
 

 
 

UNIVERSITÀ DEGLI STUDI DI PAVIA  
 

DOTTORATO IN SCIENZE CHIMICHE E FARMACEUTICHE E 
INNOVAZIONE INDUSTRIALE 

(XXXV Ciclo) 
Coordinatore: Chiar.mo Prof. Giorgio Colombo 

 
 

Development of new colorimetric and electrochemical 
sensors for analytical applications 

 
Tesi di Dottorato di 

Camilla Zanoni 
 
 

AA 2022/2023 
 

 
Tutor 
Chiar.ma Prof.ssa Raffaela Biesuz 
 
 
Co-tutor  
Prof.ssa Alberti Giancarla 
 
 
 
 
 



 

  

A mio fratello Lorenzo... 



 

Index of contents 
ABSTRACT (ENG) ............................................................................................................. I 

ABSTRACT (ITA) ............................................................................................................. II 

1 INTRODUCTION ................................................................................................................................ 1 
1.1 Aim of the project ........................................................................................................................... 1 
1.2 Sensors: definition and classification ............................................................................................. 2 
1.3 Aspects of a sensor20 ...................................................................................................................... 3 

1.3.1 Receptors ................................................................................................................................... 3 
1.3.2 Transducer: the sensor’s detector .............................................................................................. 4 
1.3.3 Methods of receptor’s immobilization ....................................................................................... 4 
1.3.4 Figures of merits ........................................................................................................................ 4 

1.4 Data treatment ............................................................................................................................... 5 
1.4.1 Design of Experiments (DoE) ...................................................................................................... 7 
1.4.2 Principal Component Analysis (PCA) .......................................................................................... 9 
1.4.3 3-Way PCA ............................................................................................................................... 11 
1.4.4 Partial Least Square regression (PLS) ....................................................................................... 12 
1.4.5 Limit of detection (LOD) and limit of quantification (LOQ) ...................................................... 14 

2 COLORIMETRIC SENSORS ................................................................................................................ 16 
2.1 General features ........................................................................................................................... 16 
2.2 Colorimetric sensor’s development .............................................................................................. 16 
2.3 Green-PAD array for pH measurements ....................................................................................... 18 

2.3.1 Introduction ............................................................................................................................. 18 
2.3.2 Material and methods ............................................................................................................. 19 

2.3.2.1 Procedures for the development of PADs modified with natural extracts .................... 19 
2.3.2.2 Chemometric data treatment ........................................................................................ 20 

2.3.3 Results and discussion .............................................................................................................. 21 
2.3.3.1 Analysis of Green-PADs .................................................................................................. 21 
2.3.3.2 Dataset description and visualization ............................................................................ 23 
2.3.3.3 pH predicted by PLS ....................................................................................................... 26 

2.3.4 Conclusions .............................................................................................................................. 30 
2.4 TazoC-PADs for Pd(II) detection ................................................................................................... 32 

2.4.1 Introduction ............................................................................................................................. 32 
2.4.2 Material and methods ............................................................................................................. 33 

2.4.2.1 Ligand and sensor preparation ....................................................................................... 33 
2.4.2.2 Chemometric data treatment ........................................................................................ 34 

2.4.3 Results and discussion .............................................................................................................. 35 
2.4.4 Conclusions .............................................................................................................................. 47 

3 ELECTROCHEMICAL SENSORS .......................................................................................................... 48 
3.1 Electrochemical transduction methods ........................................................................................ 48 

3.1.1 Potentiometry .......................................................................................................................... 48 
3.1.2 Voltammetry ............................................................................................................................ 50 

3.2 Electrochemical Sensors Development ........................................................................................ 52 
3.2.1 Molecularly Imprinted polymers (MIP) .................................................................................... 52 
3.2.2 Self-Assembled Monolayer (SAM) ............................................................................................ 54 
3.2.3 Characterization of the electrode surface and after chemical modification ............................ 54 

3.2.3.1 Determination of the electrochemically active area of the electrode ........................... 54 
3.2.3.2 Determination of the capacitance of the double layer of the working electrode .......... 55 
3.2.3.3 Determination of the surface coverage (Γ) and the electron transfer rate (k°) for SAM-
modified electrode ............................................................................................................................ 55 



 

3.2.3.4 Characterization by Electrochemical Impedance Spectroscopy (EIS) ............................. 56 
3.2.4 Characterization of the electrochemical process to the electrode surface (for irreversible 
analytes) ................................................................................................................................................. 59 

3.2.4.1 Determination of the number of electrons involved in the electrochemical process by 
controlled potential electrolysis (CPE) .............................................................................................. 59 
3.2.4.2 Cyclic voltammetry experiments .................................................................................... 60 

3.3 MIP-modified screen-printed potentiometric sensors for Atrazine and phenoxy herbicides ...... 62 
3.3.1 Introduction ............................................................................................................................. 62 
3.3.2 Material and methods ............................................................................................................. 63 

3.3.2.1 MIP and NIP prepolymeric mixtures preparation and modification of the SPC ............. 63 
3.3.2.2 Characterization of the working electrode surface ........................................................ 64 
3.3.2.3 Potentiometric measurements ...................................................................................... 64 

3.3.3 Results and discussion .............................................................................................................. 65 
3.3.3.1 MIP-modified screen-printed sensor for Atrazine .......................................................... 65 
3.3.3.2 MIP-modified screen printed sensor for phenoxy herbicides18 ..................................... 74 

3.3.4 Conclusions .............................................................................................................................. 78 
3.4 SAM-modified screen-printed gold electrode for Fe(III) detection .............................................. 80 

3.4.1 Introduction ............................................................................................................................. 80 
3.4.2 Material and methods ............................................................................................................. 81 

3.4.2.1 Functionalization of the working gold electrode ........................................................... 81 
3.4.2.2 Characterization of the working electrode surface ........................................................ 81 
3.4.2.3 Fe(III) determination by Differential Pulse Voltammetry (DPV) ..................................... 81 

3.4.3 Results and discussion .............................................................................................................. 82 
3.4.4 Conclusions .............................................................................................................................. 90 

3.5 Cysteamine-copper SAM-modified screen-printed gold electrode for glyphosate determination
 91 

3.5.1 Introduction ............................................................................................................................. 91 
3.5.2 Material and methods ............................................................................................................. 92 

3.5.2.1 Working electrode cleaning ........................................................................................... 92 
3.5.2.2 Cysteamine-copper  SAM formation on the gold working electrode ............................. 92 
3.5.2.3 Characterization of the working electrode surface ........................................................ 93 
3.5.2.4 Glyphosate determination by cysteamine-copper SAM-modified screen-printed cell .. 93 
3.5.2.5 Chemometric data treatment ........................................................................................ 93 

3.5.3 Results and discussion .............................................................................................................. 94 
3.5.3.1 Electrochemical characterization of the working electrode surface .............................. 94 
3.5.3.2 Voltammetric determination of glyphosate using SAM-modified screen-printed cell .. 98 

3.5.4 Conclusions ............................................................................................................................ 103 
3.6 MIP-based screen-printed electrode for Irbesartan sensing ...................................................... 104 

3.6.1 Introduction ........................................................................................................................... 104 
3.6.2 Material and methods ........................................................................................................... 105 

3.6.2.1 Prepolymeric mixture and modification of the working electrode surface ................. 105 
3.6.2.2 Characterization of the working electrode .................................................................. 105 
3.6.2.3 Irbesartan determination by square wave voltammetry (SWV) .................................. 105 

3.6.3 Results and discussion ............................................................................................................ 106 
3.6.3.1 Optimization of the prepolymeric mixture composition .............................................. 106 
3.6.3.2 Characterization of the working electrode surface before and after the modification108 
3.6.3.3 Irbesartan Determination by Square-Wave Voltammetry (SWV): Optimization of the 
Procedure, Calibration and Real Sample Analysis ........................................................................... 110 

3.6.4 Conclusions ............................................................................................................................ 113 
3.7 Ascorbic acid sensing by e-MIP-modified screen-printed electrodes ......................................... 114 

3.7.1 Introduction ........................................................................................................................... 114 
3.7.2 Material and methods ........................................................................................................... 116 

3.7.2.1 Preparation of the e-MIP and e-NIP sensors ................................................................ 116 
3.7.2.2 Characterization of the working electrode surface ...................................................... 116 
3.7.2.3 Ascorbic acid determination by Differential Pulse Voltammetry (DPV) ....................... 116 

3.7.3 Results and discussion ............................................................................................................ 116 
3.7.3.1 Optimization of the DPV experimental conditions for Ascorbic acid analysis .............. 116 



 

3.7.3.2 Characterization of the working electrode surface ...................................................... 119 
3.7.3.3 Electrochemical Detection of Ascorbic acid: Evaluation of the analytical parameters. 
Selectivity Test and Analyses of Commercial Products ................................................................... 121 

3.7.4 Conclusions ............................................................................................................................ 126 
3.8 e-MIP-modified screen-printed electrodes for the voltammetric detection of MCPA ............... 128 

3.8.1 Introduction ........................................................................................................................... 128 
3.8.2 Material and methods ........................................................................................................... 129 

3.8.2.1 Working electrode modification by e-MIP or e-NIP ..................................................... 129 
3.8.2.2 Characterization of the working electrode surface and the electrochemical process of 
the analyte to the electrode surface ............................................................................................... 129 
3.8.2.3 MCPA determination by Differential Pulse Voltammetry (DPV) .................................. 130 
3.8.2.4 Chemometric data treatment ...................................................................................... 130 

3.8.3 Results and discussion ............................................................................................................ 131 
3.8.3.1 Working electrode modification and characterization ................................................ 131 
3.8.3.2 Characterization of the electrochemical process of MCPA at the bare and e-MIP-
modified electrode surface ............................................................................................................. 134 
3.8.3.3 Quantitative determination of MCPA by the e-MIP-modified sensor .......................... 135 
3.8.3.4 MCPA detecition in tap water samples ........................................................................ 137 

3.8.4 Conclusions ............................................................................................................................ 144 

4 CONCLUSIONS AND FUTURE PERSPECTIVES .................................................................................. 146 

5 REFERENCES ..................................................................................................................................... ii 

6 APPENDIX ..................................................................................................................................... xvii 
6.1 Appendix I: Reagents and instruments ........................................................................................ xvii 

6.1.1 Reagents ................................................................................................................................. xvii 
6.1.1.1 Reagents for “Green-PAD array for pH measurements” and “TazoC-PADs for Pd(II) 
detection” (paragraphs 2.3 and 2.4) ................................................................................................ xvii 
6.1.1.2 Reagents for “MIP-modified screen-printed potentiometric sensors for Atrazine and 
phenoxy herbicides” and “MIP-based scree-printed electrode for Irbesartan sensing” (paragraphs 
3.3 and 3.6) ....................................................................................................................................... xvii 
6.1.1.3 Reagents for “SAM-modified screen-printed gold electrode for Fe(III) detection” and 
“Cysteamine-copper SAM-modified screen-printed gold electrode for glyphosate determination” 
(paragraphs 3.4 and 3.5) ................................................................................................................... xix 
6.1.1.4 Reagents for “Ascorbic acid sensing by e-MIP-modified screen-printed electrodes” and 
“e-MIP-modified screen-printed electrode for the voltammetric detection of MCPA” (paragraphs 
3.7 and 3.8) ........................................................................................................................................ xx 

6.1.2 Instruments .............................................................................................................................. xxi 
6.1.2.1 Instruments for colorimetric sensors ............................................................................. xxi 
6.1.2.2 Instruments for electrochemical sensors ....................................................................... xxi 

6.2 Appendix II – Green-PAD array for pH measurements (3-Way PCA matrixes, loadings of PCA 
Dataset description and visualization and ANOVA studies) ....................................................................... xxii 
6.3 Appendix III – PLS data (Training set, Test set compositions, and model performances) of the 
TazoC-PADs for Pd(II) determination (paragraph 2.4) .............................................................................. xxvi 
6.4 Appendix IV – Optimization data (levels of variables, coefficient plots and their significance and 
the model equation) for SWV experimental conditions for bare and MIP-modified electrodes for 
Irbesartan detection (paragraph 3.6) ...................................................................................................... xxxii 

a) Optimization of the SWV experimental conditions for the bare electrode ....................... xxxii 
b) Optimization of the SWV experimental conditions for the MIP- and NIP-modified 
electrodes ................................................................................................................................. xxxiii 

6.5 Appendix V - e-MIP-modified screen-printed electrodes for the voltammetric detection of MCPA 
(electrode characterization and PLS model performaces) (paragraph 3.8) ............................................. xxxv 

 
 



 

 



 i 

Abstract (ENG) 
In this thesis, the results obtained during the Ph.D. project titled “Development of new 

tailored devices for analytical applications” are reported. The aim of the project was the 

development of optical and electrochemical sensors for environmental and food 

applications. During these three years, colorimetric sensors were realized, and as 

examples, two kinds of Paper-based Analytical devices (PADs) for determining the acidity 

of commercial drinks or Pd2+  in natural waters were described. In all cases, chemometric 

tools were applied for the data treatment.  

Furthermore, electrochemical sensors based on screen-printed cells were proposed. 

Sensors for Glyphosate and Fe3+ were developed by modifying the gold working electrode 

of the screen-printed cells with proper self-assembled monolayers. Sensors for MCPA, 

Atrazine, Irbesartan and Ascorbic acid were obtained by modifying the surface of the 

graphite working electrode of the screen-printed cells with molecularly imprinted polymers 

(acrylic-based or electro-synthesized). Multivariate techniques were applied for data 

treatment when necessary. 
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Abstract (ITA) 
In questo lavoro di tesi sono riportati per esteso tutti i risultati ottenuti nel progetto di 

dottorato dal titolo “Development of new tailored devices for analytical applications”. Lo 

scopo del progetto era di sviluppare sensori ottici ed elettrochimici per la determinazione 

di analiti di interesse ambientale e alimentare. Durante i tre anni di dottorato sono stati 

sviluppati sensori colorimetrici di vario tipo e, a titolo d’esempio sono stati descritti in 

questa tesi due dispositivi a base di carta da filtro (Paper-based Analytical devices, PADs) 

per la determinazione dell’acidità di bibite commerciali e per la determinazione del Pd2+ in 

acque naturali. In tutti i casi per il trattamento dei dati sono state applicate tecniche 

chemiometriche. 

Inoltre sono stati sviluppati dei sensori elettrochimici basati sull’utilizzo di celle 

elettrochimiche stampate. Sono stati sviluppati due sensori per il Glifosato e il Fe3+ 

modificando la superficie degli elettrodi di lavoro d’oro con opportuni monostrati di tioli 

(self assembled monolayers, SAM). Sensori per la determinazione di MCPA, Atrazina, 

Irbesartan e Acido ascorbico sono stati ottenuti modificando la superficie dell’elettrodo di 

lavoro in grafite con polimeri a stampo molecolare (acrilici o elettropolimerizzati). Quando 

necessario sono state applicate tecniche multivariate di analisi dati.



 



 1 

1 INTRODUCTION 
1.1 Aim of the project 
The project aims to develop new, easy-to-handle and low-cost optical and electrochemical 

sensors for the detection of analytes of environmental and food interest.  

The sensors' receptors are designed to interact selectively with the target analytes; in 

particular, the functionalization of the sensing surface of the optical and electrochemical 

sensors with dye-based receptors, molecularly imprinted polymers or self-assembled 

monolayers is proposed. 

For all the sensors developed, first, a characterization of the interaction between the 

receptor and the analyte is performed. Subsequently, the substrate for the optical devices 

or the kind of working electrode for the electrochemical sensor is selected, optimizing the 

strategy to fix the receptor to the substrate/electrode surface. 

Once realized, the sensors are characterized and applied to the analyte's determination in 

synthetic standard solutions and real samples. In some cases, the optimal experimental 

conditions for the analysis are defined by the application of Design of Experiments (DoE). 

The validation of the analytical procedures follows the well-defined steps of blank analysis, 

dynamic range evaluation, accuracy, precision, LOD and LOQ determinations. When the 

signal obtained is disturbed and not reproducible, the quantitative analysis is performed by 

multivariate techniques, such as Partial Least Square regression (PLS).  

Figure 1 summarizes the optical and electrochemical sensors developed, indicating the 

substrate, the receptor and the data treatment.  
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Figure 1.Developed sensors divided on the basis of the detection method and the analyte. The substrate, receptor, and 

data treatment methods are reported for each sensor. 

 

1.2 Sensors: definition and classification 
The research and development activity in the field of sensors has grown in the last decades, 

and the applications of these devices in everyday life, industry, and research have increased 

progressively from year to year1–6. 

Nowadays, the most commercialized chemical sensor is the solid-state oxygen one used in 

catalytic converters, which can continuously and reversibly monitor oxygen levels in 
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combustion gases. The literature on chemical sensors increased sharply after the 1970s, 

following the electrochemical sensors' success.  

Actually, there is no universally accepted definition of either of the terms sensor, chemical 

sensor or biosensor; indeed, much confusion and misperceptions of chemo- and biosensor 

terminology can be attributed7. 

Referring to the IUPAC definition8, a chemical sensor is a device that transforms chemical 

information, ranging from the concentration of a specific sample component to total 

composition analysis, into an analytically useful signal. 

A sensor contains two units: a receptor and a transducer. The basis of chemosensor and 

biosensor technology is the interaction between the target analyte and a suitable receptor; 

this interaction causes the variation of a parameter that produces a signal detected by the 

transducer, which generates a recordable generally electric signal9. A scheme of the 

operating principle of a sensor is shown in Figure 2. 

 
Figure 2. Schematic representation of the sensor's operating principle. 

 

 

According to the transducer's operating principle, sensors can be classified as optical10–15, 

electrochemical16–19, electrical, mass-sensitive, magnetic, and thermometric8. Various 

sensors may be combined in sets, often called multi-sensors or arrays. 

 

1.3 Aspects of a sensor20 

1.3.1 Receptors 
Receptors are recognition elements and key components of any sensor. They confer 

selectivity, i.e., the property to respond selectively to a target analyte or class of analytes, 

avoiding or reducing interferences from other substances in the samples. In chemosensors, 

the receptors can be supramolecular systems or ligands forming colored or fluorescent 
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adducts with the target analyte or else Molecularly Imprinted Polymers (MIP), which are 

biomimetic receptors composed of synthetic materials containing recognition cavities 

selective for the molecule of interest. In biosensors, the receptors are of biological origins, 

such as proteins (antibodies, enzymes) and nucleic acids (DNA, RNA, aptamers). 

1.3.2 Transducer: the sensor’s detector 
As for many analytical methods, such as colorimetric and spectroscopic, sensors can have 

photometric transducers; however, most sensors have been developed using 

electrochemical transducers due to the ease of construction and low cost. With the rapid 

development of photon-driven devices based on optical fibers, several optical sensors are 

developed thanks to greater flexibility and miniaturization. In addition, micro-mass-

controlled devices, based mainly on piezo-electric crystals, may become competitive 

shortly. 

1.3.3 Methods of receptor’s immobilization 
In a sensor, the receptor must be connected to the transducer. Different methods can be 

exploited, mainly depending on the transductors. For example, the receptors can be sorbed 

or covalently linked to a suitable substrate for colorimetric sensors. The chemical 

modification of an electrode surface is the usual approach employed to develop 

electrochemical sensors. 

1.3.4 Figures of merits 
The most important characteristic of a sensor is its selectivity, which is the ability to 

discriminate between the target analyte (or class of analytes) and the other substances in 

the sample. Such property is principally due to the selectivity of the receptor, although 

sometimes the transducer can contribute to it. 

Additional figures of merit are the sensitivity, usually evaluated through the detection limit 

(LOD), the limit of quantification (LOQ), and the linear range of concentration that can be 

investigated. Other important parameters are the method's accuracy, which needs to be 

lower than ±5%, and the precision, measured through repeatability and reproducibility 

tests. 

There are even aspects depending on the sample characteristics that affect the 

experimental conditions, such as pH, temperature and ionic strength. 
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Other parameters to be evaluated concern the sensor's properties, such as the response 

time and the working lifetime, usually determined by the stability of the receptor or the 

substrate. 

 

1.4 Data treatment 
In Prof Raffaela Biesuz's research group, chemometric data treatment is a routine tool due 

to the challenges faced in developing differential receptors over the last decade. 

Indeed, in addition to the previous classification, sensors are distinguished into specific (or 

selective) and differential (or generalized) sensors. The first ones, in principle, exhibit a high 

selectivity towards specific analytes, while the second have different binding properties, 

none of which are necessarily specific or even selective. 

 
Figure 3. Schematic representation of receptors and transducers binding principles for selective and differential 

receptors. In the yellow rectangle, a specific binding event manifests a large degree of complementarity between the 

host and the guest. Below, an array of generalized receptors interacting with one in the green rectangle or multiple 

analytes in the red rectangle are shown. Adapted by Laving and Anslyn21.  

 
This difference is well depicted in Figure 3, which can be found in the paper of J. J. Lavigne 

and E. J. Anslyn21.  

Selective receptors mimic the lock-and-key approach to molecular recognition, typical of 

several biological systems, as represented in the yellow rectangle of Figure 3. This high-

specificity approach, as it will be discussed, is the main feature behind the MIP strategy. As 
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illustrated below, several case studies will be presented. The main drawback arises when 

dealing with complex mixtures of analytes. In principle, the design and synthesis of 

receptors for each component in the mixture is required using a lock-and-key approach. 

More often, the molecular recognition of molecules with similar structures could become 

an endless challenge, and the selectivity becomes that of a family of substances instead of 

that of a specific molecule. 

Opposite differential receptors, represented in the green and red rectangles of Figure 3, 

mimic the binding scenario used in the mammalian senses of taste and smell; they require 

an array of sensors to be created and a composite signal to be evaluated and interpreted, 

usually exploiting multivariate tools. 

These receptors need neither to be designed nor to be highly specific for any analyte and 

allow the discrimination of analytes or analyte mixtures that have not been exhaustively 

characterized.  

The arrays of colorimetric sensors developed for following proteinaceous food spoilage are 

clear examples22–31. An array built following this strategy will also be presented below. 

As for data processing, for the first class of sensors, for the quantification of the analyte, 

the univariate approach is the obvious way; in the case of the differential devices, it 

becomes almost mandatory, even for colorimetric devices, to use multivariate techniques. 

Becoming more confident using these last techniques, we discovered to be convenient to 

treat signals that, in principle, can be faced with a dose-response straight line with the 

multivariate approach. Indeed, it will happen when the baseline, for different reasons, is 

very disturbed. We will present a case where the solid UV-vis spectra are the analytical 

signals or cases where an electrochemical signal (E(mV) vs i) varies with the analyte 

concentration, changes the shape and the redox potential. In such cases, the analytical 

signal is not the simple absorbance at lmax, or the faradic current measured at the peak 

potential of the voltammogram, but the entire UV-vis spectra or the voltammogram, 

avoiding the acquisition of a single signal not rarely burdened by operator bias.  

In the following, a brief description of the multivariate tools employed in this research is 

presented, intending to remind them as a quick reference along the thesis. 

The first tool deals with the experimental design. It means strategies of experiments set up 

to save time and achieve the best results with the lowest effort. 
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The second tools are common chemometric algorithms: on the one hand, the unsupervised 

tools such as the PCA ( Principal Component Analysis) and  the somewhat unfamiliar 

3WayPCA, on the other hand, the chemometric supervised technique proper for 

quantitative multivariate calibration, the PLS, Principal Least Square Regression. 

The open-source Chemometric Agile Tool (CAT) program was employed throughout this 

thesis work32.   

1.4.1 Design of Experiments (DoE) 
The DoE is the most accessible tool to employ to optimize any process. Once the variables 

that influence the process have been selected, through the most suitable DoE, it is possible 

to perform the lowest number of experiments to achieve the highest quality of the 

information. It means to quantitatively assess the real contribution of the variables to the 

process and consider the interactions among them.  A deeper description is out of the 

scope of the work. Here, DoE was used to optimize the experimental parameters of the 

electrochemical sensors for Fe3+, Irbesartan and Ascorbic acid.  

The idea behind this approach, as told above, is that not only the single variables influence 

the signal (mono-variate approach) but also the interaction between them (multivariate 

approach). In the present research, we always employed full factorial design, the simplest 

and most known of DoE for which, to explore correctly the experimental domain, the least 

number of experiments required to cover the experimental plan is 2k, where k is the 

number of variables; for example, if the variables that are selected to optimize the response 

are three, the least number of experiments to run is 23=8. The experiments must be 

projected according to the full experimental design rules, assigning a maximum (+1) and a 

minimum (-1) value for each variable, which defines the experimental domain for each 

variable, as shown in Table 1, experiments from E1 to E8. 
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Table 1. Experimental design for a full factorial design 23. 

Experiment V1 V2 V3 

E1 -1 -1 -1 

E2 +1 -1 -1 

E3 -1 +1 -1 

E4 +1 +1 -1 

E5 -1 -1 +1 

E6 +1 -1 +1 

E7 -1 +1 +1 

E8 

V1 

V2 

… 

+1 

0 

0 

… 

+1 

0 

0 

… 

+1 

0 

0 

… 

 

For three variables, it means performing the experiments at each cube vertex. Collecting 

the eight responses Y, possibly completing the experiments in a random order, the multi-

regression function defines the hyperplane, calculating the coefficients of the equation: 

 ! = #! + #"%" + ##%# + #$%$ + #"#%"%# + ##$%#%$ + #"$%"%$                                        ( 1 ) 
 
Where b0 is the known term, the b1 b2 b3 are the coefficients associated with each variable: 

the higher the absolute value, the higher the effect of that variable on the system. The 

positive sign means that that variable at its high level increases the response, while if 

negative, it will increase the response only if we want to obtain the minimum response. 

The b12 b13 b23 are the coefficients that describe the interaction of variables; again, the 

higher the absolute values, the higher the interaction between the involved variables, while 

the significance of the sign must be evaluated together with that of each variable and is 

usually assessed graphically by response surface. 
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Figure 4. Representation of the 23 full factorial design. 

 
Of course, mathematically, all 7 terms are calculated, but only those significantly different 

from the background noise are considered. The significance of the coefficient is related, in 

addition to noise, to the degree of freedom, always equal to the number of experiments 

minus the number of parameters, here equal to one. In this way, the variables' weights and 

their interaction drive the decision of the best conditions to set up for achieving the best 

result. 

One step is still needed; only validation allows the application of the model for prediction 

within the entire experimental domain. In the case of continuous variables, this can be 

easily achieved by performing a series  (two or more)of experiments in the codified value 

0,0,0, corresponding to the cube's center; see experiments V1 and V2 in Table 1. When the 

calculated value, equal to b0, falls within the confidence interval, the system is fully 

validated at a given confidence level. 

It must be underlined that, in this thesis, every time DoE was applied, the term 

“optimization” was used: from a strictly theoretical point of view, this term should be used 

only when quadratic models are applied, and thus, our use of this term is wrong. 

Nevertheless, being this thesis for a wider readership, we used the term “optimization” to 

distinguish from the most common “one variable at a time” approach. 

1.4.2 Principal Component Analysis (PCA) 

This tool was exploited in Chapters 2.3 Green-PAD array for pH measurements and 3.8 e-

MIP-modified screen-printed electrodes for the voltammetric detection of MCPA. 



 10 

PCA is the most known unsupervised technique that can applied to any bidimensional 

dataset when a certain number of samples, m, called objects, put on rows, are described 

more than a few variables, n, put on columns. Such tables are often encountered in science 

and, let us say, everywhere. Regularly, it is hard to understand the information behind that 

table quickly. Assuming that not all the variables bring the same quality of information and 

the real dimension of the dataset is lower than n, the PCA algorithm reduces the dimension 

of the data set, performing a sort of axes rotation towards none of the original variables 

but to a first linear combination of all of them able to capture the maximum data variability. 

The remaining variance is submitted to the same operation so that another dimension, still 

a linear combination of the original variables, captures most of the residual variance. This 

operation is repeated as times as the number of variables. The result is the “compression” 

of the data set's variability, i.e., the information in the first Principal Component (PC), while 

the noise is left in the last ones. The algorithm follows some rules: variables, most of the 

time, need autoscaling; some constraints are introduced as the maintenance of the total 

variance of the system; the orthogonality of all the new dimensions that guarantee the 

independence of each PCA, that sometimes can be associated to a property of the system.     

From the geometrical point of view, the principal component analysis, in a limited case of 

only two variables, performs the axes rotation reported in Figure 5. 

 
Figure 5. PCA rotation in the direction of maximum explained variance. 

 
In addition to the variance captured by each component that allows the selection of the 

principal ones, the algorithm outputs are the loadings and the scores plots. The first gives 

information about the importance of the variables in each component, discovering 

variables that bring the same information. The scores plot is the projection of the samples 

into the new space of the PCs. It shows the distribution of samples: similar samples are 
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allocated together in the new space depending on the importance of the same variables 

used for their description. For the extreme feasibility of the technique, PCA could be used 

for first data rationalization, visualization and preliminary pattern recognition. It is not the 

case to go deeper into the description found in any text of basic chemometrics33. 

As a general rule, valid for any of the chemometric tools employed, the quality of the 

information extracted and the model are directly related to the goodness of the dataset. 

1.4.3 3-Way PCA 
This tool was exploited in Chapter 2.3 Green-PAD array for pH measurements. 

The 3-Way PCA is still an unsupervised technique that permits obtaining information in all 

cases where observations on a given number of samples are somehow repeated. In other 

words, sometimes, the structure of a data set is such that a standard two-way table (objects 

versus variables) is not enough to describe it. It happens when an environmental 

investigation on different sites is repeated over time34, or an analysis on a data set is 

followed over time, still also for different kinds of samples22,35, or in a sensory case, the test 

is repeated on different beverages by different assessors. It could be interesting to separate 

the contribution to variability given by the selected conditions that produce a 

tridimensional data set. It must be underlined that while PCA can be applied to every 

dataset of any dimension, 3-Way PCA can be run only on completely symmetrical matrixes 

in which the variables are acquired for each object at each condition and vice versa. With 

CAT software, the 3-way PCA is done using the TUCKER 3 algorithm (decomposition 

algorithm)36. From the geometrical point of view, the dataset can be visualized as a cube 

where the sides are the components: objects(i), variables (j) and conditions (k), as reported 

in Figure 6. 
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Figure 6.Graphical representation of the 3-Way PCA dataset. 

 

A much easier interpretation of the information contained in the data set is achieved 

directly considering its three-way structure. Of course, the matrix submitted to the 

algorithm cannot be a cube, but after the first i x j matrix referred to the first condition, the 

others are repeated under it for each remaining k-1 condition. 

The output is given by three sets of loadings together with a core array describing the 

relationship among them. Setting up a fixed number of components for each way, the core 

array is a cube. In our application, we always consider two components so that it can be 

applied to the [2 2 2] T3 model. A comparison between the variance calculated by the 

Tucker model and that of the single mode after unfolding is usually useful to estimate the 

loss of information due to the unfolding operation. 

Each of the three sets of loadings can be displayed and interpreted in the same way as a 

score plot of standard PCA, but in the case of a cubic core array, a series of orthogonal 

rotations can be performed on the three spaces of the objects, variables and conditions, 

looking for the common orientation for which the core array is as much as possible body-

diagonal. Under this condition, i.e., when the core matrix exhibits a superdiagonal 

condition, the rotated sets of loadings can also be interpreted jointly by overlapping them. 

1.4.4 Partial Least Square regression (PLS) 
This tool was exploited in the Chapters  2.3 Green-PAD array for pH measurements, 2.4 

TazoC-PADs for Pd(II) detection, 3.5 Cysteamine-copper SAM-modified screen-printed gold 

electrode for glyphosate determination, 3.8 e-MIP-modified screen-printed electrodes for 

the voltammetric detection of MCPA. 
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Unlike the unsupervised techniques, the supervised chemometric techniques answer a 

different question: the possibility of predicting a response from a multivariate dataset. We 

can deal with data suitable for qualitative or quantitative predictions. Traditionally, the 

supervised methods refer to classification methods in the first case to multiregression 

methods in the second. Among these last ones, PLS, or partial least square regression, is 

the most popular one, applied systematically in many different fields also out of chemistry.  

The main feature of all the supervised methods is that we must start from reference values 

for model construction. 

PLS algorithm essentially provides a means for regressing the predictor (for example, a 

spectrum, X) and predicted variables (es concentration, Y)  

This technique aims to find the relationship between the dependent and the independent 

variables37,38. The mathematical model that represents this relation is reported in eq.  

& = '! + '"%" + '#%#% + '$%$ +⋯'&%& + )                                                                       ( 2 ) 
 

where bn are the regression coefficients and ε the error. The PLS algorithm finds the 

underlying structure present in, for example, 

spectroscopic/chromatographic/electrochemical data sets and captures maximum 

variances of both descriptors and predictors, ensuring the maximization of the correlation 

between them. PLS achieves this using the non-iterative partial least squares (NIPALS) 

approach. 

As discussed above, one of the key points while developing the PLS model is the selection 

of an optimum number of latent variables, under the general rule that the first latent 

variable explains the maximum variation followed by the second latent variable, and so on.  

It is typically achieved using the cross-validation approach, that essentially solves two 

primary purposes in PLS analysis. It allows the easy assessment of the optimal complexity 

of the PLS model and provides a measure for evaluating the PLS model performance when 

applied to a validation data set. The cross-validation step involves the removal of some of 

the samples (test set) from the calibration set and constructing the PLS model with the 

remaining samples (model building set). The developed model is subsequently used for 

predicting the concentration of the analytes of interest in the test set samples.  

The same procedure is repeated by varying the latent variables, and a statistical parameter 

called the root mean square error of cross-validation (RMSECV) is estimated for each of the 
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developed PLS models. The RMSECV values are plotted against the latent variable index. 

From the curve, the number of latent variables that minimize the RMSECV value can be 

used for developing the PLS model.  

The risk to be avoided, indeed, is to keep a too low number of latent variables to fall into 

an underfitting condition, as opposed to keeping too many to fall into overfitting. Both 

conditions should be avoided, and the best model must be a balance between good 

description properties and, more importantly, predictive properties. This last performance 

is evaluated by running the model on an external data set with still-known concentrations. 

Together with a graphical representation of experimental versus fitting values, the root 

mean square error of prediction (RMSEP) measures the error in predicting the properties 

of the samples of the testing set. Deeper insight can be found in any basic chemometric 

book33.  

1.4.5 Limit of detection (LOD) and limit of quantification (LOQ) 
When a univariate method is used for analytical purposes, i.e., when we refer to a dose-

response curve and linear regression method, the definition of the limit of detection (LOD) 

and, consequently, the limit of quantification (LOQ) has a flat and linear form.  

With at least 10 replicates of the blank measurements, the limit of detection, for a 

confidence level of 95%, is given by: 

 *+, = $.$	∙*!
+"

                                                                                                                                   ( 3 ) 
Where sB is the standard deviation on the blank measurements, and b1 is the slope of the 

calibration straight line. A more exhaustive and correct formula considers the uncertainty 

on the straight-line parameters, although eq 3 is the most popular version of LOD.  

When blank replicates are not available, as is the case of many electrochemical methods, 

the standard deviation on the regression sy/x can be used as the standard deviation of the 

blank obtaining the equation 4: 

 *+, = $.$	∙,#/%
+"

                                                                                                                                ( 4 ) 
Where b1 is the slope of the calibration straight line and sy/x the standard deviation on the 

regression39. 

The limit of quantification is the first concentration that can be quantified, and it can be 

calculated as39: 

*+- = "!	∙*!
+"

                                                                                                                                    ( 5 ) 
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Or 

*+- = "!	∙,#/%
+"

                                                                                                                                                                              ( 6 ) 
 

The computation of LOD and LOQ values from the PLS models is a completely different 

matter.  

Surprisingly, there is currently no defined procedure for multivariate calibration. Defining 

an estimator for the LOD is more complex since the traditional univariate procedures 

cannot be applied to the multivariate parameters obtained  from the Partial Least Square 

regression of the calibration measurements. 

Different strategies have been proposed, but no unique method has been identified 40–43. 

For these reasons, depending on the data set we are dealing with, we explain how we 

estimate LOD when PLS is used as a calibration method.  
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2 COLORIMETRIC SENSORS 
In this section, two colorimetric sensors are presented. The first paragraph summarizes the 

general features of colorimetric sensing devices; in the second, the approach to realize and 

apply these sensors is described. The last two paragraphs present the colorimetric Paper-

based Analytical Devices (PADs) developed and applied to real samples. 

 

2.1 General features 
Colorimetric sensors provide a naked-eye-observable, quick, low-cost, sensitive and 

selective response toward various analytes44. 

With the progress in materials science and nanotechnology, various nanomaterials such as 

nanoparticles (NPs), carbon nanotubes or nanofibers,  quantum dots (QDs), graphene, and 

various 2D-nanomaterials have been exploited for the fabrication of different 

chemosensors and biosensors. Unluckily, this kind of sensor shows some drawbacks due to 

the time-consuming preparation and applications, which is not helpful for in-situ analysis. 

Otherwise, colorimetric sensors look promising for detecting analytes in different matrixes 

thanks to their easy preparation, fast detection, naked-eye sensing, and quite good 

sensitivity45. 

In this perspective, the realization and application of disposable colorimetric sensors are 

the right direction for quick and on-site detection. These devices are cheap and easy to use; 

they do not experience memory effects or need pre-treatment before their use or cleaning 

among measurements. Due to the growing demand for in-situ analysis, the global market 

for disposable colorimetric sensors is rapidly increasing, particularly for environmental 

monitoring and medical diagnostics46. 

 

2.2 Colorimetric sensor’s development 
In colorimetric sensors, the receptor, linked to a suitable and inert substrate, changes color 

when in contact with the analyte.  

The materials generally used as substrates for colorimetric sensors can be grouped into 

four categories: cellulose-based materials, textiles and woven non-woven fabrics, synthetic 

polymeric supports, and sol-gel materials. 
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The receptor can be fixed on the substrate by exploiting different strategies, such as the 

simple impregnation of filter papers with an aqueous or hydro-alcoholic solution of a dye 

or the covalent linkage of the receptor to natural or synthetic polymers. In any case, the 

interaction receptor/analyte must remain unchanged after the linkage of the receptor to 

the substrate. 

Different detectors can be used for colorimetric sensing, from the latest and low-cost 

devices, such as scanners or smartphones, to more classical instruments, such as 

spectrophotometers and spectrofluorimeters. 

Scanners provide a fair resolution of the digitalized image, and the image intensity is not 

affected by the external light. They are usually employed because they can be portable 

(such as pen scanners) and usable for untrained personnel. 

Digital and smartphone cameras can also be employed because they do not require any 

particular skills.  

After digitalization, the resulting images must be analyzed using software or apps to obtain 

the color indexes in one of the color spaces: RGB, CMYK, grayscale, HSV, or CIE L*a*b*. 

Depending on the color and tone of the image analyzed, the complete information, or just 

one channel of the color space, can be used for data treatment. 

The last group of detectors comprises simple photometers and homemade devices, such 

as the one realized during this Ph.D. project: the Arduino-based RGB detector that will be 

described in the next paragraph10. 

Once the sensor's main components are defined, the data elaboration approach must be 

selected, depending on the receptor and the final purpose. The most suitable univariate or 

multivariate data elaboration approach must be identified whether qualitative or 

quantitative analyses are performed.  
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2.3 Green-PAD array for pH measurements 

2.3.1 Introduction 

The first pH definition goes back to 1909 by Sørensen47 as the negative logarithm of the 

hydrogen ion concentration expressed in molarity. Generally, the pH measurements are 

performed electrochemically using glass electrode connected to a potentiostat or, more 

recently, using solid-state sensors such as ISFET48. It can be assessed that the glass 

electrode is undoubtedly the membrane electrode more widespread and performing than 

ever, being present in any chemical and biochemical research lab worldwide since its 

commercialization, dating back to the middle of the last century, allowing precise and 

accurate pH measurements over an impressive range of H+ concentrations. As a 

counterbalance to this success, even after the introduction of its combined version with 

the reference electrode, pH electrodes are still relatively expensive, fragile, and not 

suitable for miniaturization, with severe limitations related to the presence of a salt bridge 

and a filling solution of the reference electrode, resulting in need of frequent calibrations 

and poisoning. It is because of these drawbacks that the most ancient strategy, employed 

since the Middle Ages to detect the acidity or basicity of a solution, based on dyes of lichens 

sorbed on paper, able to change their color as a function of pH, has continued to find 

significant employment and still does.  The litmus test has amended since then, changing 

and combining different receptors, but it has its place in any laboratory, providing an 

instantaneous and sufficiently accurate pH value suitable for a wide range of activities. 

Moreover, we can define it as a colorimetric sensor. Despite that, there is still room for 

developing new litmus tests. Paper-based analytical devices (PADs) were first proposed by 

Martinez et al.49 in 2007 and then widely applied for environmental analyses thanks to their 

simple fabrication, rapid response and environmental sustainability.50–59 Inspired by 

Martinez PADs, we developed a green colorimetric sensor for the qualitative and 

quantitative determination of pH in real samples based on natural pigments present in 

aqueous extracts of red cabbage (Brassica oleracea) and butterfly pea flower (Clitoria 

ternatea). These two aqueous extracts are rich in anthocyanin, a group of molecules 

belonging to the family of flavonoids. Anthocyanins (structure reported in Figure 7) are 

water-soluble pigments that may appear red, purple, blue or black depending on the pH.  
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Figure 7. Molecular structure of anthocyanins 

These molecules are very well known for their antioxidant properties. As mentioned 

before, colorimetric naked eye sensors can be used for qualitative determinations only; in 

this work, the green colorimetric sensors are coupled with chemometric tools to obtain a 

device for quantitative measurements. The sensor response used for the data analysis was 

the RGB values obtained from the picture of each sensor.  

As for the solid support, filter paper was selected. Together, the paper and the employment 

of natural dyes make it possible to define the proposed sensor as green without misusing 

the term. 

2.3.2 Material and methods 

2.3.2.1 Procedures for the development of PADs modified with natural extracts 

 
Red cabbage extract (Brassica oleracea, RC) and butterfly pea flower tea extract (Clitoria 

ternatea, BPF) were prepared using the following procedure. For RC, an appropriate 

quantity of raw vegetables (corresponding from 1 to 3 g of dry matter, considering its 

humidity equal to 91.3%), cut in small pieces, was placed in a beaker with 250 mL of distilled 

water, the suspension was kept in an ultrasonic bath for 60 minutes (keeping the 

temperature lower than 60°C). After cooling, the suspension was filtered, and 5 mL of 

concentrated hydrochloric acid was added as a stabilizer, and the total volume was 

repristinated with distilled water to 250 mL. For  BPF, the powder (3 g) was added as 

received in the 250 mL of water and submitted to the same procedure described for RC. 

The extracts were stored in a fridge and considered stable for 3 weeks.  

The green PADs were obtained by cutting a sheet of filter paper into squares of 2 cm side. 

Each square was placed on a clean, flat surface and drop-coated with 0.2 mL of each extract 

or a mix of both and allowed to air dry. The extracts' compositions are 100% RC, 100% BPF, 

O
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75% RC-25% BPF, 50% RC-50% BPF and 25%RC-75% BPF. 5 arrays were developed using 

these five mixtures. In the following, we refer to the different five arrays as Green PADs. 

Each PAD of the array was immersed in 5 mL of the extracts at different pH values ranging 

from 1 to 13 for a few seconds, enough to wet the paper. The PAD was removed from the 

solutions and left to dry for 5 minutes. Photographs of the PADs (or direct readings of color 

indexes using the RGB detector) were taken. RGB triplets were collected from the pictures 

using GIMP software60. The pH values of each solution were measured using the pH meter 

and used as reference values.  

2.3.2.2 Chemometric data treatment 

Chemometric methods are often used to reduce the data’s dimensionality and summarize 

the information in a simple graphical form, useful for interpretation61. As already stated, 

this is a property of unsupervised techniques. In this work, principal component analysis 

(PCA) and three-way principal component analysis (3WPCA) were used for this purpose. 

Conversely, the supervised technique can be employed for qualitative or quantitative 

detection in cases where the analytical response is not easy to be selected or when a multi-

response is available. In this research, the response is the RGB triplets. Instead of reducing 

them to one parameter62, partial least square regression, PLS is employed to assess the pH 

of the unknown solution achieved directly from the RGB reading.  

In the present research, the 3WPCA was the first tool employed to understand the 

structure of a data set. The colors, described by RGB triplets, are considered as variables, 

while the five different Green PADs are the objects, and the pH values represent the 

conditions. The results are three loading sets and a core array describing their relationship. 

Each loading set can be interpreted and displayed similarly to a loading plot of the standard 

PCA63. PCA was applied to the entire data set (15 columns, 3 RGB indexes for 5 PADs, and 

39 lines,13 solutions per 3 replicates). From the score plot of PCA, three pH subintervals 

were highlighted from the 3way analysis: from 1 to 4 (acid solutions), from 5 to 8 (neutral 

solutions) and from 9 to 13 (alkaline solutions).  

Finally, the PLS tool was applied for each subinterval, obtaining a tailored model that 

correlated the RGB indexes to the pH values of the solutions in the range under 

investigation. Three PLS models were obtained, one for each subinterval. In this case, a 

training set must be selected for the subinterval for pH values from 1 to 4 is a matrix of 15 
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columns (3 RGB for 5 PADs) and 12 lines (4 solutions per 3 replicates); the training set for 

pH values from 5 to 8 and from 9 to 13 are matrixes of 15 columns per 15 lines (5 solutions 

per 3 replicates). The test set used for the validation is formed by three replicates of the six 

real samples listed above and characterized by different pH values: Schweppes tonic water, 

sprite, white wine vinegar and aloe vera drink as acidic samples, tap water as neutral and 

ammonia cleaner as alkaline. The matrixes of the samples with pHs between 1 and 4 were 

formed by 15 columns (3 RGB per 5 PADs) and 12 lines (4 solutions per 3 replicates, the 

matrix of the samples with pHs between 5 and 8 and between 9 and 13 are composed by 

15 columns and 3 lines (1 solution per 3 replicates). 

 

2.3.3 Results and discussion 

2.3.3.1 Analysis of Green-PADs 

The project aims to produce green, easy-to-use and disposable sensors for determining pH 

in real samples. To obtain green PADs, natural pigments contained in vegetables were used. 

Two extracts rich in anthocyanins, which are molecules able to change their color at 

different pH values, were selected, one from red cabbage (RC) and the other from butterfly 

pea flower (BPF). The extracts were used pure or mixed in different percentages. Figure 8 

reports the UV-vis spectra of the extracts (pure mixtures) at neutral pH in the range of 400-

800 nm.  

 
Figure 8.UV-vis spectra of the RC and BPF extracts and their mixtures at pH 7 

 
As can be observed in Figure 8, the UV-vis spectrum of 100% RC is characterized by the 

broad peak at 550 nm, which is due to the presence of acylated anthocyanins (3-

diglucoside-5-glucoside derivatives with various acylated groups linked to the 
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diglucoside)64,65. Increasing the concentration of BPF, a bathochromatic shift and split into 

two peaks at 570 and 620 nm appears. These peaks are those characteristics of ternatins 

and polyacylated anthocyanins responsible for the blue color of the butterfly pea flower 

extract66.  

The PADs modified with the pure extracts (100% RC and 100% BPF) at various pH values 

were compared with the colors of the aqueous extracts of red cabbage and butterfly pea 

flower found in literature 64–66; the results confirmed the correct preparation and 

preservation of the extracts (3 weeks in the fridge at 4°C, in the dark).  

A volume of 0.2mL of extracts was chosen to load the PADs since this volume is enough to 

cover the whole surface of the sensor. The immersion of the PADs in 5 mL of extract was 

excluded since the final color was not homogeneous. As a further step, it was necessary to 

define how to load the sample on the PADs: the drop-coating using 0.2 mL of the sample 

or plunging the modified PAD in 5mL of the sample per 10 s (the minimum time required 

to impregnate the paper). Unlike what was found for the dye impregnation step, the second 

strategy was the one that provided the best color uniformity. 

All the steps were conducted at room temperature. Another parameter that must be 

defined is the time that elapses between the sample loading and the photograph (or the 

analysis using the RGB detector). It was found that 5 minutes is the time required to obtain 

homogenous colour on the surface of the PAD, avoiding the drying out of the paper. 

Other typologies of paper with similar porosity were used to reduce the waiting time, but 

no proven advantages was observed.  

It is worth underlining again that the green PADs are disposable due to the paper's main 

constituent and the low stability of the natural extracts. Still, for this reason, PADs must be 

immediately used after their preparation.  

In Figure 9, the overall amazing variation of the Green-PADs arrays is shown. Very distinct 

colors are developed after immersion in aqueous solutions at different pH values.  

 

 
Figure 9.Green-PAD array. A5= 100%RC; A4 = 75%; A3 = 50%RC-50%BPF; A2 = 25%RC-75%BPF; A1 = 100% BPF. Three 

replicates for each pH. 
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A first native question arises: which is the best combination? Followed by another: is there 

a unique best combination for the entire pH range? Rather than choosing in a qualitative 

and possibly biased way, the multivariate approach is intended to offer an objective way 

to face the matter. 

2.3.3.2 Dataset description and visualization 

The RGB model was selected to quantify the color change with the solution’s pH. There is 

room to discuss the pros and cons of other color space descriptors. We found that, among 

others, RBG is more satisfactory when a color that changes into another is observed, and 

not different intensity of the same color, where possibly other descriptors resulted more 

convenient. The golden point to acquiring good data is the strict observation of the 

reproducible lighting conditions, as we do see above. The open-source program GIMP60 

was used to acquire the RGB triplets for each PAD picture. The values obtained using GIMP 

are organized in matrixes subjected to multivariate analysis after simpler centering since  

the RGB indexes are intrinsically scaled from 0 to 255.  

As mentioned before, the 3WPCA is the proper tool to describe simultaneously the effect 

of the different PADs. The objects were the five typologies of PADs, the conditions were 

the pH of 13 solutions, and the RGB indexes were the variables. In Table 2 the explained 

variance percentage after the unfolding process is reported. 

 
Table 2. Cumulative % variance explained after unfolding 

Mode Axis 1 Axis 1 & 2 

Objects, PADs 47.84 89.10 

Variables, RGB 56.71 81.96 

Conditions, pHs 50.41 72.47 

 

Comparing the lowest value obtained after the unfolding with the % variance explained by 

the Tucker3 model (68.09%), no significant loss in information was detected when the 

overall color evolution was considered. The percentages of explained variance are 

reasonable, considering the high variability of the data set. Figure 10 shows the triplot in 

which the loading values of the three modes (object, conditions and variables) are 

reported. The core matrix and the superdiagonal core matrix are reported in table T 6.2- 1 
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Appendix II – Green-PAD array for pH measurements (3-Way PCA matrixes, loadings of PCA 

Dataset description and visualization and ANOVA studies). 

 
Figure 10.3WPCA applied to the Green-PAD array: triplot of loadings value. A1 = 100%RC; A2 = 75%RC-25%BPF; A3 = 50%-

50%BPF; A4 = 25%RC-75%BPF; A5 = 100% BPF. Three replicates for each pH. 

 
The objects, the PADs, show loading values arranged along the horizontal axis (axis 1) 

explained by the different brightness, which increases with the decrease in the percentage 

of BPF and the corresponding increase in the % of RC. A confirmation of this behavior is 

given by the RGB values; in fact, the loadings of the variables are disposed only in the 

positive section of axis 1, meaning that the higher the values are, the higher the brightness 

is (light colors are characterized by high RGB values). The loadings of the pH values are 

described by axis 2, as also the RGB change does. 

This assumption is confirmed by the loadings of the variables, i.e., the R, G, and B indexes: 

they all have a positive value on the axis-1, which indicates that they all increase, moving 

from the left to the right of the plot, leading to brighter Green-PAD colors when % RC is 

higher. Conversely, on the axis-2, R has a positive loading value. In contrast, G and B have 

negative values, suggesting that by the change of the solution pH, the R index increases 

while the G and B indexes decrease, which corresponds to the numerical effect of the 
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significant glaring color variations for the PADs immersed in solutions at the extremes of 

the pH range. 

From Figure 10, pH values lower than 4 and higher than 9 are easily recognizable and 

separated along the axe; conversely, pH values from 5 to 8 are less recognizable as we 

expected since the similar color of the PADs in this pH range.  

As for this first overlook, the BPF high-content PADs seem more promising, answering the 

first question. For a more detailed description, let us go on with the analysis. 

PCA was applied to the whole data set to visualize the color transition and identify the main 

clusters, knowing that the part of information related to different Green PADs will be 

compressed. 

The model was obtained considering only the first and the second components (81.51% 

explained variance). In Figure 11 the score plot is reported. (Loadings are reported in 

Appendix II – Green-PAD array for pH measurements (3-Way PCA matrixes, loadings of PCA 

Dataset description and visualization. 

 
Figure 11.The score plot of the PCA model on the first two principal components, built on the training set. The ellipses 

are designed only to visualize the pH subintervals better.  

 

In Figure 11 three regions can be observed (delimited by ellipses added by hand as a 

simplification to highlight the different pH subintervals better) that partially overlap: the 

first cluster (red ellipsoid) for samples at pH lower than five separated along the PC1 axis; 
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second cluster (light green ellipsoid) is highlighted for samples at pH between 5 and 8 that 

are mainly separated along PC2 axis, and the score values decrease with the increasing pH; 

the third cluster (blue ellipsoid) is for samples at pH between 9 and 13, in this case samples 

are separated along both PC1 and PC2, with PC1 score values increase while PC2 score 

values decrease with pH increase.  

The RGB triplets of the test set, based on Green-PADs colors registered after contact with 

the real samples described above, have been projected into this PCA model. Even if PCA is 

not a classification technique, all the samples collocated in the correct corresponding 

cluster, as seen by observing the black diamonds of Figure 11b, and we consider it a sort of 

raw “concept validation”, see below.   

More interestingly, the scores plot allows us to select the range for a quantitative approach 

to pH assessment. Indeed, the three clusters area suggests the subintervals for PLS studies, 

as described below.  

2.3.3.3 pH predicted by PLS 

Three PLS models are developed, named A for the acid pH range, N for the neutral pH 

range, and B for the basic pH range.  

The RGB triplets make the training set for the five Green-PADs, already submitted to the 

unsupervised models, each limited within the above pH intervals. They constitute the X 

matrix of the independent variables or predictors. The pH values, which in PCA analysis 

were only the labels for the object’s identification and not involved in the algorithm 

calculation, are now the dependent variable (Y). The issue is finding how to describe Y's 

dependence on X. 

The PLS model is built by CAT32, and the number of latent variables is selected to avoid 

underfitting and overfitting. The models are subjected to a first validation performed by 

the PLS tool that divides the samples between a training set and a test set. Table 3 reports 

the statistics relative to this first step: the number of components used to build the PLS 

models, the % explained variance in cross-validation (CV) and the root mean square error 

in CV (RMSECV), model performances are reported in Figure F 6.2- 2 in Appendix II – Green-

PAD array for pH measurements (3-Way PCA matrixes, loadings of PCA Dataset description 

and visualization and ANOVA studies).  
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Table 3. Number of components, % explained variance in cross-validation (%Exp.Var.CV) and root mean square error in 

CV (RMSECV) for PLS models. 

Model n. components %Exp.Var. CV RMSECV 

A 5 90.30 0.3287 

N 5 90.81 0.3326 

B 4 93.68 0.3674 

 

The lowest RMSECV is obtained with 5 components for models A and N, while for B is 

obtained with 4. The explained variance is higher than 90% in all cases. Figure 12 shows the 

plots of experimental vs. fitted values for each model; a pretty good agreement can be 

observed between the experimental and fitted data for all the models. 

 
Figure 12. Experimental vs fitted plot for a) model A, b) model N and c) model B . RGB indexes are obtained from the 

pictures of the sensor using GIMP software. 

 

The models were finally validated by projecting the external data set, employing the RGB 

obtained by the measurements of the real samples into the most suitable PLS model, 

previously identified in Figure 11. In Table 4, the pH values of the real samples measured 

with the glassy carbon (pHGE), Litmus paper (pHLP) and Green-PADs (pHGP(1)) are reported. 

The pH color chart and image of the Litmus paper after immersion in each sample are 

reported in Figure 13. 
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Table 4. pH of real samples: comparison between the values measured with the pH meter, with the Litmus paper and 

with the Green-PAD array PLS models. Data are reported as mean value of three replicate, in brackets are reported the 

standard deviation on the last digit. 

Sample pHGE pHLP pHGP(1) RE% 

Schweppes 2.39 2-3 2.4(1) 0.4 

Sprite 2.72 3 2.9(3) 6.61 

White wine vinegar 3.05 3-4 2.8(2) 8.2 

Tropical aloe vera 3.55 4 3.5(4) 1.4 

Tap water 7.68 8 7.3(4) 4.2 

Ammonia cleaner 10.73 10-11 10.7(1) 0.3 
pHGE= value obtained by glass electrode; pHLP= value obtained by the Litmus paper; pHGP(1) value obtained by the Green-

PADs. Re% = relative error 

 

Figure 13. pH color chart of the commercial Litmus paper and color of the Litmus paper after contact with the real 

samples: a) Schweppes, b) sprite, c) White wine vinegar, d) Tropical aloe vera, e) Tap water, f) ammonia cleaner. 

 

As can be observed from the values reported in Table 4, there is a pretty good agreement 

among all the pH values despite the wild interval of the litmus test and the limited precision 

of pHPAD(1)  calculated by the models.  

The relative high uncertainty of pHPAD(1) can be caused by the RGB acquisition, such as 

different settings of the photo camera, the focus, and the environmental brightness, 

despite the efforts put in place to limit these drawbacks. To highlight this aspect, we 

decided to perform some measurements using an RGB detector prototype developed by 

Eng. Dario Pistoia. The device comprises a 4-led color sensor, and it is based on an Arduino 

hardware platform. The same experiments previously described were carried out by 
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registering the RGB indexes using the above detector to submit the dataset to PLS, 

producing three models at the three pH subintervals. In Table 5, the statistics, as before 

referred to the internal test set, are reported. Model performances are reported in F 6.2- 

3 in Appendix II – Green-PAD array for pH measurements (3-Way PCA matrixes, loadings of 

PCA Dataset description and visualization and ANOVA studies). 

 
Table 5. Number of components, % explained variance in cross-validation (%Exp.Var.CV), and root mean square error in 

CV (EMSECV) for PLS models using the RGB detector. 

Model n. components %Exp.Var.CV RMSECV 

A 3 99.82 0.0537 

N 5 92.08 0.2892 

B 5 98.65 0.1708 

The minimum RMSECV was obtained using 5 principal components for models B and N, 

while for A, with 3. The explained variance is very high, higher than before, and more than 

92% in all three cases. The RMSECV values are lower than those obtained using the RGB of 

the pictures of the PADs as signals, confirming that the RGB detector is more precise. In 

Figure 14 are reported the PLS models (pH experimental vs pH fitted) for A, N and B 

measured using the RGB detector are reported.  

 
Figure 14.Experimental vs fitted plot for a) model A, b) model N and c) model B. The RGB detector acquires RGB indexes. 

 

The PLS models were validated with the external data set as above. The pH values of the 

real samples predicted by the PLS models are reported in Table 6. To distinguish the pH 

obtained by this new measurement strategy, the calculated values are indicated as pHGP(2) 

while the previous pHGP(1). 
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Table 6. pH of real samples: comparison between the values measured using a pH meter, estimated by Litmus paper and 

those calculated by the Green-PAD array-PLS models. RGB indexes are acquired by the RGB detector. Data are reported 

as the mean value of three replicates; in brackets the standard deviation on the last digit. 

Sample pHGE pHLP pHGP(2) RE% 

Schweppes 2.39 2-3 2.35(3) 1.7 

Sprite 2.72 3 2.84(1) 4.2 

White wine vinegar 3.05 3-4 3.03(2) 0.6 

Tropical aloe vera 3.55 4 3.51(1) 1.2 

Tap water 7.68 8 7.77(6) 1.2 

Ammonia cleaner 10.73 10-11 10.80(3) 0.7 
pHGE= value obtained by glass electrode; pHLP= value obtained by the Litmus paper; pHGP(2) value obtained by the Green-

PADs with . Re% = relative error 

 

The data obtained in GP(2) mode are more precise than those obtained from the RGB data 

of digital images, GP(1) mode. We can also claim that precision is not so different from that 

achievable by a glass electrode when a current lab electrode is employed. The above data 

demonstrate that the RGB detector guarantees measurements free from uncontrollable 

operating conditions and with low background noise. Thinking of a digital implementation 

of such a device, GP(2) mode could be the gold choice.  

More importantly, applying the “two-way ANOVA without replicates” to the three data 

sets, pHGE, pHGP(1) and pHGP(2), so comparing true data, pHGE, with calculated ones, the 

variability among the columns is not significant, meaning that the pH values, within each 

row, are the same, becoming a further statistical trueness assessment, the results are 

reported in Appendix II – Green-PAD array for pH measurements (3-Way PCA matrixes, 

loadings of PCA Dataset description and visualization and ANOVA studies). 

 

2.3.4 Conclusions 
In this work, a simple, easy-to-use, low-cost, and completely green paper-based array for 

pH measurements was proposed. The array was prepared using filter paper as solid support 

and aqueous extracts of vegetables, allowing rapid and economical preparation. The 

natural extracts of red cabbage (Brassica oleracea) and butterfly pea flower (Clitoria 

ternatea) are sensitive to the pH of the environment, which causes them color change; for 

this reason, the extracts were used as dyes to modify the paper surface.  
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Multi-technique chemometric models were developed for calculating pH values, starting 

from the RGB triplet of each sensing PAD. The RGB indexes were acquired by photographing 

the PADs or using a RGB detector. Unsupervised techniques (3WPCA and PCA) were first 

applied to visualize the overall data set. This approach allowed the identification of three 

pH subintervals, thus developing tailored PLS models. Three PLS models (A for pHs between 

1 and 4, N for pHs between 5 and 8and B for pHs from 9 to 13) were developed and 

validated using real samples at different pH values as a test set. The results obtained with 

the Green-PAD array-PLS were compared to those obtained with the pHmeter and with the 

Litmus paper, showing a pretty good agreement. As expected, better data were obtained 

employing the RGB detector since the measurements are more reproducible. In the case of 

unknown samples, RGB indexes were projected in the PCA model to identify the most 

suitable PLS model to calculate the pH values.  
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2.4 TazoC-PADs for Pd(II) detection 

2.4.1 Introduction 
The heavy metal ions content in the environment, especially in natural waters, has been 

growing with the increase of human and industry activities such as the plating and 

electroplating manufacturing, mining, tanning, textile and rayon industries, batteries, 

bioreactors, metal smelting, petrochemicals and paper manufacturing67. Heavy metals are 

non-biodegradable; some can bioaccumulate in living organisms and affect various 

microorganisms because of their biomagnification67–69. Platinum-group metals (palladium, 

platinum, rhodium, ruthenium, osmium and iridium) are naturally found in the Earth’s 

crust70 but are also used in industrial processes because of their peculiar physical-chemical 

properties70. Despite the advantages of using platinum-group metals in technologies, the 

significant increase in the concentration of these metals in the environment may affect 

human health70. The World Health Organization (WHO) has provided little information 

about the impact of these metals on the environment, and these studies concern only 

platinum and palladium71–73.  

The most employed analytical methods for palladium determination are atomic absorption 

spectrometry (AAS), inductively coupled plasma-mass spectrometry (ICP-MS), inductively 

coupled plasma-atomic emission spectrometry (ICP-AES) and neutron activation analysis 

(NAA). These methods present high sensitivity, but the instruments and the analysis are 

costly, need trained operators, and the sample preparation is time-consuming since it very 

often requires separation and preconcentration steps74,75.  

In this work, a Paper-based Analytical Device (PAD) was developed for the determination 

of Pd(II) in water solutions. PAD sensing devices exploit the capillary properties of paper 

provided by the cellulosic fiber network, eliminating the necessity of pumping methods. In 

addition, the papers’ availability, biodegradability, low price, and ease of surface 

functionalization make them an attractive substrate for sensors’ development76–78. 

The device was developed by modifying the surface of filter paper with the diazo dye TazoC 

(disodium 2-[(1H-5-tetrazolyl)azo]-1,8-dihydroxynaphtalene-3,6 disulphonate), the 

molecular structure is reported in Figure 15. 
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Figure 15. TazoC (disodium 2-[(1H-5-tetrazolyl)azo]-1,8-dihydroxynaphtalene-3,6 disulphonate)  molecular structure 

 

TazoC is not commercially available, but it has already been studied as a complexing ligand 

for several metal ions; in particular, it forms a stable 1:1 complex with Pd(II) even in strongly 

acid solutions (pH=2); the complex configuration is reported in Figure 1679–81. 

 

 

 
Figure 16. Molecular structure of 1:1 TazoC:Pd(II) complex82 

 

The complex Pd(II)/TazoC is purple-blue, very different from the free ligand’s red-orange: 

this color change is the propriety used in optical sensors development. At pH higher than 2 

the ligand can complex other cations such as Cu(II) and Ni(II) in addition to Pd(II). A 

multivariate approach was necessary to quantify Pd(II) in the presence of interferent 

species. Partial Least Square regression was used as a multivariate tool to relate the UV-vis 

spectra of the solid device to the concentration of Pd(II) in solution10,83–85. 

2.4.2 Material and methods 

2.4.2.1 Ligand and sensor preparation 

TazoC was synthesized and purified according to previously described procedures86; its 

empirical formula and molecular weight (536.34 g/mol) were confirmed by elemental 

analysis. A 1 mM ligand stock solution was prepared by dissolving the weighted solid in 

ultrapure water. Tap water samples were obtained from the drinking water supply of Pavia, 

Italy. Samples were collected from the lab’s sink (Department of Chemistry, University of 
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Pavia, Italy) after flushing cold water for 15 min; they were subsequently acidified to pH 2 

with HCl. 

The cellulose filter paper was cut into 2 cm-sided squares using scissors. Each square, 

placed on a flat and clean surface, was drop-coated with 0.05 mL of 1 mM TazoC solution 

and left to air dry. The so-obtained PADs were immersed in 2.5 mL of aqueous metal-ion 

solution and kept under gentle stirring on a reciprocating shaker for 30 min (the time 

required to obtain a homogeneous and stable coloration of the PAD). The PADs were 

removed from the solution using plastic tweezers and left to air dry for 2-3 minutes on a 

flat and clean surface (the temperature fluctuation affects the PAD’s spectrum, so the 

measurements were performed at 25°C setting the air conditioning at the value and using 

the PADs not completely dry but slightly moistened). Subsequently, the PADs were inserted 

into the sample holder using plastic tweezers for the UV-vis analysis. The spectrum was 

registered in the wavelength range from 300 to 800 nm (bandwidth 0.2nm, scan 

rate200nm/min) against a blank PAD wetted only with the buffer solution.  

2.4.2.2 Chemometric data treatment 

Partial Least Square regression (PLS) was used for the chemometric data treatment to 

correlate the information contained in the UV-vis spectra to the concentration of Pd(II) in 

the solution. The PLS models were built by selecting a suitable data set (training set) 

obtained measuring Pd(II) solutions at different concentrations to cover the entire 

experimental domain homogeneously; three PLS models were developed at three different 

pH values: pH 2, pH 4 and pH 5.5. The training set used for each PLS model comprised the 

data of three replicates of 8-point calibrations (24 rows and 103 columns, eight 

concentrations and three replicates each and the absorbance values per 103 wavelengths). 

Each PLS model was tested by a cross-validation procedure on the training set and then 

with an external test set. The test set matrix comprised 9 rows (3 concentrations per 3 

replicates) and 103 columns (absorbance values for 103 wavelengths).  

The sensing device was also tested with mixtures at different concentrations of Pd(II) and 

Cu(II) at pH 4 and  Pd(II), Cu(II) and Ni(II) at pH 5.5. Another training set was prepared using 

tap water spiked with different concentrations of Pd(II); from the concentrations predicted 

by the model, the recovery percentages were calculated.  
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All the data used for PLS models were only centered and not scaled, as usually done with 

the spectroscopic data set, and analyzed using CAT32. The tables reporting the metal-ion 

concentration in each sample are in Appendix III – PLS data (Training set, Test set 

compositions, and model performances) of the TazoC-PADs for Pd(II) determination 

(paragraph 2.4).  

 

2.4.3 Results and discussion 
The PADs were obtained by cutting a sheet of filter paper into two cm-sided squares and 

using TazoC as a chromophore receptor. The receptor forms a purple-blue-colored stable 

1:1 complex with Pd(II) also in very acidic media; this behavior was exploited to develop 

the present devices. Until pH 2, only Pd(II) is complexed by TazoC, while Cu(II) and Ni(II) are 

not, as can be observed by the UV-vis spectra in Figure 17. It means that competition by 

other metal ions, complexed by TazoC at higher pH values, is not exerted in the acidic region 

and can be exploited for selectivity purposes.  

 
Figure 17.UV-vis spectra (absorbance (Abs, a.u.) vs Wavelength (nm)) in aqueous solutions at pH2 (HCl 0.01M) of 75 µM 

TazoC (black line); 75 µM TazoC and 75 µM Pd(II) (blu line); 75 µM TazoC and 75 µM Cu(II) (pink line); 75 µM TazoC and75 

µM v Ni(II) (green line). 

 

As can be observed in Figure 17, the typical peak of the free ligand at about 475 nm (e = 

17.333 cm-1 M-1) is in agreement with the data previously reported 80, and the spectrum 

does not change if other cations than Pd(II) are added at pH 2 (they all overlap to the 

spectrum of the free ligand), at least until 1:1 ratio. The absorption peak of the complex 

with palladium(II) undergoes a red shift compared to that of the free ligand. Moreover, the 
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peak of the free ligand disappears when an equimolar amount of metal ion is added, as 

expected by the prevalent 1:1 stoichiometry of the TazoC complexes80. 

Figure 18 reports the three different UV-vis spectra obtained when a TazoC solution was 

added with an equimolar amount of Pd(II), Cu(II) and Ni(II) at pH 4 and 5.5  

 

 
Figure 18. UV-vis spectra (absorbance (Abs, a.u.) vs Wavelength (nm)) in aqueous solutions of 75 µM TazoC (black line); 

75 µM TazoC and 75 µM Pd(II) (blu line); 75 µM TazoC and 75 µM Cu(II) (pink line); 75 µM TazoC and75 µM v Ni(II) (green 

line), (a) acetate buffer pH 4, (b) acetate buffer pH 5.5. 

 

From these spectra, where only an effect of one metal at a time at an equimolar amount 

with respect to the ligand is shown, the interference of Cu(II) and both Cu(II) and Ni(II) 

increasing the pH is expected. 

As described elsewhere, filter paper cut in squares was loaded with 0.05 mL of 1mM TazoC 

water solution to build the sensor since that volume was enough to cover the PAD’s surface 

entirely without obtaining overflow of the ligand. Some trials were performed by plunging 

the paper square in 2.5 mL of 1mM TazoC solution, but lower sorption kinetics and 

inhomogeneity of the PADS’s color were verified.  
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Moreover, deciding the modality with which the sample was loaded on the sensing device 

was necessary. The drop coating using 0.5 mL and the immersion in 2.5 mL of sample were 

tried. The best results were obtained with the second strategy adopted for all the 

experiments, as verified in the previous pH assessment sensor. The time required to obtain 

uniform PAD color, avoiding the leaching of the ligand, was about 30 minutes, leaving the 

samples gently shaking in a closed container on a reciprocating shaker. 

The PADs are disposable devices and must be used immediately after their preparation. If 

stored in water for over 1 hour, the chromophore or its complexes may desorb from the 

paper.  

In Figure 19, TazoC-PADs are reported after reaction with the metal ions solutions at 

different concentrations and pHs. Figure 20 shows the corresponding UV-vis spectra of the 

PADs collected as described above. 

 
Figure 19. TazoC-PADs after immersion in Pd(II), Cu(II) and Ni(II) solutions at different concentrations and pHs. 
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Figure 20. Spectra (Absorbance (Abs, a.u.) vs Wavelength (nm)) of TazoC-PADs after immersion in Pd(II), Cu(II) and Ni(II) 

solutions at different concentrations and pHs. The images of the PADs are shown in Figure 37. 

 
It is evident that PAD spectra exhibit more disturbed signals when compared with those in 

aqueous solution, but the shapes of the peaks and the position are similar; this behavior 

confirms that the paper does not interfere with the TazoC in the formation of the 

complexes with metals and this is the main reason for employing Partial Least Square 

regression (PLS) instead of classical univariate analysis for metal quantification. Using the 

entire spectrum instead of the absorbance at the complex maximum is very usefull 

expecially when we deal with a very disturbed spectrum. 
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The first PLS model was built for the system Pd(II)/TazoC-PADs in aqueous solutions at pH 

2 (HCl 0.01M). 

This model was built using a training set composed of three replicates of an 8-point 

calibration with Pd(II) concentrations ranging from 2.6 to 50 µM.  

The best model was considered that built with 5 latent variables that ensure the 98.61 % 

of explained variance in Cross-Validation (% Exp.Var.CV), a global Root Means Square Error 

in CV (RMSECV) 0f 2.05 µM and 1.86 µM of Root Mean Square Error in Prediction (RMSEP), 

using as a guideline the Figure 21. 

 

 
Figure 21.PLS model Pd(II)/TazoC.PADs pH 2: Model performances 

 

An external data set was then used for further validation, obtained with three replicates of 

the measurements performed in solutions at 7.5, 25.2 and 42.5 µM.  

In Figure 22(a), the Experimental vs. Fitted values for the training set (burgundy dots) and 

test set (blue dots) are reported: the data sets are distributed along the straight line Y = X 

without any trend; in Figure 22(b) the residuals plot is shown, and the residuals resulted 

randomly distributed around the 0 value (between -3 and 3). 
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Figure 22. PLS model for Pd(II)/TazoC-PADs at pH=2 (a) Experimental vs Fitted values plot for the training set (burgundy 

dots) and test set (blue dots) and blank samples (yellow dots); (b) residuals for the training set (burgundy dots) and test 

set (blue dots). 

 
In any analytical method, figures of merits regarding LOD and LOQ are fundamental. 

As discussed in the PLS regression strategy, this issue is difficult to resolve.  We decided to 

adopt a commonsense rule that, even if not rigorous, has a practical sense. The spectra of 

10 blank samples (TazoC-PADs contacted with the solutions at pH 2 without Pd(II), see 

yellow dots in Figure 22(a)) are projected into the model, and the concentrations predicted. 

The limit of detection (LOD) and the limit of quantification (LOQ) were computed as 3.3 and 

10 times, respectively, the standard deviation of the predicted blank concentrations as 

reported in eq.3 and eq. 5 in section 1.4.5. Limit of detection (LOD) and limit of 

quantification (LOQ). 

PLS models were also obtained for Pd(II) concentration measurements at pH 4 and 5.5, 

following all the steps described for pH=2, using 8  latent variables for each model, followed 

by an external validation data set. For the sake of simplicity, in the following, we reported 

only the figures of Experimental vs Fitted values and that of residuals, reported in Figure 

23. The data set, the model performances and residues are found in Appendix III – PLS data 

(Training set, Test set compositions, and model performances) of the TazoC-PADs for Pd(II) 

determination (paragraph 2.4); see tables T 6.3- 1 for pH 2; T 6.3- 2 for pH 4; T 6.3- 3 for pH 

5.5 and the figures F 6.3- 1 for pH 4 and F 6.3- 2 for pH 5. 

Also, LOD and LOQ were calculated for the PLS models at pH 4 and 5.5 using the same 

strategy used for data at pH 2. Table 7 summarizes the parameters of the PLS models in 
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Cross-Validation, in prediction according to the validation with the internal data seta, the 

LOD, and the LOQ for each model.  

 

 

 
Figure 23. PLS models for Pd(II)/TazoC-PADs at pH 4 and Pd(II)/TazoC-PADs at pH 5.5 (a,c) Experimental vs Fitted values 

for the training set (burgundy dots), test set (blue dots) and blank samples (yellow dots); (b,d) residuals for the training 

set (burgundy dots) and test set (blue dots). 
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Table 7. Number of latent variables (LVs), % explained variance in cross-validation (%Exp.var.CV), Root Mean Square Error 

in CV (RMSECV), the correlation coefficient of the regression (r2), the limit of detection (LOD) and the limit of 

quantification (LOQ) for the PLS model in figure 39 and 40 

 Pd(II)/TazoC-PADs 

pH 2 

Pd(II)/TazoC-PADs 

pH 4 

Pd(II)/TazoC-PADs 

pH 5.5 

LVs 5 8 8 

%Exp.Var.CV 98.61 98.92 98.02 

RMSECV (µM) 2.05 3.08 2.45 

r2 model 0.994 0.996 0.997 

RMSEP (µM) 1.86 1.92 1.55 

r2 prediction 0.994 0.991 0.995 

LOD (µM) 0.8 0.8 0.7 

LOQ (µM) 2.3 2.4 2.0 

 

Also, the PLS models at pH 4 and 5.5 are satisfactory, performing like those already 

commented for determination at pH=2. 

According to the WHO threshold limit for Pd content in drug chemicals (from 47.0 µM to 

94.0 µM, which means from 5 mg/L to 10 mg/L)87 and the United Nations Food and 

Agriculture Organization (FAO) recommended maximum level for irrigation waters of 47.0 

µM (5mg/L)88, the lowest quantifiable Pd(II) concentration obtainable with the proposed 

PADs meet the requirements of both WHO and FAO for palladium(II) detection in that 

matrixes.  

Focusing on Pd(II) determination, we choose to consider both Cu(II) and Ni(II) as 

interferents. Alternatively, we can also view their determination in a multi-calibration 

strategy, but it was out of our purposes.  

As expected, at pH=4, it is impossible to ignore copper if present; otherwise, it happens as 

described below. If the PLS model for Pd(II)/TazoC-PADs at pH 4 is used to quantify the 

analyte in solutions containing Pd(II)/Cu(II) at different concentrations, the PLS model 

incorrectly predicted the concentration of Pd(II). In Figure 24, the PLS model for 

Pd(II)/TazoC-PADs at pH 4 (burgundy dots) and data predicted by the model for the mixture 

used as a test set (blue dots) are reported. 
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Figure 24.PLS model for Pd(II)/TazoC-PADs at pH 4 Experimental value vs Fitted values plot for the training set (burgundy 

dots) and Pd(II)/Cu(II) mixtures as test set samples (blue dots) 

 

The strategy to overcome this issue is to build PLS models using as training sets the 

measurements performed in the same matrix of the samples, which means that tailored 

PLS models must be developed for solutions containing interferent species and for tap 

water samples. 

In Figure 25 and Table 8, the PLS plots and parameters of the models named 

Pd(II)+Cu(II)/TazoC-PADs pH 4 and Pd(II)+Cu(II)+Ni(II)/TazoC-PADs pH 5.5 are reported. The 

mixtures are prepared so that concentrations of the metal cations are independent and 

different, both for the training and test sets. It is fundamental to vary interferent 

concentrations, even if they are limited to equimolar addition with respect to Pd(II). The 

tables reporting the metal-ion concentrations (T 6.3- 4 for Pd(II)+Cu(II) pH 4; T 6.3- 5 for 

Pd(II)+Cu(II)+Ni(II) pH 5.5) in each sample and the performance graph (F 6.3- 3 for 

Pd(II)+Cu(II) pH 4; F 6.3- 4 for Pd(II)+Cu(II)+Ni(II) pH 5.5)of the sensor are reported in the 

Appendix III – PLS data (Training set, Test set compositions, and model performances) of 

the TazoC-PADs for Pd(II) determination (paragraph 2.4) 
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Figure 25.PLS models for Pd(II)+C u(II)/TazoC-PADs at pH 4 (a) and Psd(II)+Cu(II)+Ni(II)/TazoC-PADs at pH 5.5 (c) 

Experimental vs Fitted values for the training set (burgundy dots) and test set (blue dots); (b,d) residuals for the training 

set (burgundy dots) and test set (blue dots).  

 
 
Table 8. Number of latent variables (LVs), % Explained Variance in Cross-Validation (%Exp. Var. CV) Root Mean Square 

Error in CV (RMSECV), Root Means Square Error in prediction (RMSEP) and the correlation coefficient of the regression 

(r2), for the PLS model in figure 42. 

  Pd(II)+Cu(II)/TazoC-PADs 
pH 4 

Pd(II)+Cu(II)+Ni(II)/TazoC-PADs 
pH 5.5 

Training 
set 

LVs 8 7 
%Exp.Var.CV 93.07 74.2 

RMSECV (µM) 1.92 2.33 
r2 model 0.992 0.995 

Test set 
RMSEP (µM) 1.41 0.86 
r2 prediction 0.993 0.990 
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Both PLS models proved adequate in predicting Pd(II) concentrations even in the presence 

of interfering cations since there was pretty good agreement between experimental and 

fitted values.  

As long as real sample analysis of Pd(II) is concerned, it is well known that for the 

preservation of water samples for metals’ analysis rules89, acidification at pH<2 is 

mandatory to avoid the precipitation of hydroxides; for this reason, the model that 

deserves our attention is that developed at pH= 2, where the possible interferences of 

other metal ions are limited, depending on their concentrations. According to this 

indication, the PLS model was built using tap water as a matrix acidified at pH2 and fortified 

with Pd(II) at different concentrations (model name: Pd(II)/TazoC-PADs TW). Three tap 

water samples were acidified and spiked with Pd(II) concentrations (7.5, 25.2 and 44.6 µM) 

and used as an external data set (3 replicates for each sample). The tables (T 6.3- 6) 

reporting the metal-ion concentrations in each sample and the sensor's performance graph 

(F 6.3- 5)  are reported in Appendix III – PLS data (Training set, Test set compositions, and 

model performances) of the TazoC-PADs for Pd(II) determination (paragraph 2.4). 
 

Table 9. Number of latent variables (LVs), % Explained Variance in Cross-Validation (%Exp. Var. CV) Root Mean Square 

Error in CV (RMSECV), Root Means Square Error in prediction (RMSEP) and the correlation coefficient of the regression 

(r2), for the PLS model Pd(II)/TazoC-PADs TW in Figure 26 

  Pd(II)/TazoC-PADs TW pH 2 

Training set 

LVs 5 
%Exp.Var.CV 98.73 

RMSECV (µM) 1.96 
r2 model 0.995 

Test set 
RMSEP (µM) 2.06 
r2 prediction 0.992 
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Figure 26.PLS model Pd(II)/TazoC-PADs TW pH 2 (a) Experimental value vs Fitted value plot for the training set (light blue 

dots) and test set (yellow dots); (b) residuals plot for the training set (light blue dots) and for the test set (yellow dots).  

 

The results of the prediction of external samples can also be used to evaluate recoveries as 

reported in Table 10.  
Table 10.Recovery Tes. The number in parenthesis is the standard deviation on the last digit (n=3) 

Pd(II)added 

(µM) 

Pd(II) foundICP-OES 

(µM) 

Pd(II) foundTazoC-

PADs (µM) 
RC% E% 

7.5 7.4(3) 8.1(5) 108 +8 

25.2 25.0(4) 26(1) 103 +3 

44.6 45.2(7) 44(2) 98 -2 

 

The recoveries (RC %) for Pd(II) concentrations are between 80% and 110%, an acceptable 

recovery90,91, demonstrating the sustainability of the proposed method for Pd(II) 

determination in drinking waters. The paramount advantage of the method developed 

here is its simplicity and costlessness compared to the instrumental analysis. The solid 

material, which I remember is paper, limited the possibility of decreasing the pH further. 

Lower pH, formally equal to zero (mineral acid equal to 1 M), would improve selectivity 

towards other metal ions when present several orders of magnitude higher compared to 

Pd(II)79.  
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2.4.4 Conclusions 
A cheap, selective, disposable colorimetric Paper-based Analytical Device (PAD) for Pd(II) 

sensing and quantification is proposed. The chromogenic receptor immobilized on the filter 

paper is a non-commercial azo-dye named TazoC ((disodium 2-[(1H-5-tetrazolyl)azo]-1,8-

dihydroxy naphthalene-3,6 disulphonate); it has been selected since it forms strong and 

stable purple-blue colored complexes with Pd(II) in very acidic media (below pH 2). 

The PLS chemometric tool was used to correlate the UV-vis spectra to the concentration of 

Pd(II) in solution; an advantage of using multivariate analysis is that the whole spectrum 

can be used as a signal, taking into account the changes in shape and height of spectrum 

peaks. Different tailored PLS models were developed and validated, highlighting the need 

to perform calibrations in the media of interest to avoid interferences and complex matrix 

problems.  

The lowest quantifiable concentration value of about 2.5µM meets the WHO and FAO 

requirements for palladium(II) detection in drug chemicals and irrigation waters. 
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3 ELECTROCHEMICAL SENSORS 
This section presents the electrochemical sensors developed. The first paragraph describes 

the transduction methods; in the second, the methods used to modify and characterize the 

working electrode surfaces and the techniques applied to characterize the electrochemical 

process at the electrode surface are presented. Finally, the last paragraphs describe the 

potentiometric and voltammetric sensors developed and applied to real samples. 

 

3.1 Electrochemical transduction methods 
Electrochemical sensors are a class of sensors in which the working electrode is the 

transducer92. The different typologies of sensors differ according to the electrochemical 

detection method. The methods used for the electrochemical sensors developed in this 

research are potentiometry and voltammetry.  

 

3.1.1 Potentiometry 
Potentiometric sensors are widespread devices for the determination of charged analytes 

thanks to the non-destructive nature of the technique. The measurements are performed 

by a two-electrode cell: the working and reference electrodes. Potentiometric sensors can 

be classified into three groups: Ion-Selective Electrodes (ISE), Coated Wire Electrodes 

(CWE) and Ion-Selective Field Effect Transistors (ISFET)93. The ISE devices comprise a well-

stable reference electrode immersed in an inner solution of the analyte at a known 

concentration and a membrane working electrode in which a selective membrane for the 

target analyte separates the inner standard solution from the sample one. Redox processes 

do not occur at ISEs. The potential developed at the membrane results from an ion 

exchange process occurring at each interface between the membrane and solution. The 

most known ISE is the glass electrode for pH measurements94. The membrane potential 

measured by an ISE can be modeled by a similar Nernst equation94 (Eq. 1) that correlates 

the potential to the activity of the ion in the sample solution.  

.(0) = 2′ + #.$!$-.
/&0

∙ log	(91)                                                                                                       (7) 

k’ is a constant including the potential of the reference electrode and the asymmetry 

potential of the membrane, R is the gas constant ( 2
3∙456), T is the temperature (K), zj is the 
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ion charge, and ai is the analyte activity approximating the molar concentration for diluted 

solutions. 

The Coated Wire Electrode (CWE) is another typology of potentiometric sensors 

characterized by the direct contact of the polymeric membrane with the surface of the 

working electrode, forming an electrode/polymer interface. This family of potentiometric 

sensors is less stable than the ISEs due to the blocked interface between the conductive 

material of the electrode and the polymer95; moreover, they suffer from a small interfacial 

sensing contact area, the possible formation of aqueous layer between the conductive 

metal substrate and the ion-selective membrane and the residual current passing through 

the ion-selective membrane causes noise and large signal drift. Nevertheless, the solid-

contact screen printed cells have been proposed to increase the potential stability, 

repeatability, and miniaturization possibility96; besides, low-cost, custom and disposable 

sensors can be obtained97.  

The ISFETs (Ion-Selective Field Effect Transistor) is the third typology of potentiometric 

sensors. Figure 27 reports a schematic representation of the components of the ISFET. 

 
Figure 27. Schematic representation of components of ISFET devices.  

 

The ISFET device comprises a mono-crystalline p-silicon wafer containing two silicon 

regions strongly n-doped called Source (S) and Drain (D). On top of the source and drain 

regions, two metallic disks constitute the electrodes S and D. The sensing site is a SiO2 film 

modified with the active area that can be a polymer, a membrane or a self-assembled 

monolayer. The sample solution is in contact with the sensing surface and a reference 
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electrode (R), generally an Ag/AgCl/KCl electrode. A well-defined potential is applied 

between the R and S to generate a charge separation between the electrons and the holes 

in the p-Si wafer, forming an electron channel that connects the two n+ regions; the 

potential applied is called threshold potential (VT). A potential between S and D is applied 

to generate a current flow. When the ionic analyte is in contact with the active sites on the 

surface, its presence generates a new distribution of charges in the p-Si wafer; if the analyte 

is a cation, it attracts the electrons in the electrical channel and the drain current increases, 

vice versa if the analyte is an anion, the electrons are repelled and the drain current 

decreases.  

These devices can be used in two operation modes: at fixed potential and fixed current.  

If the device is used in the potentiostatic mode, the R-S and the S-D potentials are fixed at 

a specific value, and the drain current change is used as the analytical signal.  If the device 

maintains the drain current fixed at a specific value, the analytical signal is the external 

potential that must be applied to maintain the current at that value. The output potential 

is proportional to the logarithm of the analyte's activity in solution; for this reason, Eq. (7) 

can be used to correlate the signal with the analyte concentration in solution98,99. 

 

3.1.2 Voltammetry 
In voltammetry, the classical three-electrode cell consists of a working electrode (WE), a 

reference electrode (RE), and a counter electrode (CE). 

Voltammetry is a widespread electrochemical technique that relies on a basic rule: in the 

three-electrode cell, when a potential scan is applied between the reference and the 

working electrodes in a solution containing electroactive species, the anodic or cathodic 

reactions that occur at the working electrode surface generate a faradic current flowing 

between the working and counter electrodes that can be used as analytical signal. 

If a fixed potential is applied between the reference and the working electrodes, and the 

obtained current is used as the analytical signal, the method is called amperometry. 

The voltammetric techniques differ in how the potential between the WE and the RE is 

applied. In DC (Direct Current) voltammetry, a linear scan of the potential in time is applied. 

If potential pulses are over-imposed on a linear potential scan, the technique is called 

Differential Pulse Voltammetry (DPV) or Square Wave Voltammetry (SWV) if square wave 

pulses are applied. 
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The technique is called Cyclic Voltammetry (CV) if a triangular potential waveform is 

applied, for example, a forwarding scan in the anodic direction (increasing potential) and a 

reverse scan in the cathodic direction (decreasing potential). 

Figure 28 shows the different excitation signals, i.e., potential vs time, for the different 

voltammetric techniques.  

 
Figure 28. Potential imposition methods in voltammetry: a) Linear Voltammetry, b) Differential Pulse Voltammetry (DPV), 

c) Square Wave Voltammetry (SWV) and d) Cyclic Voltammetry (CV). 

 
The choice of electrochemical technique depends on the analyte's electrochemical 

behavior; for example, if the analyte undergoes a reversible electrochemical process, the 

most suitable technique, in terms of sensitivity, is SWV. CV is instead helpful in 

characterizing the analyte’s electrochemical process.  

Different working electrodes can be used for voltammetric analysis, such as glassy carbon, 

platinum, copper and gold; the reference electrodes can be SCE (saturated calomelan 

electrode) or Ag/AgCl/KCl, while the counter electrode is, in general, a platinum wire. In 

the last twenty years, screen-printed cells (SPC) have often been applied in developing 

electrochemical sensors.  They are manufactured by printing different types of ink on 
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plastic or ceramic substrates, for example, graphite or gold ink for the working and counter 

electrode and Ag/AgCl ink for the pseudo reference electrode. SPCs are easy to handle, 

cheap and can be applied for in situ analysis. 

 
 

3.2 Electrochemical Sensors Development 
 
In this project, screen-printed cells (SPCs) were used to develop electrochemical sensors. 

SPCs consist of a plastic, paper or ceramic substrate on which the electrodes are printed. 

The working, counter and reference electrodes can be made of different inks, such as 

graphite, silver, copper, gold and platinum.  

In particular, two different inks were employed to print the working electrodes of the SPCs: 

graphite and gold; in both kinds of SPCs, the pseudo-reference electrode was of Ag/AgCl 

ink, and the counter electrode was printed with graphite ink. 

The SPCs’ working electrodes in graphite were modified with molecularly imprinted 

polymers, while the SPCs’ working electrodes in gold were modified with self-assembled 

monolayers (SAM).  

The following paragraphs report the methods employed to modify the electrode surface, 

the techniques used to characterize the electrode surface, and the approach employed to 

study the electrochemical process of the selected analytes.  

 

3.2.1 Molecularly Imprinted polymers (MIP) 
 
Molecularly imprinted polymers (MIP) are a family of polymers able to mimic the specific 

recognition mechanism of biological systems54. The molecular imprinting process involves 

the polymerization of functional monomers and crosslinkers in the presence of a target 

analyte that acts as a template101. After the polymerization, the subsequent template 

removal leaves specific cavities in the polymer, complementary in size and shape to the 

target molecule. Therefore, the free MIP’s cavities can rebind specifically the analyte or 

closely related molecules when in contact with a sample solution102,103. A scheme of the 

synthesis and the desorption/rebinding process is shown in Figure 29. 
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Figure 29. Molecularly Imprinted Polymer synthesis and desorption/rebinding process. 

 

MIPs are appealing thanks to their recognition properties, stability, availability, and 

versatility; in fact, MIPs can be developed for many molecules104.  

Three approaches to the MIPs’ synthesis can be used: non-covalent, covalent and semi-

covalent.  

Molecularly imprinted polymers are obtained starting from a pre-polymeric solution 

containing the template, monomers, crosslinkers, a suitable solvent and, when necessary, 

a radical initiator.  The most widespread polymerization technique is based on the free 

radical mechanism that can be photo-, thermal-induced or electrochemical.  

The MIPs applied to modify the electrode surface of the sensors developed in the present 

research are based on the non-covalent (weak bounds like Van der Waals and hydrophobic 

forces, hydrogen bonding and ionic interactions) between the template and the recognition 

cavities105. They were obtained using thermal initiation or electro-polymerization.  

A crucial point in obtaining a well-performing MIP is to remove the template molecules 

once the polymerization is completed. The template molecules can be removed using 

appropriate washing solutions (generally ethanol/acetic acid solution 4:1) or 

electrochemically by applying a fixed potential to break the template molecule, causing 

leakage from the active sites.  

 
 
 
 
 



 54 

3.2.2 Self-Assembled Monolayer (SAM) 
 

Self-assembled monolayers (SAMs) are thin films obtained by the spontaneous adsorption 

of amphiphilic adsorbates onto an appropriate substrate, forming ordered aggregates106. 

The assembly is due to the chemical affinity between the adsorbates and the substrates. 

The most common self-assembled monolayers are those of carboxylic acids on aluminum 

oxide or silver, alcohols, amine and isonitriles on platinum, dialkyl disulfides on gold, 

alkanethiols on gold, silver and copper. SAMs have several vantages: they are easy to 

generate, densely packed and precisely oriented; moreover, the surface properties can be 

adjusted using standard organic synthetic methods106. Figure 30 shows a schematic 

representation of a self-assembly of thiol molecules on a gold substrate. 

 
Figure 30. Schematic representation of a self-assembly of thiol molecules on a gold substrate.  

 
SAM grafting is a very used method for the modification of electrode surfaces107. Two 

different sensors were developed in this research based on the gold screen-printed 

electrode surface modification with SAMs, as described in the following paragraphs. 

 
 

3.2.3 Characterization of the electrode surface and after chemical 
modification 

3.2.3.1 Determination of the electrochemically active area of the electrode 

The electrochemically active area of a working electrode can be determined by cyclic 

voltammetry (CV), registering the voltammogram at different scan rates and employing a 

reversible electrochemical probe108. Generally, the most used probes are ferrocene 1 mM, 

5 mM K3Fe(CN)6/0.1 mM KCl or the Ru(NH3)6 (II)/(III) 5 mM. The obtained anodic and 

cathodic peak currents are plotted vs. the square root of the scan rate, and the active area 

was calculated by applying the Randles-Sevick equation109 (eq.8) 

 

:7 = ; ∙ < ∙ 0.4463 ∙ B ∙ C ∙ D&∙0∙89
-∙.                                                                                                                              ( 8 ) 
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Ip peak current anodic or cathodic, Faraday constant (C/mol), n number of electrons, C 

probe concentration in mol/cm3, D diffusion coefficient (cm2/s), v scan rate (V/s), A active 

area (cm2), T temperature (K), R gas constant (J/molK), F faraday constant (C/mol). 

 

3.2.3.2 Determination of the capacitance of the double layer of the working electrode 

The double-layer capacitance (Cdl) can be obtained from the EIS Nyquist plot or by cyclic 

voltammetry.  

From the Nyquist plot and the relative Randles circuit obtained by Electrochemical 

Impedance Spectroscopy (see paragraph 3.2.3.4), the Cdl can be computed. The 

measurements are generally performed using an electrochemical probe solution.  

Using the second approach, the Cdl is determined by CV scanning the potential from +0.5 

to −0.5 V in 0.1 M NaCl solution (in which the lowest faradic current is expected) at different 

scan rates. The difference between the anodic and cathodic current (ia-ic = △i) read at 

+0.02 V was plotted vs. the scan rate; the slope of the straight line is equal to twice the 

double layer capacitance110. 

 

3.2.3.3 Determination of the surface coverage (Γ) and the electron transfer rate (k°) for 
SAM-modified electrode 

The surface coverage (Γ) of a working electrode modified with a Self-Assembled Monolayer 

(SAM) is determined by the integration of the cathodic peak from the desorption curve in 

KOH 0.1 M registered in cyclic voltammetry (CV from 0 to -1.4 V, scan rate 0.1 V/s)111,112, 

by applying equation (9): 

                                                                                                                                    ( 9 ) 

where Q is the quantity of charge (C) required to break the S–Au bounds, n is the number 

of electrons involved in the process (n = 1), F is the Faraday constant (C/mol), and A is the 

electrode area (cm2). 

The electrode coverage with an electro-active metal sorbed on the SAM from the cyclic 

voltammetry scans can be obtained using eq.9 or the following eq.10113.  

 F7 = &'0'8	:Γ
;-.                                                                                                                                     ( 10 ) 

 
Ip is the intensity of the peak of the metal in CV measured in V, n is the number of electrons, 

F is the Faraday constant, v is the scan rate in V/s, A is the area expressed in cm2, G is the 

 = F AQ nG × × ×
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coverage expressed in mol/cm2, R is the gas constant in J/molK and T is the temperature in 

Kelvin113. 
The electron transfer rate (k◦) is evaluated by cycling voltammetry employing an 

electroanalytical probe, for example, 5 mM [Fe(CN)6]3- in 0.5 M KNO3/0.1 M phosphate 

buffer solution at pH 7 (Estart = -0.5 V, Eend = +0.5 V, 20 scan rates from 0.01V/s to 2 V/s), 

applying the following equation (11)114: 

2° = 2.18 K9<&08-. L!.= M%N O− <'&0
-. (∆.)R                                                                                    ( 11 ) 

 

where k◦ is the electron transfer rate, D the diffusion coefficient (cm2/s), α is the charge 

transfer coefficient (α = 0.5), n the electrons involved in the process (n = 1), F is the Faraday 

constant (C/mol), v is the scan rate (V/s), R the gas constant (J/K·mol), T the temperature 

(K) and ΔE is the peak separation (V). 

 

3.2.3.4 Characterization by Electrochemical Impedance Spectroscopy (EIS) 

Electrochemical Impedance Spectroscopy (EIS) is an electrochemical technique mainly used 

to evaluate the electrochemical behavior of the electrode/electrolyte interface but has 

recently been applied for sensing purposes too. When a charged electrode is immersed in 

a solution, ions, solvent molecules, and electrons form a double layer, and the presence of 

these charges on the surface of the electrode perturbates the quiet state of the solution, 

generating two theoretical planes on which molecules are disposed: l’Inner Helmholtz 

Plane (IHP) e l’Outer Helmholtz Plane (OHP) as reported in Figure 31115. 
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Figure 31. Phenomena at the electrode/electrolyte interface116. 

 

On the first imaginary plane (IHP), solvent dipoles and the nude ions without the hydration 

sphere are oriented depending on the surface charge of the electrode, while the ions with 

the hydration sphere are disposed on the second imaginary plane (OHP). Gradually passing 

from the OHP to the bulk, the solution becomes homogeneous and electrically  neutral116. 

The charge distribution influences the potential and the resistance at the 

electrode/electrolyte interface. If an electrical stimulus (that can be a voltage or a current) 

is applied to the working electrode, an electrical response is obtained depending on the 

working electrode's or electrolyte's characteristics. When an electrical stimulus is applied 

to an electrochemical cell, several processes can occur; for example, electrons can flow 

through the electrodes or cross the electrode/electrolyte interface, causing oxidation or 

reduction of species in solution116. If an AC voltage is applied, a current response is 

obtained; thanks to these two sine waves, the impedance and the phase shift are 

calculated. The impedance changes depend on transformations at the electrode surface 

and reactions across the interface. Generally, the applied AC potential frequencies are 

scanned, and the impedance is collected for each frequency. The Nyquist plot is the most 

used method to display how impedance changes with frequencies. The Nyquist plot is 

obtained by plotting the negative imaginary impedance against the real impedance, and 
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depending on the shape of the obtained curve, different phenomena at the electrode 

surface can be determined. For example, for an electrode where polarization is due to a 

combination of kinetic and diffusion processes the classical shape of the Nyquist plot is that 

reported in Figure 32. 

 

 
Figure 32.The theoretical Nyquist plot for an electrode where polarization is due to a combination of kinetic and diffusion 

processes. Ri is the resistance at the interface, Rct is the resistance at the charge transfer, and D is the diffusion coefficient. 

 

The Ri is the resistance at the electrode/electrolyte interface, the Rct is the resistance at 

charge transfer, and D is the diffusion in the bulk. All the phenomena represented in the 

Nyquist plot can be schematized in a Randles equivalent circuit. Electrical circuit elements 

are assigned to each chemical/physical phenomenon that occurs at the 

electrode/electrolyte interface and in solution. For example, the resistance at the 

electrode/electrolyte interface is represented by a resistor (Ri), the resistance at charge 

transfer is represented by a resistor (Rct) in parallel with the capacitor, representing the 

double layer capacitance (Cdl), while the diffusion is represented by the Warburg element 

(typical of electrochemical impedance spectroscopy)117. Figure 33 shows the Randles 

equivalent circuit of the Nyquist plot reported in Figure 32. 
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Figure 33. The Randles equivalent circuit of the Nyquist plot reported in Figure 6 

 

The Rct depends on the characteristics of the working electrode surface, so its variation 

can be helpful in developing sensors, for example, to verify if the electrode surface 

modification has been successful or to quantify the interaction with the analyte and the 

receptor used to the electrode surface modification 118–120.  

 

3.2.4 Characterization of the electrochemical process to the 
electrode surface (for irreversible analytes) 

3.2.4.1 Determination of the number of electrons involved in the electrochemical process 
by controlled potential electrolysis (CPE) 

The number of electrons involved in the electrochemical process of the analyte can be 

evaluated by controlled potential electrolysis (CPE)121,122 by electrolyzing the compounds 

at a potential slightly higher (50 or 100 mV) than the oxidation or reduction peak in a three-

electrode cell under a static nitrogen atmosphere. A Pt gauze is generally used as the 

working electrode, a Pt wire as the counter electrode and Ag/AgCl/3 M NaCl as the 

reference electrode. 

The number of electrons involved in the electrochemical step is evaluated by calculating 

the charge Q necessary to electrolyze the analyte exhaustively, i.e. when the current was 

reduced to 5% of the initial value. 
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3.2.4.2 Cyclic voltammetry experiments 

The CV measurements at different scan rates are performed in a solution at a constant 

analyte concentration (generally 2.5 mM or 5 mM) to obtain information regarding the 

electrochemical redox process. In particular, The relationships between log ip and log ν, the 

variation of the peaks potential (Ep) vs. the logarithm of scan speed (log v), the relationships 

ip·ν−1/2 vs. ν (namely, the “current function”) and log ip vs. log ν are investigated; moreover, 

to evaluate whether the electrochemical process is diffusion-controlled, plots of current 

intensity (ip) vs. square root of the scan speed (ν0.5) or vs. scan speed (ν) are performed. 

 

Determination of the E°’ potential of the analyte 

The formal potential E°’ for a reversible process can be estimated according to the following 

equation 12 proposed in the literature122,123: 

E°? = @()%@(*
#                                                                                                                                   ( 12 )                                                                                                                                                             

where Epa and Epc are, respectively, the anodic and the cathodic peak potentials. 

For irreversible processes, the formal potential can be roughly estimated from the intercept 

of the Ep vs. ν graph, extrapolating the value of Ep on the ordinate axes at the value equal 

to zero of the scan speed124. 

 

Determination of the charge transfer coefficient (a) 

The charge transfer coefficient α can be determined for irreversible and quasi-reversible 

electrochemical processes via the Tafel slope, b: 

 
b = ∂Ep/∂log v = 2.303RT/αnαF                                                                                                   ( 13) 
 

From the Ep vs. log ν plot, the slope b can be obtained. Substituting the values of the 

constants T, R, and F and determining the number of electrons involved in the rate-

determining step (nα) from the CPE experiments or literature data, the following equation 

14 is obtained: 

 
α = 0.059/nαb                                                                                                                                ( 14 ) 
 

As α is evaluable only for irreversible reactions, this procedure can be used for quasi-

reversible processes using the CV data at high scan speed values, i.e., when the process 



 61 

becomes more irreversible, and the slope of the plot Ep vs. log ν is different from zero125. 

 

Determination of the diffusion coefficient (D) 

From the CV scans at different scan rates, the first (anodic) peak potential was used to 

evaluate the diffusion coefficient, according to the following equation 15126 for irreversible 

processes and to Randles-Sevcik equation 16 for reversible processes. 

 :7 = 2.99 ∙ 10=<U(1 − V)C[B]A√,√Z                                                                                  ( 15 ) 

:7 = 2.69 ∙ 10=<+'C[B]A√,√Z	                                                                                                 ( 16 ) 
 

D (cm2/s) is obtained from the slope of the graph ip vs. ν0.5 

ip is the anodic peak intensity (A), n the number of electrons exchanged per molecule, a 

the charge transfer coefficient (V), A the active area (cm2), [C]¥ the concentration of the 

bulk solution (mol/cm3), and v the scan rate (V/s). 

 

Determination of the kinetic electron transfer constant (k°) 

According to the literature127, the value of the kinetic electron transfer constant k° can be 

calculated for irreversible electrochemical processes by using the Matsuda-Ayabe 

(equation 17): 

 .7 = -.
<&0 O0.78 − \<

B,
√9 +

"
# \<

<&08
-. R		                                                                                      ( 17 ) 

 

The value of k° was obtained from the intercept of the linear part of the graph obtained by 

plotting D-&0<-.   vs. 0.5\< <&0E
-.  . 

Ep is the potential of the redox peak, R is the gas constant (J/molK), T is the temperature 

(K), a is the charge transfer coefficient (V), F is the Faraday constant (C/mol), D is the 

diffusion coefficient (cm2/s), n is the number of electrons exchanged per molecule and v is 

the scan rate (V/s).  

 

Determination of the reaction order 

The reaction order is calculated from the voltammetric measurement used for the analyte 

quantification (i.e., square wave voltammetry, SWV or differential pulse voltammetry, DPV) 

by plotting log ip vs. concentration of the analyte. The slope of the linear part of the graph 

corresponds to the reaction order126. 
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3.3 MIP-modified screen-printed potentiometric sensors for 
Atrazine and phenoxy herbicides 

3.3.1 Introduction 
Two potentiometric sensors are developed to determine Atrazine and phenoxy herbicides 

such as 2-methyl-4-chlorophenoxyacetic acid (MCPA). Both are solid-contact screen-

printed cells, i.e., characterized by the direct contact of the polymeric membrane with the 

surface of the working electrode, forming an electrode/polymer interface. Two-electrode 

screen-printed cells (SPCs) with graphite-ink working (WE) and Ag/AgCl-ink pseudo-

reference (RE) electrodes are used. In both cases, the WE has been modified with an acrylic 

Molecularly Imprinted Polymer (MIP) as an ion-selective membrane.  

The selected analytes are two herbicides already employed in agriculture in some 

countries, but they are highly toxic and dangerous. 

Atrazine (2-chloro-4-athylamino-6-isopropylamino-1,3,5-triazine) is a triazine pesticide. 

The term pesticide includes herbicides, insecticides, fungicides and plant growth 

regulators128. Atrazine is a toxic compound that has been banned in some countries since 

it is an endocrine disrupter, can provoke several types of cancers, can interrupt regular 

hormone functions, can cause reproductive tumors, weight loss of embryos and mothers 

and congenital disabilities129,130.  

MCPA (2-methyl-4-chlorophenoxyacetic acid) was the first synthetic herbicide synthesized 

in England around 1941. It is a selective phenoxy herbicide that controls broadleaf weeds 

in arable and cereal crops. MCPA can mimic auxin, encouraging uncontrolled growth and 

subsequent death of certain plants131. MCPA has a soil half-life of 24 days and a water-

octanol partition coefficient of 0.2-1mL/g, but some environmental pH and temperature 

values may facilitate the sorption and the degradation132. A warning behavior of MCPA is 

that it can form stable complexes with toxic metal ions such as lead and cadmium in 

environmental pH ranges133. MCPA has a very low bioconcentration factor (BCF) 1-14134; 

the human symptoms due to MCPA poisoning are fatigue, weakness, anoxia, nausea, 

vomiting, diarrhea, lowering of blood pressure, and body temperature disturbance. 

Progressive hypotension, ataxia, neuromuscular inability, and convulsion135. The human 

lethal oral concentration is around 814 mg/Kg136. 
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Therefore, the monitoring of Atrazine and MCPA in the environment is of paramount 

importance.  

The most common techniques used to quantify herbicides in water bodies and soils are 

high-performance liquid chromatography coupled with mass spectrometry (HPLC-

MS)137,138, ultra-performance liquid chromatography (UPLC)139,140 and gas chromatography 

coupled with mass spectrometry141–143. These techniques are costly; the measurements are 

time-consuming, and they can not be done in situ and need trained personnel. Considering 

all these disadvantages, the development of low-cost, easy-to-use, disposable and quick-

responsive sensors is desirable.  

In this scenario, potentiometric electrochemical sensors based on screen-printed cells 

(SPCs) with the WE modified with acrylic molecularly imprinted polymers that act as ion-

selective membranes are proposed. 

3.3.2 Material and methods    

3.3.2.1 MIP and NIP prepolymeric mixtures preparation and modification of the SPC 

The MIP prepolymeric solutions are prepared by mixing the template, functional monomer 

(methacrylic acid, MAA), and cross-linker (ethylene glycol dimethacrylate, EGDMA) in the 

opportune ratio (as reported in Table 11) and adding the radical initiator (2,2,-

azobisissobutyronitrile, AIBN) just before starting the thermal polymerization. 
 

Table 11. MIPs’ prepolymeric mixtures composition and molar ratio Template: Functional Monomer: Cross-Linker 
 Template 

(mg) 
MAA 

(μL) 
EGDMA 

(μL) 
AIBN 

(mg) 
Atrazine 25 48 95 28 
molar ratio 1 5 4  
MCPA 28 175 175 35 
molar ratio 1 15 7  

 
Each mixture is deaerated with a gentle flow of N2 for 5 minutes and sonicated to dissolve 

the template and AIBN completely. The minimum amount of toluene (0.2 mL) is added to 

facilitate the dissolution of the components. The NIPs (non-imprinted polymers) 

prepolymeric mixtures are prepared following the same procedure as the MIP but without 

adding the template.  
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Each graphite screen printed cell is washed in ethanol and left dry at room temperature 

under a hood. 7 µL of prepolymeric mixture (of MIP or NIP) is drop-coated on the clean 

surface of the working electrode, and the screen printed cell is placed in a vacuum 

desiccator before subsequent thermal polymerization to avoid oxygen adsorption. Then, 

the thermal polymerization is carried out in an oven at 70°C overnight. 

The modified screen-printed cell is subjected to 5 cleaning cycles by immersion of the 

electrodes for 30 min in 10 mL of an ethanol/acetic acid (4:1) mixture to remove the 

template and unreacted monomers. The schematic representation of the procedure for the 

working electrode’s functionalization is reported in Figure 34. The modified SPCs are stored 

at room temperature and hydrated in ultrapure water for 10 minutes before use. 

 

 
Figure 34. Schematic representation of the working electrode’s functionalization with the MIP prepolymeric mixture. 

 

3.3.2.2 Characterization of the working electrode surface 

The working electrode surface of the screen-printed cell is characterized before and after 

the functionalization with the polymeric layers (MIP and NIP). The electrochemically active 

area determined by experiments in cyclic voltammetry (see paragraph 3.2.4.2) and the 

electrochemical impedance spectroscopy (EIS) measurements (see paragraph 3.2.3.4) are 

performed both employing the electrochemical probe 5mM K3Fe(CN)6/0.1M KCl at pH7.2.  

 

3.3.2.3 Potentiometric measurements 

 
Potentiometric measurements are performed by connecting the screen-printed cells to the 

potentiostat/galvanostat EmStat4s-PalmSens BN (Houten-The Netherlands) by immersing 
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the MIP-modified screen-printed cell for atrazine in 15mL of HCl (or other inorganic acids) 

at pH = 1.5 and adding portions of 10 µL atrazine standard solution 0.47 mM in methanol, 

and for MCPA in 15 mL of PBS buffer at pH 5.5 and adding portions of 20 µL of MCPA 

standard solution 25 nM under gentle stirring. 

At each addition of analyte, the potential is recorded, and the average of the values 

sampled in the last 60 s after waiting 3-5 minutes for the steady-state is considered the 

response signal (stability criterium DE/Dt = 0.02 mV/s). 

 
 

3.3.3 Results and discussion 

3.3.3.1 MIP-modified screen-printed sensor for Atrazine 

As described before, the working electrode surface is functionalized by drop-coating the 

prepolymeric mixture of the MIP or NIP, followed by a thermal polymerization at 70°C.  

A physical-chemical characterization is performed to check if the polymerization occurred 

correctly with the formation of the recognition cavities. The modified working electrode 

surface is observed using SEM (Scanning Electron Microscopy), and the images are 

compared to those of the bare electrode. SEM images are reported in Figure 35. 

For the bare electrode (panels a-d), a homogenous layer of grains (panels c and d) or large 

platelets (panel b) can be observed due to the gold spattered on the surface, as required 

for the measurements. For other sensors (panels e-h for MIP-modified electrode and 

panels i-n fo>r NIP-modified electrode), compact particles are superimposed on the fine 

grains layer, forming clusters of different sizes and shapes. In particular, the MIP-based 

electrode has both filamentous and compact particles of 10/20 microns above the 

material's surface. Compared to NIP, MIP has an irregular, rough morphological structure 

due to the presence of binding cavities. Conversely, the NIP has a regular structure, more 

similar to that of the bare electrode, due to the absence of imprinted sites. 
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Figure 35. SEM images of the sensors: bare (a-d), MIP-modified electrode (e-h), and NIP-modified electrode (i-n). 

 



 67 

The working electrode surface is also characterized by determining the electrochemically 

active area before and after the functionalization; the Randles-Sevick equation (eq.8) is 

applied for the computation, obtaining the results reported in Table 12. 

 
Table 12.Active area values calculated using the Randles-Sevick equation 8. The standard deviations on the mean are 

reported in brackets. 

 Active area (mm2) 

Bare SPC 50(1) 

MIP-modified SPC 4.0(8) 

NIP-modified SPC 2.3(3) 

 

As can be noticed, the values of the active area of the modified SPC are very different 

compared to that of the bare SPC. This result can be interpreted with the non-conductive 

nature of the polymer deposited on the electrode surface, which reduces the electronic 

transfer capability of the graphite. Moreover, a slightly higher area is obtained for the MIP-

functionalized electrode, justifiable by the higher porosity than the NIP.  

Electrochemical Impedance Spectroscopy (EIS) is used to characterize the electrochemical 

response of the modified surface. The data obtained from the EIS plot can be correlated to 

the physical and chemical properties of the electrode surface, modeling the 

electrochemical responses by an equivalent electrical circuit (Randles circuit). Figure 36 

shows the Nyquist plot (imaginary impedance Z’’ vs. real impedance Z’) obtained for the 

unmodified electrode (bare electrode), the MIP-modified electrode before and after the 

sorption of atrazine at two different concentration levels and the NIP-modified electrode. 
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Figure 36.Nyquist plot of (a) bare electrode, (b) MIP-modified electrode, (c) MIP-modified electrode after equilibration 

with 10-6M atrazine, (d) MIP-modified electrode after equilibration with 7.7×10-6M atrazine and (e) NIP modified 

electrode. Measurements performed in 5mM K3Fe(CN)6/0.1M KCl solution; frequency range 100kHz÷10mHz; signal 

amplitude = 50mV. 

 

All phenomena at the MIP and NIP-modified and bare electrode surfaces may be 

schematized, respectively, with the Randles circuits shown in Figure 37a) and Figure 37b). 

R1 corresponds to the solution resistance, R2 is the electron transfer resistance (diameter 

of the semi-circle in the Nyquist plot), C1 is the double-layer capacitance, and Zw is the 

Warburg element, i.e., the element added to justify the mass transfer diffusion-limited 

process. 

 
Figure 37. Randles equivalent circuit of (a) MIP and NIP-modified electrode, (b) bare electrode 

 

As can be observed in Figure 36, the linear part of the Nyquist plot characteristic for a 

process limited by mass diffusion is evident only for the bare electrode. Moreover, it has 

the lowest charge transfer resistance since graphite is a good conductor. The resistance 
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increases if a polymeric film on the working electrode surface prevents the electrons’ 

transfer. Since the MIP possesses the recognition cavities, a lower resistance is observed 

for the cleaned MIP-modified electrode compared to those that have the cavities partially 

occupied by the analyte. This behavior can be explained by considering the atrazine 

molecules as shutters of the polymer’s cavities that obstruct the charge transfer; in fact, 

the resistance increases by increasing the atrazine concentration. The NIP-modified 

electrode has the highest charge transfer resistance due to the absence of cavities that 

facilitate the charge transfer across the polymeric structure. 

After the working electrode’s characterization, the potentiometric measurements are 

undertaken. 

As mentioned before, the molecularly imprinted polymer can act as an ion-selective 

membrane on the surface of the working electrode if the analyte is in its ionic form. In order 

to have the most atrazine protonated (pKa = 1.7)144, measurements are performed at pH 

1.5 in HCl as the ionic medium. Figure 38 reports the protonation equilibrium of Atrazine.  

 
Figure 38. Protonation equilibrium of Atrazine. 

 

For example, Figure 39 shows the potentiometric response of the MIP-based screen-

printed cell at different Atrazine concentrations. 
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Figure 39. Potentiometric response of a MIP-based screen-printed cell at different Atrazine concentrations in HCl solution 

at pH =1.5. Steady state reached in 5 min. Cell potential registered in the last 60 seconds. 

 
At each atrazine addition, the potential linearly increased with the logarithm of the 

concentration of analyte according to the well-known pseudo-Nernst’s law (eq.7). 

Calibration measurements are performed using five different MIP-screen printed cells 

modified with the same strategy since the devices are disposable. The calibration curve 

reported in Figure 40 shows the average of the potential values (mV) vs. the logarithm of 

the Atrazine concentration; error bars represent the standard deviation of the 

measurements performed with five different sensors.  

 
Figure 40. Nernst's plot E vs log[ATZ]. V = 15 mL, HCl pH 1.5. Each point is the mean of 5 measurements obtained with 

different screen-printed cells. Error bars correspond to the standard deviation of the measurements. 
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The limit of detection (LOD) is calculated from the linearized Nernst’s plot (10E/slope vs. 

[ATZ]) as reported in eq.4 in section 1.4.5. Limit of detection (LOD) and limit of 

quantification (LOQ). The value of the LOD obtained from the five electrodes calibration is 

0.40(2) µM.  

Although the low detection limit is obtained, the standardization curve’s linearity range is 

relatively small, only one decade of concentration change, but enough to determine 

atrazine residuals in polluted environmental samples. 

Analogous calibration curves are performed with the NIP-modified electrode; the slope 

near zero indicates the poor interaction with atrazine due to the absence of the specific 

recognition cavities in the polymer. 

The graph of Figure 41 compares the calibration performed using the MIP-modified and 

the NIP-modified screen-printed cell. 

 
Figure 41. Nernst’s plot E vs log[ATZ]. V = 15 mL of HCl pH = 1.5. Grey dots are the measurements performed using the 

MIP-modified screen-printed cell, and red dots are those performed using the NIP-modified screen-printed cell. The 

dotted straight line represents the theoretical Nernstian slope for monovalent cations. 

 

Since Atrazine is a monoprotonated cation at pH 1.5, the theoretical slope of the straight 

line obtained by plotting E (mV) vs log[ATZ] should be 59.2 mV/dec; it is evident that a sub-

Nernstian slope is obtained for the MIP-based electrode. As suggested by different authors, 

the sub-Nernstian slope is justified for neutral ion-selective membranes, considering the 
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effect of ions of opposite charge to the primary one, which can interact with the active site 

of the polymer. The same interpretation was proposed for both classical ISEs and 

potentiometric screen-printed electrodes145–147. 

So, by assuming the MIP film over the screen-printed electrode as a neutral membrane 

(since the carboxylic groups of the methacrylic acid, i.e., the functional monomer of the 

MIP is undissociated at pH 1.5), we questioned how anions could reach the cavities of the 

MIP. Presumably, an ion pair is formed between the protonated atrazine and the anion 

(conjugate base) of the acid used as the ionic medium. 

Therefore, measurements are performed at pH 1.5 using different inorganic acids (HCl, 

HNO3, HClO4, H2SO4, H3PO4) to confirm this theory. 

An interesting linear correlation is obtained by plotting the standardization curve’s slope 

as a function of the anion volume (calculated using Gaussian 6.0 software)148, as reported 

in Figure 42. In particular, as the size of the anion increases, the slope decreases. The larger 

size of the ion pair probably results in greater difficulty for the analyte to reach the 

recognition cavities of the polymer; indeed, the best sensitivity (the highest slope) is 

obtained using the smallest anion Cl-. 

 
Figure 42. The slope of the Nernst’s plot (mV/dec) vs anion volume (cm3/mol) of the inorganic acids used as the ionic 

medium. Anion volume computed using Gaussian software148. 
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Selectivity tests are performed using three different pesticides as interferent species: 

Simazine, Ametryn and Bentazone. The first two molecules are triazine herbicides, while 

the third is diazinic; the three molecular structures are reported in Figure 43. 

 
Figure 43. Molecular structures of the interferent species 

 
Table 13 summarizes the slopes of the standardization curves (E (mV) vs. log[interferent]) 

obtained by analyzing solutions of each of the three pesticides taken individually; the 

results are compared to the slope of the calibration for Atrazine. As can be observed, the 

Bentazone does not cause interference; in fact, the variation of the potential in the 

presence of different amounts of Bentazone is irrelevant. This behavior is predictable since 

its molecular structure differs significantly from that of Atrazine. Ametryn and Simazine are 

more similar to Atrazine structure; indeed, the signal varies proportionally with the 

increasing concentration of interferent. The slopes are lower than that obtained for 

Atrazine but not enough to define their presence as negligible. This result is also relatively 

unsurprising, and for samples containing triazine pesticides, the proposed method cannot 

distinguish between them, and only a total concentration can be obtained.  
 

Table 13. Slope standardization curves (in HCl at pH1.5) for the pesticides analyzed as interferents: Simazine, Ametryn 

and Bentazone. For comparison, the slope of the standardization curve for Atrazine is reported. Numbers in the brackets 

are the standard deviations on the last digit. 

Pesticide Slope (mV/dec) 

Simazine 13(1) 

Ametryn 30(2) 

Bentazone 5(3) 

Atrazine 40(6) 

 

Measurements are also performed on tap water samples fortified with atrazine to 

demonstrate the applicability of the proposed sensor; for these tests, the standard 

additions method was applied. Tap water from the lab sink (Pavia, Italy) is acidified at pH 

1.5, and different concentrations of Atrazine standard solution are added. The results are 



 74 

summarized in Table 14. Recovery experiments. Portions of a tap water sample acidified at 

pH 1.5 with HCl and fortified with Atrazine. It can be observed that the % recovery values 

are between 91.7 % and 105.1 %,  and the highest error is 4.3 %; these results confirm the 

good performances of the sensor and the potential for its application to atrazine detection 

in contaminated environmental samples. 
Table 14. Recovery experiments. Portions of a tap water sample acidified at pH 1.5 with HCl and fortified with Atrazine 

Spike (µM) Found (µM, _̂± CI1) %RDS % Recovery 

0.462 0.47 ± 0.05 4.3 101.7 

0.524 0.55 ± 0.05 3.6 105.1 

0.642 0.59 ± 0.06 4.2 91.7 

0.954 0.96 ± 0.07 2.9 100.8 
1CI = 95% confidence interval. For 3 replicated, t = 4.3. 

 

3.3.3.2 MIP-modified screen printed sensor for phenoxy herbicides18 

Analogously to the previously developed MIP-modified screen-printed sensors for atrazine, 

the working electrode surface was characterized before and after modification with the 

MIP or NIP film. The differences in the SEM analysis of the bare and modified electrodes 

confirmed, even in this case, the successful imprinting of the polymer. Moreover, 

electrochemical impedance spectra similar to those obtained for the atrazine sensor 

confirmed the same behavior of the electrode surface before and after modification. 

Once characterized, the modified screen-printed cell is used to perform potentiometric 

measurements. The molecularly imprinted polymer film on the working electrode surface 

acts as an anion-selective membrane since MCPA has a pKa=3.07 and, working in 

phosphate buffer pH 5.5, the predominant species at this pH is the negatively charged 

deprotonated form149. Figure 44a shows the structure of the deprotonated MCPA, while 

Figure 44b reports the graph of the species distribution in the function of pH. 
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Figure 44. a) Negatively charged deprotonated form of MCPA; b) Graph of species distribution in function of the pH for 

MCPA. 

 

Calibrations are obtained using three different MIP or NIP-modified screen-printed cells 

(SPCs). Each SPC is used twice, so the standard deviation is calculated on the slopes 

obtained from the resulting six different calibrations. 

Figure 45 shows an example of the calibration curves obtained for MIP and NIP 

functionalized electrodes. 

 
Figure 45. The calibration curve of MCPA of a screen-printed cell was modified with MIP (purple dots), NIP (orange dots), 

and the theoretical Nernstian slope (dotted green line). Experimental conditions: 15 mL phosphate buffer pH 5.5, 

additions of 0.02 mL MCPA std 25µM.  
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The average value of the slopes of the six calibration plots for the MIP-modified electrode 

is -59(1) mV/dec, very similar to the theoretical -59.2 mV/dec, expected from the pseudo-

Nernst equation (eq.7). Conversely, the slope of the NIP-modified electrodes is much lower 

(of about -9(11) mV/dec; this means that these electrodes are poorly sensitive to the 

presence of MCPA in solution due to the unspecific interactions between the analyte and 

the polymeric film. The limits of detection and quantification are calculated as reported in 

eq 4  and eq 6 (see section 1.4.5) by considering the linearized Nernst equation 10E/slope vs. 

MCPA (M). The LOD and LOQ obtained are 13 nM and 40 nM, respectively, demonstrating 

the high sensitivity of the sensor, although it is a potentiometric method.  

Subsequent tests are performed investigating the three herbicides structurally analogs to 

MCPA, i.e., Mecoprop, Dichloroprop and 2,4-D Pestanal (see their structure in Figure 46) 

and one of a different structure, Bentazone, to evaluate the selectivity degree of the 

sensor. 

 
Figure 46. Molecular structure of interferents 

 

Table 15 summarizes the slope value of the calibration curves (E/mV vs. log[pesticide]) 

obtained by analyzing the interferents without MCPA. 

 
Table 15. Slope value of the calibration curves for each pesticide (average values obtained for three calibration curves for 

each pesticide). Numbers in brackets are the standard deviation on the last digit. 

Pesticide Slope (mV/dec) 

Mecoprop -54 (3) 

Dichloroprop -57 (5) 

2,4-D Pestanal -55 (3) 

Bentazone -1.3 (2) 

MCPA -59 (1) 
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As expected, the phenoxy-based molecules, similar to MCPA, show a slope very close to 

the theoretical one of -59.2 mV/dec, while the MIP-functionalized screen-printed cell is not 

sensitive to the presence of Bentazone; indeed, in this case, the slope is about -1mV/dec.  

To corroborate these results, measurements are performed in solutions containing a 

constant concentration of interferent (0.5 µM) and increasing quantities of MCPA. As 

expected, the sensor is sensitive to the presence of both MCPA and another phenoxy 

herbicide when they are in solution together, while it is sensitive to only MCPA in solutions 

containing both MCPA and Bentazone. Table 16 shows the slope value of these calibrations. 

For the phenoxy herbicides, in the x-axis the logarithm of the sum of both herbicide 

concentrations is reported. 

 
Table 16. Slope value of the calibration curves performed in solutions containing 0.5µM of MCPA and increasing quantities 

of each interferent. For the phenoxy herbicides, in the x-axis of the calibration plots, the logarithm of the sum of both the 

herbicides’ concentrations is reported. Numbers in parentheses are the standard deviations on the last digit. 

Pesticide Slope (mV/dec) 

MCPA + Mecoprop -57(2) 

MCPA + Dichloroprop -55(3) 

MCPA + 2,4-D Pestanal -57(4) 

MCPA + Bentazone -60(2) 

MCPA -59(1) 

 

As can be deduced from the values reported in Table 16, the MIP-based sensor is selective 

to phenoxy herbicides with similar structure and chemical behavior to the template  MCPA; 

consequently, the sensor could be applied to evaluate the total degree of contamination 

from similar substances. 

To verify the applicability of the sensor to environmental samples, some recovery tests are 

performed using tap water samples fortified with MCPA; for the quantification, the 

standard addition technique is applied. The tap water samples’ pH is adjusted to 5.5 and 

spiked with different concentrations of MCPA. Table 17 summarizes the results. 
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Table 17. Recovery experiments. Tap water samples adjusted to pH 5.5 with phosphate buffer solution and spiked with 

different concentrations of MCPA 

Spike Concentration (µM) Found (µM, x ± CI1) % RDS % Recovery 

0.169 0.16 ± 0.04 2.5 98.5 

0.101 0.10 ± 0.05 4.6 103.6 

0.531 0.53 ± 0.02 0.5 100.5 

0.918 0.93 ± 0.03 1.1 101.1 
1CI = 95% confidence interval. For 3 replicates, t = 4.30. 

 

The standard additions plots have slope values ranging from -57(3) mV/dec and -62(2) 

mV/dec, so the sample’s matrix does not affect the sensor’s response. As can be observed 

from Table 17, the % recovery ranged from 98.5% to 103.6%, and the precision was good 

since the highest value is around % RDS 4.6; therefore, these results are promising for 

practical applications of the developed potentiometric sensor for environmental samples 

contaminated by phenoxy herbicides. 

3.3.4 Conclusions 
New potentiometric MIP-based screen-printed sensors for Atrazine and phenoxy 

herbicides detection are proposed. The polymeric film covering the working electrode 

surface acts as an ion-selective membrane. Before and after the modification, the working 

electrode surface is characterized by determining the active area and evaluating the 

electrochemical impedance spectra. In both cases, the non-conductive nature of the acrylic 

polymer film coverage is confirmed. 

For the atrazine sensor, the active ion is positively charged protonated form, so the 

determination is carried out at pH 1.5 in HCl. The obtained detection limit is 0.4 µM and 

the calibration curves' slope value is 40 mV/dec, i.e., a sub-Nernstian response. The 

experiments aimed at interpreting this behavior corroborate the hypothesis of a possible 

interaction of the anion of the acid used as the ionic medium with the polymer cavities. 

Indeed, it has been demonstrated that as the size of the anion increases, the slope 

decreases, deviating more and more from the Nernstian value. 

The sensor selectivity is closely related to the size and geometry of the polymer cavities; 

indeed, the sensor can not discriminate herbicides with molecular structures similar to 

Atrazine.  
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For the phenoxy herbicides potentiometric sensor, the molecule used as the template is 

MCPA and, in this case, the active ion is the deprotonated form, so the measurements are 

performed in phosphate buffer at pH 5.5.  

From the calibration curves, a slope value of -59 mV/dec, similar to the theoretical one, is 

obtained.  

The interferent tests highlight similar sensing properties for the sensor toward phenoxy 

pesticides structurally similar to MCPA, i.e., Mecoprop, Dichloroprop and 2,4-D Pestanal; 

thereby, the sensor could be applied for the determination of the total degree of 

contamination coming from these herbicides. Conversely, the sensor does not respond to 

molecules with molecular structures different from MCPA, such as Bentazone. 

The pretty good analytical figures of merits obtained are promising for the applications of 

both sensors to contaminated environmental samples.  
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3.4 SAM-modified screen-printed gold electrode for Fe(III) 
detection 

3.4.1 Introduction 
Deferoxamine (DFO) is immobilized as a functionalized self-assembled monolayer of a thiol 

(SAM) on the gold surface of the working electrode of a screen-printed cell to develop a 

voltammetric sensor for iron(III). 

Deferoxamine (DFO) is a natural siderophore tri-hydroxamate produced by the bacteria 

Streptomyces pilosus150; it is a bidentate ligand that strongly binds hard cations like Fe(III) 

through its oxygen atoms. It has a low molecular weight, and it is water soluble. 

Deferoxamine is the active principle of DesferalÒ, a drug employed in the treatment of 

acute or chronic iron overload due to blood transfusion. Figure 47a shows the molecular 

structure of Deferoxamine, and Figure 47b shows the molecular model of the complex 

Fe(III): DFO. 

 
Figure 47. a) Deferoxamine molecular structure; b) molecular model of the complex Fe(III):DFO.  

 
Deferoxamine properties have also encouraged the development of functional materials 

used as sorbents or sensors mainly for Fe(III), for example, mesoporous silica MCM-

41151,152, filter paper153  or synthetic polymers and hybrid materials154,155. 

In the present study, deferoxamine is linked to a self-assembled monolayer (SAM) of a thiol 

(3-mercaptopropionic acid) on the gold surface of the working electrode of a screen-

printed cell to develop a voltammetric sensor for iron(III).  
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3.4.2 Material and methods 

3.4.2.1 Functionalization of the working gold electrode 

The procedure for preparing a DFO-SAM on the gold electrode is adapted from that 

previously reported for an SPR deferoxamine-based sensor156. 7 µL of 20 mM MPA aqueous 

solution is drop-coated and soaked overnight to form the thiol SAM on the cleaned gold 

electrode surface. Then, the Au-MPA SAM is activated by drop-coating 7 µL of 0.1 M 

phosphate buffer solution (PBS) at pH 5.5, containing 2 mM EDC and 5 mM NHS for 1.5 h. 

The activated SAM layer was rinsed with PBA and used for functionalization by drop-coating 

7 µL of 2 mM DFO aqueous solution and left to react for 2 h at room temperature. The 

functionalized electrode was rinsed carefully with ultrapure water to eliminate physically 

adsorbed species and dried in an N2 atmosphere. When not immediately used, the 

functionalized electrode is stored in a 2 mM DFO solution.  

3.4.2.2 Characterization of the working electrode surface 

 
The working gold electrode surface of the screen-printed cell is characterized before and 

after the functionalization with the SAM layer. The electrochemically active area is 

determined by experiments in cyclic voltammetry employing the electrochemical probe 

5mM K4Fe(CN)6/0.1M KCl at pH 7.2 (see paragraph 3.2.4.2) and the double layer 

capacitance is evaluated from CV experiments in 1 M acetic buffer at pH 4 (start potential 

+0.4 V, end potential +1 V, scan rate from 0.025 a 0.5 V/s) according to the procedure 

reported in paragraph 3.2.4.2.  

3.4.2.3 Fe(III) determination by Differential Pulse Voltammetry (DPV) 

Fe(III) is accumulated onto the functionalized gold electrode by immersion of the screen-

printed cell in 15 mL of 0.01 M HNO3 solution at different Fe(III) content for 2 min, at the 

open circuit, under gentle stirring. Then, the DPV measurements are performed in 0.1 M 

acetate buffer at pH 3.5, containing 0.1 M NaClO4 as a supporting electrolyte. 

Electrochemical conditions are: Starting potential +0.9 V, end potential -0.1 V, scan rate 

1000 mV/s, pulse amplitude 50 mV, pulse time 0.04 s. Figure 48 shows a schematic 

representation of the Fe(III) determination procedure. 
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Figure 48. Schematic representation of Fe(III) determination procedure 

 

3.4.3 Results and discussion 
When working with a screen-printed cell, the main issue is to functionalize the single 

working electrode, avoiding contamination of the pseudo-reference and auxiliary 

electrodes; consequently, it is impossible to soak the whole cell in the reagents’ solutions. 

The best option is to drop-coat the surface of the working electrode with the solutions 

containing the modifiers. 

The second issue is to decide the soaking time. To form the thiol monolayer, 7µL of MPA 

solutions is left to dry at room temperature overnight. An experimental design is performed 

to optimize the soaking time needed for the second and third steps; in particular, a 22 full 

factorial design is applied. Table 18 reports the level definitions for the parameters under 

investigation. 
Table 18. Full factorial design 22: level definitions for the parameters under investigation. 

Parameter Minimum level (-1) Maximum level (+1) 

Time second step (t2 min) 90 180 

Time third step (t3 min) 60 120 

 

As response, the current intensity of the peak obtained in DPV analysis is evaluated. The 

data obtained are processed by the open-source program CAT32. Figure 49 shows the graph 

representing the significance of the model’s coefficients.  
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Figure 49. Experimental design to optimize the reaction times of the two functionalization steps of the working gold 

electrode: coefficients plot. The greatest values and little black stars (regardless of the sign) may suggest a significant 

influence of the respective parameter or interaction. 

 
From the coefficient plot in Figure 49 it can be observed that the most significant 

coefficients are b1, related to t2 (the reaction time of the second step), and b12, related to 

t2·t3. The following equation describes the model: R = b0 + b1t2 + b2t3 + b12t2t3. The 

interaction between the coefficients can also be evaluated from the isoresponse surface, 

which appears distorted, as shown in Figure 50.  

 
Figure 50. Experimental design to optimize the reaction time of the second and third steps for the gold electrode 

modification. The best sensor response was obtained for t2 -1 ( 90 min) and t3 +1 (120 min). 

 
The best sensor response is obtained by modifying the screen-printed cell for 1.5 h in the 

second and 2 h in the third steps. 
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The working electrode is characterized before and after functionalization by determining 

the active area and the double-layer capacitance.  

For the cleaned gold bare electrode, the computed area is equal to 0.12 (7) cm2, which is 

not significantly different from the value provided by the manufacturer of 0.126 cm2. The 

area is also determined after the functionalization with deferoxamine; in this case, a lower 

value is obtained equal to 0.11(7) cm2. This experimental evidence can be justified 

considering that the deferoxamine monolayer above the working electrode reduces the 

electronic transfer capacity of gold. 

The computed double-layer capacitance for the bare electrode is 2.7(1) µF while for the 

functionalized electrode is ten times higher about 28.81(4) µF. The capacitance of the 

double layer increases from the bare electrode to the functionalized one; this behavior is 

due to the presence of the DFO on the surface of the electrode, which can accumulate 

electrical charges on the electrode surface. 

The DPV measurements are carried out by accumulating the Fe(III) without applying a 

deposition potential since only the metal cation is complexed by the ligand fixed on the 

working electrode surface. The acid pH of the solution is necessary to avoid the formation 

of Fe(III) hydrolysis products and to obtain less stable Fe(III)/DFO complexes, which can be 

reduced at less negative potentials. In the second step, the electrochemical reduction of 

the Fe(III) preconcentrated on the electrode surface is obtained by DPV in acetate buffer 

0.1 M at pH 3.5, scanning the potential from +0.9 V to -0.1 V vs Ag/AgCl pseudo-reference 

electrode. A cathodic current peak appeared at about +0.63 V due to Fe(III) reduction to 

Fe(II).  Figure 51 reports an example of DPV obtained for a calibration curve varying the 

Fe(III) concentration from 0 to 12 nM. 
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Figure 51. DPV plot obtained on the gold working electrode functionalized with DFO after immersion in Fe(III) standard 

solutions at pH 1 (from 0 to 12 nM); DPV measurements were performed in 0.1M acetate buffer at pH 3.5 containing 

0.1M NaClO4 as supporting electrolyte. Electrochemical conditions were: starting potential +0.9V, ending potential -0.1V, 

scan rate 100 mV/s, pulse amplitude 50 mV, pulse time 0.04s.  

 
Calibration curves are realized using different screen-printed cells, all functionalized with 

the same procedure, since the removal of the thiol SAM would require electrochemical 

desorption in strong alkali or acid media. Figure 52 shows the calibration curve obtained by 

plotting the average of the peak currents values (absolute values, µA) against Fe(III) 

concentration (nM); error bars correspond to the standard deviation of the measurements 

performed with five electrodes. The equation of the straight line obtained from the five 

calibrations (dotted line in Figure 52) is reported below: 

|ip| = 0.421(8)·[Fe(III)] – 0.47(6)    R2 = 0.997  

(numbers in parenthesis are the standard deviations reported as uncertainty on the last 

digit). 
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Figure 52.Calibration curve for Fe(III) determination by DPV. Each point is the average measurement value obtained with 

five screen-printed cells. Error bars correspond to the standard deviation of the measurements performed with five 

electrodes. 

 
As can be observed in the graph, the linearity range is relatively small, covering only one 

order of magnitude, but enough to determine Fe(III) at a very low concentration. The 

detection limit is computed as reported in eq. 4 (see paragraph 1.4.5), obtaining a value of 

0.47(6) nM (26(3) ng/L). Tests in the presence of interferents are then performed to verify 

the sensor's selectivity. Deferoxamine can form very strong complexes with metal ions 

usually present in real samples, for example, Al(III), Zn(II) and Cu(II); for this reason, 

measurements have been performed in the presence of these cations. Firstly, 

measurements are carried out on a sample containing only Fe(III) 0.2 µg/L (3.6 nM), and 

then after the addition of Al(III) 2 µg/L (74.1 nM), Zn(II) 2 µg/L (30.6 nM) and Cu(II) 2 µg/L 

(31.5 nM); the voltammogram is registered after each addition. As shown in Figure 53, the 

peak's position and intensity do not change. Definitely, the Fe(III) determination is not 

affected by the presence of a 10-fold increase in these cations.   
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Figure 53. Differential Pulse voltammetry (DPV) of the gold screen-printed electrode modified with DFO SAM in solution 

containing only Fe(III) 3.6nM at pH1 (black line); Fe(III) 3.6 nM and Al(III) 74.1 nM at pH 1 (orange line); Fe(III) 3.6nM, 

Al(III) 74.1 nM and Zn(II) 30.6 nM; Fe(III) 3.6 nM, Al(III) 74.1 nM, Zn(II) 30.6 nM and Cu(II) 31.5 nM at pH 1 (pink line); DPV 

measurements were performed in 0.1M acetate buffer at pH 3.5 containing 0.1M NaClO4 as supporting electrolyte. 

Electrochemical conditions were: starting potential +0.9V, ending potential -0.1V, scan rate 100 mV/s, pulse amplitude 

50 mV, pulse time 0.04s. 

 
A simulated tap water sample without Fe(III) is analyzed to prove the sensor's selectivity 

further. A mix of metals is used as a matrix and submitted to the whole procedure to 

construct the calibration curve with increasing concentration of Fe(III) (2 min of 

accumulation in HNO3 solution at pH 1, and DPV measurements in 0.1 M acetate buffer at 

pH 3.5 containing 0.1 M NaClO4 as supporting electrolyte). The composition of the matrix 

solution is reported in Table 19; the sample is then diluted 10-fold before being used in the 

calibration measurements. 

 
Table 19. Cations’ content for the simulated tap water sample without Fe(III) 

Cation Na(I) K(I) Ca(II) Ng(II) Zn(II) Al(III) 

mg/L 12 1.3 42 8.5 0.035 0.025 

 

Figure 54 reports the DPV measurements and the calibration curve performed in the 

simulated tap water sample. As can be observed, the slope of the straight line interpolating 

the experimental point is equal to 0.405(8) µA/nM), which is very close to the value 

obtained for the calibration curve with a solution of only Fe(III). This effect is due to the 
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highest affinity of DFO for Fe(III) compared to the other cations investigated at the pH of 

the medium used for both accumulation and analysis. 

 

 
Figure 54. The DPV plot obtained on the gold working electrode modified with DFO after immersion in a simulated tap 

water sample diluted 10-fold with nitric acid solution at pH 1. Addition of Fe(III) from 0 to 7 nM. The calibration curve is 

reported as inset.  

 

Further confirmation about the selectivity of the sensor under the condition of sorption 

and analysis of the metal cation is given by the distribution graphs for the cations/DFO 

complexes that highlights the predominance of the specie FeHL+ at pH 3.5, while all other 

divalent cation at the same pH are present as free metal-ion specie, and only the complex 

AlHL+ is present at the 10%. At pH 1 of the accumulation step, only Fe(III) can be complexed 

by DFO. Fe(II) does not give interference since it can not be complexed by deferoxamine. 

Figure 55 shows the distribution diagrams for Fe(III)/DFO, Al(III)/DFO, Cu(II)/DFO, 

Zn(II)/DFO, Ca(II)/DFO, Mg(II)/DFO, Fe(II)/DFO at 25°C and I=0.1M. protonation and 

complexation constants were obtained from157. 
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Figure 55. Distribution diagrams for the systems Fe(III)/DFO, Al(III)/DFO, Cu(II/DFO; Zn(II)/DFO, Ca(II)/DFO, 
Mg(II)/DFO, Fe(II)/DFO, at 25 °C and I = 0.1 M. Protonation and complexation constants obtained from ref. 157 
 
Finally, a tap water sample obtained from the laboratory sink is tested. The sample is 

diluted 100 times with ultrapure water before voltammetric measurements. The 

determination is performed in triplicate using three different modified gold screen printed 

cells and applying the standard addition method since it permits to prevent the errores 

caused by the eddy currents that change from electrode to electrode. The concentration 

of Fe(III) in the original sample, expressed as the mean of the values obtained with the 
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three electrodes, is 18(6) μg/L (0.3(1) μm), not significantly different from the value 

obtained by ICP-OES (17(5) µg/L, 0.30(9) µM). 

3.4.4 Conclusions 
The working gold electrode of screen-printed cells modified with a SAM of 

mercaptopropionic acid SAM functionalized with DFO is developed as a voltammetric 

sensor of Fe(III). The detection limit of the developed method is about 0.5 nM. The 

selectivity tests demonstrated that many inorganic cations in tap water do not interfere 

since DFO strongly interacts with Fe(III). The Fe(III) concentration measured in real tap 

water sample does not differ significantly from that measured in ICP-OES, demonstrating 

that the sensor developed could detect Fe(III) in environmental and biological samples at 

low metal-ion content.  
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3.5 Cysteamine-copper SAM-modified screen-printed gold 
electrode for glyphosate determination  

3.5.1 Introduction 
N-(phosphonomethyl)glycine, also known as Glyphosate, is a herbicide discovered in 1950 

which became the most widely used worldwide. It is a systemic weed killer and crop 

desiccant that inhibits the plant enzyme 5-enolpyruvylshikimate-3-phosphate synthase158–

160. In recent years, the use of this herbicide has been debated due to its long-term 

environmental impact. Glyphosate Is absorbed by the leaves; in this way, it gradually 

penetrates the entire food chain161. The EFSA (European Food Safety Authority) and the US 

EPA (Environmental Protection Agency) have set the maximum residue limits as 20 mg/L 

(EPA) in soybean, 0.1ng/mL (EFSA) and 700ng/mL (EPA) in drinking water162. 

Glyphosate is a tetra-protonated compound characterized by four pKa: 0.8, 2.23, 5.46 and 

10.14; in natural waters, it is present in zwitterionic form163. Figure 56 shows the molecular 

structure of glyphosate. 

 
Figure 56. Glyphosate molecular structure 

 
Glyphosate determination is generally performed by High-Performance Liquid 

Chromatography (HPLC) or Gas Chromatography (GC) coupled with mass spectrometry, 

UV-vis or fluorescence detectors. These typologies of techniques are very sensitive but 

expensive; the columns need derivatization, measurements can not be performed in real-

time, and they need expert operators164–166.  

In this scenario, we proposed a gold screen-printed cell modified with a cysteamine-

copper(II) self-assembled monolayer (SAM) for the voltammetric determination of 

Glyphosate. Since Glyphosate is non-electroactive, the electrochemical method must be 

indirect. The present method relies on the interaction of glyphosate with copper(II) ions 

complexed by a cysteamine SAM covering the working gold electrode surface of a screen-

printed cell, which results in the decrease of the reduction signal of copper(II). Data 

treatment is performed using chemometric tools that are relatively uncommon for 
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processing electroanalytical data since the voltammograms strongly depend on the 

experimental parameters and suffer from poorer reproducibility and matrix effect.  

 

3.5.2 Material and methods 

3.5.2.1 Working electrode cleaning 

Screen-printed cells (SPC) must be cleaned before use to remove any impurities and traces 

of oxides from the gold working electrode surface. For this purpose, SPC is submitted to 

electrochemical cleaning by cyclic voltammetry in sulfuric acid 0.1 M from - 1 V to +1 V, at 

0.1 V/s, until reaching the stability of the voltammograms (overlap of the curves, which is 

typically observed after 20 cycles), rinsed with ethanol and dried under N2. 

3.5.2.2 Cysteamine-copper  SAM formation on the gold working electrode 

Cysteamine-Copper SAM is obtained in two steps. Firstly, 5 µL of cysteamine solution (5 

mM in 99.9 % ethanol) are dropped on the cleaned gold working electrode surface 

(ensuring that the solution did not come into contact with the other two electrodes) and 

let stand for 12 h in a closed vessel to let the cysteamine molecules lining orderly up onto 

gold surface forming a self-assembled monolayer (SAM). The SAM-modified screen-printed 

cell is rinsed 3 times with ethanol (0.1 mL) and ultrapure water, then dried under N2. 3 µL 

of 1 g/L copper(II) solution are deposited on the thiol SAM, let stand for 2 h, rinsed again 3 

times with ethanol (0.1 mL), ultrapure water, and dried under N2. The modified electrodes 

can be stored in a closed container for weeks without losing performance. Figure 57 

schematizes the whole functionalization procedure. 

 
Figure 57. Schematic representation for the working electrode's functionalization with Cysteamine-copper SAM. 
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3.5.2.3 Characterization of the working electrode surface 

Before and after the surface modification, the working gold electrode of the screen-printed 

cell is characterized by determining the active area according to the procedures described 

in paragraph 3.2.3.1, using ferrocene 1mM in acetonitrile containing 0.1 M 

tetrabutylammonium perchlorate as the electrochemical probe. Moreover, the surface 

coverage (G, mol/cm2) before and after the formation of the cysteamine-SAM and the 

subsequent addition of Cu(II) and the electron transfer rate (k°) are evaluated as reported 

in paragraph 3.2.3.3. 

Electrochemical Impedance Spectroscopy (EIS) measurements are even performed to 

further characterize the surface of the working electrode before and after the 

functionalization. 

3.5.2.4 Glyphosate determination by cysteamine-copper SAM-modified screen-printed cell 

The determination of Glyphosate with the working gold electrode of the screen-printed cell 

modified with a cysteamine-copper(II) SAM is carried out using the cyclic voltammetry in 

phosphate buffer 0.05 M, pH 8, as supporting electrolyte, scanning the potential from -1 V 

to +1.5 V with a scan rate of 0.1 V/s. Before starting the measurements, the modified 

screen-printed cell is submitted to 20 CV scans in the supporting electrolyte medium until 

signal stability. Subsequently, after each Glyphosate addition (from 5µM to 110µM), the 

solution is stirred for 3 min before recording the cyclic voltammograms. An electrode can 

be used for one calibration only since these kind of electrochemical sensors are disposable.  

3.5.2.5 Chemometric data treatment 

The chemometric method of Partial Least Square regression (PLS) is applied to extract 

quantitative information from the voltammograms. In particular, this tool is employed to 

develop models to relate the electroanalytical signals (the entire cyclic voltammogram) to 

the Glyphosate concentration. PLS is a technique that combines features from Principal 

Component Analysis (PCA) and Multiple Regression. PLS is commonly applied to the 

simultaneous analysis of two datasets, such as, in this case, cyclic voltammograms and 

concentration. 

The methodology for building a PLS model starts by selecting a suitable data set, called the 

“training set,” obtained by planning the preparation of glyphosate standard solutions at 

different concentrations to cover the entire experimental domain homogeneously. 
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The training set comprises the data of three different 11-point calibrations performed with 

as many modified electrodes (33 rows and 501 columns, i.e., 11 concentrations per three 

electrodes and the current values per 501 potentials). The PLS model is first tested by a 

cross-validated procedure on the training set and subsequently on an external data set (test 

set). A series of independent glyphosate solutions are prepared for this purpose; the 

dimensionality of the test set matrix is 7 rows (7 concentrations) and 501 columns (current 

values per 501 potentials). 

A similar training set is prepared to develop the PLS model for matrix-matched solutions 

(tap water). Then, two tap water samples are fortified with different glyphosate 

concentrations (35 µM and 73 µM) and used as the external dataset. The recovery 

percentage is computed from the predicted concentration values. All the data are analyzed 

using the open-source software CAT32. 

 

3.5.3 Results and discussion 

3.5.3.1 Electrochemical characterization of the working electrode surface 

Before and after the surface modification, the working gold electrode of the screen-printed 

cell is characterized by determining the active area; in particular, the determination is 

performed for the bare gold electrode (Au bare), for that modified with cysteamine SAM 

(Au_Cys) and after addition of Cu(II) (Au_Cys_Cu) by applying the Randles-Sevick equation 

(eq.8). The obtained results are reported in Table 20. 

 
Table 20.The active area values computed by the Randles-Sevick equation (eq.8). Electrochemical probe: 1mM ferrocene 

in acetonitrile containing 0.1M tetrabutylammonium perchlorate. The standard deviation on the last digit is reported in 

brackets. 

 Active area (mm2) 

Au bare 5.0(4) 

Au_Cys 3.8(4) 

Au_Cys_Cu 6.0(6) 

 
As can be observed from the values, the active area slightly decreases, passing from the 

bare to the Au_Cys electrode. This behavior is already being observed in other studies113, 

and it may be due to the blocking effects of the cysteamine on the surface of the electrode. 

The active area in the presence of cysteamine-copper SAM is slightly higher than the bare 
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electrode; this effect may be attributed to the contribution of copper to the electron 

transfer acting as an electron bridge from the surface to the probe in solution.  

The surface of the gold working electrode is also characterized by defining the coverage G 

(mol/cm2) and the electron transfer rate k° (cm/s) values; the obtained values are reported 

in Table 21. 
 

Table 21. Values of the surface coverage and electron transfer rate for the bare and modified electrodes 

Electrode G (mol/cm2) k° (cm/s) 

Au bare  3.9(6)×10-3 

Au_Cys 1.9×10-9 4.8(8) ×10-3 

Au_Cys_Cu 2×10-9 1.2(6) ×10-4 

 
The surface coverage value for cysteamine and copper ions suggests a 1:1 stoichiometry of 

the complex, indicating the formation of a monolayer for both cysteamine and Cu(II). The 

electron transfer rate values (k°) for the bare and the cysteamine SAM-modified electrodes 

are not significantly different; otherwise, the value for the electrode covered with the thiol-

copper monostrate is lower due to the less efficient tunneling effect determined by the 

cysteamine/copper complex, as also demonstrated by the following electrochemical 

impedance spectroscopy (EIS) measurements. EIS measurements are performed in 

electrochemical probe 5 mM K3Fe(CN)6/0.1 M KCl on the gold bare electrode, modified with 

cysteamine SAM (Au_Cys), with Cysteamine-Cu(II) SAM (Au_Cys_Cu) and with Cysteamine-

copper SAM after equilibration in 110 μM Glyphosate solution. Figure 58 shows the Nyquist 

plot and the Randles equivalent circuit for the electrodes cited above. The values of the 

Randles equivalent circuit elements for each electrode used for the data fitting are 

reported in Table 22. 
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Figure 58. a) Nyquist plot of a)bare electrode, b) cysteamine-modified gold working electrode, c) cysteamine-copper 

modified gold working electrode, d) cysteamine-copper modified gold working electrode after equilibration in Glyphosate 

110 µM solution. B) Randles equivalent circuit of the Nyquist plot. Measurements performed in 5 mM KeFe(CN)6/0.1  M 

KCl solution; frequency range 100 kHz ÷10 mHz; signal amplitude = 50 mV. 

 
 

Table 22. Values of the Randles equivalent circuit elements for each electrode reported in Figure 67. 

 R (kΩ) RCT (kΩ) C (µF) W (kσ) 

Au bare 0.19 1.35 0.51 0.9 

Au_Cys 0.27 3.00 0.33 0.35 

Au_Cys_Cu 0.14 7.65 3.05 0.91 

Au_Cys_Cu_Glyphosate 0.23 17.20 1.62 0.15 

R=electrolyte resistance; RCT=charge transfer resistance; C=double-layer capacitance; W=Warburg impedance 

 

As can be observed in the Nyquist plot, the electrochemical behavior of each electrode is 

different from the others; for example, for the bare electrode, the Warburg diffusion 

predominates on the charge transfer resistance; indeed, the semicircle almost disappears 

due to the fast electrode reaction of the redox couple Fe(CN)6
3−/Fe(CN)6

4−. The charge 

transfer resistance toward the selected electrochemical probe for the other three modified 

electrodes is higher than in the bare electrode, as evidenced by the larger semicircle. The 

modification of the electrode surface by resistive monolayer changes the alternate current 

(ac) response167. The charge transfer resistance gradually increases, proceeding from the 
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Au_Cys electrode to the Au_Cys_Cu electrode; in this last case, the slight increase in the 

RCT value can be justified by considering two effects: the electrostatic attraction due to the 

positively charged surface and negatively charged probe Fe(CN)6
4−/3− and the blocking 

effect determined by the cysteamine/copper complex, and the less efficient tunneling 

effect determined by the cysteamine/copper(II) complex, being the second one dominant. 

The addition of glyphosate to the solution and operating with the Cu-Cysteamine SAM 

provokes a considerable increase in the charge transfer resistance since no electrostatic 

interaction between the probe and electrode surface occurs due to the complexation of 

copper with the herbicide, remaining only the less efficient tunneling effect toward the 

electron transfer.  

Figure 59 shows the cyclic voltammograms recorded in phosphate buffer 0.05M pH = 8 at 

each modification step.  

 

 
Figure 59. Cyclic voltammograms in phosphate buffer 0.05M, pH = 8 at each step of the modification. CV registered from 

-1V to +1-5V, scan rate 0.1V/s. 

 
The cathodic peak attributable to the reduction of Cu(II) to Cu(0) appears at - 0.3 V; the 

peak at about +1 V and those in the reduction direction at about +0.45 V can be assigned 

to the gold redox processes. By operating in a different media, such as 0.1 M KNO3 instead 
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of phosphate buffer, the CV profile became more complicated as the reduction of copper 

proceeds in two-wave steps, from Cu(II) to Cu(I) and from Cu(I) to Cu(0), for this reason, 

the measurements were performed in PBS buffer.  

 

3.5.3.2 Voltammetric determination of glyphosate using SAM-modified screen-printed cell 

Glyphosate, as stated before, is non-electroactive; for this reason, its electrochemical 

detection is challenging. The here-developed method describes an indirect strategy for 

glyphosate determination. The free amine of the cysteamine SAM, covering the gold 

surface of the working electrode, forms a complex with the copper(II) cations. When 

glyphosate is added to the supporting electrolyte solution, the reduction current of Cu(II) 

decreases since the interaction with glyphosate. 

Indeed, glyphosate has three functional groups in its structure, i.e., carboxyl, amine, and 

phosphonic groups, that can strongly coordinate transition metal ions, such as 

copper(II)168–171. As an example, Figure 60 shows the cyclic voltammograms of one 

calibration. 

 
Figure 60. Cyclic voltammograms of the calibration for Glyphosate determination by the cysteamine-copper SAM-

modified-screen printed cell. CV registered from -1 V to +1.5 V, scan rate 0.1 V/s in 10 mL of phosphate buffer 0.05 M 

pH=8 at different Glyphosate content. Before each measurement, the solutions are gently stirred for 3 minutes. In the 

insert are reported the cyclic voltammograms of the blank and the solution after the addition of 110 µM Glyphosate. 
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As shown in Figure 60, the Cu2+ cathodic peak decreases while the concentration of analyte 

increases, as expected, due to the competition between Glyphosate and cysteamine for 

copper(II) complexation. It can also be observed that besides the Cu(II) cathodic peak 

decreases, there is a shift and a shape change of the voltammogram; the univariate data 

treatment using the information given by the voltammograms is impossible. For this 

reason, a multivariate approach was chosen.   

A data set was built using the voltammograms of three different 11-point calibrations 

performed with as many modified electrodes. The model was validated by predicting the 

test dataset and comparing the experimental values with the calculated ones.  

The  Partial Least Square regression analysis revealed that 6 latent variables represented 

the best compromise between the descriptive and predictive capability of the model; the 

figures of merit are reported in Table 23. 

 
Table 23. The number of latent variables (LVs), % explained variance in cross-validation (%Exp.Var.CV), Root Mean Square 

Error in CV (RMSECV) and Root Mean Square Error in Prediction (RMSEP), and the correlation coefficient of the regression 

line (r2) for the PLS model-glyphosate standard aqueous solutions.  

PLS model 
(glyphosate standard aqueous solutions) 

Training set 

LVs 6 
%Exp.Var.CV 88.96 
RMSECV (μM) 12.3 
r2 model 0.967 

Test set 
RMSEP (μM) 8.0 
r2 prediction 0.992 

 
 

Figure 61 compares experimental and predicted values for the training set (blue points) and 

test set (red points); predicted and experimental concentrations are not significantly 

different at 95 % of confidence. Table 24 summarizes the relative error % between the 

experimental Glyphosate concentration of the solutions used as the test set and the 

predicted values. All the concentrations are predicted with an error % lower than 10%.  
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Figure 61. Experimental values vs. Fitted values plot for the training set (blue dots) and test set (red dots) samples of PLS 

model-Glyphosate standard aqueous solutions. Scales reference in µM concentrations. 

 

Regarding the detection limit (LOD), there is currently no defined procedure for 

multivariate calibration. Defining an estimator for the LOD is more complex than extending 

the traditional univariate procedure; for this reason, only the lowest quantifiable 

concentration (LOQ) of glyphosate by the proposed method is reported, i.e., 5 µM. Since 

the glyphosate content in water should be below 4 μM according to the US standards, and 

the limit set by the European Union is below 0.6 nM, a pre-concentration step, for example, 

by a solid phase extraction (SPE) is needed before the application of the electrochemical 

sensors to uncontaminated waters. 
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Table 24. Validation of the PLS model: predicted values and prediction errors. 

 
 
 
 
 
 
 
 
 
 

 
The reliability of the proposed sensor was verified by analyzing tap water samples spiked 

with glyphosate. As well known, drinking waters contain cations such as Ca2+, Mg2+, K+ and 

Na+ that can interfere with Glyphosate detection since they can form complexes with 

it169,171,172. As the first trial, the cyclic voltammograms of the fortified tap water samples 

spiked with different concentrations of Glyphosate are projected in the PLS model 

previously developed. As expected, the predicted concentrations are definitively wrong, 

being highly overestimated (see Figure 62). Indeed, like for all analytical methods subject 

to interferences or when complex real matrices have to be analyzed, calibration with 

external standard solutions is unsuccessful for the analyte quantification. The standard 

additions method or matrix-matched calibrations are the usual strategies to overcome 

interferences and complex matrix problems. The second approach is adopted here. 

Therefore, a new PLS model is developed using matrix-matched solutions (tap water), 

adopting the same criteria assumed in the previous one. Two tap water samples are 

fortified with Glyphosate concentrations of 35µM and 73µM and used as an external 

dataset (3 replicates for each sample). In Figure 62b, the comparison between the 

experimental value vs. predicted value plot for the training set (blue dots) and test set 

(yellow dots) is shown, and the model’s figures of merit are summarized in Table 25.  

 

Nominal concentration (µM) Predicted value (µM) E% 

28.9 29.5 1.9 
41.5 38.2 7.9 

54.1 53.5 1.2 
66.7 62.8 5.9 
79.2 70.8 10 
91.9 83.7 8.8 
104 99.3 4.9 
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Figure 62. (a) Experimental vs. Fitted plot for the training set (blue dots) and test set (glyphosate-spiked tap water 

samples, yellow dots) of the PLS model-glyphosate standard aqueous solutions. (b) Experimental values vs fitted value 

plot for the training set (blue dots) and test set (yellow dots) samples of the PLS model-glyphosate tap water. Scales 

reference µM concentrations. 

 
Table 25. Number of latent variables (LVs), % explained variance in cross-validation (%Exp.Var.CV), Root Mean Square 

Error in CV (RMSECV) and Root Mean Square Error in Prediction (RMSEP), and the correlation coefficient of the regression 

line (r2) for the PLS model-glyphosate tap water. 

PLS model 
(glyphosate tap water) 

Training set 

LVs 6 
%Exp.Var.CV 91.2 
RMSECV (μM) 10.9 
r2 model 0.997 

Test set 
RMSEP (μM) 3.1 
r2 prediction 0.991 

 

The recovery percentage is computed from the predicted concentration values and 

reported in Table 26. 
 
Table 26.Recovery test. The number in parenthesis is the standard deviation. 

Added (µM) FoundLC-MS (µM) FoundSPC (µM) Rc% E% 

35 35.7(8) 34(2) 97 -3.4 
73 73.8(9) 76(1) 104  4.8 

 
The obtained recovery values are between 80% and 110%, i.e., the acceptable recovery 

range90,91 for each concentration, demonstrating that the proposed method is adequate 

for the quantification of Glyphosate in natural waters even in the presence of interferents, 

such as the cations macro constituents always present in natural water.  
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3.5.4 Conclusions 
A gold screen-printed electrode modified with a cysteamine-copper(II) SAM is developed 

for Glyphosate detection in water samples. Since Glyphosate is a non-electroactive 

molecule, an indirect method is developed.  

The gold-ink working electrode of the screen-printed cell is modified with a cysteamine-

copper SAM, and the measurements are performed by Cyclic Voltammetry from -1 V to 

+1.5 V, 0.1 V/s in PBS 0.05 M at pH=8. When increasing concentrations of Glyphosate are 

added to the background electrolyte solution, the reduction peak of Cu(II) decreases due 

to the complexation reaction between copper(II) and glyphosate. Moreover, this 

complexation reaction provokes shifts and changes in the shape of the peak in the cyclic 

voltammograms, so the quantitative analysis with univariate calibrations is inapplicable, 

and it is necessary to resort to multivariate calibration methods. A PLS model is built to 

quantify Glyphosate in aqueous standard solutions with a LOQ of 5 µM. A tailored PLS 

model is built to quantify Glyphosate in tap water; this model can predict the concentration 

of real samples, obtaining recoveries between 80 % and 110 % even in the presence of 

interferent species.  
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3.6 MIP-based screen-printed electrode for Irbesartan 
sensing 

3.6.1 Introduction 
 
Irbesartan is a “sartan-family” drug often used by patients who suffer from hypertension, 

type 2 diabetes mellitus and nephropathy173,174. The EU has classified many drugs, including 

sartans, as emerging pollutants since the long-term effects on the environment and human 

health are not well known175–177. Losartan and Irbesartan are among the most prescribed 

antihypertensive medicines, especially for the older population. They are effective at low 

concentrations and are left unscathed by wastewater treatment plants178. For this reason, 

their monitoring and removal are of utmost importance. Figure 63 reports the molecular 

structure of Irbesartan. 

 
Figure 63. Molecular structure of Irbesartan 

 
The most used techniques for Irbesartan determination in real samples are HPLC and UPLC 

coupled with the UV detector or MS/MS spectrometry179,180. These techniques are time-

consuming, expensive, often require a large amount of solvents, and unsuitable for in situ 

analysis.  

This study describes a voltammetric sensor based on a working graphite electrode of a 

screen-printed cell modified with a molecularly imprinted polymer. The MIP’s prepolymeric 

composition and the experimental parameters for the Square-Wave Voltammetry (SWV) 

analysis have been optimized using the Design of Experiments (DoE). 

The reliability of the proposed method is proved by the analyses of tap water samples 

fortified with the drug. 
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3.6.2 Material and methods 

3.6.2.1 Prepolymeric mixture and modification of the working electrode surface 

The MIP prepolymeric solution is prepared according to the optimized procedure by mixing 

Irbesartan (IRB), MMA (methyl methacrylate), and EGDMA (ethylene glycol dimetharylate) 

with a molar ratio of 1:4:10 and adding the minimum amount of methanol to facilitate the 

dissolution of the components. The mixture is deaerated with a gentle flow of N2 for 5 

minutes, then AIBN is added, and the mixture is sonicated until a limpid solution is 

obtained. The NIP prepolymeric mixture is prepared following the same procedure but 

without including the template (IRB).  

Each screen-printed cell (SPC) is washed with methanol and left to dry at room temperature 

under a hood. 3 µL MIP or NIP mixture is drop-coated on the surface of the working 

electrode, and then the polymerization is carried out in an oven at 60°C overnight. 

The SPC is then subjected to 7 cleaning cycles by immersion for 1 h in 10 mL of a mixture 

of glacial acetic acid/methanol (1/4 molar ratio) to remove the template molecules and 

unreacted monomers. The functionalized SPCs are stored at room temperature and left 

hydrated for 10 min before use. 

3.6.2.2 Characterization of the working electrode 

The working electrode surface is characterized before and after modification by 

determining the active area according to the methodology described in paragraph 3.2.3.1 

and by measurements in electrochemical impedance spectroscopy (EIS). 

3.6.2.3 Irbesartan determination by square wave voltammetry (SWV) 

Irbesartan concentration is measured by Square Wave Voltammetry (SWV) in 15 mL of 0.1 

M acetate buffer solutions at pH 5.5, under gently stirring and applying the experimental 

conditions, optimized through a full factorial design of experiments (DoE). The optimized 

parameters are reported in Table 27. 
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Table 27. Experimental conditions, optimized through a Design of Experiments (DoE) approach, for Irbesartan analysis by 

SWV, using the MIP- or NIP- modified electrode. 

Parameters Bare electrode MIP-/NIP-modified electrode 

Estart (V) +1.0 +1.0 

Eend (V) -1.5 -1.5 

Frequency (Hz) 50 1.0 

Impulse amplitude (V) 0.1 0.05 

Equilibration time (s) 120 300 

 
 

3.6.3 Results and discussion 

3.6.3.1 Optimization of the prepolymeric mixture composition 

The prepolymeric mixture composition is optimized for obtaining the most sensitive and 

selective polymer. A full factorial design 23 was applied. The parameters under 

investigation are the quantities of MAA, EGDMA and methanol. The current peak (ip, (A) 

obtained by SWV analysis is considered as the response. For data processing, the open-

source software CAT32 is used. Table 28 summarizes the level definitions for the parameters 

undergoing optimization, while in Figure 64, the graph showing the significance of the 

model’s coefficients is reported. 

 
Table 28. Optimization of the prepolymeric mixture by a full factorial design 23: level definitions for the parameters 

considered, keeping constant the Irbesartan content (0.05mmol) 

 Parameter Minimum level (-1) Maximum level (+1) 

MAA1 (mmol) 01 0.2 

EGDMA2 (mmol) 0.5 1.0 

CH3OH3 (mL) 0.4 0.8 
1MAA = methacrylic acid (functional monomer); 2EGDMA = ethylene glycol dimethacrylate (cross-linker); 
3CH3OH = methanol (solvent). 
 



 107 

 
 
Figure 64. Experimental design to optimize the prepolymeric mixture: coefficients plot. The greatest values and little black 

stars (regardless of the sign) suggest a significant influence of the respective parameter or interaction and significance 

(*p£’0.05,***p£0.001). 

 
The model equation can be written as follows: 

 

Table 29 reports the coefficient values and their significance. 

 
Table 29. Coefficients and significance (*p£’0.05,***p£0.001) calculated for the optimization of the prepolymeric mixture 

by full factorial design 23. 

Coefficient Value Significance 

b0 0.3462  

b1 0.00337  

b2 -0.0896 *** 

b3 -0.0396  

b12 -0.0487 * 

b13 0.0296  

b23 -0.0171  
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The coefficient plot highlights that the significant parameters/interactions are the mmol of 

EGDMA and the interaction between mmol MAA and EGDMA, while the solvent volume is 

irrelevant. From the parameters obtained in the DoE, the best amount of EGDMA is 0.5 

mmol, while that of MAA is 0.2 mmol. 

For the model validation, six replicates of the center point [0 0 0] are set up, and the 

average value, standard deviation and confidence interval (CI) at a 95% confidence level 

are reported in Table 30. Since the predicted value fits into the CI the model is validated. 
 

Table 30.Optimization of the prepolymeric mixture by a full factorial design 23: model validation by six replicates at the 

center point [0 0 0], 0.15 MAA, 0.75 mmol EGDMA and 0.6 mL CH3OH. CI = confidence interval 95% confidence level. 

 Ip (µA) 

Average 0.33 

Standard deviation 0.02 

Upper bound CI 0.35 

Lower bound CI 0.31 

Predicted response b0 0.3462 

 

Therefore, the optimal prepolymeric mixture had the following composition IRB: MAA: 

EGDMA = 0.05 mmol: 0.2mmol: 0.5mmol = 1: 4: 10. As previously stated, the volume of 

methanol is irrelevant, and the maximum value of 0.8 mL is selected to be sure to solubilize 

all the mixture components well.  

3.6.3.2 Characterization of the working electrode surface before and after the 
modification 

The active area is computed using the Randles-Sevick equation (eq.8) for the bare, MIP-, 

and NIP-modified electrodes. Each obtained value was compared to the theoretical one. 

The values are reported in Table 31. 

 
Table 31. The active area values calculated by the Randles-Sevick equation (eq.8). Measure performed in electrochemical 

probe 5 mM K3Fe(CN)6/0.1 M KCl pH 7.2. The number in parenthesis is the standard deviation on the last digit. 

 Active area (mm2) 

Bare electrode 12.3(3) 

MIP-modified electrode 9.59(2) 

NIP-modified electrode 8.80(3) 

Theoretical 12.6 
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The values reported suggest that the active area decreases when the electrode is coated 

with a non-conductive polymer. As expected, the active area of the MIP-modified electrode 

is higher than that of the NIP-modified electrode; this is due to the presence of the 

recognition cavities in the MIP, which are, on the contrary, absent in the NIP. 

The surface of the working electrode is further characterized by Electrochemical 

Impedance Spectroscopy (EIS) using, for the measurements, 5 mM K3Fe(CN)6/0.1 M KCl as 

the electrochemical probe/electrolyte solution. The NIP-modified electrode, the MIP-

modified electrode after the template removal and the same electrode after equilibration 

with the analyte solution are analysed. Figure 65 shows the Nyquist plot for each electrode; 

the corresponding Randles' equivalent circuit is reported as insert. 

 
 
Figure 65.Nyquist plot of the NIP-modified electrode (blue dots) MIP-modified electrode after template removal (green 

dots) and after equilibration with IRB solution (orange dots). Measurements performed in the following electrochemical 

probe solution: 5 mM K3Fe(CN)6/0.1 M KCl, pH 7.2. 

 



 110 

As can be observed from the Nyquist plot, the charge transfer resistance increases from 

the electrode covered with the MIP after the template removal to the MIP after 

equilibration with the IRB solution. This behavior may be due to the presence of the analyte 

in the recognition cavities that prevents the electric charges from reaching the working 

electrode surface. This behavior is amplified using the NIP-modified electrode, which has a 

lower porosity than the MIP. 

3.6.3.3 Irbesartan Determination by Square-Wave Voltammetry (SWV): Optimization of 
the Procedure, Calibration and Real Sample Analysis 

Once the screen-printed cell (SPC) is modified with the MIP, and before its use for the 

voltammetric measurements, it is washed several times with the mixture of 

methanol/glacial acetic acid ≥ 99% = 1/4 to remove the template molecule. Calibration 

measurements are performed on the bare electrode and the MIP-and NIP-modified ones. 

The experiments are carried out in 30 mL of 0.1 M acetate buffer at pH 5.5 using SWV. The 

voltammogram is recorded after an equilibration time of 120 and 300 s, respectively, for 

the bare electrode and the MIP-/NIP- modified ones. For the MIP-modified electrode, the 

equilibration time corresponds to the incubation period necessary for the Irbesartan 

molecule to reach the cavities of the polymeric film. A full factorial 23 Design of Experiments 

(DoE) was carried out to define the best experimental conditions, and the current peak (ip, 

µA) is evaluated as the response. The levels of the variables, the coefficient plots and their 

significance and the model equation are reported in Appendix IV – Optimization data (levels 

of variables, coefficient plots and their significance and the model equation) for SWV 

experimental conditions for bare and MIP-modified electrodes for Irbesartan detection 

(paragraph 3.6). The best experimental conditions are summarized in Table 27. 

Figure 66a shows the calibration curve obtained for the MIP- and NIP-modified electrodes 

by plotting the cathodic current peak (ip, µA) vs. Irbesartan concentration (µM) and Figure 

66b the SW voltammograms of the calibration curve for one MIP-modified electrode.  

The straight-line equations of the calibrations reported in Figure 66a are: 

ip [µA] = 1.30(3) + 6.9(2)·[IRB, µM] R2 = 0.994 for the MIP-modified electrode; 

ip [µA] = 1.23(3) − 0.4(3)·[IRB, µM] R2 = 0.168 for the NIP-modified electrode 

(The number in round brackets is the standard deviation of the last digit). 

As expected from the experiments performed with the NIP-modified electrode, only a 

residual current independent of the Irbesartan concentration is registered. 
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The detection (LOD) and quantification (LOQ) limits are computed by equations 4 and 6, as 

reported in paragraph 1.4.5. LOD and LOQ are the average values obtained from three 

different calibration curves. 

 
Figure 66. a) Calibration curves of the MIP-modified electrode (blue dots) and NIP-modified electrode (orange dots). b) 

SW voltammograms of the calibration curve for one MIP-modified electrode 

 



 112 

Some calibrations are also performed with the bare electrode, applying the optimized 

experimental conditions summarized in Table 27. 

The linearity range obtained employing the bare electrode is slightly wider than that 

achieved with the MIP-modified electrode, but higher LOD and LOQ values are obtained. 

Table 32 summarizes the LOD, LOQ, LOL (limit of linearity) values and the sensitivity (slope 

of the calibration curve) for each electrode. 

 
Table 32. Limits of Detection (LOD), Limits of Quantification (LOQ) and Limits of Linearity (LOL) for bare and MIP-modified 

screen-printed electrodes. LOD and LOQ are the average values obtained from three different calibration curves. The 

number in parenthesis is the standard deviation.. 

 bare MIP 

Sensitivity (µA/µM) 5.4(1) 6.9(2) 

LOD (µM) 0.09(2) 0.012(3) 

LOQ (µM) 0.26(5) 0.03(1) 

LOL (µM) 0.26-4 0.03-0.3 

 

Two fortified tap water samples with two different concentrations of Irbesartan are 

analyzed to verify the applicability of the MIP-modified screen-printed cell for 

environmental analyses. The recovery % and the error% are calculated for each sample and 

summarized in Table 33. 

 
Table 33. Recovery% and error% using SPC-bare and SPC-MIP of tap water adjusted to pH 5.5 and fortified with different 

concentrations of Irbesartan. 

 Cnominal/M Cexperimental/M Recovery % Error% 

MIP-modified electrode 3.6×10-7 3.37(6)×10-7 93.6 -6.4 

Bare electrode 3.6×10-7 1.2(1)×10-7 33.3 -66.7 

MIP-modified electrode 1.4×10-7 1.2(2)×10-7 92.8 -7.1 

Bare electrode 1.4×10-7 3.9(5)×10-7 278 178 

 

Table 33 shows good recoveries and a maximum error of 7.1% for the MIP-modified 

electrode, while the bare one is not a selective sensor since the recoveries were 

unsatisfactory. The bad results obtained with the bare electrode could be due to the 

interference of electroactive substances in the real samples; the presence of the specific 
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MIP’s cavities reduces the chance of such interferents reaching the electrode surface, 

making more accurate measurements possible. 

 

3.6.4 Conclusions 
A voltammetric MIP-based screen-printed cell for Irbesartan determination is proposed. 

Before and after modification, the working electrode surface was characterized by EIS and 

the active area was calculated. The results of both methods demonstrated the covering of 

the surface with the MIP layer. 

From the calibration measurements performed under optimized conditions, a LOD of 

0.012(3) μM and a LOQ of 0.04(1) μM were obtained. 

The applicability of the sensor for environmental analyses was tested by detecting 

Irbesartan in fortified tap water samples, obtaining good recoveries.  



 114 

3.7 Ascorbic acid sensing by e-MIP-modified screen-printed 
electrodes 

3.7.1 Introduction 
Ascorbic acid (L enantiomer), known as vitamin C, is a hydrosoluble vitamin characterized 

by well-established antioxidant properties181. These antioxidant properties are due to the 

reducing nature of the molecule, which acts as an electron donor182–184. Figure 67 shows 

the molecular structure of Ascorbic acid (AA).  

 

 
Figure 67. Molecular structure of Ascorbic acid (AA). 

 
Ascorbic acid is found in many foods, such as fresh vegetables, fruits and legumes.  It is 

involved in collagen synthesis, iron absorption and immune response activation; moreover, 

vitamin C participates in osteogenesis and wound healing182–184. Ascorbic acid is commonly 

used as an antioxidant in the foodstuff industry to inhibit undesired changes in the flavor 

or color of foods185,186.  

Excess Ascorbic acid can cause gastric irritations, and its metabolite, oxalic acid, can 

provoke renal problems181. For this reason, monitoring Ascorbic acid,  especially in the 

foodstuff industry, is crucially important.  

The classical methods for Ascorbic acid determination include the redox titrations with 

oxidants such as potassium iodide or bromate and dichlorophenol indophenol187,188 while 

the more modern ones use HPLC techniques with amperometric or fluorimetric 

detection189–191. Compared to the bulky and expensive instruments used for HPLC 

measurements, the electrochemical methods are more portable and rapid and permit the 

measurement to be performed in situ. 

Significant progress has also been made in developing electrochemical sensors for ascorbic 

acid detection, and in some of them, the electrode surface was modified by molecularly 

imprinted polymers. Recently, several studies have reported on applying 

electrosynthesized MIPs (e-MIPs) to develop electrochemical sensors. 

O O

OHHO
HO
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Electropolymerized MIPs (e-MIPs) present several advantages; for example, the rapid 

polymerization performed by simple electrochemical techniques such as cyclic 

voltammetry or amperometry,  the thickness of the polymer can be tuned by changing the 

experimental conditions, and the polymerization can be conducted in an aqueous medium 

(decreasing the use of toxic agents)192,193. 

Other electrochemical procedures can also be applied to enhance these e-MIPs. One of 

them, which is very useful, is overoxidation, performed by the electrochemical treatment 

of the MIP film by positive electrode potentials much higher than those required for the 

polymerization reaction. Overoxidation is advantageous in MIPs’ preparation since it allows 

the formation of carboxyl, carbonyl, and hydroxy groups that can interact with the template 

molecule by hydrogen bonds, promoting the formation of more selective cavities194. 

The most frequently electropolymerized imprinted films are primary polypyrrole, followed 

by polyaniline and polythiophene derivatives195. The focus on polypyrrole is due to its water 

solubility and ease of oxidation; moreover, polypyrrole possesses several valuable 

characteristics, such as good environmental stability, conductivity, and redox properties196. 

When submitted to high positive potentials, it can be over-oxidized, and the incorporation 

of carbonyl groups into the polymer’s backbone occurs, causing a loss of electric 

conductivity and the filling of pinholes and defects. At the same time, higher control of the 

film thickness arises, and the background currents are more stable192,196–198. 

In this context, an electrochemical sensor based on electrosynthesized polypyrrole, 

molecularly imprinted with ascorbic acid and overoxidated, was developed. The polymeric 

film was electrodeposited on the graphite working electrode of a screen-printed cell, 

obtaining a selective and simple method for AA sensing. 

Differential pulse voltammetry (DPV) was selected for the analyte detection, and the 

electrochemical parameters were optimized by a Design of Experiments (DoE). 

Interference tests and trials with drugs were performed to assess the selectivity and 

reliability of the proposed method. 
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3.7.2 Material and methods 

3.7.2.1 Preparation of the e-MIP and e-NIP sensors 

Before modification, each screen-printed cell (SPC) is washed with ethanol and left to dry 

at room temperature under a hood. 

The e-MIP-modified electrode is prepared by electrodeposition on the surface of the clean 

SPC using cyclic voltammetry (CV) in the potential range −0.6 ÷ 0.8 V during five cycles (scan 

rate 0.1 V/s) in an aqueous solution of 0.1 M LiClO4, 15 mM pyrrole, and 10 mM ascorbic 

acid (AA). The polypyrrole-imprinted film was overoxidized by applying a fixed potential of 

+1.2 V for 2 min in 0.1 M LiClO4 solution. The extraction of the template was performed in 

two steps. Firstly, the modified SPC was placed in PBS solution 0.05 M at pH 7.5 for 20 min, 

under gentle stirring on an orbital shaker, followed by 10–15 cycles of cyclic voltammetry, 

scanning the potential from −1 to +1 V (scan rate 0.1 V/s) in PBS solution 0.05M/KCl 0.1M 

at pH = 7.5. 

Electropolymerized, not-imprinted polymer films on the working electrode of the SPC (e-

NIPs) were prepared under the same conditions but without adding the template, i.e., AA, 

in the polymerization solution. 

3.7.2.2 Characterization of the working electrode surface 

The working electrode surface is characterized by determining the active area and the 

double layer capacitance according to the methods reported in paragraph 3.2.3.2; 

moreover, electrochemical impedance spectroscopy (EIS) measurements are performed.  

3.7.2.3 Ascorbic acid determination by Differential Pulse Voltammetry (DPV) 

Differential pulse voltammetry (DPV) is used as the voltammetric method for the 

determination of ascorbic acid in 10 mL of 0.05 M PBS/ 0.1 M KCl solutions at pH7.5, 

applying the following experimental conditions, optimized by a Design of Experiments 

(DoE) approach: Estart: -0.5 V, Eend: 0.3 V, Estep: 0.01 V, Epulse: 0.025 V, tpulse: 0.25 s, scan rate: 

0.02 V/s. 

3.7.3 Results and discussion 

3.7.3.1 Optimization of the DPV experimental conditions for Ascorbic acid analysis 

A full factorial design 23 was applied to optimize the DPV experimental conditions: pulse 

potential (Ep, V), pulse time (tp,s) and scan rate (v, V/s). Table 34 reports the minimum and 
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maximum levels of the conditions under investigation, while Figure 68 shows the 

significance plot of the model’s coefficients, whose values are reported in Table 35. Three-

point calibration curves are performed for each experiment, and the slope of the straight 

line is used as the response of the DoE (since the higher the slope, the more sensitive the 

measure).  The data treatment is performed by using the open-source software CAT32. 

 
Table 34. Optimization of the DPV experimental conditions by full factorial design 23: level definitions for the parameters 

considered, keeping constant the range of the potential scan (from -0.5V to +0.3V). 

Parameter Maximum level (-1) Maximum level (+1) 

Epulse (Ep, V) 0.015 0.025 

tpulse (tp,s) 0.15 0.25 

Scan rate (v, V/s) 0.01 0.02 

 

 
Figure 68. DoE to optimized the DPV parameters: coefficients plot. The greatest values and little black stars (regardless 

the sign) indicate a significant influence of the respective parameters or their interaction and significance (*p£’0.05, 

**p£0.01,***p£0.001). 
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Table 35. Optimization of the DPV parameters by full factorial design 23: coefficient values and their significance(*p£’0.05, 

**p£0.01,***p£0.001). 

Coefficient Value Significance 

b0 932  

b1 505.74 *** 

b2 100.13 ** 

b3 534.08 *** 

b12 66.96 * 

b13 164.07 *** 

b23 -70.49 * 

 
 

The DoE model can be expressed by the equation: 

`\aNM = #! + #" ∙ .7 + ## ∙ b7 + #$ ∙ Z + #"# ∙ .7 ∙ b7 + #"$ ∙ .7 ∙ Z + ##$ ∙ b7 ∙ Z 

 

From the coefficients plot of Figure 68, it can be observed that all parameters are important 

and have a positive effect on the response, so they must be set at the maximum value (+1). 

The most significant interaction is between the pulse potential (Ep) and the scan rate (v), 

presenting a significant positive effect on the response. 

Three replicates of the center point [0 0 0] are performed; Table 36 reports the average, 

the standard deviation and the confidence interval (CI) at the 95% confidence level. Since 

the predicted response b0 is included in the CI the model is validated; therefore, the 

optimized parameters are Ep: 0.025 V, pulse time (tp) 0.25 s and v 0.02 V/s. 

 
Table 36. Optimization of the DPV experimental, conditions by a full factorial design 23: model validation by three 

replicates at center point [0 0 0], Ep=0.02 V, tp=0.2s, v=0.015 V/s. CI = confidence interval at 95% confidence level. 

 Slope (µA×M-1) 

Average 975 

Standard deviation 49 

Upper bound CI 1024 

Lower bound CI 926 

Predicted response b0 932 
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3.7.3.2 Characterization of the working electrode surface 

The electrochemically active area and the double-layer capacitance are determined before 

and after the working electrode modification with e-MIP or e-NIP. Moreover, 

Electrochemical Impedance Spectroscopy (EIS) measurements are implemented to 

evaluate the electron transfer kinetics of the bare and modified electrodes. 

Active area and double-layer capacitance values are summarized in Table 37. 
 

Table 37. Active area values calculate by the Randles-Sevick equation 8. Electrochemical probe solution: 5mM 

K3Fe(CN)6/KCl 0.1M pH 7.5. Potential scan from -1 to +1V; scan rate form 0.025 to 0.5 V/s. 

 Active area 

(mm2) 

Capacitance 

(µF) 

Bare electrode 3.8(2) 0.5(3) 

e-MIP-modified electrode 2.4(2) 2.15(5) 

e-NIP-modified electrode 1.3(1) 1.52(6) 

Geometric area (circular shape electrode Æ1.1mm) 3.8 7 

 

As can be observed from the values reported in Table 37, the active area decreases after 

coating the electrode with the polymer. As expected, the active area of the e-NIP-modified 

electrode is lower than that of the e-MIP. Indeed, the absence of the polymer’s recognition 

cavities leads to a decrease in the electroactive surface. The double-layer capacitance 

increased from the bare electrode to the overoxidized e-NIP and e-MIP functionalized 

electrodes; this implies that the presence of the polymer layer increases the possibility of 

accumulating electrical charges.  

The characterization of the bare and modified electrodes is also implemented by EIS 

measurements; the Nyquist plot is reported in Figure 69. 
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Figure 69.  Nyquist plot of (a) bare electrode, (b) e-MIP modified electrode, (c) e-MIP-modified electrode after template 

removal, (d) e-MIP-modified electrode after rebinding with AA 3mM, (e) e-NIP-modified electrode. Measurements were 

performed in 5mM K3Fe(CN)6(KCl 0.1M solution. Frequency range 100 kHz-10 mHz with a sinusoidal potential modulation 

of 0.05 V superimposed on a dc potential of 0.2 V. 

 

As can be observed from Figure 69, the presence of the polymeric films influenced the 

impedance behavior of the electrode surface at both high and low frequencies. The bare 

electrode displays a low RCT, while the other modified electrode shows a higher resistance 

to the charge transfer, indicating that after overoxidation, the conductive properties of the 

polymer are lost. The curves (b) and (e), i.e., those related to the e-MIP before template 

removal and the e-NIP modified electrodes, show a similar behavior. The mass diffusion 

process is almost absent due to the massive RCT of the uniform polymer films on the 

working electrode. The curves (c), (d), and (a), related to the e-MIP-modified electrode 

after template removal, the same electrode after rebinding with 3 mM AA solution and the 

bare electrode have the working electrode surface more exposed to the solution; for this 

reason, the mass transfer diffusion process is more significant. The Randles equivalent 

circuits reported in Figure 70 schematize the two different trends. In both circuits, the 
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electrode/electrolyte resistance (R), the charge transfer resistance (RCT, which influences 

the diameter of the semicircle in the Nyquist plot) and the double layer capacitance (C) are 

present. In the Randles circuit of Figure 70b, the Warburg element (W) representing the 

contribution of the mass-diffusion-limited process is also present. 

 

 
Figure 70. Randles equivalent circuits for modeling the Nyquist plots of figure 79. a) for e-NIP (e)and e-MIP-modified 

electrode(b), b) for e-MIP-modified electrode after template removal(c), the same electrode after rebinding with 3mM 

AA (e)and bare electrode (a). 

 
 

3.7.3.3 Electrochemical Detection of Ascorbic acid: Evaluation of the analytical 
parameters. Selectivity Test and Analyses of Commercial Products 

As stated above, DPV is selected for ascorbic acid detection. Calibration curves are 

obtained, registering the voltammograms in 10 mL of 0.05 M PBS/0.1 M KCl solutions at pH 

7.5 at increasing ascorbic acid concentration and applying the experimental parameters 

optimized by the DoE approach described above. To compare the analytical figures of 

merit, bare, e-MIP, and e-NIP electrodes are tested. The voltammograms obtained for the 

three different electrodes and even the graph for a non-overoxidated e-MIP are reported 

in Figure 71. 
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Figure 71. DPV voltammograms of (a) bare, (b) e-MIP, (c) e-NIP, (d) non-overoxidized e-MIP registered in 10 mL of 0.05 M 

PBS/0.1 KCl solutions at pH 7.5 at increasing ascorbic acid concentration from 0 to 5mM. 

 

As can be observed in the voltammograms obtained with the non-overoxidated e-MIP 

(Figure 71d), disturbed signals and high background current are evident, so experiments 

with this type of modified electrodes have not been continued. Figure 72 shows the 

calibration graphs (ip(µA) vs. [AA](mM)) obtained using the bare electrode, the e-MIP- and 

e-NIP-modified screen printed cells, while in Table 38, the parameters of the obtained 

straight lines are summarized. 
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Figure 72. Calibration graphs for bare, e-MIP and e-NIP obtained, respectively, from the DPV data of figure 81 a-c. 

 
Table 38.Analytical parameters evaluated from the linea regression of the DPV data. Results obtained from three different 

calibration curves using three screen-printed cells for each type (bare, e-MIP and e-NIP) in 10 mL of 0.05 M PBS/0.1 M 

KCl solutions at pH 7.5. In brackets is reported the standard deviation on last digit 

Electrode Slope (µa, mM-1) R2 LODa (µM) LOQa (µM) Linear range (µM) 
Bare 1.34(7) 0.999 35 106 20-4800 
e-MIP 1.02(6) 0.999 21 64 30-2400 
e-MIPb 98(2) 0.998 1.2 3.6 2-100 
e-NIP 0.13(2) 0.997 150 450 400-800 

aLOD calculated as reported in eq.4 while LOQ as reported in eq.6.  
bcalibration performed in 100mL of solution 
 

From the values reported in Table 38, the bare electrode seems to be slightly more sensitive 

compared to the overoxidized e-MIP; however, the linear range, the LOD and the LOQ are 

relatively similar, a little better for e-MIP. Some other calibrations are performed using ten 

times higher volume, obtaining an improved LOD. The poor sensitivity of the e-NIP is an 

added advantage since the non-imprinted polymer acts as a barrier to the analyte reaction 

at the electrode surface.  

The repeatability of the measurements is also tested. Figure 73 reports the calibration 

graphs of five replicates with the same scree-printed cell. It can be observed that the 

differences among the replicates are not significant (RDS<5%). 
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Figure 73. Five replicates of calibration obtained with a single e-MIP modified screen-printed cell. Data point of each 

replicate at the same concentration are reported with dots in  different colour. 

 

Selectivity tests are performed in the presence of interferents in the solution containing 

Ascorbic acid. As interferents, dopamine and uric acid are chosen since the oxidation 

reactions occur at close potentials199–201. Figure 74 shows the voltammograms of the 

measurements performed with the bare electrode in a solution of 0.5 mM of ascorbic acid 

with different concentrations of interferents. As can be observed, the oxidation peaks of 

the interferent species overlap with the signal of the ascorbic acid; under these conditions, 

the bare electrode can not be used for the ascorbic acid determination.  
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Figure 74. DPV voltammograms of the e-MIP electrode registered in 10 mL of 0.05M PBS/0.1M KCl solutions at pH 7.5, 

(a) 0.5 mM AA (red line), 0.5mM AA + 0.3 mM uric acid (green line), 0.5 mM AA + 0.5 mM uric acid (blue line), 0.5 mM 

AA+0.8 mM uric acid (pink line;, (b)0.5mM AA(red line), 0.5mM + 0.3 mM dopamine (green line), 0.5mM AA+0.5mM 

dopamine (blue line), + 0.5mM AA + 0.8 mM dopamine (pink line). 

 

The same measurements were performed using the e-MIP-modified screen-printed cell, 

and the results are surprisingly different compared to those obtained with the bare 

electrode. Figure 75 reports the voltammograms of the measurements using the e-MIP-

modified screen-printed cell in (a) solutions containing a fixed concentration of uric acid 

and different concentrations of ascorbic acid and (b) in solutions containing fixed 

concentrations of ascorbic acid and different concentrations of dopamine.  

 
Figure 75. DPV voltammograms of the bare electrode registered in 10 mL of 0.05M PBS/0.1M KCl solutions at pH 7.5, (a) 

1 mM AA (red line), 1mM AA + 0.4 mM uric acid (green line), 1.2 mM AA + 0.4 mM uric acid (blue line), 1.5 mM AA + 0.4 

mM uric acid (pink line;, (b)1mM AA(red line), 1mM + 0.1 mM dopamine (green line), 1mM AA+0.2mM dopamine (blue 

line), + 1mM AA + 0.3 mM dopamine (pink line). 
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As can be clearly observed in the voltammograms reported in Figure 75, the presence of 

the e-MIP on the surface of the working electrode permits the peak’s separation of the 

analyte from those of the interferent species, allowing the quantification of the ascorbic 

acid without interference problems. 

To assess the reliability of the proposed method, two different drug tables with known 

ascorbic acid content were analyzed. The standard additions method is applied, and the 

results are reported in Table 39. 
 
Table 39.Ascorbic acid detection in farmaceutical products. CI = confidence interval at 95% con-fidence level. Three 

replicates for each sample using the same e-MIP screen-printed cell. 

 VIVIN C ® 

AA content (mg) 

TIOBEC® 

AA content (mg) 

Average (n=3) 210 30 

Standard deviation 5 2 

Upper bound CI 222 35 

Lower bound CI 197 24 

Declared content 200 30 

 

For both the commercial products, the obtained results are in good agreement with the 

declared ascorbic acid content; moreover, the low standard deviation reveals a significant 

reproducibility of the measurements, considering that the same e-MIP-based screen-

printed cell was used for both determinations.  

 
 

3.7.4 Conclusions 
A molecularly imprinted electrosynthesized polymer (e-MIP) on screen-printed electrodes 

for ascorbic acid detection by the DPV method is developed. 

The best results are obtained after polypyrrole overoxidation, performing the 

measurements in a phosphate buffer solution of 0.05 M/KCl 0.1 M at pH 7.5 and applying 

optimized experimental conditions for the voltammetric detection. 

The graphite working electrode surface is characterized before and after modification, 

measuring the active area and the double-layer capacitance. The results of both 

determinations demonstrate the electrode surface coverage by the e-MIP layer. 
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The analytical parameters evaluated from the calibration curves demonstrate good 

sensitivity and a detection limit that is not significantly different from that achievable with 

the non-modified electrode (bare). The LOD obtained is about 20 µM if the sample volume 

is 10 mL, but the value can be reduced if a higher sample volume is analyzed (e.g.,1.2 µM 

if the sample volume is 100 mL). 

Selectivity tests are undertaken considering dopamine and uric acid as interferents, proving 

the possibility for the e-MIP-based electrode to quantify ascorbic acid without interference 

problems or to determine the three analytes simultaneously if all are present in the same 

sample. 

To assess the proposed method’s reliability, two pharmaceutical products with known 

ascorbic acid content are analyzed, and the results agree with the declared ascorbic acid 

content.  
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3.8 e-MIP-modified screen-printed electrodes for the 
voltammetric detection of MCPA 

3.8.1 Introduction 
As reported in paragraph 3.3, MCPA in an herbicide synthesized in England around 1941. It 

is a selective phenoxy herbicide that controls broadleaf weeds in arable and cereal crops. 

MCPA can mimic auxin, encouraging uncontrolled growth and subsequent death of certain 

plants131. The potentiometric sensor developed for the determination of MCPA in water 

samples reported in paragraph 3.3., can detect MCPA at low concentrations since the 

detection limit (LOD) is equal to 10 nM, but it is not able to quantify the analyte in the 

presence of other phenoxy herbicides having a similar molecular structure and shape. The 

voltammetric sensor here presented aimed to quantify MCPA even in the presence of 

interferent species. This sensor is based on a screen-printed cell with the graphite working 

electrode modified by a molecularly imprinted electro-synthesized polymer (e-MIP). 

Differential Pulse Voltammetry (DPV) is the technique employed, exploiting the irreversible 

oxidation peak of the analyte at about + 1.2 V in phosphate buffer at pH 5.5. Due to the 

high background currents observed in these experimental conditions that could limit the 

possibility of detecting concentrations below 10 μM, multivariate data treatment is 

effectively used. In particular, Partial Least Squares regression is the tool applied, preceded 

by the Savitzky–Golay smoothing (first-derivative function) of the DPV signals. 

As highlighted in recent reviews202–204, chemometrics in electrochemistry research is still 

underutilized. However, chemometrics can improve the analytical performance of 

electrochemical sensors, cut the cost of sensor fabrication and analysis by optimization 

through experimental design, reduce the dimensionality of the data, and eliminate drift 

effects or interference problems. It can also be applied to the development of multivariate 

models for quantitative analysis.  

The potential and effectiveness of chemometric tools have been verified in this study, 

developing tailored PLS models in synthetic aqueous solutions (buffered at pH 5.5) and tap 

water samples fortified with MCPA and other pesticides as possible interferents. 
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3.8.2 Material and methods 

3.8.2.1 Working electrode modification by e-MIP or e-NIP 

The prepolymeric mixture of 15 mM pyrrole and 1 mM MCPA (template) in 10 mL 0.1 M 

LiClO4 is stirred for 30 min to let the template molecules interact with the monomer. The 

molar ratio template/monomer is 1:15. Analogous mixture but without the template is 

prepared to obtain the non-imprinted polymer (e-NIP). 

Before modification, each screen-printed cell (SPC) is rinsed with ethanol and left to dry at 

room temperature. 

The e-MIP and e-NIP are obtained by electropolymerizing the correspondent prepolymeric 

mixture onto the clean working electrode of the SPC. 5 scans of cyclic voltammetry from     

-0.2 V to +0.8 V at 0.1 V/s are sufficient to obtain a homogeneous coating and a film not 

too thick. The screen-printed cells are left to dry overnight at room temperature. The 

template is removed from the e-MIP by placing the modified SPC in 10 mL of an 

ethanol/acetic acid solution (4:1) for 20 min, three times, and then washing it with 

deionized water.  

These modified screen-printed cells are disposable, so they do not need further processing 

after use. 

3.8.2.2 Characterization of the working electrode surface and the electrochemical process 
of the analyte to the electrode surface 

The working electrode surface of the bare and modified electrodes is characterized by 

determining the active area (using 5 mM potassium hexacyanoferrate(III)/0.1 M KCl at pH 

7 as the electrochemical probe solution) and the double-layer capacitance (in NaCl 0.1 M 

solution) according to the methods presented in paragraphs 3.2.3.1. and 3.2.3.2. Further 

characterization is performed by electrochemical impedance spectroscopy (EIS) according 

to the methodology reported in paragraph 3.2.3.4.  

The electrochemical process of the analyte to the electrode surface of the bare and 

modified electrodes is characterized by determining the number of electrons exchanged 

during the electrochemical process (n), the charge transfer coefficient (α), the E° potential, 

the kinetic electron transfer constant (k°), the diffusion coefficient (D), and the reaction 

order (r.o.) according to the procedure and the equations reported in paragraphs 3.2.4.1 

and 3.2.4.2, in 10 mL of 2.5 mM MCPA/0.1 M PBS solution at pH 5.5. 
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3.8.2.3 MCPA determination by Differential Pulse Voltammetry (DPV) 

Differential pulse voltammetry (DPV) is employed to quantify MCPA in aqueous solutions. 

The parameters used were: potential range from 0 V to 1.5V, 0.1V/s, step potential 0.025 

V, potential pulse 0.2 V and pulse time 0.05 s. All the measurements were performed in 

10mL of PBS buffer solution at pH 5.5 or tap water samples by adding an increasing quantity 

of MCPA; the solution was kept under stirring for 15 min, and then the voltammogram was 

registered. 

3.8.2.4 Chemometric data treatment 

Chemometric tools are applied to analyze the DPV voltammograms obtained at different 

MCPA concentrations and in different ionic media. A double-technique approach is 

selected, combining an unsupervised technique, the principal component analysis (PCA), 

with the supervised partial least square regression (PLS). Both chemometric data 

treatments are performed using the open-source R-based software CAT (Chemometric 

Agile Tool)32. 

PCA is used to reduce the large dataset's dimensionality while retaining most of the 

information about the data variation. The 2D graphical output allows a more 

straightforward interpretation of the differences or similarities among the data.  

In the present work, PCA is run on the entire dataset (i.e., 58 rows – concentrations of 

MCPA, and 21 columns – current value for each potential (from 0.6 V to 1.1 V)).  

The PCA tool cannot be used for quantitative analysis but helped define the four tailored 

PLS models to be developed for MCPA quantification in each media.  

To develop a PLS model, a suitable data set, called the "training set," has to be prepared; 

in this case, the training set is obtained by MCPA standard solutions at different 

concentrations to cover the whole experimental domain homogeneously. The validation of 

the PLS model is firstly performed by a cross-validation procedure on the training set and 

then predicting an external data set (validation set) obtained by preparing independent 

MCPA solutions at different concentrations than those of the training set. 

Moreover, the Savitsky-Golay filter is used to smooth the data, obtaining the first derivative 

of the DPV voltammograms. 

Similar training and external sets were prepared to develop tailored PLS models for matrix-

matched solutions, i.e., tap water or tap water spiked with atrazine, glyphosate and 

dichloroprop. 
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3.8.3 Results and discussion 

3.8.3.1 Working electrode modification and characterization 

Electropolymerization of the molecularly imprinted polypyrrole is performed via cyclic 

voltammetry in the potential range -0.2 V to +0.8V at 0.1V/s in an aqueous solution of 15 

mM pyrrole, 1 mM MCPA and 0.1 M LiClO4. Five scans are selected as a good compromise 

between an insufficient formation of the imprinted cavities with fewer scans and a polymer 

film too thick with less accessible recognition sites, achievable with more than 7-10 scans. 

Electrochemical Impedance Spectroscopy (EIS) is used to verify the actual modification of 

the working electrode surface of the screen-printed cell with the e-MIP or e-NIP. 

Impedimetric measurements are performed in an electrochemical probe solution            

(0.05 M K3Fe(CN)6/0.1 M KCl at pH 7) from 100 kHz to 10 mHz using the non-modified 

electrode (bare), and those modified by the e-MIP or e-NIP. The modified screen-printed 

electrode is characterized under different conditions: using the e-MIP-based electrode 

before and after the complete removal of the template and after equilibration with two 

different concentrations of analyte (10 μM and 50 μM) to understand how the 

electrochemical behavior of the modified electrode changes depending on the number of 

occupied cavities by the analyte. Besides, the bare and the e-NIP-modified electrodes are 

studied. The data obtained from the EIS analysis are shown in the Nyquist plot of Figure 76; 

the same figure reports the related Randles equivalent circuit.   
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Figure 76.Nyquist plot of bare and modified working electrode of the screen-printed cell. In the inset: Randles equivalent 

circuit. 

 
 

The Nyquist plots in Figure 76 report the measurements performed with differently 

modified working electrodes. The bare electrode trend represented by grey dots is very 

similar to the theoretical one, while the behavior of the polymer-modified screen-printed 

electrodes changes. In particular, in the modified screen-printed electrode, the charge 

transfer resistance increases (the diameter of the semi-circle increases), and the straight 

line of the diffusion is not visible, probably due to the thickness of the polymers on the 

electrode's surface. Focusing on the RCT, it can be observed that the resistance increases 

from the e-MIP-modified electrode after removing the MCPA (yellow dots) to the same 

electrode where the template occupies all the cavities (red dots). This behavior may be 

because MCPA ions (given that the MCPA pKa= 3.07, the predominant species at pH 7 is the 
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negatively charged deprotonated form149) in the polymer cavities prevent the 

electrochemical probe ions from reaching the surface of the working electrode.  

The highest resistance is measured with the e-NIP-modified electrode (black dots); this 

behavior can be explained considering that the polymeric film does not possess the 

selective cavities for the analyte, so the probe ions are prevented from reaching the sensing 

surface. As shown in Figure 76, the RCT for the e-MIP-modified electrode increases 

proportionally to the MCPA concentration in solution, so in principle, this technique could 

be used for quantitative analysis. 

The working electrode surface before and after modification is characterized by 

determining the active area and the double-layer capacitance; the results are summarized 

in Table 40. 
 
Table 40. Characterization of the working electrode surface: active area and double-layer capacitance measured before 
and after electrode's modification. The active area was determined by CV from -1.0V to +1.0V at different scan rates from 
0.2 V/s to 0.5 V/s  in 5 mM K3Fe(CN)6,/0.1 M KCl at pH 7. The double-layer capacitance was determined by CV from -0.5V 
to +0.5V at different scan rates from 0.2 V/s to 0.5 V/s  in 0.M NaCl. 

 Active Area (mm2) Double layer capacitance (µF) 
bare 3.7(1) 1.07(3) 

e-MIP 3.3(1) 9.9(9) 

e-NIP 1.9(1) 3.2(5) 

 

 

As can be observed from Table 40, the active area is higher for the bare electrode than that 

of the e-MIP and e-NIP-modified screen-printed electrode; this is due to the presence of a 

polymeric film on the surface of the working electrode that prevents (partially for the eMIP 

and totally for the eNIP) the ions of the electrochemical probe from reaching the surface 

of the electrode. The active area of the eNIP-modified electrode is lower than that of the 

e-MIP-based one because the polymer is less porous and does not possess the recognition 

cavities. The double-layer capacitance is higher for the e-MIP and e-NIP-modified 

electrodes since a conductive polymer is deposited on the surface, facilitating the 

formation of the double-layer of charges. The more the polymer is porous, the higher the 

double-layer capacitance because there are more sites where charges can be accumulated.  
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3.8.3.2 Characterization of the electrochemical process of MCPA at the bare and e-MIP-
modified electrode surface 

The electrochemical redox process of MCPA at the bare and e-MIP-modified electrodes is 

characterized by determining the number of electrons exchanged during the oxidation 

process (n), the charge transfer coefficient (α), the E° potential, the diffusion coefficient 

(D), the kinetic charge transfer constant (k°) and the reaction order (r.o.). The results are 

reported in Table 41.  
 
Table 41. Characterization of the electrochemical process at the bare and eMIP-modified electrode surface. Measurements 
are performed in CV from 0V to +1.5V at different scan rates from 0 to 1.8 V/s, in 2.5 mM MCPA, PBS 0.1 M at pH 5.5. The 
number of electrons exchanged (n) is determined by the controlled potential electrolysis at a fixed potential (+1.2 V) in 2.5 
mM MCPA, PBS 0.1 M at pH 5.5. 
 n V (V) E° (V) D (cm2/s) k° r.o. 

bare 1 0.31 1.08 0.0019 3×10-5 1 

e-MIP 1 0.36 0.99 0.0018 1×10-5 1 

 

The charge transfer coefficient is similar for both electrodes; in fact, the material of the 

working electrode is the same. The E° potential slightly decreases when the polymer is 

deposited on the surface of the working electrode; this behavior was also observed in 

previous studies17. The diffusion coefficient of MCPA is slightly lower when measured using 

the e-MIP-modified electrode, probably because the presence of the polymer slows down 

the mobility of the analyte toward the electrode surface. 

Similarly, the kinetic charge transfer coefficient (k°) is lower for the eMIP-modified 

electrode because the polymer on the surface prevents a few MCPA molecules from 

reaching the working electrode's surface. Since the redox process involves only MCPA, the 

first order of the reaction was confirmed, obtaining a slope near 1 by plotting the logarithm 

concentration of MCPA vs. the logarithm of the peak current. From the graphs log ip vs. log 

v, a linear trend is verified for both electrodes, confirming that the process at the electrode 

surface is mainly diffusive.  

Figure F 6.5- 1 a) and b) (Appendix V - e-MIP-modified screen-printed electrodes for the 

voltammetric detection of MCPA (electrode characterization and PLS model performaces)) 

show the CV curves for the bare and e-MIP-modified electrodes; Table T 6.5-1(Appendix V 

- e-MIP-modified screen-printed electrodes for the voltammetric detection of MCPA 

(electrode characterization and PLS model performaces) summarizes the regression line 
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equations of the various graphs from CV data used to evaluate the parameters reported in 

Table 41. 

 

3.8.3.3 Quantitative determination of MCPA by the e-MIP-modified sensor 

The characterized eMIP-modified electrode was then used for quantitative analysis by 

Differential Pulse Voltammetry (DPV) measurements.  

Firstly, the method's feasibility was tested in synthetic standard solutions of MCPA. Aiming 

to define the suitable ionic medium for the analysis, acetate buffer at pH 4.5 and phosphate 

buffers at pH 5.5 and 7 were considered. The calibration data for each solution were 

compared, and the medium in which the dose-response curve has the highest slope of the 

straight line was chosen (see Appendix V - e-MIP-modified screen-printed electrodes for 

the voltammetric detection of MCPA (electrode characterization and PLS model 

performaces), F 6.5- 2). Highest sensitivity was obtained in phosphate buffer solution at pH 

5.5; for this reason, further DPV measurements were performed in this ionic medium with 

increasing concentrations of MCPA, recording the voltammogram from 0 V to 1.5 V and 0.1 

V/s scan rate.  

At low analyte concentrations in solution, it was difficult to identify the anodic peak with 

the naked eye; for this reason, Partial Least Suare regression (PLS) coupled with the 

Savitsky-Golay first derivative smoothing filter (S-G)205  was used as the chemometric tool 

for the data treatment. In this way, lower analyte concentrations can be detected. Figure 

77 shows an example of voltammograms before and after S-G smoothing.  

DPV measurements were performed in PBS 0.1 M at pH 5.5 with increasing concentrations 

of MCPA from 7.4 µM to 103 µM, recording the voltammogram from +0 V to 1.5V and 

0.1V/s scan rate. The PLS model was created after applying the S-G filter to each 

voltammogram.  
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Figure 77. Voltammograms performed in PBS 0.1 M pH 5.5  with increasing concentrations of MCPA using the e-MIP_SPC 

for measurements. a) voltammogram of the calibrations measurements, b) voltammograms of the blank (PBS), at 7.4 µM 

and 156 µM MCPA concentrations, c) Savitsky-Golay smoothed voltammogram of the calibration measurements, d) 

Savitsky-Golay smoothed voltammogram of the blank (PBS), at 7.4 µM and 156 µM MCPA concentrations. 

 

The PLS/S-G model was built with a training set comprising the data of five replicates (five 

different eMIP-modified electrodes) of a 4-point calibration with MCPA concentrations 

ranging from 7.4 μM to 103 μM. The external dataset to validate and prove the model's 

robustness comprised five replicates of measurements performed in solutions at 9.9 μM 

and 69.8 μM MCPA concentrations. 

A 4-latent variables model was realized: it ensures 94.7% of explained variance in Cross-

Validation (% E.V. in CV), a global Root Mean Square Error in CV (RMSECV) of 8.3 μM and 

5.5 μM of Root Mean Square Error in Prediction (RMSEP) for the external dataset. Figure 

S4a (Supplementary Material) shows the model performance graph. 

Figure 78 reports the Experimental vs. Fitted values plot for the training set (light blue-

colored points) and external dataset (yellow-colored points); the points are similarly 

distributed alongside the y=x straight line, and no significant difference in the fitting error 

appears. The correlation coefficient of the regression (r2) for the model and prediction is 

0.983 and 0.985, respectively; these values are strongly affected by the higher 
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irreproducibility of the measurements at lower analyte content, taking into account that 

modified disposable screen-printed cells were used. 

 

 
Figure 78. PLS/S-G model in phosphate buffer solution 0.1 M pH 5.5 with increasing concentrations of MCPA from 7.4 µM 

to 103 µM: Experimental values vs. Fitted values plot for the training set (light blue-colored points) and external set 

(yellow-colored points). 

 

3.8.3.4 MCPA detecition in tap water samples 

As stated in the introduction, the purpose of the work is the MCPA determination in 

environmental samples. 

It has to be highlighted that, like all quantitative methods subject to interferences or when 

complex sample matrices must be analyzed, calibration with external standards is 

ineffective. Therefore, matrix-matched calibrations or the standard additions method have 

to be used. The first approach was adopted here to quantify MCPA in tap water samples by 

the eMIP-modified sensor. A PLS/S-G model was developed from the DPV measurements 

in unaltered tap water samples (without the addition of buffer or electrolyte solutions) and 

adding MCPA from 2.5 μM to 65.4 μM.  

The training set comprises the data of two replicates of a 9-point calibration, and the 

external dataset to validate the model comprised two replicates of measurements 

performed in solutions at 7.4 μM and 47.6 μM MCPA concentrations. 
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Figure 79 shows the Experimental vs. Fitted values plot for the training set (blue-colored 

points) and external dataset (pink-colored points), and Table 42 summarizes the number 

of latent variables used to develop the model (LVs), the % Exp. Var. CV, the RMSECV, the 

RMSEP, the correlation coefficient of the regression, the F-test (comparison RMSECV vs. 

RMSEP) and the limit of quantification LOQ). Figure F 6.5- 3 b) (Appendix V - e-MIP-modified 

screen-printed electrodes for the voltammetric detection of MCPA (electrode 

characterization and PLS model performaces)) shows the model performance graph. 

Regarding the detection limit (LOD) evaluation, no defined procedure for multivariate 

calibration exists currently. Establishing a LOD's computation in multivariate methods is 

more challenging than extending the classical univariate approach. Various strategies have 

been proposed, but there is not yet a unique method universally accepted by the scientific 

community. For these reasons, the lowest quantifiable concentration (LOQ) of MCPA was 

reported for the present method, as shown in Table 42. 

 

 
Figure 79. PLS/S-G model in tap water samples with increasing concentrations of MCPA from 2.5 µM to 65.4 µM: 

Experimental values vs. Fitted values plot for the training set (blue-colored points) and external set (pink-colored points). 
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Table 42. Number of latent variables (LVs), % explained variance in cross-validation (% Exp. Var. CV), Root Mean Square 

Error in CV (RMSECV), Root Mean Square Error in prediction (RMSEP), correlation coefficient of the regression (r2), F-test 

(comparison RMSECV vs. RMSEP; alpha= 0.05) and limit of quantification (LOQ) for the PLS/S-G model of Figure 79. 

PLS/S-G model in tap water 

Training set 

LVs 4 
% Exp.Var. CV 98.51 
RMSECV (μM) 2.8 
r2 model 0.998 

External set 
RMSEP (μM) 1.4 
r2 prediction 0.999 

F-test 

RMSECV vs. RMSEP 

calculated F-value 3.9 
critical F-value 8.2 

 LOQ (μM) 2.5 
 
The model's robustness and predictive ability were demonstrated; indeed, the training set 

and external set samples are analogously distributed alongside the y = x straight line, and 

no significant differences in the fitting errors arise, as confirmed by the F-test; indeed, the 

precision in cross-validation and prediction is not significantly different, being the 

calculated F-value lower than the threshold of significance for the alpha = 0.05.   

The lowest quantifiable concentration is 2.5 μM corresponding to 500 μg/L; therefore, the 

sensors cannot directly detect MCPA present in environmental waters at concentrations 

compared to the World Health Organization (WHO) guideline value (2 µg/ L) or the 

European Commission Drinking Water Directive 98/83/EC, concerning the quality of water 

for human consumption, i.e., 0.1 μg/ L206; to detect so low analyte concentrations, a 

preconcentration step is required.    

Tap water samples spiked with other pesticides were then analyzed to test the sensor's 

selectivity. 

As interferents, atrazine, glyphosate and dichloroprop were considered. The first two are 

not electroactive in the potential range applied for the DPV measurements, whereas 

dichloroprop is a structural analog of MCPA and undergoes irreversible oxidation at a 

similar potential. 

The experiments were carried out by spiking the water samples with a constant quantity of 

interferents and adding increasing concentrations of MCPA (from 2.5 to 103 μM). Two 

levels of interferent concentrations were evaluated: high concentration level, i.e., 50 μM 
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of one interferent and low concentration level, i.e., from 0.5 to 3 μM of interferents (single 

or in a mixture). Table 43 reports the composition of these solutions 
Table 43. Interferent test: composition of the tap water samples used as media for MCPA calibrations. 

 

 

 

 

 

 

 

 

 

The voltammograms of the experiments with interferents and those previously obtained in 

unmodified tap water were submitted to PCA analysis; the score plot is shown in Figure 80. 

 
Figure 80. The score plot of the PCA model on the first two principal components is built on the training set (bullet symbol) 

and validated by a projection of the external dataset (diamond symbol). 

 Atrazine (μM) Glyphosate (μM) Dichloroprop (μM) 

1 50 0 0 

2 0 50 0 

3 0 0 50 

4 1 1 1 

5 0.5 1 1.5 

6 0 0 2 
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The model was obtained considering only the first two components, which explain 95.27 % 

of the experimental variance. Three groups can be identified along the PC1 axis: the group 

represented by blue bullets corresponding to the two calibrations performed in unmodified 

tap water, the one represented by green bullets, i.e., the tap water samples spiked with 

the high level of interferents, and the group represented by red bullets corresponding to 

tap water samples spiked with the low level of interferents. The score in PC2 differentiated 

the samples depending on the MCPA concentration: the PC2 value decreases as the 

concentration decreases. 

The PCA model was validated by a projection of an external dataset (diamond symbol in 

Figure 80; their composition is reported in Table 44): all samples are correctly located in 

the corresponding group of the score plot. 

 
Table 44. Composition of the samples S1-S14 used to validate the PCA model. 

 
It is interesting to highlight that the three groups are distinguished based on interferents' 

concentration levels, independent of whether they are electroactive. 

Moreover, the groups identified suggested the need for three different PLS-tailored 

models; in other terms, the PLS model built with unmodified tap water samples is 

ineffective for predicting the MCPA concentrations in the samples containing interferents. 

 Atrazine 

(μM) 

Glyphosate 

(μM) 

Dichloroprop 

(μM) 

MCPA 

(μM) 

S1 0 0 0 29.1 
S2 0 0 0 65.4 
S3 50 0 0 24.4 
S4 50 0 0 69.8 
S5 0 50 0 24.4 
S6 0 50 0 69.8 
S7 0 0 50 24.4 
S8 0 0 50 69.8 
S9 0 0 2 7.4 
S10 0 0 2 24.4 
S11 1 1 1 7.5 
S12 1 1 1 25 
S13 0.5 1 1.5 7.5 
S14 0.5 1 1.5 25 



 142 

Figure 81 shows the Experimental vs. Fitted values plot for the two PLS/S-G models 

developed for each interferent concentration level; figures F 6.5- 3 c) and d)(Appendix V - 

e-MIP-modified screen-printed electrodes for the voltammetric detection of MCPA 

(electrode characterization and PLS model performaces)) show the model performance 

graphs and Table 45 summarizes the figures of merit for both models. 

 

 
Figure 81. PLS/S-G models (a) in tap water samples spiked with the high level of interferents. External set: samples from 

S3 to S8  (b) in tap water samples spiked with the low level of interferents. External set: samples from S9 to S14. 

Experimental values vs. Fitted values plot. 

 
Table 45. Number of latent variables (LVs), % explained variance in cross-validation (% Exp. Var. CV), Root Mean Square 

Error in CV (RMSECV), Root Mean Square Error in prediction (RMSEP), correlation coefficient of the regression (r2), and F-

tests (alpha= 0.05) for the PLS/S-G models of Figure 81. 

 
 PLS/S-G model  

High-Level Interferents 

PLS/S-G model 

Low-level interferents 

Training set 

LVs 2 4 

% Exp.Var. CV 94.47 95.83 

RMSECV (μM) 12.3 5.5 

r2 model 0.979 0.991 

External set 
RMSEP (μM) 4.6 3.5 

r2 prediction 0.973 0.976 

F-test RMSECV vs. 

RMSEP 

calculated F-value 7.2 2.5 

critical F-value 4.6 4.6 

F-test RMSECVHL vs. 

RMSECVLL 

calculated F-value 4.9 

critical F-value 2.3 

F-test RMSEPHL vs. 

RMSEPLL 

calculated F-value 1.7 

critical F-value 2.3 
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Both PLS models proved adequate in predicting the MCPA concentrations even in the 

presence of interferents since there was pretty good agreement between experimental and 

fitted values. The fitting error value in cross-validation for the model at High-Level 

Interferents is higher than that in prediction and also higher than the fitting error in cross-

validation for the model at Low-level interferents, as expected since the more concentrated 

the interferents, the more disturbed and poorer reproducible the measurements. In any 

case, the RMSEP values are not significantly different for both models, confirming their 

good predictive capability.  

The predicted concentrations of MCPA in the samples from S1 to S14 obtained by 

projecting these samples in the appropriate PLS/S-G model are reported in Table 46 within 

the corresponding recovery percentages. 
Table 46. Recovery test for the samples used as external datasets in the PLS/S-G models: S1 and S2 for the model in 

unmodified tap water; S3-S8 for the model High-Level interferents; S9-S14 for the model Low-Level interferents. 

 

 

 
Experimental MCPA (µM) Fitted MCPA (µM) Recovery % 

S1 29.1 29.5 101 

S2 65.4 63.6 97 

S3 24.4 21.9 90 

S4 69.8 75.5 108 

S5 24.4 26.4 108 

S6 69.8 73.6 105 

S7 24.4 24.4 100 

S8 69.8 64.6 93 

S9 7.4 7.7 104 

S10 25 22.7 91 

S11 7.5 6.8 90 

S12 25 27.2 109 

S13 7.5 6.4 85 

S14 25 26.5 106 
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The percentage of recoveries for each sample is between 80% and 110%, which is the 

acceptable recovery range, demonstrating the suitability of the proposed method for 

MCPA determination in contaminated environmental waters. 

3.8.4 Conclusions 
A voltammetric sensor for the herbicide MCPA (4-chloro-2-methylphenoxy acid) is 

developed by modifying the working electrode of a screen-printed cell (SPC) with an 

electropolymerized molecularly imprinted polymer (e-MIP). In particular, a polypyrrole MIP 

is synthesized using the MCPA as the template. In the first part of the work, the electrode 

surface is characterized before and after coating with the MIP, determining the active area 

and double-layer capacitance. As for the area, there is a decrease in the active surface from 

the unmodified electrode (bare) to the polymer-modified one, as expected since the 

polymer film allows the achievement of electroactive species at the electrode only through 

the cavities present and, therefore, not all the geometric area of the electrode is available. 

The capacitance of the double layer also increases from the bare electrode to the 

functionalized one; this means that the functionalization of the electrode with the e-MIP 

provokes an increased ability to accumulate electrical charges to the electrode and, 

therefore, an increase in sensor efficiency. 

The characterization of the electrochemical process at the bare and e-MIP-modified 

electrodes is performed: the electron transfer coefficient, the electronic transfer kinetic 

constant, the potential standard E, the reaction order, the reaction coefficient and the 

number of electrons involved in the reaction are determined. These measurements 

showed that the electrochemical reaction is an irreversible oxidation, which occurs with 

the exchange of 1 electron. After the process characterization, the electrochemical method 

for the quantification of MCPA in aqueous solution is developed. The selected voltammetric 

technique was DPV (pulse differential voltammetry). Preliminary measurements have 

shown that the best ionic medium for conducting experiments is phosphate buffer at pH 

5.5. However, even in such a supporting electrolyte, the oxidation peak of MCPA is poorly 

defined, wide and not symmetrical. 

For this reason, the classical monovariate calibration would have failed for the analyte’s 

quantification. Therefore, it is decided to apply a multivariate analysis, and in particular, 

the Partial Least Square regression (PLS) that allows correlation between the entire 
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voltammogram and the analyte concentration. To further improve the merit figures of the 

method, the voltammetric signals are pretreated via a first derivative smoothing filter: the 

Savitsky-Golay.  

The PLS model is built with solutions at different MCPA concentrations in phosphate buffer 

at pH 5.5 (training set), and it is validated with independent samples at analyte 

concentrations other than those used for model construction (validation set). The results 

showed that the model had a good predictive capability. 

Subsequently, measurements are performed in a real matrix, i.e., tap water fortified with 

various pesticides, such as atrazine and glyphosate (non-electroactive molecules) and 

dichloroprop (structural analog of MCPA and electroactive) and adding increasing amounts 

of MCPA. The voltammograms of these experiments were submitted to PCA analysis.  

Three groups can be identified: the group corresponding to the calibrations performed in 

unmodified tap water, the one of the tap water samples spiked with a high level of 

interferents, and the group corresponding to tap water samples spiked with a low level of 

interferents. Consequently, the need to create ad hoc PLS models for the different types of 

samples analyzed has emerged. All these matrix-matched models have also proven 

robustness and have good predictive capabilities. From the results of these models, the 

percentage recoveries for the samples used as a validation test are calculated, and the 

values range from 80 % to 110 %, which is the limit of acceptability for the recovery yields 

in environmental samples. 
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4 CONCLUSIONS AND FUTURE PERSPECTIVES 
This research project presents the development and applications of disposable and low-

cost colorimetric and electrochemical sensors for the detection of analytes of 

environmental and food interest. 

Two examples of colorimetric Paper-based Analytical Devices (PADs) are described. 

The first one is a completely green array of PADs for pH detection, obtained by 

impregnating filter paper scraps with aqueous vegetable extracts, allowing rapid and 

economical preparation10. Natural dyes extracted from red cabbage (Brassica oleracea) and 

butterfly pea flower (Clitoria ternatea) are selected because of a wide range of color 

variations with pH changes. The RGB space model was applied to correlate the PADs’ color 

variation with the pH of aqueous solutions. Multi-technique chemometric models are 

developed to determine the pH value, starting from the RGB triplet of each sensing PAD. 

Unsupervised techniques are first applied to visualize and rationalize the overall data set, 

i.e., Three-way Principal Components Analysis (3WPCA) and Principal Components Analysis 

(PCA). This approach allows for identifying pH subintervals and thus developing tailored 

Partial Least Square regression (PLS) models.  The models obtained are validated by 

applying them to the analysis of real samples of different pH (natural waters, soft drinks, 

face lotions, etc.), and, despite scarce precision, a good agreement between the pH values 

is obtained. The pretty good results are promising and allow us to assert that the PLS 

models at pH intervals for the PADs’ array are suitable for measuring pH in real aqueous 

samples, as long as they are not colored. 

The second colorimetric sensor is the TazoC-PAD in which the receptor is an azoic ligand, 

(2-(tetrazolylazo)-1,8 dihydroxy naphthalene-3,6,-disulphonic acid), termed TazoC and the 

substrate the filter paper. The sensor is developed for the selective Pd(II) determination 

from very acidic aqueous solutions82. A proper application of the chemometric tool, PLS, 

permits the building spectrum/Pd(II) concentration correlation models, using the whole 

spectrum as the signal accounting for changes in shape and height of the spectrum peaks. 

Different tailored PLS models are developed and validated, highlighting the need to 
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perform calibrations in the media of interest to overcome interferences and complex 

matrix problems. The developed PLS models are adequate for predicting the Pd(II) 

concentrations even in the presence of interfering cations and in real matrices since there 

is pretty good agreement between experimental and fitted values. 

Other minor contributions of mine, always in the colorimetric sensors field, are in 11 

research papers22,23,207,25–29,35,82,155 and 6 reviews46,207,209–212 written in collaboration with 

my research group during the COVID-19 lockdown period. 

The central part of the research project is devoted to the development and application of 

electrochemical sensors, both potentiometric and voltammetric. In all cases, screen-

printed cells are employed, aiming to realize disposable, easy-to-handle, and adaptable to 

on-site analysis devices. The surfaces of the working electrodes are modified to improve 

the selectivity and, in some cases, even the method's sensitivity. 

Two different kinds of electrode modifications are applied: the surface covering with a self-

assembled monolayer (SAM) of a functionalizable thiol or a molecularly imprinted polymer 

(MIP). 

The first two devices developed are potentiometric sensors in which the molecularly 

imprinted polymer over the working electrode surface acts as an ion-selective 

membrane18,19. 

The sensors are designed to detect atrazine and phenoxy herbicides. In both cases, before 

and after the modification, the working electrode surface is characterized by determining 

the active area and evaluating the electrochemical impedance spectra; the non-conductive 

nature of the acrylic polymer film coverage is confirmed. The pretty good analytical figures 

of merits obtained are promising for the applications of both sensors to contaminated 

environmental samples. 

In the subsequent two voltammetric sensors, the gold working electrode surface of screen-

printed cells is covered by a SAM of a thiol. In the first case, the direct detection of Fe(III) is 

proposed by exploiting the complexation of the metal cation with the deferoxamine 

residual linked to the carboxylic group of the 3-mercaptopropionic acid immobilized as a 

SAM on the gold electrode214. The surface of the working electrode is characterized before 

and after functionalization by determining surface properties such as the area and the 

double-layer capacitance. The Fe(III) detection is performed by DPV analysis after 

preconcentration of the cation at the open circuit potential in solution at pH = 1 for two 
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minutes. The method is applied to the iron(III) quantification in natural water samples, 

giving promising results. 

The other SAM-modified sensor is developed for the indirect detection of glyphosate215. 

The challenge in this case is due to the non-electroactive nature of the analyte. For this 

purpose, a chemically modified gold working electrode of the screen-printed cell is 

obtained by covering the electrode surface with a cysteamine-copper self-assembled 

monolayer (SAM). The method exploits the interaction of glyphosate with copper ions 

complexed by cysteamine, which results in a decrease in the intensity of copper redox 

current. Cyclic voltammetry is employed as the measuring technique. When dealing with 

voltammograms with numerous peaks changing in shape and size, it is difficult to define 

which signal is the most significant for the analyte determination; in these cases, a helpful 

approach is chemometrics. Although chemometrics is still poorly applied in the 

electroanalytical field, in this work, PLS (Partial Least Square regression) is applied to build 

models to correlate the signal with the glyphosate concentration in standard aqueous 

solutions and tap water samples (matrix-matched calibration). The method’s figures of 

merits are evaluated, obtaining a limit of quantification of about 5 μM. The reliability of the 

proposed sensor is verified by analyzing tap water spiked with glyphosate, and recoveries 

higher than 90 % are achieved. 

The last three voltammetric sensors are all realized, covering the graphite working 

electrode surface of the screen-printed cell with a molecularly imprinted polymer.  

Only the sensor for the Irbesartan detection is based on an acrylic MIP16. In this case, the 

composition of the prepolymeric mixture of template, functional monomer and cross-linker 

is optimized by a full factorial experimental design. The optimal mixture is drop-coated on 

the working electrode surface, and the thermal polymerization is carried out. The square 

wave voltammetry (SWV) Is the technique applied. The whole analysis is replicated with 

different SPCs, obtaining similar results, which highlight the good reproducibility potential. 

These sensors are applied to determine Irbesartan in fortified tap water samples, obtaining 

high recovery percentages. Given the good results, the method is promising for quantifying 

Irbesartan at a trace level. 

Finally, the last two sensors are based on screen-printed cells in which the working 

electrode is modified with electropolymerized molecularly imprinted polypyrrole (e-MIP). 
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The first is devoted to the determination of ascorbic acid17; differential pulse voltammetry 

(DPV) is the selected method for the analysis. The ascorbic acid molecules are successfully 

entrapped in the polypyrrole film, creating the recognition sites. The best results are 

obtained after polypyrrole overoxidation. A comparison with the bare and the not-

imprinted polypyrrole-modified electrodes shows that the e-MIP-based sensor has the 

highest selectivity and reproducibility. The developed method is applied to assess ascorbic 

acid in farmaceutical products, obtaining values that are not significantly different from the 

declared content by the pharmaceutical companies. 

The last e-MIP-based voltammetric sensor is developed for the selective detection of the 

MCPA herbicide. Differential pulse voltammetry (DPV) is the technique employed, 

exploiting the irreversible oxidation peak of the analyte at about + 1.2 V in phosphate buffer 

at pH 5.5. Due to the high background currents observed in these experimental conditions 

that could limit the possibility of detecting concentrations below 10 μM, multivariate data 

treatment is effectively used. Therefore, it is decided to apply a multivariate analysis, and 

in particular, the Partial Least Square regression (PLS) that allows correlation between the 

entire voltammogram and the analyte concentration. To further improve the merit figures 

of the method, the voltammetric signals are pretreated via a first derivative smoothing 

filter: the Savitsky-Golay. The PLS model is built firstly with solutions at different MCPA 

concentrations in phosphate buffer at pH 5.5; subsequently, measurements are performed 

in a real matrix, i.e., tap water fortified with various pesticides and adding increasing 

amounts of MCPA. By projecting the DPV voltammograms of these experiments into the 

PLS model in phosphate buffer, it was found that the model cannot correctly predict MCPA 

concentrations in real matrix samples. The need to create ad hoc PLS models for the 

different types of samples analyzed has emerged. All these matrix-matched models have 

also proven robustness and have good predictive capabilities. From the results of these 

models, the percentage recoveries for the samples used as a validation test are calculated, 

and most of these values range from 80 % to 110 %; only in some cases are slightly higher 

than the limits of acceptability for the recovery yields in environmental samples. This work 

will be submitted to “A special issue to honor contributions of women to the field of Sensors 

and Actuators” (Journal Sensors and Actuators Reports, Elsevier). 
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Regarding both parts (colorimetric and electrochemical sensors), my three-year research 

production is summarised in 19 research articles published in international peer-reviewed 

journals16,17,29,31,35,45,76,82,152,155,207,215,18,216,217,19,22,23,25–28. 

Moreover, I had consistent participation to Italian and International conferences as the 

presenting author in oral and poster contributions concerning my research. 

 

Although pretty good results are obtained, some other experiments must be done mainly 

to improve the reproducibility and sensitivity of both colorimetric and electrochemical 

sensors. Moreover, the development of sensor arrays will be a future challenge for the 

realization of the devices and for the data processing that will be entirely performed with 

chemometric techniques.



 ii 
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6 APPENDIX 
6.1 Appendix I: Reagents and instruments 

6.1.1 Reagents 

6.1.1.1 Reagents for “Green-PAD array for pH measurements” and “TazoC-PADs for Pd(II) 
detection” (paragraphs 2.3 and 2.4) 

o Distillated water (Chemistry Department, University of Pavia) 

o The tap water (Chemistry Department, University of Pavia, Italy)  

o Cellulose filter paper Whatman grade 1 (Laboindustria S.p.a., Arzergrande, Italy,)  

o Red cabbage (Brassica oleracea) (Supermarket, Pavia, Italy) 

o Butterfly pea flower (Clitoria ternatea) (Supermarket, Pavia, Italy) 

o TazoC molecule (synthesized as reported in literature86)  

o Hydrochloric acid (Merk Life Science S.r.l., Milan, Italy, CAS:7647-01-0) 

o Sodium orthophosphate (Merk Life Science S.r.l., Milan, Italy,  CAS: 7558-79-4) 

o Sodium hydroxide (Merk Life Science S.r.l., Milan, Italy, CAS: 1310-73-2) 

o Palladium standard 1g/L, TraceCERTÒ (Supleco-Merk Life Science S.r.l., Milano, Italy, 

CAS: 207349) 

o Copper standard 1g/L, TraceCERTÒ(Merk Life Science S.r.l., Milano, Italy, CAS: 

68921)    

o Nickel standard 1g/L, TraceCERTÒ (Merk Life Science S.r.l., Milano, Italy, CAS: 28944)  

o Acetic acid (Merk Life Science S.r.l., Milano, Italy, CAS: 64-19-7)  

o Ammonia cleaner (S.a.i.soc.alcoli Insutriali Sas, Italy)  

o Tropical Aloe Vera drink (Eurofood S.p.A. Italy)  

o Scheppes tonic water (Schweppes International Limited, Italy)  

o Sprite (Coca-Cola S.r.L., Italy)  

o White wine vinegar “Gaia” (Formec Biffi S.p.A., Italy)  

6.1.1.2 Reagents for “MIP-modified screen-printed potentiometric sensors for Atrazine 
and phenoxy herbicides” and “MIP-based scree-printed electrode for Irbesartan 
sensing” (paragraphs 3.3 and 3.6) 

o Methacrylic acid (MAA) (Merk Life Science S.r.l., Milan, Italy,, CAS: 79-41-4)  

o Ethylene glycol dimethacrylate (EGDMA) (Merk Life Science S.r.l., Milan, Italy, CAS: 

97-90-5)  
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o 2,2-azobisisobutyronitrile (AIBN) (Merk Life Science S.r.l., Milan, Italy, CAS: 78-67-

1) 

o Atrazine PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, Italy, 

CAS:1912-24-9) 

o Simazine PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, Italy, CAS: 

122-34-9) 

o Ametryn PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, Italy, 

CAS:834-12-8) 

o Bentazone PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, Italy, CAS: 

24057-80-0) 

o MCPA PESTANAL®analytical standard (Sigma-Aldrich, Milan, Italy, (Merk Life 

Science S.r.l., Milan, Italy, CAS: 94-74-6) 

o Mecoprop PESTANAL®analytical standard (Sigma-Aldrich, Milan, Italy, (Merk Life 

Science S.r.l., Milan, Italy, CAS: 93-65-2) 

o Dichloroprop PESTANAL®analytical standard (Sigma-Aldrich, Milan, Italy, (Merk Life 

Science S.r.l., Milan, Italy, CAS:15165-67-0) 

o 2,4-D Pestanal PESTANAL®analytical standard (Sigma-Aldrich, Milan, Italy, (Merk 

Life Science S.r.l., Milan, Italy CAS: 94-75-7) 

o Irbesartan (Merk Life Science S.r.l., Milan, Italy, CAS: 138402-11-6) 

o Losartan (Merk Life Science S.r.l., Milan, Italy, CAS: 114798-26-4) 

o Ethanol (Merk Life Science S.r.l., Milan, Italy, CAS:6 4-17-5) 

o Methanol (Merk Life Science S.r.l., Milan, Italy, CAS: 67-56-1) 

o Toluene (Merk Life Science S.r.l., Milano, Italy, CAS: 108-88-3)   

o Acetic acid (Merk Life Science S.r.l., Milan, Italy, CAS: 64-19-7) 

o Hydrochloric acid (Merk Life Science S.r.l., Milan, Italy, CAS:7647-01-0) 

o Nitric acid (Merk Life Science S.r.l., Milan, Italy CAS: 7697-37-2) 

o Sodium perchlorate (Merk Life Science S.r.l., Milan, Italy CAS: 7601-89-0) 

o Sulfuric acid (Merk Life Science S.r.l., Milan, Italy CAS: 7664-93-9) 

o Sodium dihydrogen phosphate (Merk Life Science S.r.l., Milan, Italy, CAS: 7558-80-

7 )  

o Sodium hydroxide (Merk Life Science S.r.l., Milan, Italy, CAS: 1310-73-2) 

o Sodium orthophosphate (Merk Life Science S.r.l., Milan, Italy, CAS: 7558-79-4) 
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o Potassium hexacyanoferrate (III) (Merk Life Science S.r.l., Milan, Italy, CAS: 13746-

66-2)  

o Tap water (Lab sink, Department of Chemistry, University of Pavia) 

o Graphite screen-printed cells with three electrodes (Topflight Italia (S.P.A.), 

Vidigulfo, Italy) 

6.1.1.3 Reagents for “SAM-modified screen-printed gold electrode for Fe(III) detection” 
and “Cysteamine-copper SAM-modified screen-printed gold electrode for 
glyphosate determination” (paragraphs 3.4 and 3.5) 

 
o 3-Mercaptapropionic acid (MPA)(Merk Life Science S.r.l., Milano, Italy,CAS: 

1291000) 

o Cysteamine (Cys, NH2CH2CH2SH, 95%) (Merk Life Science S.r.l., Milano, Italy, CAS: 

60-23-1) 

o N-(3-dimethylaminopropyl)-Nʹ-ethylcarbodiimide hydrochloride (EDC) (Merk Life 

Science S.r.l., Milano, Italy, CAS: 25952-53-8) 

o N-hydroxysuccinimide (NHS) (Merk Life Science S.r.l., Milano, Italy, CAS: 6066-82-6) 

o Ethanol (Merk Life Science S.r.l., Milano, Italy, CAS: CAS:6 4-17-5) 

o Potassium hexacyanoferrate (III) (Merk Life Science S.r.l., Milano, Italy, CAS: 13746-

66-2)  

o Sodium orthophosphate (Merk Life Science S.r.l., Milano, Italy, CAS: 7558-79-4) 

o Sulfuric acid (Merk Life Science S.r.l., Milano, Italy, CAS: 7664-93-9) 

o Sodium perchlorate (Merk Life Science S.r.l., Milan, Italy, CAS: 7601-89-0) 

o Sodium hydroxide  (Merk Life Science S.r.l., Milano, Italy, CAS: 1310-73-2) 

o Iron standard 1g/L, TraceCERTÒ( (Merk Life Science S.r.l., Milano, Italy, CAS: CAS: 

43149) 

o Copper standard 1g/L, TraceCERTÒ(Merk Life Science S.r.l., Milano, Italy, CAS: 

68921)    

o Deferoxamine mesylate salt (Desferal, DFO-Novartis Pharma S.p.A, Origgio (VA)) 

o Glyphosate powder (PESTANAL®, analytical standard, Merk Life Science S.r.l., 

Milano, Italy, CAS: 1071-83-6)  

o Gold screen-printed three-electrode cells with ceramic support 

(Metrohm/DropSens, Metrohm Italiana Srl, Orig- gio (VA), Italy 
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6.1.1.4 Reagents for “Ascorbic acid sensing by e-MIP-modified screen-printed electrodes” 
and “e-MIP-modified screen-printed electrode for the voltammetric detection of 
MCPA” (paragraphs 3.7 and 3.8) 

o Pyrrole (98%, Merk Life Science S.r.l., Milan, Italy, CAS: 109-97-7)  

o Lithium perchlorate (Merk Life Science S.r.l., Milan, Italy, CAS:7791-03-9) 

o Sodium dihydrogen phosphate (Merk Life Science S.r.l., Milan, Italy, CAS: 7558-80-

7 )  

o MCPA PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, Italy Italy, CAS: 

94-74-6) 

o Dichloroprop PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, Italy, 

CAS:15165-67-0) 

o Atrazine PESTANAL®analytical standard (Merk Life Science S.r.l., Milan, 

Italy,CAS:1912-24-9) 

o Glyphosate powder (PESTANAL®, analytical standard, Merk Life Science S.r.l., 

Milano, Italy, CAS: 1071-83-6)  

o L-Ascorbic acid (Supelco—Merk Life Science S.r.l., Milan, Italy,CAS: 50-81-7) 

o Sodium orthophosphate (Merk Life Science S.r.l., Milan, Italy, CAS: 7558-79-4) 

o Hydrochloric acid (Merk Life Science S.r.l., Milan, Italy, CAS:7647-01-0) 

o Sodium hydroxide (Merk Life Science S.r.l., Milan, Italy, CAS: 1310-73-2) 

o Ethanol (Merk Life Science S.r.l., Milano, Italy, CAS: CAS:6 4-17-5) 

o Acetic acid (Merk Life Science S.r.l., Milan, Italy, CAS: 64-19-7) 

o Potassium hexacyanoferrate (III) (Merk Life Science S.r.l., Milan, Italy, CAS: 13746-

66-2)  

o VIVIN C® tablets (Menarini Industrie Farmaceutiche Riunite S.r.l., Firenze, Italy)  

o TIOBEC® 400 tablets (Laborest, Milan, Italy)  

o Graphite screen-printed cells with three electrodes( Topflight Italia (S.P.A.), 

Vidigulfo, Italy) 
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6.1.2 Instruments 

6.1.2.1 Instruments for colorimetric sensors 

o pH meter (Mettler Toled mod. SevenMulti) equipped with a combined glass 

electrode (InLab Pro, Mettler Toledo S.p.A. – Milan, Italy) 

o pH indicator paper, pH 1-14 Universal Indicator (Merk Life Science S.r.l. – Milan, 

Italy). iPad Pro 10.5 (Apple Inc., Italy) 

o led-based lightbox (PULUZ, Shenzhen Puluz Technology Ltf, China) 

o The GIMP software60  

o Arduino-based RGB detector (designed by Eng. Dario Pistoia)  

o Jasco V-750 spectrophotometer equipped with an FLH-740 film holder and a 

homemade clip designed to make the spectrum acquisition quick and easy 

o Open-source R-based software CAT (Chemometric Agile Tool)  

 
F6.1.2.1- 1. The homemade clip customized to the FLH-740 film holder of the Jasco V-750 UV-vis spectrophotometer. 

 

6.1.2.2 Instruments for electrochemical sensors 

 

o Ultrasonic bath AU-32 Argo Lab with ultrasound power 120 W(Tecno-Lab, Milan, 

Italy) 

o pH-meter Mettler Toledo mod. SevenMulti, equipped with a combined glass 

electrode InLab Pro (Mettler Toledo, Milan, Italy) 

o Potentiostat/galvanostat EmStat4s-PalmSens BN (Houten-The Netherlands 

https://www.palmsens.com/product/emstat4s/ (accessed on 7 June 2022)). 

o Scanning electron microscopy (SEM) Zeiss EVO MA10 (Zeiss, Jena, Germany) 

 

https://www.palmsens.com/product/emstat4s/
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6.2 Appendix II – Green-PAD array for pH measurements (3-
Way PCA matrixes, loadings of PCA Dataset description 
and visualization and ANOVA studies) 

 
 
 
T 6.2- 1. Core matrix and superdiagonal core matrix of the 3-way PCA 

Core Matrix     
 1,1 2,1 1,2 2,2 

1 -15.587 -1.7614 1.3805 -3.8604 

2 -5.0311 1.3126 -0.99562 10.265 

     
Superdiagonalized Core Matrix   
 1,1 2,1 1,2 2,2 

1 -16.448 0.21322 -0.4775 -0.56875 

2 -0.22332 -0.81467 0.39549 -11.147 

 
 
 
 

 
F 6.2- 1. Loading Plot of PC1 and PC2. 

.  
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F 6.2- 2. Model performances in acid a), neutral b) and basic c) conditions. RGB indexes are obtained from pcitures of 

the sensors using GIMP software. 
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F 6.2- 3. Model performances in acid a), neutral b) and basic c) conditions. RGB indexes are obtained using the RGB 

detector. 
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T 6.2- 2. Results of the ANOVA used to compare the pH values obtained using the glassy carbon electrode (GE), the RGB 

values obtained from the pictures (GP1) and from the  RGB detector (GP2) of the Green PADs. 

 

 GE GP(1) GP(2) 
1 2.39 2.4 2.35 
2 2.72 2.9 2.84 
3 3.05 2.8 3.03 
4 3.55 4.5 3.51 
5 7.68 7.3 7.77 
6 10.73 10.7 10.8 

 
 

SUMMARY Counting Sum Average Variance 
1 3 7.2 2.4 0.001 
2 3 8.5 2.8 0.008 
3 3 8.9 3.0 0.019 
4 3 10.6 3.5 0.001 
5 3 22.8 7.6 0.062 
6 3 32.2 10.7 0.003 

     
GE 6 30.1 5.0 11.6 
GP(1) 6 29.6 4.9 11.2 
GP(1) 6 30.3 5.1 11.8 

 
VARIANCE ANALYSIS 
Origin of varaince SQ gdl MQ F Significance F crit 
Rows 172.8848 5 34.57697 2403 4.66E-15 3.33 
Colums 0.044044 2 20.022022 1.5 0.263098 4.10 
Error 0.143889 10 100.014389    
       
Total 173.0728 17     
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6.3 Appendix III – PLS data (Training set, Test set 
compositions, and model performances) of the TazoC-
PADs for Pd(II) determination (paragraph 2.4)  

 
T 6.3- 1. PLS model Pd(II)/TazoC-Pads pH 2: Experimental and fitted data 

Training set Test set 
Exp. [Pd] µM Fit [Pd] µM Exp. [Pd] µM Fit [Pd] µM 

2.6 2.1 7.5 7.8 
2.6 2.5 7.5 8.7 
2.6 2.2 7.5 6.8 
4.9 5.1 25.2 24.3 
4.9 6.5 25.2 26.8 
4.9 4.5 25.2 25.3 

10.1 11.3 42.5 43.4 
10.1 10.8 42.5 41.2 
10.1 9.7 42.5 44.9 
19.9 21.9   
19.9 21.9   
19.9 20.0   
30.1 28.5   
30.1 27.8   
30.1 28.1   
39.8 41.4   
39.8 41.5   
39.8 40.3   
50.0 50.7   
50.0 47.4   
50.0 49.5   

 



 xxvii 

 
F 6.3- 1. PLS model Pd(II)/TazoC.PADs pH 4: Model performances 

 
T 6.3- 2. PLS model Pd(II)/TazoC-Pads pH 4: Experimental and fitted data 

Training set Test set 
Exp. [Pd] µM Fit [Pd] µM Exp. [Pd] µM Fit [Pd] µM 

2.6 2.1 7.5 5.6 
2.6 3.6 7.5 5.9 
2.6 3.2 7.5 8.1 
4.9 5.4 25.2 24.9 
4.9 4.9 25.2 26.7 
4.9 4.3 25.2 27.2 

10.1 7.9 37.6 38.2 
10.1 9.3 37.6 38.6 
10.1 11.6 37.6 41.9 
19.9 17.9   
19.9 20.9   
19.9 21.7   
30.1 28.8   
30.1 29.7   
30.1 30.0   
39.8 39.0   
39.8 40.5   
39.8 39.9   
50.0 52.3   
50.0 49.3   
50.0 50.0   
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F 6.3- 2.PLS model Pd(II)/TazoC.PADs pH 5.5: Model performances 

 
T 6.3- 3.PLS model Pd(II)/TazoC-Pads pH 5.5: Experimental and fitted data 

Training set Test set 
Exp. [Pd] µM Fit [Pd] µM Exp. [Pd] µM Fit [Pd] µM 

2.6 2.8 8.3 11.4 
2.6 3.3 8.3 9.3 
2.6 3.4 8.3 9.9 
4.9 5.3 27.7 28.5 
4.9 4.6 27.7 28.1 
4.9 4.0 27.7 30.3 

10.1 10.7 41.3 41.6 
10.1 9.6 41.3 42.1 
10.1 10.0 41.3 40.9 
19.9 19.9   
19.9 19.7   
19.9 20.2   
30.1 29.5   
30.1 30.8   
30.1 30.0   
39.8 39.6   
39.8 40.9   
39.8 38.9   
50.0 48.7   
50.0 48.2   
50.0 52.7   
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F 6.3- 3.PLS model Pd(II)+Cu(II)/TazoC.PADs pH 4: Model performances 

 
T 6.3- 4.PLS model Pd(II)+Cu(II)/TazoC-PADs pH 4: Experimental and fitted data 

Training set Test set 
[Cu] µM Exp.[Pd] µM Fit [Pd] µM [Cu] µM Exp. [Pd] µM Fit [Pd] µM 

5.0 0.0 0.6 20.5 3.8 3.9 
10.1 0.0 0.6 0.0 3.8 3.8 
20.5 0.0 0.5 20.5 7.5 7.3 
0.0 5.0 3.6 0.0 7.5 7.7 
5.0 5.0 4.5 5.0 15.0 15.8 

10.1 5.0 4.5 10.1 15.0 14.9 
0.0 10.3 10.6 3.8 3.8 3.6 

10.1 10.3 11.8 14.9 3.8 4.5 
5.0 19.7 19.2 3.8 7.5 7.9 

10.1 19.7 19.4 14.9 7.5 6.9 
20.5 19.7 19.9 3.8 15.0 15.3 
3.8 0.0 -0.4    

14.9 0.0 -0.2    
3.8 0.0 0.6    
7.6 5.0 4.5    

14.9 5.0 5.3    
7.6 5.0 5.3    

14.9 10.3 11.0    
0.0 10.3 10.8    
5.0 10.3 11.0    

10.1 19.7 10.4    
20.5 19.7 19.4    
5.0 19.7 18.7    
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F 6.3- 4.PLS model Pd(II)+Cu(II)+Ni(II)/TazoC.PADs pH 5.5: Model performances 

 
T 6.3- 5.PLS model Pd8II)+Cu(II)+Ni(II)/TazoC-PADs pH 5.5: Experimental and fitted data 

 Training set  Test set 
[Cu] µM [Ni] µM Exp.[Pd] 

µM 
Fit [Pd] 
µM 

[Cu] µM [Ni] µM Exp. [Pd] 
µM 

Fit [Pd] 
µM 

0.0 20.5 0.0 -0.1 4.7 30.7 0.0 -0.2 
0.0 30.7 0.0 -0.1 0.0 30.7 4.7 4.0 
0.0 40.1 0.0 0.0 15.7 3.7 12.5 12.0 
7.9 30.7 0.0 0.3 0.0 30.7 10.3 10.9 
9.4 30.7 0.0 -0.1 15.7 0.0 15.0 16.3 
3.1 30.7 3.8 3.7     
7.9 15.7 3.8 2.9     

15.7 0.0 3.8 4.1     
0.0 30.7 7.5 7.3     
3.1 0.0 7.5 7.4     
7.9 20.5 7.5 8.0     
3.1 7.5 15.0 14.4     
7.9 0.0 15.0 15.2     
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F 6.3- 5.PLS model Pd(II)/TazoC-PADs TW: model performances 

 
T 6.3- 6. PLS model Pd(II)/TazoC-PADs TW: Experimental and fitted data 

Training set Test set 
Exp. [Pd] µM Fit [Pd] µM Exp. [Pd] µM Fit [Pd] µM 

2.6 1.7 7.5 8.2 
2.6 4.1 7.5 7.6 
2.6 3.3 7.5 8.5 
4.9 7.5 25.2 27.1 
4.9 5.5 25.2 24.5 
4.9 4.6 25.2 26.4 

10.1 9.1 44.6 45.9 
10.1 10.3 44.6 43.0 
10.1 10.4 44.6 42.8 
19.9 19.8   
19.9 21.6   
19.9 19.9   
30.1 27.1   
30.1 29.3   
30.1 31.5   
39.8 39.6   
39.8 29.9   
39.8 41.9   
50.0 51.7   
50.0 48.2   
50.0 48.3   

 



 xxxii 

6.4 Appendix IV – Optimization data (levels of variables, 
coefficient plots and their significance and the model 
equation) for SWV experimental conditions for bare and 
MIP-modified electrodes for Irbesartan detection 
(paragraph 3.6) 

a) Optimization of the SWV experimental conditions for the bare electrode 
  

 
T 6.4- 1.Optimization of the SWV experimental conditions for the bare electrode by a full factorial design 23: level 

definitions for the parameters considered. 

Parameter Minimum level (-1) Maximum (+1) 

Frequency (Fz, Hz) 1 50 

Impulse amplitude (A, mV) 50 100 

Equilibration time (t,s) 120 300 

 
F 6.4- 1. DoE to optimize the SWV experimental conditions for the bare electrode. The greatest values and little black 

stars(regardless the sign) suggest a significant influence of the respective parameter or interaction and significance 

(*p£’0.05,***p£0.001). 

 

 
Model equation can be written as follows:  
 :7 = #! + #" ∙ ;c + ## ∙ C + #$ ∙ b + #"# ∙ ;c ∙ C + #"$ ∙ ; ∙ cb + ##$ ∙ C ∙ b 
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T 6.4- 2. Coefficients and significance (*p£’0.05,***p£0.001) calculated for the optimization of the SWV experimental 

conditions for the bare electrode by full factorial design 23. 

Coefficient Value Significance 

b0 5.586  

b1 1.402 *** 

b2 1.886 *** 

b3 -0.104  

b12 -0.102  

b13 1.117 *** 

b23 -2.166 *** 
 

 
 

T 6.4- 3. Optimization of the SWV experimental conditions for the bare electrode  by a full factorial design 23: model 

validation by six replicates at the center point [0 0 0],Fz=25 Hz, A=75 mV and t=156 s. CI = confidence interval 95% 

confidence level. 

 Ip (µA) 

Average 0.33 

Standard deviation 0.02 

Upper bound CI 0.35 

Lower bound CI 0.31 

Predicted response b0 0.3462 

 
 

b) Optimization of the SWV experimental conditions for the MIP- and NIP-modified 
electrodes 

 

T 6.4- 4. Optimization of the SWV experimental conditions for the MIP- and NIP- modified electrode by a full factorial 

design 23: level definitions for the parameters considered. 

Parameter Minimum level (-1) Maximum (+1) 

Frequency (Fz, Hz) 1 50 

Impulse amplitude (A, mV) 50 100 

Equilibration time (t,s) 210 300 
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F 6.4- 2. DoE to optimize the SWV experimental conditions for the MIP- and NIP- modified electrode. The greatest values 

and little black stars(regardelss the sign) suggest a significant influence of the respective parameter or interaction and 

significance (*p£’0.05,***p£0.001). 

Model equation can be written as follows<. 
 :7 = #! + #" ∙ ;c + ## ∙ C + #$ ∙ b + #"# ∙ ;c ∙ C + #"$ ∙ ; ∙ cb + ##$ ∙ C ∙ b 
 
T 6.4- 5. Coefficients and significance (*p£’0.05,***p£0.001) calculated for the optimization of the SWV experimental 

conditions for the MIP- and NIP- modified electrode by full factorial design 23. 

Coefficient Value Significance 

b0 0.2975  

b1 -0.2075 *** 

b2 -0.02  

b3 0.0325 * 

b12 0.0125  

b13 0.0075  

b23 -0.0275  
 
T 6.4- 6. Optimization of the SWV experimental conditions for the MIP- and NIP- modified electrode  by a full factorial 

design 23: model validation by six replicates at the center point [0 0 0],Fz=25 Hz, A=75 mV and t150 s. CI = confidence 

interval 95% confidence level. 

 Ip (µA) 

Average 0.299 

Standard deviation 0.003 

Upper bound CI 0.302 

Lower bound CI 0.296 

Predicted response b0 0.2975 
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6.5 Appendix V - e-MIP-modified screen-printed electrodes 
for the voltammetric detection of MCPA (electrode 
characterization and PLS model performaces) 
(paragraph 3.8) 

 

 
F 6.5- 1. CV at different scan speeds of MCPA, 2.5 mM MCPA, PBS 0.1 M at pH 5.5. a) bare working electrode; b) eMIP-

modified working electrode 
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T 6.5-1. Regression line equaoons of the various graphs (see column 1) obtained from CVs data that were used to evaluate 

the electrochemical parameters related to the electrochemical process at the bare and eMIP-modified electrodes. 

c = concentraoon (mg/L); v = scan speed (V·s−1); i= current intensity (A); E = potenoal (V). The number between 

parentheses refers to the uncertainty on the last digit. 

*Obtained from the calibraoon curves, ip (DPV) vs. c, concentraoon range from 10 mg/L to 200 mg/L. 

 

 
 
 

 
F 6.5- 2. Calibration curves in three different mediums: PBS 0.1 M at pH 5.5, PBS 0.1 M at pH 7, and acetate buffer at pH 

4.5. DPV measurements: the anodic peak current at +0.9V is plotted vs. MCPA concentration. 
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PBS 0.1 M pH 5.5

PBS 0.1 M pH 7

acetate buffer pH 4.5

 Bare electrode eMIP-modified electrode 

 slope intercept R2 slope intercept R2 

E vs. log v 0.19(2) 1.302(2) 0.990 0.165(3) 1.288(2) 0.996 
E vs. v 0.76(6) 1.080(4) 0.959 1.3(1) 0.999(6) 0.954 

log i vs. log v 0.65(1) -4.15(2) 0.984 0.71(1) -4.36(1) 0.995 
i vs. v1/2 7.3(2)·10-5 -4(2)·10-6 0.986 5.4(1)·10-5 -9.3(9)·10-6 0.994 

log i vs. log c* 1.13(3) +5.1(1) 0.998 1.38(5) 6.9(2) 0.999 
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F 6.5- 3. Model performances’ graphs for (a) PLS/S-G model MCPA in PBS 0.1 M pH 5.5; (b) PLS/S-G model MCPA in tap 

water; (c) PLS/S-G model MCPA in tab water spiked with high-level interferents; (d) PLS/S-G model MCPA in tab water 

spiked with low-level interferents. The red arrow indicates the number of latent variables selected to build the PLS model. 


