

The Voigt convention used for strains is:


ε11

ε22

ε33

ε32 + ε23

ε31 + ε13

ε21 + ε12

 =


ε1

ε2

ε3

ε4

ε5

ε6

 (C.2)

The convention used for stress and strain components in AbaqusR© is di�erent from
the Voigt convention speci�ed above. Whenever the stress or the strain components
are speci�ed in AbaqusR© they are listed in the following order (see section 1.2.2-7
�Conventions�, AbaqusR© Analysis User's Manual- Vol. I - Abaqus 6.12). The convention
for stresses in AbaqusR© is:
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
σ11

σ22

σ33

σ12

σ13

σ23

 =


σ1

σ2

σ3

σ4

σ5

σ6

 (C.3)

The convention for strains in AbaqusR© is:


ε11

ε22

ε33

ε12 + ε21

ε13 + ε31

ε23 + ε32

 =


ε11

ε22

ε33

γ12

γ13

γ23

 =


ε1

ε2

ε3

ε4

ε5

ε6

 (C.4)

As a consequence, in Abaqus also the matrix notation for the tensor of the elastic
properties (i.e. the sti�ness tensor that is usually de�ned as Cijkl but in Abaqus is
de�ned as Dijkl) does not correspond to the usual Voigt convention, but is de�ned as
follows:


σ11

σ22

σ33

σ12

σ13

σ23

 =


D1111 D1122 D1133 D1112 D1113 D1123

D2222 D2233 D2212 D2213 D2223

D3333 D3312 D3313 D3323

symm. D1212 D1213 D1223

D1313 D1323

D2323




ε11

ε22

ε33

γ12

γ13

γ23

 (C.5)

The di�erence between the Voigt and the Abaqus convention can be noted taking for
example the component D1213 of the sti�ness tensor. Written as a matrix it would be
the component C65 using the Voigt convention, while it becomes the component D45

in the Abaqus convention.

Understanding the Abaqus notation becomes extremely important when interpreting
the shear components of the strain in the Abaqus output. The results can be viewed
as contour map or exported as XY data along a speci�ed path and saved in a text �le
with .rpt extension. In both cases the components of the stress and of the strain are
reported with the following notation:
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
S11

S22

S33

S12

S13

S23

 =


σ11

σ22

σ33

σ12

σ13

σ23

 (C.6)


E11

E22

E33

E12

E13

E23

 =


ε11

ε22

ε33

ε12 + ε21

ε13 + ε31

ε23 + ε32

 (C.7)

I developed a program, written in MatlabR©, to automatize the pre-processing and the
post-processing of FE analysis that are solved with Abaqus. This program allows the
user to set the elastic properties and the crystallographic orientation of the host and of
the inclusion, the pre-strain or the pre-stress in the inclusion, and the external pressure
acting on the host. When the simulation is run with a pre-stress or pre-strain in the
inclusion, the program always asks the user the tensor components of the strain or
the stress. For example, when the component e12 of the strain is asked it refers to
the component ε12 of the strain tensor and not to the component E12 = ε12 + ε21 of
the Abaqus convention. The code then takes care of all the conversions to Abaqus
conventions while writing the input �le for the FE analysis. When this program is
used to process the results after a simulation, it makes the back transformation from
the Abaqus convention (that is assumed in the .rpt �les produce by Abaqus) to the
Voigt convention or directly to the tensor components. But the user should be careful
when interpreting the results of the contour plot directly in Abaqus, or when reading
the data directly from the output �le with .rpt extension, since those data are written
with the Abaqus convention (equations C.6 and C.7).
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