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Chapter 1

Introduction

Partial differential equations (PDE) arise throughout physics, engineering, and nat-
ural sciences, typically modelling problems where the exact solutions are impossible
to calculate. Numerical analysis is the branch of mathematics that addresses such
continuous problems through numeric approximation. It involves developing meth-
ods that provide approximate yet accurate numeric solutions. Among the numerical
methods designed for solving PDEs, the finite element method (FEM) stands as
the state of the art. However, a primary challenge with FEM is the need to ap-
proximate the computational domain, usually described by a computer-aided design
(CAD) file, for instance, through triangulation. This approximation of the geometry
systematically introduces an error source, and refining the triangulation becomes a
computationally expensive process.

To address this disparity between FEM and CAD, isogeometric analysis (IgA)
has been introduced by Hughes et al. in the seminal paper [63]; see also the book
[29]. IgA serves as an extension of FEM, significantly improving interoperability
between CAD and solvers for PDEs. Indeed, IgA is based on the adoption of the
same functions that describe the CAD geometry (usually B-splines and Non-Uniform
Rational B-splines, that is NURBS) to construct and represent the approximated so-
lution of the PDE. Thanks to an exact representation of the computational domain,
the error due to the approximation of the geometry is thus eliminated.

From a more theoretical perspective, the mathematical analysis of isogeometric
methods, on one hand, borrows from classical spline theory, for instance see [34, 95],
but on the other hand it has stimulated new developments and interesting new open
questions. The theory of h-refinement of isogeometric spaces and methods, that
is, the study of convergence that is achieved by refining the mesh, was developed
in [4] and [14], the latter covering anisotropic refinements. The refinement of the
spline spaces can be achieved not only by the classical p-refinement (order elevation)
and h-refinement (knot insertion) procedures, already present in FEM, but also by
the new k-refinement, that is order elevation followed by knot insertion, see [63].
The k-refinement leads to possibilities previously unavailable in FEM, for instance
the direct discretization of high order PDEs, the use of continuous stresses and
the development of collocation methods. In addition, the higher regularity of the
basis functions brings several advantages: higher accuracy per degree-of-freedom
[41], robust approximation of non-smooth functions [25], better approximation of
the spectrum [30].

Isogeometric methods have been used and tested on a variety of problems of
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engineering interest. There is indeed a large engineering literature showing the ben-
eficial effects of higher regularity in several practical problems. We report here a
few references. Isogeometric methods have been proposed for flow simulations in
the presence of turbulence [5, 9, 8], with conservative schemes [23, 43, 44], and
for higher-order models such as Cahn-Hilliard [54, 55]; for plate and shell analysis
[66, 65, 15, 11], where, in particular, the use of Kirchhoff models is made possible by
the higher regularity of splines; for nonlinear solid mechanics [40, 74, 39, 3], shape
optimization [110], fluid-structure interaction [6, 7]; for electromagnetic problems
[26, 31, 109, 108, 27], and more recently for plasma physics and magnetohydrody-
namics [68, 62]. Indeed, in the latter ones, the authors introduce energy conserva-
tive isogeometric discretizations specifically for the long-term study and simulation
of particle dynamics in plasma, as well as for the electrodynamics of phenomena
resulting from particle motion. In particular, in [62], high order B-spline spaces are
used together with implicit time splitting schemes, which could also be of high order.
However, a numerical analysis of the method is not easily attainable and remains
an open problem.

Moreover, in the recent theory of space-time methods, isogeometric analysis al-
lows high order discretizations simultaneously in space and time. It has been applied
to evolutionary equations of the parabolic type [71, 72], flow simulations [103, 102],
linear and non-linear elastodynamics [92] and wave propagation [46]. The modern
theory of linear solvers, and in particular the setup of preconditioners is under de-
velopment. This is an important aim from the viewpoint of real-world application of
isogeometric methods, and also a mathematical challenge, particularly with regard
to the high-degree high-regularity case. Some of the modern approaches for finite
elements have been extended to the isogeometric context. As regards space-time
discretizations, in particular for parabolic problems, multigrid solvers have been
proposed in [50, 60], while low rank approximations has been investigated in [82].
Sylvester type preconditioners based on Fast Diagonalization (FD) techniques have
been introduced in [85, 75].

Finally, well posed space-time variational formulations has been recently intro-
duced for the linear Schrödinger equation. In [36], the authors propose two varia-
tional formulations that are proved to be well posed in one dimensional space do-
mains: a strong formulation, with no relaxation of the original equation, and an ul-
traweak formulation, that transfers all derivatives onto test functions. The proposed
discretization for the ultraweak form is based on a discontinuous Petrov-Galerkin
(DPG) method, and B-spline basis functions. In [56] a space–time ultraweak Trefftz
discontinuous Galerkin (DG) method for the Schrödinger equation has been pro-
posed, proving well-posedness and stability of the method, and optimal high-order
h-convergence error estimates in a skeleton norm, for one and two dimensional cases.
Recently, in [57], Hain and Urban proposed a well posed space–time ultraweak vari-
ational formulation that uses high order B-splines with maximum regularity and can
be extended to the isogeometric analysis framework.

Main contributions and structure of the thesis

The aim of this thesis is to contribute to the development of recent interesting nu-
merical methods in the context of isogeometric analysis: firstly, energy conservative
discretizations for initial-boundary value problems in mixed form, here proposed for
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the wave equation, and secondly, fast preconditioners for solving linear systems aris-
ing from space-time discretizations, here proposed for the heat – and Schrödinger –
equation.

The initial segment of this thesis is intricately linked to the aforementioned open
topic of the numerical analysis of the methods introduced in [68, 62]. Instead of
Vlasov-Maxwell’s equations, we consider a simplified model problem of hyperbolic
PDEs, specifically the wave equation in mixed form. We introduce, for our model
problem, an isogeometric semi-discretization in space, building upon the methodolo-
gies outlined in [68] for Maxwell’s equations. In particular, we employed B-splines
discrete spaces forming a De Rham complex along with suitable commutative pro-
jectors. The semi-discretization is coupled with a Crank-Nicolson time stepping
scheme, and the fully discrete system is proved to be energy conservative. Our main
contribution lies in the development of a numerical analysis for the convergence of
the method, firstly for rigorous assumptions on the projections, and then for more
relaxed and practical conditions. The theoretical convergence analysis is comple-
mented by numerical results, and the numerical examples confirm the theoretically
shown energy conservation property of the proposed approach.

As mentioned above, the second part of this thesis is devoted to fast solvers for
space-time discretizations of evolutionary equations in the framework of isogeomet-
ric analysis. We start with a review of recently proposed preconditioners for the heat
equation, see [85, 75]. These preconditioners are represented by a suitable sum of
Kronecker products of matrices. The core idea for a fast application, is the factoriza-
tion of univariate pencils in the Kronecker structure, that makes the computational
cost of setup and application of the preconditioners very appealing. Indeed, the cost
of the setup is O(Ndof ) FLoating Point Operations (FLOPs), while their applica-

tion cost is O(N
(d+2)/(d+1)
dof ) FLOPs in d-dimensions, with d > 1. Unfortunately, the

fast diagonalization technique directly applied in time direction results unstable.
However, a simultaneous diagonalization can be achieved up to a low rank term,
typically related to the final degree of freedom, leading to ad-hoc stable factoriza-
tions like the arrow-head structure. Alongside the preconditioners mentioned above,
we propose a third approach relying on FD method and on Sherman-Morrison for-
mula, in order to deal with the low rank term. The computational cost of setup and
application of this new preconditioner is equivalent to the previous ones, resulting
in an competitive approach.

Lastly, we extend to Schrödinger type equations the ideas developed for the heat
equation. First of all, we extend the well posedness of the strong variational for-
mulation of [36] to smoothly parametrized isogeometric domains. We derive a well
posed space-time isogeometric Petrov-Galerkin discretization, that is essentially a
Galerkin approximation of the space-time least squares variational formulation of the
Schrödinger equation. We compare our discretization to the ultraweak space-time
discretization of [57]. The two discrete operators have essentially the same Kro-
necker structure between space and time, thus we proposed a preconditioner for the
least squares problem that can easily fit in the ultraweak framework. Our precondi-
tioner is stable and leads to a fast solver for the problem modeled in the parametric
domain. Indeed, analogously to the preconditioning techniques mentioned for the
heat equation, the computational cost of the setup is O(Ndof ) FLOPs, while its

application cost is O(N
(d+2)/(d+1)
dof ) FLOPs, again for d > 1. An extension of the

preconditioner to parametrized geometries is yet an open problem, and will require
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future investigations. More in general, both for heat and Schrödinger equations, the
extension of the preconditioners to multi-patch geometries is yet to be understood,
and hopefully this thesis may contribute to future developments in such direction.

In the remaining we give an overview of the structure of this thesis.

Chapter 2 We analyze the wave equation in mixed form, with periodic and/or
Dirichlet homogeneous boundary conditions, and nonconstant coefficients that
depend on the spatial variable. For the discretization, the weak form of the
second equation is replaced by a strong form, written in terms of a projection
operator. The system of equations is discretized with B-splines forming a De
Rham complex along with suitable commutative projectors for the approxima-
tion of the second equation. The discrete scheme is energy conservative when
discretized in time with a conservative method such as Crank-Nicolson. We
propose a convergence analysis of the method to study the dependence with
respect to the mesh size h, with focus on the consistency error. Numerical
results show optimal convergence of the error in energy norm, and a relative
error in energy conservation for long-time simulations of the order of machine
precision.

Chapter 3 We review preconditioning techniques based on fast diagonalization
methods for space-time isogeometric discretization of the heat equation. Three
formulation are considered: the Galerkin approach, a Galerkin L2 least squares
form and a continuous least squares approach. For each formulation, the heat
differential operator is written as a sum of terms that are Kronecker products
of univariate operators. These are used to speed-up the application of the
operator in iterative solvers and to construct a suitable preconditioner. Con-
trary to the fast diagonalization technique for the Laplace equation, where
all univariate operators acting on the same direction can be simultaneously
diagonalized, in the case of the heat equation this is not possible. Luckily,
this can be done up to an additional term that has low rank, allowing for the
utilization of arrow-head like factorization or inversion by Sherman-Morrison
formula. The proposed preconditioners work extremely well on the parametric
domain and, when the domain is parametrized or when the equation coeffi-
cients are not constant, they can be adapted and retain good performance
characteristics.

Chapter 4 We present a space-time least squares isogeometric discretization of the
Schrödinger equation and propose a preconditioner for the arising linear system
in the parametric domain. Exploiting the tensor product structure of the basis
functions, the preconditioner is written as the sum of Kronecker products of
matrices. Thanks to an extension to the Fast Diagonalization method, the
application of the preconditioner is efficient and robust w.r.t. the polynomial
degree of the spline space. The time required for the application is almost
proportional to the number of degrees-of-freedoms, for a serial execution.
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Chapter 2

Wave equation

The purpose of this chapter is to provide a numerical analysis of discretization
schemes applied to the wave equation in mixed form, with nonconstant coefficients,
in which one of the variational equations is replaced by a suitably projected equa-
tion within the discrete space, introducing a consistency error. The motivation
for our work stems from analogous discretization techniques recently proposed for
Maxwell’s equations, specifically in the long-term study and simulation of particle
dynamics in plasma, as well as for the electrodynamics of phenomena resulting from
particle motion [68, 62]. The simplified model problem of the wave equation allows
us to analyze the proposed method, paying particular attention to the introduced
consistency error.

The wave equation has been studied extensively in theory and numerical approx-
imations. Existence and uniqueness results are well known in literature [32, 45].
The present work considers the wave equation as a first order hyperbolic system,
introducing velocity and pressure fields following approaches found in prior works
[10, 53, 18]. For the resulting variational formulations in mixed form it is acknowl-
edged that the successful approximation of the problem requires suitable compati-
bility conditions within the involved discrete spaces [17]. In general, mixed methods
for the wave equation consider the discretization of vector fields in some H(div)-
conforming spaces while scalar fields in some L2-conforming spaces. To meet these
conditions, we construct discrete spaces that adhere to the De Rham complex of
exterior calculus [1], within the framework of isogeometric analysis [63].

Briefly, isogeometric analysis (IgA) utilizes spline functions, or their generaliza-
tions, for both representing the computational domain and approximating solutions
to the partial differential equation that models the relevant problem. This ap-
proach aims to streamline the interoperability between computer-aided design and
numerical simulations. Moreover, IgA derives advantages from the approximation
properties of splines, where their high continuity contributes to enhanced accuracy
compared to C0 piecewise polynomials. This characteristic is well-documented in
literature, [41, 20, 94]. As regards the De Rham complex for tensor-product B-
splines, initially introduced and analyzed by [24], it has found wide applications in
Galerkin approximation of Maxwell’s equations [91], and divergence-free methods
for incompressible fluid flow [42, 43, 44].

In this chapter, together with the discrete B-spline spaces of the De Rham com-
plex, we build quasi-interpolant projections that commute with the divergence op-
erator. Various families of quasi-interpolant operators have been defined and pre-
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sented in the context of spline approximation, [35, 78]. Here, analogously to what
has been done in [62, 69], we implement a local quasi-interpolant operator, as pre-
sented in [73], wherein explicit formulas are provided for computing the coefficients
of the projection. These explicit formulas entail pointwise evaluation of the func-
tion to be projected. Employing this operator, we project the second equation of
the variational formulation, reducing the problem to a single equation for the veloc-
ity. Subsequently, the pressure field is determined after the computation of velocity.
The resulting semi-discrete problem preserves the total energy of the system, as for
a standard Galerkin method.

Given our interest in preserving energy for long time simulations, the choice
of an energy-preserving method in time is mandatory. We adopt Crank-Nicolson
method which is a second order energy conservative time discretization. Other
time discretization methods that conserve energy can be applied with appropriate
modifications to the fully discrete system. The numerical tests show a relative error
in energy conservation for long time simulations of the order of machine precision.

Finally, error estimates in energy norm for Galerkin discretizations of mixed
formulations are well known in literature [17], and in particular for the wave equa-
tion in mixed form [18]. Here, as the main contribution of this work, we present
an error convergence analysis for our method with a generic family of projections,
focusing on the consistency error. By assuming good approximation properties of
the projections, together with its formal adjoint operator, we prove high-order con-
vergence with respect to the mesh size h. Since the specific quasi-interpolant that
we tested numerically does not fulfill the requirements on the adjoint operator, we
relax the assumption and prove that the numerical scheme converges linearly with
respect to the mesh size. Numerical simulations confirm optimal high-order conver-
gence for the implemented quasi-interpolant, similar to a standard Galerkin scheme,
which suggests that an improvement of our theoretical results can be achieved. The
global convergence of the scheme is of second order, as expected from the use of
Crank-Nicolson method.

The chapter is organized as follows. In Section 2.1 we present the model problem.
In Section 2.2 we provide a brief overview of the isogeometric framework. Section
2.3 introduces the discretization spaces along with commutative projections and
presents the discrete problem. In Section 2.4 we present the a priori error estimates
in energy norm. Implementation details are covered in Section 2.5, with numerical
results presented in Section 2.6, and finally, in Section 2.7 we draw our conclusions.

2.1 Model problem

We start presenting the wave equation and its formulation as a first order hyperbolic
system.

2.1.1 Strong formulation and boundary conditions

Let Ω ⊂ Rd be our domain, with d = 2, 3, and let the time domain interval I = [0, T ]
with T > 0. We consider our model problem, the second-order scalar wave equation

16 Alen Kushova Chapter 2



0 1

x̂1

0 1 2

x1

1

x̂2

1

2

x2

Ω̂

Γ̂P,1

Γ̂P,2

Γ̂D Γ̂D Ω

n1

ΓP,1

ΓD
n2 ΓP,2

ΓD

F

Figure 2.1. Isogeometric parameterization for the quarter of a bidimensional ring Ω
with mixed Dirichlet and periodic boundaries.

with space dependent coefficients, that reads like{
utt − div(c2∇u) = 0 in Ω× I,

u(·, 0) = u0, ut(·, 0) = u1 in Ω,
(2.1.1)

with the subscript ·t indicating the partial derivative with respect to time, u0 and
u1 are the initial conditions, and the coefficient c is a positive, uniformly bounded
and smooth scalar field in Ω. The problem has to be completed with boundary
conditions, that we will detail below. Following the idea in [53], by introducing the
new variables, v = c∇u and ϕ = ut, we rewrite (2.1.1) as a first order hyperbolic
system, in the form

vt = c∇ϕ in Ω× I,

ϕt = div(cv) in Ω× I,

v(·, 0) = c∇u0, ϕ(·, 0) = u1 in Ω.

(2.1.2)

We will discretize the problem with an isogeometric method, for which we will
assume that the domain is given by a parameterization of the form Ω = F (Ω̂), where

Ω̂ = [0, 1]d is the parametric domain, and F is the isogeometric map to be detailed in
Section 2.2. We split the boundary of Ω in two parts, with mutually disjoint interiors,
denoted ΓD = F (Γ̂D) and ΓP = F (Γ̂P ), respectively corresponding to Dirichlet and
periodic boundary sides. Moreover, for simplicity we assume that periodicity occurs
only in the last parametric direction, and split the periodic boundary into two parts,
ΓP,1 and ΓP,2, such that ΓP = ΓP,1 ∪ ΓP,2, where ΓP,i = F (Γ̂P,i) for i = 1, 2 with

Γ̂P,1 = [0, 1]d−1 × {0} and Γ̂P,2 = [0, 1]d−1 × {1}. An illustration of the isogeometric
map and the split of the boundary is given in Figure 2.1.

To impose the boundary conditions, for scalar fields we introduce the trace op-
erator γ : H1(Ω) → H

1
2 (∂Ω), γ : u 7→ u|∂Ω, and for vector fields the normal trace

operator γn : H(div; Ω) → H− 1
2 (∂Ω), γn : v 7→ v · n, with n the outgoing unit

normal at ∂Ω. In what follows, we make the assumptions that g does not depend
on the time t, and c is periodic, in the sense that its pull-back ĉ = c ◦F , is periodic
in the last parametric direction of Ω̂, that is, it satisfies periodicity conditions on
Γ̂P . Thus, Dirichlet boundary condition reads as

γ(u) = g on ΓD × I,
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while periodic boundary conditions are such that

γ(u), γ(ut), and γn(c∇u) are periodic on ΓP , for all t ∈ I.

Therefore, the Dirichlet and periodic boundary conditions for the first order system
(2.1.2) read as

ϕ = 0 on ΓD × I,

γn(v), γ(ϕ) are periodic on ΓP for all t ∈ I.

We remind that existence and uniqueness results for the solution u are well known,
see [45, Section 7.2.2], while the regularity of the solution will depend on the regu-
larity of the initial conditions [45, Section 7.2.3].

2.1.2 Weak formulation and conservation of energy

Let us define the following Hilbert spaces over Ω ⊂ Rd. L2(Ω) is the usual Hilbert
space of square integrable functions, endowed with the classical L2-norm ∥ · ∥L2(Ω).
By L2(Ω) we denote its vectorial counterpart. The Hilbert spaces Hk(Ω) denote the
functions in L2(Ω) such that their kth-order derivatives also belong to L2(Ω), and
their vectorial counterparts will be denoted by Hk(Ω). We define

H(c, div; Ω) := {v ∈ L2(Ω) : div (cv) ∈ L2(Ω)},
HP (c, div; Ω) := {v ∈ H(c, div; Ω) : γn(cv) is periodic on ΓP}.

We will also make use of the space Hk(div; Ω), the space of functions in Hk(Ω) such
that their divergence belongs to Hk(Ω). We can then write the weak formulation
of (2.1.2), that is: find v ∈ HP (c, div; Ω) and ϕ ∈ L2(Ω) such that the following
equations hold∫

Ω

vt ·w dx = −
∫
Ω

div(cw) ϕ dx ∀w ∈ HP (c, div; Ω), (2.1.3a)∫
Ω

ϕtψ dx =

∫
Ω

div(cv) ψ dx, ∀ψ ∈ L2(Ω). (2.1.3b)

Notice that adding equation (2.1.3a) to equation (2.1.3b) and choosing the test
functions as w = v and ψ = ϕ, we obtain∫

Ω

vt · v dx+

∫
Ω

ϕtϕ dx = 0,

and defining the quantity of total energy as

E(t) :=
1

2

∫
Ω

|v|2 + |ϕ|2dx, (2.1.4)

it is obviously seen that dE(t)
dt

= 0, that is, the energy is preserved.
Building upon the work conducted by Kraus et al. in the field of plasma physics

[68], we aim to introduce and analyze, for this simplified model problem, a numerical
method that preserves the total energy of the system for long-term simulations, and
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for which (2.1.3a) is solved in a weak sense, while (2.1.3b) is solved in strong form.
To achieve this purpose, we introduce a generic linear operator

T : L2(Ω) → L2(Ω),

and replace the second equation (2.1.3b) by

ϕt = T (div(cv)). (2.1.5)

Note that we recover (2.1.3b) if T is the identity operator. This change in the
equation affects the conservation of the total energy of the system. In order to
retrieve this conservation we replace (2.1.3a) with∫

Ω

vt ·w dx = −
∫
Ω

T (div(cw))ϕ dx.

The modified problem that we obtain, with mixed homogeneous Dirichlet and pe-
riodic boundary conditions, reads: find v ∈ HP (c, div; Ω) and ϕ ∈ L2(Ω) such that
the following equations hold∫

Ω

vt ·w dx = −
∫
Ω

T (div(cw))ϕ dx, ∀w ∈ HP (c, div; Ω), (2.1.6a)

ϕt = T (div(cv)). (2.1.6b)

2.2 B-splines and IGA framework

In this section we recall the definition of B-splines in the univariate and multivariate
context. We also introduce the isogeometric spaces, together with their regularity
assumptions.

2.2.1 Univariate B-splines

For the definition of B-splines we follow the notations and the guidelines of [13]
and [77]. Let us introduce a knot vector Ξ = {ξ1, . . . , ξn+p+1}, where ξi ∈ R is
the i-th knot, p is the polynomial degree and n is the number of basis functions.
We assume that ξ1 ≤ ξ2 ≤ · · · ≤ ξn+p ≤ ξn+p+1, and without loss of generality
ξ1 = 0, ξn+p+1 = 1. We also admit at most p + 1 repeated knots. We introduce

the B-spline functions {b̂i,p}ni=1 of degree p over the knot vector Ξ following the
Cox-DeBoor recursive formula [33, Chapter IX]. We obtain a set of n B-splines with
the following properties: non-negativity, partition of unity and local support of each
basis function, see [13]. The univariate B-spline space of degree p over the knot
vector Ξ is:

Ŝp(Ξ) := span{b̂i,p : i = 1, . . . , n}.
We introduce also the vector Z = {ζ1, . . . , ζz}, of knots without repetitions, which
are also called breakpoints, and denote with mj the multiplicity of ζj, such that∑z

j=1mj = n + p + 1, and ζ1 = ξ1 = · · · = ξm1 , ζ2 = ξm1+1 = · · · = ξm1+m2 and so
on. Notice that

Ξ = {ζ1, . . . , ζ1︸ ︷︷ ︸
m1 times

, ζ2, . . . , ζ2︸ ︷︷ ︸
m2 times

, . . . , ζz, . . . , ζz︸ ︷︷ ︸
mz times

},
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Figure 2.2. B-spline basis of degree 3 in the periodic case. In color the first three
B-spline basis. The left hand side matches with regularity C2 with its right hand
side.

with each ζj repeated mj times, and 1 ≤ mj ≤ p + 1 for all internal knots. The
breakpoints form a partition of the unit interval, and we say the partition is locally
quasi-uniform if there exists a constant β ≥ 1 independent of z such that

β−1 ≤ ζj+1 − ζj
ζj − ζj−1

≤ β, ∀j = 2, . . . , z − 1.

Assuming that the multiplicity of internal knots is at most p, we can write the
derivative of a B-spline as follows

∂b̂i,p
∂ξ

(ξ) = D̂i−1,p−1(ξ)− D̂i,p−1(ξ), (2.2.7)

with the Curry-Schoenberg spline basis:

D̂i,p−1(ξ) =
p

ξi+p+1 − ξi+1

b̂i+1,p−1(ξ), for i = 1, . . . , n− 1, (2.2.8)

where we assumed that D̂1,p−1(ξ) = D̂n+1,p−1(ξ) = 0. Note that the derivative

belongs to the spline space Ŝp−1(Ξ
′) where Ξ′ = {ξ2, . . . , ξn+p}.

In order to handle periodic boundary conditions, we follow the construction of
periodic B-spline spaces, see for instance [86]. Consider a uniformly spaced closed
knot vector Ξ of degree p, that is ξ1 < · · · < ξp+1 = 0 and 1 = ξn+1 < · · · < ξn+p+1

with at least p internal knots. We can construct a periodic basis on such knot vector,
by identifying the basis functions of the B-spline space Ŝp(Ξ) in this way:{

b̂Per
i,p := b̂i,p + b̂n−p+i,p, for i = 1, . . . , p;

b̂Per
i,p = b̂i,p, for i = p+ 1, . . . , n− p.

Here we are gluing together the first p basis functions with the last p, this way we
get continuity of derivatives up to order p−1. In Figure 2.2 it is shown the behavior
of this periodic basis at the boundary. We can introduce the periodic B-spline space
with highest regularity at the boundary as:

ŜPer
p (Ξ) := span{b̂Per

i,p : i = 1, . . . , n− p}.

It is easy to see that the dimension of the spline space ŜPer
p (Ξ) is n− p, which is the

same of ŜPer
p−1(Ξ

′). Finally we note that equation (2.2.7) holds for periodic B-splines
too. For more information and properties on B-splines, we refer the reader to [33].
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Figure 2.3. Mesh M̂ in the parametric domain, and its image M in the physical
domain.

2.2.2 Multivariate B-splines

Multivariate B-splines are introduced and defined by tensor product, starting from
univariate B-splines on each spatial direction. Let d be the space dimension, usually
d = 2, 3, and assume nl ∈ N the number of univariate basis functions in direction
l, pl ∈ N is the degree, while Ξl = {ξl,1, . . . , ξl,nl+pl+1} and Zl = {ζl,1, . . . , ζl,zl} are
respectively the knots and breakpoints in direction l. We also set the polynomial
degree vector p = (p1, . . . , pd) and Ξ = {Ξ1, . . . ,Ξd}. Finally we set J = {j =
(j1, . . . , jd) ⊂ Nd : 1 ≤ jl ≤ nl}. The set of multivariate B-splines basis functions of
degree vector p is

{B̂i,p(ξ) = b̂i1,p1(ξ1) . . . b̂id,pd(ξd), for i ∈ J},

and the B-spline multivariate space of degree vector p over Ξ is

Ŝp(Ξ) := span{B̂i,p(ξ) : i ∈ J} = ⊗d
l=1Ŝpl(Ξl).

A similar construction also applies for multivariate periodic B-splines. It is also
possible to combine tensor product of standard B-splines in the first directions with
periodic ones for the last direction, which is the case of the mixed boundary condition
setting for our model problem.

2.2.3 Isogeometric analysis framework

The isogeometric map F : Ω̂ → Ω, is a parameterization of the geometry of the
physical domain, based on B-splines (or more often in their rational counterpart of
NURBS), usually indicated by

F :=
∑
i∈J

ciB̂i,p.

For the analysis of the discrete problem, we need to introduce some assumptions on
F . First, we introduce the parametric Bézier mesh M̂, which is

M̂ := {Qj = I1,j1 × · · · × Id,jd : Il,jl = (ζl,jl , ζl,jl+1), for 1 ≤ jl ≤ zl − 1}.

Given an element Q ∈ M̂, we set hQ = diam(Qj), while h = max{hQ, Q ∈ M̂}.
Moreover, given D ⊂ Ω̂, we denote by D̃ its support extension, that is the interior
of the union of the supports of basis functions whose support intersects D.

The Bézier mesh is defined as the image of elements in M̂ through F :

M := {K ⊂ Ω : K = F (Q),Q ∈ M̂},
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see Figure 2.3. We have F̃ (D) = F (D̃), for every subset D ⊂ Ω̂, denoting the
support extension in the physical domain. The first assumption is the following.

Assumption 2.1. We assume that F is a bi-Lipschitz homeomorphism. Moreover,
F |Q belongs to C∞(Q) for all Q ∈ M̂, where Q denotes the closure of Q, and F−1|K
belongs to C∞(K), for all K ∈ M.

This prevents the existence of singularities and self-intersections in the parame-
terization F . The second assumption simplifies the dealing with the boundary.

Assumption 2.2. The boundary region ΓD ⊂ ∂Ω is the union of full faces of the
boundary. More precisely, ΓD = F (Γ̂D), with Γ̂D a collection of full faces of the

parametric domain Ω̂. Finally, if ΓP ̸= ∅, we assume the periodic boundary to be:

ΓP = F
(
[0, 1]d−1 × {0}

)
∪ F

(
[0, 1]d−1 × {1}

)
.

Finally, we assume local quasi-uniformity of the univariate partitions, thus the
parametric Bézier mesh is shape regular, that is, the ratio between the smallest
edge of Q ∈ M̂ and its diameter hQ is bounded uniformly with respect to h and Q.
Analogously, the Bézier mesh is shape regular thanks to Assumption 2.1.

2.3 Discretization

In this section, our focus is on introducing the discretization of problem (2.1.6), fol-
lowing the same approach as in [62, 69]. We approximate T with quasi-interpolant
projections that commute with the divergence operator. The Crank-Nicolson method
is employed for temporal discretization, chosen for its conservativity. We emphasize
that our objective is to study the approximation properties of the proposed method,
both theoretically and numerically. To achieve this, we intentionally maintain a
highly generic notation. In Section 2.3.1, we present the spatial semi-discretization
through the construction of isogeometric discrete spaces and the associated projec-
tions. In Section 2.3.2 we discuss a particularization of such projections, which are
quasi-interpolant operators based on point evaluation of the functions to be pro-
jected. This quasi-interpolant operators will be subjected to numerical study and
testing within the proposed discretization framework. Finally, in Section 2.3.3 we
recall the Crank-Nicolson semi-discretization in time and the fully discrete problem
is presented.

2.3.1 Discretization in space with commutative projections

Here we introduce the discrete spaces for the mixed formulation given by equations
(2.1.6a) and (2.1.6b). We present the case d = 2, while the case d = 3 is completely
analogous.

Discrete spline spaces

Let us standardize the notations following [12], and start with the case of Dirichlet
boundary conditions, that is ΓP = ∅, we introduce the symbols:

X1 := H(c, div; Ω), X2 := L2(Ω), X̂1 := H(ĉ, div; Ω̂), X̂2 := L2(Ω̂),
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where we recall ĉ = c ◦ F . Thanks to Assumption 2.1, which states that both F
and its inverse are smooth, we can define the pull-backs that relate these spaces as
(see [59, Section 2.2])

ι1(f) := det(DF )(DF )−1(f ◦ F ), f ∈ X1,

ι2(f) := det(DF )(f ◦ F ), f ∈ X2,

where DF is the Jacobian matrix of F . Then, due to the divergence preserving
property of the map ι1, see [84, Section 3.9], we have div ◦ ι1 = ι2 ◦ div. Fixed
a polynomial degree vector p = (p1, p2) and Ξ = (Ξ1,Ξ2), we define the discrete
spaces on the parametric domain as:

X̂1
h := Ŝp1,p2−1(Ξ1,Ξ

′
2)× Ŝp1−1,p2(Ξ

′
1,Ξ2),

X̂2
h := Ŝp1−1,p2−1(Ξ

′
1,Ξ

′
2).

The choice of the bases follows from [12, Section 5.2] and [91, Section 4], that is

X̂1
h = span{J1 ∪ J2},

where we set

J1 = {b̂i1,p1(ξ1)D̂i2,p2−1(ξ2)e1 : 1 ≤ i1 ≤ n1, 1 ≤ i2 ≤ n2 − 1},
J2 = {D̂i1,p1−1(ξ1)̂bi2,p2(ξ2)e2 : 1 ≤ i1 ≤ n1 − 1, 1 ≤ i2 ≤ n2},

and {e1, e2} is the canonical basis of R2. As regards the second discrete space, we
set

X̂2
h = span{D̂i1,p1−1(ξ1)D̂i2,p2−1(ξ2) : 1 ≤ il ≤ nl − 1, l = 1, 2}.

The discrete spaces on the physical domain Ω can be defined from the spaces X̂1
h

and X̂2
h by push-forward, that is, the inverse of the transformations ι1 and ι2, that

commute with the divergence operator. We have the following definitions:

X1
h := {fh : ι1(fh) ∈ X̂1

h}, X2
h := {fh : ι2(fh) ∈ X̂2

h}.

For later use, we introduce a suitable notation for the basis of these discrete spaces.
We denote by {bi,h}Ni=1 and {b̂i,h}Ni=1 the sets of basis functions of X1

h and X̂1
h

respectively, reordered with lexicographic ordering, such that ι1(bi,h) = b̂i,h for any
i = 1, . . . , N, where N = n1(n2 − 1) + (n1 − 1)n2. Analogously we can introduce

the notations {bi,h}Mi=1 and {b̂i,h}Mi=1 for the basis functions of the spaces X2
h and

X̂2
h respectively, such that, for i = 1, . . . ,M with M = (n1 − 1)(n2 − 1) we have

ι2(bi,h) = b̂i,h.

Univariate projections

In order to discretize equations (2.1.6a) and (2.1.6b), we follow the idea in [62] and
in [69], and approximate the operator T with a projector into the discrete spline
space. We first introduce commutative projectors in the univariate case, which can
be defined by a dual basis, i.e. π̂p,Ξ : L2(0, 1) −→ Ŝp(Ξ) such that

π̂p,Ξ(f) =
n∑

i=1

λi,p(f )̂bi,p (2.3.9)
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where λi,p are a set of dual functionals verifying λi,p(̂bj,p) = δij, where δij is the
Kronecker delta. Notice that, with this property, the operator is a projection, that
is π̂p,Ξ(s) = s, for all s ∈ Ŝp(Ξ).

We also recall the construction of univariate projections that commute with the
derivative as in [24, Section 3.1.2]. In order to obtain the one-dimensional commut-
ing diagram, we want the commutative projection π̂c

p−1,Ξ′ : L2(0, 1) → Sp−1(Ξ
′) to

satisfy:

π̂c
p−1,Ξ′

∂

∂ξ
f =

∂

∂ξ
π̂p,Ξf,

for all f in H1(0, 1). In order to satisfy the previous equation, given any projector
π̂p,Ξ as in (2.3.9), its commutative projection is defined as

π̂c
p−1,Ξ′g(ξ) :=

∂

∂ξ
π̂p,Ξ

∫ ξ

0

g(s)ds, (2.3.10)

for all functions g such that G(ξ) =
∫ ξ

0
g(s)ds is in the domain of π̂p,Ξ.

To apply periodic boundary conditions we need to define the commutative pro-
jector in a different way, to ensure that integrating a periodic function in L2(0, 1),
we obtain a periodic function in H1(0, 1). Hence, given a periodic projection π̂Per

p,Ξ ,
we define its commutative one as follows

π̂c,Per
p−1,Ξ′g(ξ) :=

(
∂

∂ξ
π̂Per
p,Ξ

∫ ξ

0

g̃(s)ds

)
⊕ g, (2.3.11)

for all functions g = g̃ ⊕ g ∈ L2(0, 1) such that g :=
∫ 1

0
g(s)ds ∈ R and g̃ ∈ L2

0(0, 1),

the space of functions in L2(0, 1) with zero average. Notice that G(ξ) =
∫ ξ

0
g̃(s)ds

is in the domain of π̂Per
p,Ξ , and again we have

π̂c,Per
p−1,Ξ′

∂

∂ξ
f =

∂

∂ξ
π̂Per
p,Ξ f, (2.3.12)

for all f in the domain of definition of π̂Per
p,Ξ . It is easy to see that the commutative

projections defined in this way preserve splines.

Multivariate construction

The univariate projection operators introduced can be extended to the multidi-
mensional case by tensor product constructions. Given Ω̂ = [0, 1]d ⊂ Rd, for
i = 1, 2, . . . , d, let us denote with π̂pi,Ξi

a generic univariate projection as in (2.3.9).
We can define a multivariate projection as

Π̂p,Ξ := π̂p1,Ξ1 ⊗ π̂p2,Ξ2 ⊗ · · · ⊗ π̂pd,Ξd
. (2.3.13)

It is important to note that it can be expressed as

Π̂p,Ξ(f) =
∑
i∈J

λi,p(f)B̂i,p, (2.3.14)

where p, Ξ and J are given as in the multivariate B-spline construction, and each
dual functional is defined from the univariate dual basis by the expression

λi,p = λi1,p1 ⊗ λi2,p2 ⊗ · · · ⊗ λid,pd . (2.3.15)
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It is easy to see that the same constructions hold for the multivariate periodic
case, or for combinations with periodic boundary conditions in only one parametric
coordinate.

At this point we have all the ingredients to define projections on the spaces X̂1
h

and X̂2
h. The choice of the projection follows from the definition of the discrete

spaces. More precisely we set

Π̂1 = (π̂p1 ⊗ π̂c
p2−1)× (π̂c

p1−1 ⊗ π̂p2), (2.3.16)

Π̂2 = π̂c
p1−1 ⊗ π̂c

p2−1, (2.3.17)

where for simplicity of notation we have omitted the knot vector from the subscript of
the univariate projectors. These projectors satisfy the spline preserving properties,
see [12, Lemma 5.3].

The projectors into the discrete spline spaces in the physical domain are defined
from the ones in the parametric domain (2.3.16) and (2.3.17), and the corresponding
pull-backs ι1 and ι2, in such a way they are uniquely characterized by the equations

ι1(Π1f) = Π̂1(ι1(f)),

ι2(Π2f) = Π̂2(ι2(f)).
(2.3.18)

These projectors satisfy the commutativity property with the divergence operator,
as stated in the following lemma:

Lemma 2.1. Given ĉ and c the coefficients of spaces X̂1 and X1, the following
equations hold

div (Π̂1(ĉf)) = Π̂2(div (ĉf)), ∀f ∈ X̂1, (2.3.19)

div (Π1(cf)) = Π2(div (cf)), ∀f ∈ X1. (2.3.20)

The proof of (2.3.19) is given in [12, Lemma 5.5]. Equation (2.3.20) is an im-
mediate consequence of the definitions, together with the commutativity property
(2.3.19). We conclude this paragraph with the following remark on the periodic
case.

Remark 2.1. If ΓP ̸= ∅, we proceed analogously introducing the discrete spaces

X̂1
h :=

(
Ŝp1(Ξ1)⊗ ŜPer

p2−1(Ξ
′
2)
)
×
(
Ŝp1−1(Ξ

′
1)⊗ ŜPer

p2
(Ξ2)

)
, (2.3.21)

X̂2
h := Ŝp1−1(Ξ

′
1)⊗ ŜPer

p2−1(Ξ
′
2), (2.3.22)

and considering the projectors:

Π̂1 = (π̂p1 ⊗ π̂c,Per
p2−1 )× (π̂c

p1−1 ⊗ π̂Per
p2

), (2.3.23)

Π̂2 = π̂c
p1−1 ⊗ π̂c,Per

p2−1 . (2.3.24)

Semi-discretization in space

We propose to take as a linear operator T in (2.1.6a) and (2.1.6b) the generic tensor
product commutative projection Π2. The semi-discrete problem in space reads, find
vh ∈ X1

h and ϕh ∈ X2
h, such that the following equations hold:∫

Ω

(vh)t ·wh dx = −
∫
Ω

Π2(div(cwh)) ϕh dx, ∀wh ∈ X1
h, (2.3.25a)

(ϕh)t = Π2(div(cvh)). (2.3.25b)
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f(x) = sin(2πx) at breakpoints at midpoints

Figure 2.4. Example of pointwise evaluation of f(x) = sin(2πx) at breakpoints

and midpoints for projection with L̂π2,Ξ. The three highlighted points are used for
the computation of λi,2(f), for i = 4, corresponding to the B-spline with support
[0.2, 0.8].

In the next section we will exploit a particularization of such discretization, based
on quasi-interpolant projections.

2.3.2 Quasi interpolant projections

Here we focus on a particular projection whose construction is given in detail in [73].

We refer to such projection using the notation L̂πp,Ξ. We deal with open knot vectors
with non-repeating internal knots, i.e. Ξ = {ξ1, . . . , ξn+p+1} such that the vector
Z = {ζ1, . . . , ζz} of the breakpoints has multiplicities m1 = mz = p+ 1 and mj = 1

for j = 2, . . . , z−1. In order to find an approximation L̂πp,Ξ(f) of f : [0, 1] → R, we
need to define a dual basis λi,p and compute λi,p(f) for i = 1, . . . , n, and the idea is
the following:

1. Choose I = [ξµ, ξν ] ⊂ [ξp+1, ξn] such that I ∩ [ξi, ξi+p+1] ̸= ∅. Notice that

[ξi, ξi+p+1] is the support of b̂i,p, and denote by fI the restriction of f to I.

2. Choose a local approximation method Ploc for fI , such that it reproduces
splines of degree up to p. This approximation is written analogously to (2.3.9)

in this way: Ploc(fI) =
∑ν−1

j=µ−p cj b̂j,p, and we have µ− p ≤ i ≤ ν − 1 since the

support of b̂i,p intersects I.

3. Finally set λi,p(f) = ci.

The idea is to use polynomial interpolation as local approximation method. We
exploit the construction for spline spaces of degree 2 and 3 given in [73]. Let us now

fix p = 2, for a given index i = 1, . . . , n, we have [ξi+1, ξi+2] ⊂ [ξi, ξi+3] = supp(̂bi,2),
but ξi+1 < ξi+2 when i ̸= 1, n. This means that for i = 2, . . . , n−1 we can choose I =
[ξi+1, ξi+2], and perform three points interpolation on ξi+1 < (ξi+1 + ξi+2)/2 < ξi+2.
Notice that we are interpolating at two consecutive breakpoints and their midpoint
in a uniform partition. Due to this particular choice of the interpolation points, we
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can explicitly write the coefficients of L̂π2,Ξ, that are:

λi,2(f) = −1

2
f(ξi+1) + 2f

(ξi+1 + ξi+2

2

)
− 1

2
f(ξi+2), for i = 2, . . . , n− 1. (2.3.26)

We remark this expression is valid whenever ξi+1 < ξi+2, which is not the case for
i = 1 and i = n in the case of an open knot vector, as used for Dirichlet boundary
conditions. In this situation we want the operator to be interpolant at the boundary
and hence we fix λ1,2 = f(0) and λn,2 = f(1). As regards closed knot vectors for
periodic boundary conditions, the computation is easier, since we can use (2.3.26)
for all indices i = 1, . . . , n. Notice that we need the pointwise evaluation of the
function f we want to approximate, among the breakpoints and their midpoints, as
in the example given in Figure 2.4.

We recall now the explicit formulae in the case p = 3, that is the quasi-interpolant
L̂π3,Ξ, and refer for details to [73]. Here, as local approximation method, we use
five points interpolation over the knots and midpoints of I = [ξi+1, ξi+3]. Instead of
(2.3.26), we can write now

λi,3(f) =
1

6
f(ξi+1)−

4

3
f
(ξi+1 + ξi+2

2

)
+

10

3
f(ξi+2)−

4

3
f
(ξi+2 + ξi+3

2

)
+

1

6
f(ηi+3).

(2.3.27)
For open knot vectors, hence Dirichlet boundary conditions, we have the particular
cases for i = 1, 2, n− 1, n, that we recall here:

λ1,3(f) = f(0),

λ2,3(f) = − 5

18
f(ξ4) +

20

9
f
(ξ4 + ξ5

2

)
− 4

3
f(ξ5) +

4

9
f
(ξ5 + ξ6

2

)
− 1

18
f(ξ6),

λn−1,3(f) = − 1

18
f(ξn−1) +

4

9
f
(ξn−1 + ξn

2

)
− 4

3
f(ξn)

+
20

9
f
(ξn + ξn+1

2

)
− 5

18
f(ξn+1),

λn,3(f) = f(1).

From the computational point of view, we remember this technique requires evalua-
tion of f over the breakpoints and midpoints. Notice that for projections in periodic
spline spaces, it is sufficient to use (2.3.26) or (2.3.27). Finally, for approximation
estimates by quasi-interpolant projections based on point evaluation of functions,
we refer to [78, Section 5].

Commutative quasi-interpolant projections

In order to compute a projection L̂π
c

p,Ξ′ that commutes with L̂πp,Ξ, we follow the

construction in (2.3.10). Since we have to apply L̂πp,Ξ to the integral function F ,
we need its evaluation over all the breakpoints and midpoints. For this reason,
instead of using Gaussian quadrature, we prefer to use Cavalieri-Simpson composite
quadrature formulae. We want to consider both breakpoints and midpoints in a
unified notation. Hence we introduce η = {η1, . . . , η2z−1} such that:{

η2i−1 = ζi, for i = 1, . . . , z,

η2i =
1
2
(ζi + ζi+1), for i = 1, . . . , z − 1.
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Figure 2.5. Example of evaluation of f(x) = sin(2πx) at further midpoints, in order

to project with L̂π
c

2,Ξ′

With this notation we have F (η1) = 0 and for i = 2, . . . , 2z − 1:

F (ηi) =

∫ ηi

0

f(s)ds =
i−1∑
j=1

∫ ηj+1

ηj

f(s)ds

≈
i−1∑
j=1

h

6

(
f(ηj) + 4f

(ηj + ηj+1

2

)
+ f(ηj+1)

)
,

where h = ηj+1 − ηj. Notice that this quadrature formula is exact for polynomials
up to degree 3, but it requires evaluation of the integrating function over further
midpoints, i.e. (ηj + ηj+1)/2, as it is shown in Figure 2.5.

Multivariate quasi-interpolant projections

Finally we define the multivariate quasi-interpolant projections that commute with
the divergence operator in the parametric domain, as

L̂Π
1
= (L̂πp1,Ξ1 ⊗ L̂π

c

p2−1,Ξ′
2
)× (L̂π

c

p1−1,Ξ′
1
⊗ L̂πp2,Ξ2),

L̂Π
2
= L̂π

c

p1−1,Ξ′
1
⊗ L̂π

c

p2−1,Ξ′
2
.

(2.3.28)

The projections in the physical domain, namely LΠ1,LΠ2, are uniquely determined

by (2.3.18). We remark that projections L̂Π
1
, L̂Π

2
,LΠ1,LΠ2 satisfy lemma 2.1. An

analogous construction holds for projections in periodic spline spaces, or in spline
spaces with mixed Dirichlet and periodic conditions, as in remark 2.1.

2.3.3 Conservative time discretization

Regarding time discretization, the choice of an energy-preserving method is manda-
tory since we are interested in preserving the total energy of the system. We detail
the discretization with Crank-Nicolson method, which is second order and energy
conservative, but other conservative methods could be chosen.
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Let us fix τ = (t0, . . . , tNT
), a partition of the interval [0, T ], such that t0 = 0,

tNT
= T and tn < tn+1. For a simplified notation we assume the partition to

be uniform, that is tn+1 − tn = ∆t, with a fixed real number ∆t > 0, for n =
0, . . . , NT −1. Let us denote by vn

h and ϕn
h respectively the value of vh and ϕh at the

time instant tn. Applying Crank-Nicolson method to equations (2.3.25), the fully
discrete problem is now, for n = 0, . . . , NT − 1 find vn+1

h ∈ X1
h and ϕn+1

h ∈ X2
h, such

that ∫
Ω

vn+1
h − vn

h

∆t
·whdx = −1

2

∫
Ω

Π2(div(cwh))(ϕ
n+1
h + ϕn

h)dx, ∀wh ∈ X1
h,

(2.3.29a)

ϕn+1
h − ϕn

h

∆t
=

1

2

(
Π2(div(cvn+1

h )) + Π2(div(cvn
h))
)
. (2.3.29b)

Notice that in equation (2.3.29b), the left hand side ϕn+1
h is written as a linear

combination of terms that depend on the time instant tn, except for v
n+1
h . Moreover,

in view of the definition of the operator Π2, (2.3.29b) can be seen as a collocation of
the equation (2.1.6b). To solve the system, we replace the expression of ϕn+1

h from
the second equation into the first one, and bring to the left all the terms in which
the unknown vn+1

h appears, that is∫
Ω

vn+1
h ·whdx+

(∆t)2

4

∫
Ω

Π2(div(cvn+1
h ))Π2(div(cwh))dx =

=

∫
Ω

vn
h·whdx−

(∆t)2

4

∫
Ω

Π2(div(cvn
h))Π

2(div(cwh))dx−∆t

∫
Ω

ϕn
hΠ

2(div(cwh))dx,

(2.3.30)

which must hold for all wh ∈ X1
h. We solve this equation to compute the unknown

vn+1
h , which is then used to update the solution ϕn+1

h as indicated by (2.3.29b).
In our numerical tests, we will compare the proposed method with the standard

Galerkin formulation, that we present for completeness, and which is given by: find
vh ∈ X1

h and ϕh ∈ X2
h, such that∫

Ω

vn+1
h − vn

h

∆t
·whdx = −1

2

∫
Ω

div(cwh)(ϕ
n+1
h + ϕn

h)dx, ∀wh ∈ X1
h, (2.3.31a)∫

Ω

ϕn+1
h − ϕn

h

∆t
ψhdx =

1

2

∫
Ω

(
div(cvn+1

h ) + div(cvn
h)
)
ψhdx, ∀ψh ∈ X2

h, (2.3.31b)

Remark 2.2. Notice that both equations (2.3.29) and (2.3.31) are energy conserva-
tive schemes by construction. On the other hand, (2.3.31) can not be reduced to a
single equation. Thus, the method (2.3.29) is intrinsically cheaper than the method
(2.3.31) and, at our knowledge, it is the first conservative method that does not
require computation of both primal and dual variables at each time step.

2.4 Error convergence analysis

In this section we analyze the convergence of the proposed method. In Section 2.4.1
we first present a convergence study in an abstract setting, for a generic family of
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projections as in Section 2.3.1, assuming stability and approximation properties both
for the projectors and for their adjoint operators. Unfortunately, the adjoints of the
quasi-interpolants of Section 2.3.2 do not satisfy these assumptions. For this reason,
we present in Section 2.4.2 the analysis under some relaxed assumptions, for which
only linear convergence could be proved. In our analysis, C will denote a generic
constant independent of the mesh size h, but it may depend on the polynomial
degree, the parameterization of the domain, and the local quasi-uniformity.

It will be useful for the analysis to write the equations of the problem in weak
form. Let us denote by (v, ϕ) the classical solution of the problem eq. (2.1.2), while
(vh, ϕh) is the solution of the semidiscrete problem in space (2.3.25), which satisfies
also the following variational equations:∫

Ω

(vh)t ·wh dx+

∫
Ω

Π2(div(cwh)) ϕh dx = 0, ∀wh ∈ X1
h, (2.4.32a)∫

Ω

(ϕh)t ψh dx−
∫
Ω

Π2(div(cvh)) ψh dx = 0, ∀ψh ∈ X2
h. (2.4.32b)

We introduce the energy norm ∥v, ϕ∥2E := ∥v∥2L2(Ω) + ∥ϕ∥2L2(Ω), the Sobolev norm

∥v, ϕ∥2Hs := ∥v∥2Hs(div;Ω) + ∥ϕ∥2Hs(Ω), for a positive integer s ≥ 0, and the following

norms in the space-time domain Ω× [0, T ]

∥v, ϕ∥∞,E := sup
t∈[0,T ]

∥v, ϕ∥E,

∥v, ϕ∥W 1,∞,Hs := max{ sup
t∈[0,T ]

∥v, ϕ∥Hs , sup
t∈[0,T ]

∥vt, ϕt∥Hs}.

In order to simplify the notation, we indicate by ∥ϕ, ψ∥2E = ∥ϕ∥2L2(Ω) + ∥ψ∥2L2(Ω) the

equivalent of the energy norm when ϕ, ψ ∈ L2(Ω) are both scalar fields. We are
interested in bounding

∥v − vh, ϕ− ϕh∥∞,E = sup
t∈[0,T ]

∥v − vh, ϕ− ϕh∥E, (2.4.33)

and we will follow the ideas used in [2] for elasticity problems in mixed form with
weak symmetry.

2.4.1 Convergence analysis based on the adjoint projections

Let us introduce the adjoint projection Π2,∗ ∈ End(X2), which is defined by the
following fundamental relation

X2⟨Π2(ϕ), ψ⟩X2,∗ = X2⟨ϕ,Π2,∗(ψ)⟩X2,∗ , ∀ ϕ ∈ X2, ψ ∈ X2,∗, (2.4.34)

where X2,∗ is the dual space of X2, and ⟨·, ·⟩ denotes the duality pairing. We
identify X2 = L2(Ω) with its dual space, as it is usually done, and in particular
(2.4.34) can be expressed in terms of the L2(Ω) scalar product. Throughout this
section, we require that Π2 and Π2,∗ are L2-stable, and Π1,Π2 and Π2∗ have good
approximation properties, summarizing our request in the following assumption.

Assumption 2.3. The projections Π2 and Π2,∗ are L2-stable, that is

∥Π2(ϕ)∥L2(Ω) ≤ ∥ϕ∥L2(Ω), and ∥Π2,∗(ψ)∥L2(Ω) ≤ ∥ψ∥L2(Ω), ∀ϕ, ψ ∈ L2(Ω).
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Moreover, given w ∈ Hm(div; Ω) and ψ ∈ Hm(Ω), for 0 ≤ l ≤ m ≤ p, and
p = mind

i=1{pi}, there exists a constant C such that it holds:

∥(Id− Π1)w∥Hl(div;Ω) ≤ Chm−l∥w∥Hm(div;Ω), (2.4.35a)

∥(Id− Π2)ψ∥Hl(Ω) ≤ Chm−l∥ψ∥Hm(Ω), (2.4.35b)

∥(Id− Π2,∗)ψ∥Hl(Ω) ≤ Chm−l∥ψ∥Hm(Ω), (2.4.35c)

where Id is the identity operator, and h is the mesh size.

Projections that commute with the divergence operator and satisfy L2-stability,
together with (2.4.35a) and (2.4.35b), are well known in the literature, see [24,
Remark 5.1]. The usefulness of this working hypothesis is thus to ensure (2.4.35c).
One option is to explore quasi-interpolant operators constructed with biorthogonal
dual bases, the latter having the capability of reproducing polynomials, see [90].

Let us assume from now on that the classical solution is sufficiently regular, for
instance v ∈ Hm(div; Ω) and ϕ ∈ Hm(Ω), for 0 ≤ m ≤ p and p as in Assumption
2.3. We can start bounding (2.4.33) by using the triangular inequality, and separate
the error in the following way:

∥v − vh, ϕ− ϕh∥∞,E ≤ ∥v − vP
h , ϕ− ϕP

h ∥∞,E + ∥vP
h − vh, ϕ

P
h − ϕh∥∞,E, (2.4.36)

where vP
h and ϕP

h are suitable approximations of the fields v and ϕ. Here we fix
vP
h := Π1(v) and ϕP

h := Π2(ϕ), but other approximation choices that satisfy (2.4.35a)
and (2.4.35b) can also be considered. We have the following approximation result.

Lemma 2.2. There exists a constant C > 0 such that, for 0 ≤ m ≤ p and p as in
Assumption 2.3, it holds

∥v − vP
h , ϕ− ϕP

h ∥∞,E ≤ Chm∥v, ϕ∥∞,Hm , (2.4.37a)

∥ϕ− ϕP
h , div(cv − cvP

h )∥∞,E ≤ Chm∥v, ϕ∥∞,Hm , (2.4.37b)

∥(v − vP
h )t, (ϕ− ϕP

h )t∥∞,E ≤ Chm∥vt, ϕt∥∞,Hm . (2.4.37c)

Proof. In order to bound (2.4.37a) we argue like this:

∥v − vP
h , ϕ− ϕP

h ∥2∞,E
def
= sup

t∈[0,T ]

(
∥v − vP

h ∥2L2(Ω) + ∥ϕ− ϕP
h ∥2L2(Ω)

)
≤ sup

t∈[0,T ]

(
Ch2m∥v∥2Hm(div;Ω) + Ch2m∥ϕ∥2Hm(Ω)

)
= Ch2m∥v, ϕ∥2∞,Hm ,

where we used only (2.4.35a) and (2.4.35b), and taking the square roots we proved
(2.4.37a). The proof of (2.4.37c) is analogous. As regards (2.4.37b) we have that

∥ϕ− ϕP
h , div(cv − cvP

h )∥2∞,E = sup
t∈[0,T ]

(
∥ϕ− ϕP

h ∥2L2(Ω) + ∥div(cv − cvP
h )∥2L2(Ω)

)
.

By applying the Leibniz rule and Young’s inequality, (a + b)2 ≤ 2a2 + 2b2 for each
a, b > 0, on the last term of the right hand side we have

∥div(cv − cvP
h )∥2L2(Ω) =

(
∥c div(v − vP

h )∥L2(Ω) + ∥∇c · (v − vP
h )∥L2(Ω)

)2
≤ 2∥c div(v − vP

h )∥2L2(Ω) + 2∥∇c · (v − vP
h )∥2L2(Ω)

≤ C∥v − vP
h ∥2H0(div;Ω),
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because c is smooth and uniformly bounded. Now again we can apply (2.4.35a) and
(2.4.35b), which gives us

∥ϕ− ϕP
h , div(cv − cvP

h )∥2∞,E ≤ C sup
t∈[0,T ]

(
∥ϕ− ϕP

h ∥2L2(Ω) + ∥v − vP
h ∥2H0(div;Ω)

)
≤ C sup

t∈[0,T ]

(
h2m∥ϕ∥2Hm(Ω) + h2m∥v∥2Hm(div;Ω)

)
≤ Ch2m∥v, ϕ∥2∞,Hm .

and again taking the square roots we end the proof of this lemma.

Next we state the main result of this chapter.

Theorem 2.3. Under Assumption 2.3, together with the commutativity of the pro-
jectors, Π2div = divΠ1, given v ∈ Hm(div; Ω) and ϕ ∈ Hm(Ω), it holds that

∥v − vh, ϕ− ϕh∥∞,E ≤ Chm−1∥v, ϕ∥W 1,∞,Hm . (2.4.38)

Proof. Let us consider both the weak formulation (2.1.3) and the semi-discrete prob-
lem (2.4.32). With the notation (·, ·) indicating the L2 scalar product over the
physical domain Ω we can write:

((vh)t,wh) +
(
Π2div(cwh), ϕh

)
= (vt,wh) + (div(cwh), ϕ) ,

((ϕh)t, ψh)−
(
Π2div(cvh), ψh

)
= (ϕt, ψh)− (div(cv), ψh) ,

for all wh ∈ X1
h and ψh ∈ X2

h. We can respectively subtract from the previous
equations the following quantities:(

(vP
h )t,wh

)
+
(
Π2div(cwh), ϕ

P
h

)
, and

(
(ϕP

h )t, ψh

)
−
(
Π2div(cvP

h ), ψh

)
,

and rearrange the two equations such that it holds that(
(vh − vP

h )t,wh

)
+
(
Π2div(cwh), (ϕh − ϕP

h )
)

=
(
(v − vP

h )t,wh

)
+
(
Π2div(cwh), (ϕ− ϕP

h )
)
+
(
(Id− Π2)div(cwh), ϕ

)
, (2.4.39)

and(
(ϕh − ϕP

h )t, ψh

)
−
(
Π2div(cvh − cvP

h ), ψh

)
=
(
(ϕ− ϕP

h )t, ψh

)
−
(
Π2div(cv − cvP

h ), ψh

)
−
(
(Id− Π2)div(cv), ψh

)
. (2.4.40)

By making the choice wh = vh − vP
h and ψh = ϕh − ϕP

h , and adding together the
equations we get

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E

=
(
(v − vP

h )t,vh − vP
h

)
+
(
(ϕ− ϕP

h )t, ϕh − ϕP
h

)
+
(
Π2div(cvh − cvP

h ), ϕ− ϕP
h

)
−
(
Π2div(cv − cvP

h ), ϕh − ϕP
h

)
+
(
(Id− Π2)div(cvh − cvP

h ), ϕ
)
−
(
(Id− Π2)div(cv), ϕh − ϕP

h

)
.

(2.4.41)
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Here, by construction Π2div = divΠ1. Combining this with the definition of the
formal adjoint operator, we can rewrite the last two terms on the right hand side as(

(Id− Π2)div(cvh − cvP
h ), ϕ

)
=
(
div(cvP

h − cvh), (Id− Π2,∗)ϕ
)
,(

(Id− Π2)div(cv), ϕh − ϕP
h

)
=
(
div(Id− Π1)(cv), ϕh − ϕP

h

)
.

(2.4.42)

Now on the right hand side we can apply the Cauchy-Schwarz inequality, which
gives

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E ≤ ∥(v − vP

h )t∥L2(Ω)∥vh − vP
h ∥L2(Ω)

+∥(ϕ− ϕP
h )t∥L2(Ω)∥ϕh − ϕP

h ∥L2(Ω)

+∥(ϕ− ϕP
h )∥L2(Ω)∥Π2div

(
cvP

h − cvh

)
∥L2(Ω)

+∥Π2div(cv − cvP
h )∥L2(Ω)∥ϕh − ϕP

h ∥L2(Ω)

+∥(Id− Π2,∗)ϕ∥L2(Ω)∥div(cvP
h − cvh)∥L2(Ω)

+∥div(Id− Π1)(cv)∥L2(Ω)∥ϕh − ϕP
h ∥L2(Ω).

By boundedness of the projections as in Assumption 2.3 and using boundedness of
the coefficient c, together with inverse inequalities, there exists a constant C > 0
such that:

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E ≤ ∥(v − vP

h )t∥L2(Ω)∥vh − vP
h ∥L2(Ω)

+∥(ϕ− ϕP
h )t∥L2(Ω)∥ϕh − ϕP

h ∥L2(Ω)

+Ch−1∥(ϕ− ϕP
h )∥L2(Ω)∥vh − vP

h ∥L2(Ω)

+C∥div(cv − cvP
h )∥L2(Ω)∥ϕh − ϕP

h ∥L2(Ω)

+Ch−1∥(Id− Π2,∗)ϕ∥L2(Ω)∥vh − vP
h ∥L2(Ω)

+∥div(Id− Π1)(cv)∥L2(Ω)∥ϕh − ϕP
h ∥L2(Ω).

Again by Cauchy-Schwarz inequality, applied to ordered couples of terms in the right
hand side, we have:

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E ≤ ∥(v − vP

h )t, (ϕ− ϕP
h )t∥E∥vh − vP

h , ϕh − ϕP
h ∥E

+Ch−1∥(ϕ− ϕP
h ), div(cv − cvP

h )∥E∥vh − vP
h , ϕh − ϕP

h ∥E
+Ch−1∥(Id− Π2,∗)ϕ, div(Id− Π1)(cv)∥E∥vh − vP

h , ϕh − ϕP
h ∥E.

Dividing both sides by ∥vh − vP
h , ϕh − ϕP

h ∥E and integrating in time in [0, t], we
obtain

∥vh − vP
h , ϕh − ϕP

h ∥E ≤ ∥vh(x, 0)− vP
h (x, 0), ϕh(x, 0)− ϕP

h (x, 0)∥E

+

∫ t

0

∥(v − vP
h )t, (ϕ− ϕP

h )t∥Eds

+

∫ t

0

Ch−1∥(ϕ− ϕP
h ), div(cv − cvP

h )∥Eds

+

∫ t

0

Ch−1∥(Id− Π2,∗)ϕ, div(Id− Π1)(cv)∥Eds.
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Specifying the initial condition for problem (2.4.32) to be
(
vP
h (x, 0), ϕ

P
h (x, 0)

)
it

holds ∥vh(x, 0)− vP
h (x, 0), ϕh(x, 0)− ϕP

h (x, 0)∥E = 0. Since the previous estimate
is valid for almost every t ∈ [0, T ] we can take the maximum, and there exists a new
constant C > 0 such that

∥vh − vP
h , ϕh − ϕP

h ∥∞,E ≤ C∥(v − vP
h )t, (ϕ− ϕP

h )t∥∞,E

+Ch−1∥(ϕ− ϕP
h ), div(cv − cvP

h )∥∞,E

+Ch−1∥(Id− Π2,∗)ϕ, div(Id− Π1)(cv)∥∞,E.

Now the left hand side in (2.4.38) splits as in (2.4.36), therefore we have

∥v − vh, ϕ− ϕh∥∞,E ≤ ∥v − vP
h , ϕ− ϕP

h ∥∞,E

+C∥(v − vP
h )t, (ϕ− ϕP

h )t∥∞,E

+Ch−1∥(ϕ− ϕP
h ), div(cv − cvP

h )∥∞,E

+Ch−1∥(Id− Π2,∗)ϕ, div(Id− Π1)(cv)∥∞,E.

Finally, from Lemma 2.2 and Assumption 2.3 we obtain

∥v − vh, ϕ− ϕh∥∞,E ≤ C
(
hm−1∥v, ϕ∥∞,Hm + hm∥vt, ϕt∥∞,Hm

)
,

which concludes the proof of this theorem.

Remark 2.3. The suboptimality of the estimate comes from using inverse inequal-
ities to control the divergence of the error. Optimality can be recovered if we define
suitable approximations vP

h and ϕP
h that control the divergence, such as in [18].

Remark 2.4. The projections LΠ1 and LΠ2, that we implement and test numer-
ically, do not satisfy Assumption 2.3, therefore we directly move to next section,
dedicated to error estimates for these projections.

2.4.2 Weaker approximation assumptions

In this section we prove a convergence result for weaker assumptions than the ones
in Assumption 2.3. The reason is that the practical interest is on projections in
discrete spaces that have good approximation properties and are computationally
fast and efficient to compute, see [68, 62]. A very general family of such projections
are the quasi-interpolators proposed in [73], that where applied in [62]. Since we
do not have good approximation properties of the adjoint projection of such quasi-
interpolants, we will require here to relax the assumptions we made in the previous
section.

Assumption 2.4. The projections Π1 and Π2 satisfy

∥Π1∥L∞(K̃)→L∞(K) = C1, and ∥Π2∥L∞(K̃)→L∞(K) = C2.

where K ∈ M and K̃ is its support extension. Moreover, given w ∈ Hm(div; Ω)
and ψ ∈ Hm(Ω), with at least m ≥ 2, for 0 ≤ l < m ≤ p, and p = mind

i=1{pi}, there
exists a constant C such that it holds:

∥(Id− Π1)w∥Hl(div;Ω) ≤ Chm−l∥w∥Hm(div;Ω), (2.4.43a)

∥(Id− Π2)ψ∥Hl(Ω) ≤ Chm−l∥ψ∥Hm(Ω), (2.4.43b)

where Id is the identity operator, and h is the mesh size.
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Notice that, the projectors LΠ1 and LΠ2 satisfy Assumption 2.4, but not As-
sumption 2.3. We consider again vP

h = Π1(v) and ϕP
h = Π2(ϕ), and we notice that

under Assumption 2.4 it still holds lemma 2.2. Therefore we have the following
theorem.

Theorem 2.4. Under Assumption 2.4, together with the commutativity of the pro-
jectors, Π2div = divΠ1, given v ∈ Hm(div; Ω) and ϕ ∈ Hm(Ω), with at least m ≥ 2,
and c ∈ C∞(Ω), it holds that

∥v − vh, ϕ− ϕh∥∞,E ≤ Ch∥v, ϕ∥W 1,∞,Hm . (2.4.44)

Proof. The first steps of the proof are as in Theorem 2.3 until the choice of the
test functions, and in particular (2.4.41) is valid. Then, by assumption we have
Π2div = divΠ1, and by integrating by parts we obtain(

(Id− Π2)div(cvh − cvP
h ), ϕ

)
=−

(
(Id− Π1)(cvh − cvP

h ),∇ϕ
)(

(Id− Π2)div(cv), ϕh − ϕP
h

)
=
(
div(Id− Π1)(cv), ϕh − ϕP

h

)
,

note the difference in the first equation with respect to (2.4.42). By using Cauchy-
Schwarz inequality as in the proof of Theorem 2.3, we have

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E ≤ ∥(v − vP

h )t∥L2(Ω)∥vh − vP
h ∥L2(Ω)

+∥(ϕ− ϕP
h )t∥L2(Ω)∥ϕh − ϕP

h ∥L2(Ω)

+∥ϕ− ϕP
h ∥L2(Ω)∥Π2div(cvh − cvP

h )∥L2(Ω)

+∥Π2div(cv − cvP
h )∥L2(Ω)∥ϕh − ϕP

h ∥L2(Ω)

+∥ϕ∥H1(Ω)∥(Id− Π1)(cvh − cvP
h )∥L2(Ω)

+∥div(Id− Π1)(cv)∥L2(Ω)∥ϕh − ϕP
h ∥L2(Ω),

and the only difference so far with respect to the proof of the previous theorem is in
the fifth term of the right hand side. In order to bound this last one, we can apply
the superconvergence results stated in [16, Theorem 2.2], that is

∥(Id− Π1)(cvh − cvP
h )∥L2(Ω) ≤ Ch∥vh − vP

h ∥L2(Ω). (2.4.45)

The other difference with respect to theorem 2.3 is the stability assumption of Π2,
for which we bound ∥Π2div(cvh − cvP

h )∥L2(Ω) by local arguments. Given K ∈ M,
since |K| ≤ hd where d is the dimension of Ω, we first apply Hölder inequality, then
stability of Assumption 2.4 together with uniform boundedness of c, and finally
inverse inequalities for splines, that is

∥Π2div(cvh − cvP
h )∥2L2(K) ≤ |K| ∥Π2div(cvh − cvP

h )∥2L∞(K)

≤ hdC2
2∥∇c · (vh − vP

h ) + c div(vh − vP
h )∥2L∞(K̃)

≤ hdC
(
∥vh − vP

h ∥L∞(K̃) + ∥div(vh − vP
h )∥L∞(K̃)

)2
≤ hdC

(
∥vh − vP

h ∥L∞(K̃) + h−1∥vh − vP
h ∥L∞(K̃)

)2
≤ hdCh−2∥vh − vP

h ∥2L∞(K̃)

≤ Ch−2∥vh − vP
h ∥2L2(K̃)

.
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Notice that in the last inequality it is essential to have a shape regularity assumption
of the mesh. Taking the square root and by standard arguments we have immediately
the global inequality

∥Π2div(cvh − cvP
h )∥L2(Ω) ≤ Ch−1∥vh − vP

h ∥L2(Ω).

Recall that vP
h = Π1(v) and ϕP

h = Π2(ϕ), together with divΠ1 = Π2div. Again, with
the same arguments, and with |K| ≤ hd, we have

∥Π2div(cv − cvP
h )∥2L2(K) ≤ hd∥Π2div(cv − cvP

h )∥2L∞(K)

≤ hdC2
2∥∇c · (v − vP

h ) + c div(v − vP
h )∥2L∞(K̃)

≤ hdC
(
∥v − vP

h ∥L∞(K̃) + ∥div(v − vP
h )∥L∞(K̃)

)2
≤ hdC

(
∥(Id− Π1)v∥2

L∞(K̃)
+ ∥(Id− Π2)div(v)∥2

L∞(K̃)

)
≤ hdC

(
h2m−d∥v∥2

Hm(
˜̃
K)

+ h2m−d∥div(v)∥2
Hm(

˜̃
K)

)
≤ Ch2m∥v∥2

Hm(div;
˜̃
K)
,

where
˜̃
K is the support extension of K̃. Notice that we used Cauchy-Schwarz in-

equality on fourth row, and the local approximation estimates of the kind [78, The-
orem 10.2] on fifth row. Taking the square root and by standard arguments this
global inequality is straightforward

∥Π2div(cv − cvP
h )∥L2(Ω) ≤ Chm∥v∥Hm(div;Ω).

We bound the remaining of approximation errors as it is done for Lemma 2.2, and
together with the above inequalities, we have

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E ≤ Chm∥vt∥Hm(div;Ω)∥vh − vP

h ∥L2(Ω)

+Chm∥ϕt∥Hm(Ω)∥ϕh − ϕP
h ∥L2(Ω)

+Chm−1∥ϕ∥Hm(Ω)∥vh − vP
h ∥L2(Ω)

+Chm∥v∥Hm(div;Ω)∥ϕh − ϕP
h ∥L2(Ω)

+Ch∥ϕ∥H1(Ω)∥vh − vP
h ∥L2(Ω)

+Chm∥v∥Hm(div;Ω)∥ϕh − ϕP
h ∥L2(Ω).

By using Cauchy-Schwarz inequality and adding together the similar terms, we have

1

2

∂

∂t
∥vh − vP

h , ϕh − ϕP
h ∥2E ≤ Chm∥vt, ϕt∥Hm∥vh − vP

h , ϕh − ϕP
h ∥E

+ Ch∥v, ϕ∥Hm∥vh − vP
h , ϕh − ϕP

h ∥E.

Dividing by ∥vh − vP
h , ϕh − ϕP

h ∥E and integrating in time, we get

∥vh − vP
h , ϕh − ϕP

h ∥E ≤ ∥vh(x, 0)− vP
h (x, 0), ϕh(x, 0)− ϕP

h (x, 0)∥E

+ Chm
∫ t

0

∥vt, ϕt∥Hmds + Ch

∫ t

0

∥v, ϕ∥Hmds.
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Specifying the initial condition for problem (2.4.32) to be
(
vP
h (x, 0), ϕ

P
h (x, 0)

)
, it

holds ∥vh(x, 0) − vP
h (x, 0), ϕh(x, 0) − ϕP

h (x, 0)∥E = 0. Taking the maximum over
[0, T ], we have

∥vh − vP
h , ϕh − ϕP

h ∥∞,E ≤ Ch∥v, ϕ∥W 1,∞,Hm . (2.4.46)

By putting together (2.4.36), Lemma 2.2 and (2.4.46) we end up proving (2.4.44).

Remark 2.5. We have proved linear convergence under h refinement for the semi-
discretization (2.3.25) using projections as in Assumption 2.4. This is the case of the
projections LΠ1 and LΠ2. However, in Section 2.6 we investigate numerically this
error bound, and show high order rates of convergence. There is numerical evidence
that

(
(Id− Π1)(cvh − cvP

h ),∇ϕ
)
≈ hp, while ∥(Id − Π1)(cvh − cvP

h )∥L2(Ω) depends
linearly on the mesh size h.

2.5 Implementation

In this section we introduce the matrix form associated to (2.3.30), giving further
details about the computation of the projections. Let us start from equation (2.3.30),
that must hold for all wh ∈ X1

h. Consider as test functions {bi,h}Ni=1, the basis
functions of X1

h, which are the push-forward with the Piola transformation map ι1

of the B-splines on the parametric domain. To assemble the matrices involved in
(2.3.30) we compute the projections of the basis functions

Π1(cbi,h) =
N∑
l=1

θilbl,h,

and we denote by θi = (θi1, . . . , θ
i
N)

T , the column vectors with the coefficients of the
projections Π1(cbi,h) into the space X1

h. We then define the matrix Ã ∈ RN×N that
encapsulates the second term of (2.3.30), and with the previous notation each entry
of the matrix can be computed as

[Ã]i,j :=

∫
Ω

div
(
Π1(cbi,h)

)
div
(
Π1(cbj,h)

)
dx

=
N∑
l=1

N∑
m=1

θilθ
j
m

∫
Ω

div(bl,h)div(bm,h)dx = (θi)TAθj,

for i, j = 1, . . . , N , with A ∈ RN×N defined as [A]l,m :=
∫
Ω
div(bl,h)div(bm,h)dx.

It is therefore convenient to store the coefficients of the projectors in the matrix
Θ = [θ1| . . . |θN ] ∈ RN×N , from which we obtain Ã = ΘTAΘ.

For the computation of the projections, we make use of the commutativity prop-
erty (2.3.18), from which we obtain the two equivalent expressions

ι1(Π1(cbi,h)) = Π̂1(ι1(cbi,h)) = Π̂1(ĉb̂i,h) =
N∑
l=1

θ̂il b̂l,h,

ι1(Π1(cbi,h)) = ι1(
N∑
l=1

θilbl,h) =
N∑
l=1

θilι
1(bl,h) =

N∑
l=1

θil b̂l,h,
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where θ̂il are the coefficients of the projection Π̂1(ĉb̂i,h), and ĉ = c ◦ F . Notice that

θ̂il = θil , and therefore the projections can be computed in the parametric domain,
exploiting the tensor-product structure. The details on the computation of these
projections are given in appendix A. We finally recall that, in order to commute
with the divergence operator, the computation of the projection involves (2.3.10), or
(2.3.11) for the periodic case, both of them requiring the application of a quadrature
formula.

Finally, by introducing the notation vn and ϕn for the coefficients of the unknown
fields vn

h and ϕn
h respectively, equation (2.3.30) can be written in the following matrix

form:(
M+

(∆t)2

4
ΘTAΘ

)
vn+1 =

(
M− (∆t)2

4
ΘTAΘ

)
vn −∆tΘTBϕn, for n = 0, . . . , N − 1,

where the matrix M ∈ RN×N denotes the mass matrix for the space X1
h, and B ∈

RN×M is defined as [B]i,j =
∫
Ω
bj,hdiv(bi,h)dx.

Remark 2.6. Notice that the computation of the involved matrices is independent
of time, that is, M,A,B and Θ can be computed only once at the beginning of our
method. If the coefficient c is time dependent, it is necessary to recompute only Θ
at every time step.

2.6 Numerical results

In this section, we have numerically investigated the approximation properties of
the method by conducting academic tests to determine the convergence order under
h-refinements. Furthermore, concerning the employment of the quasi-interpolant in
Section 2.3.2 within the described numerical method, even if it is tested on a simpli-
fied model problem, we have supplemented the array of numerical tests conducted
in [62]. Indeed, their studies observed the favorable approximation properties of the
quasi-interpolant but not of the overall global method. Lastly, we have verified the
conservation of the total energy for this method. All the numerical tests have been
performed in Matlab, with the isogeometric analysis open source package GeoPDEs
[107].

2.6.1 Dirichlet boundary conditions

We consider the wave equation as presented in Section 2.1. The domain is Ω = F (Ω̂),

where Ω̂ = [0, 1]2 and F is the NURBS map describing the quarter of a ring, as in
Figure 2.1. We assume a full Dirichlet boundary with homogeneous conditions, that
is ΓD = ∂Ω and g = 0 in (2.1.1). The time interval is [0, T ], where we fix T = 1. We
consider a space dependent coefficient c(x1, x2) := sin(2πx1)sin(2πx2) + 2, which is
smooth, with bounded derivatives and bounded away from zero.

We assume that the solution is of the form u(x, t) = χ(x)Re(eiωt), with χ ∈
H1

0 (Ω) solution of∫
Ω

c2∇χ · ∇Φdx = ω2

∫
Ω

χΦdx, ∀Φ ∈ H1
0 (Ω). (2.6.47)

Since χ is not known explicitly, we use as reference solution its approximation with
splines of degree p = (6, 6) in a uniform mesh with mesh width h = 1/128. We
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(a) Numerical solution for Dirichlet homogeneous boundary conditions. The arrows
show the direction of the velocity field vh while the color plot shows the pressure map
ϕh.
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(b) Left - Errors in ∥ · ∥∞,2 norm for solutions with quasi-interpolant and Galerkin
methods with homogeneous Dirichlet boundary conditions. Right - Errors with ∥·∥2,2
norm for the same problems.

Figure 2.6. (a) Initial data and numerical solutions of (2.3.29) at T = 1 with
c = sin(2πx1)sin(2πx2) + 2 for Dirichlet homogeneous boundary conditions. (b)
h-convergence rate estimation for both quasi-interpolant (Q.I.) and Galerkin (G)
methods.

compute the reference solution, χh, relative to the fourth smallest eigenvalue, that
is ω = 4π. Our reference solution is u(x, t) = χh(x)Re(e

iωt), and its velocity
and pressure fields are respectively v(x, t) = c(x)∇χh(x)Re(e

iωt) and ϕ(x, t) =
χh(x)Re(iωe

iωt). In order to study the convergence of our method, we estimate
the error between the numerical solution and the reference one for different uniform
mesh sizes. We let the space mesh width h vary in {1/8, 1/16, 1/32, 1/64}. We
choose a uniform partition τ of the interval [0, T ] with ∆t = 5 × 10−4. We fix
p = 3, and we set the initial data from the reference solution, and they can be
seen in Figure 2.6a, for h = 1/64. The plot on the right of Figure 2.6a shows the
solutions obtained at the final time. For each value of h that we are considering,
we record ∥v − vh, ϕ − ϕh∥∞,E. The plot on the left of Figure 2.6b shows the two
components of the computed errors, that are ∥v − vh∥∞,2 := supt∈τ ∥v − vh∥L2(Ω)

and ∥ϕ− ϕh∥∞,2 := supt∈τ ∥ϕ − ϕh∥L2(Ω). We compare these errors with the ones
obtained from solving (2.3.31), i.e., the standard Galerkin method. The plot shows
third order convergence rates both for our discretization and for Galerkin. In order
to investigate also convergence with L2 norm in time we will measure the errors in
the discrete norm ∥f(x, t)∥2,2 := ∆t

2

∑
t∈τ\{T}(∥f(x, t)∥2L2(Ω) + ∥f(x, t + k)∥2L2(Ω))

1
2 .

We define the analogous norms for the vector fields. The plot on the right of Figure
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(a) Numerical solution for mixed boundary conditions. The arrows show the direction
of the velocity field vh while the color plot shows the pressure map ϕh.
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(b) Left - Errors in ∥ · ∥∞,2 norm for solutions with quasi-interpolant and Galerkin
methods with mixed boundary conditions. Right - Errors with ∥ · ∥2,2 norm for the
same problems.

Figure 2.7. (a) Initial data and numerical solutions of (2.3.29) at T = 1 with
c = sin(2πx1)sin(2πx2) + 2 for mixed boundary conditions. (b) h-convergence rate
estimation for both quasi-interpolant (Q.I.) and Galerkin (G) methods.

2.6b shows the same error study under h-refinement using the norm ∥ · ∥2,2. We
obtain the same error convergence rates, that are of order hp, better then what
predicted in the Theorem 2.4.

2.6.2 Mixed boundary conditions

In this second example we consider the domain as above. The boundary of Ω is
defined as in Figure 2.1, and we impose homogeneous Dirichlet conditions on ΓD,
and periodic conditions on ΓP . The time interval is [0, T ], with T = 1. Here we
used the same coefficient for the example in Section 2.6.1, since it is periodic in ΓP .
We use separation of variables to construct the reference solution, as it was done
in the example of Section 2.6.1. The reference solution is u(x, t) = χh(x)Re(e

iωt),
where ω = 4π and χh is the approximation with splines of the solution of (2.6.47)
with mixed Dirichlet and periodic boundary condition. In order to have a fine
approximation, we used p = (6, 6) and a uniform mesh with mesh width h = 1/128.

As it was done for the previous example, we study the convergence of the numer-
ical scheme by estimating the error between the numerical solution and the reference
one. We discretize the problem as in (2.3.29), choosing p = 3 and a uniform mesh.
We let the space mesh width h vary in {1/8, 1/16, 1/32, 1/64}. We choose a uniform
partition τ of the interval [0, T ] with time step size ∆t = 5 × 10−4. We compute
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(a) Left - Convergence rates for vh and ϕh measured with ∥ · ∥∞,2 norm. Right -
Same convergence rates in ∥ · ∥2,2 norm.
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(b) Left - convergence rates for vh and ϕh measured with ∥ · ∥∞,2 norm. Right -
same convergence rates in ∥ · ∥2,2 norm.

Figure 2.8. Global convergence rate estimation, for quasi-interpolant (Q.I.) and
Galerkin (G) methods, for homogeneous Dirichlet boundary conditions (a), while
mixed boundary conditions in (b)

the initial data from the reference solution, and they can be seen in Figure 2.7a, for
h = 1/64. The plot on the right of Figure 2.7a shows the solutions obtained at the
final time.

As it was done for the example in Section 2.6.1, for each value of h that we
are considering we compute the errors in the energy norm. We also measured the
errors with the discrete norm ∥ · ∥2,2. Figure 2.7b shows the two components of the
computed errors, compared with the ones obtained from solving with the standard
Galerkin method. Here it seems the error convergence rate is close to a third order
of convergence. Although in the last refinement step the convergence is reduced, the
same behavior is observed for the solution with the standard Galerkin method.

2.6.3 Convergence study under time refinement

So long we discussed the h-convergence of the quasi-interpolant method. Here we
check the global convergence rate when refining both the mesh size h and the time
step ∆t. We let vary h as before from 1/8 to 1/64, this time taking the time step
∆t = h. We show in Figure 2.8 the convergence of both fields vh and ϕh in the same
norms introduced above, for the example of Section 2.6.1 in Figure 2.8a, and for the
example of Section 2.6.2 in Figure 2.8b. The obtained convergence rate is of second
order, as expected from the use of Crank-Nicolson method.
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Figure 2.9. Energy conservation plots for Dirichlet homogeneous boundary condi-
tions (a) and mixed boundary conditions (b)

2.6.4 Energy conservation

In Remark 2.2 we point out that our numerical scheme is preserving the total energy
of the system, as defined in (2.1.4). Here we check the energy conservation for long
time simulations, hence we fix T = 300 and choose two different uniform partitions
τ1 and τ2 of the interval [0, T ], the first with step ∆t1 = 0.2, and the second with
step size ∆t2 = 0.01. We also fix the mesh size h = 1/32. Recall that we consider
as reference solution a stationary wave with a fixed time-frequency ω = 4π, and
the solution evolves in time as Ψ(t) = Re(eiωt), therefore it performs around two
complete oscillations for each unit interval. We solve problem (2.3.29) and compute
the energy as in (2.1.4) for every tn ∈ τ ∩ Z. In Figure 2.9 we show the evolution

of the relative errors |E0−Etn |
|E0| , where Etn is the energy evaluated at time tn. Figure

2.9a shows the evolution of the relative energy errors in semi-logarithmic scale for
the solution of the problem with homogeneous Dirichlet boundary conditions, as the
example in Section 2.6.1. We can see that for both time steps the error remains at the
level of round-off errors, with lower numbers for the finer time grid. The same plots
are reproduced in Figure 2.9b for the solutions of the problem with mixed boundary
conditions of Section 2.6.2, and we observe a similar behavior. Notice that on the
finer grid, for both Dirichlet and mixed boundary conditions, we performed 30000
steps in time without losing energy. The increasing behavior of the errors for the
coarse grid solutions seems only due to accumulation of round-off errors. We can
conclude that the method preserves the total energy of the system as we expected.

42 Alen Kushova Chapter 2



2.7 Conclusions

In this chapter we proposed an isogeometric discretization of the wave equation in
mixed form, with mixed Dirichlet and periodic boundary conditions. The method
relies on tensor product projections into spline spaces with good approximation prop-
erties and that commute with the divergence operator, according to the De Rham
complex for splines. The conservation of the total energy of the system is imposed
weakly by modifying the differential equations according to the energy constraint
and to projections operators that we introduced. Regarding time discretization we
employed Crank-Nicolson method, which is of second order and energy conservative,
though alternative conservative methods could be selected.

The method employed for energy preservation has been previously proposed in
the field of plasma physics and magnetohydrodynamics, see for example the dis-
cretization proposed by[68] for the Vlasov-Maxwell equations and [62] for magneto-
hydrodynamics. The novelty of this thesis, except for the simplified model problem,
is the a priori error estimate analysis for the full method, not just for the projection
approximation. In cases where the introduced projections, in addition to commu-
tativity with the divergence operator, exhibit L2-stability and preserve splines, we
assume good approximation properties of the adjoint projection operator to estab-
lish that the method is of high order – specifically, hm−1 assuming the solutions
reside in Hm(Ω) and its vectorial counterpart. However, the stability requirement
in L2-norm, is not always guaranteed, as exemplified by the projections introduced
in Section 2.3.2. In light of this, under the less stringent assumption that the pro-
jections are locally stable in the uniform norm, without requiring approximation
properties of the adjoint projection operators, we prove that the method converges,
at least linearly in h.

Numerical tests conducted indicate that, in scenarios where we expect linear con-
vergence, the method exhibits high order convergence in h, matching the order of
convergence achieved through a Galerkin approximation without projections. This
observation suggests that the proposed error estimate might be improved, represent-
ing a potential avenue for future development.

Finally, the conservation of energy is also confirmed by numerical results, where
the relative error remains of the order of machine precision at the final time.
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Chapter 3

Heat equation

This chapter serves as both a review of preconditioners for isogeometric space-time
discretizations of the heat equation and an introduction to novel preconditioning
techniques tailored for the aforementioned problem.

Space-time finite element methods originated in the papers [47, 22, 89], where
standard finite elements are assigned an extra dimension for the time and, typically,
adopt a discontinuous approximation in time, since this produces a time marching
algorithm with a traditional step-by-step format (see e.g. [97]).

One of the first work concerning space-time isogeometric discretization is [71], in
which a stabilized variational formulation produces a discrete bilinear form that is
elliptic with respect to a discrete energy norm. The resulting linear system is then
solved through a standard parallel Algebraic MultiGrid (AMG) preconditioned GM-
RES solver. Other papers in literature propose isogeometric space-time Galerkin
methods, favoring a step-by-step structure in time. In [72], the same variational
formulation of [71] is used in combination with a space-time domain decomposition
into space-time slabs that are sequentially coupled in time by a stabilized discon-
tinuous Galerkin method. In [101] the authors outlined two different space–time
computation techniques with continuous representation in time (ST-C methods),
respectively, with a successive-projection technique (ST-C-SPT) and with a direct-
computation technique (ST-C-DCT).

The first one, analysed in [106], is a way to project a previously computed solu-
tion, possibly discontinuous, into isogeometric spaces in order to get a more regular
solution and to save memory for its storage.

According to the ST-C-DCT method, the solution with continuous temporal
representation is computed sequentially from the space-time variational formulation
associated with each slab.

Related multigrid solvers have been proposed in [50, 60] and low-rank approx-
imations in [83]. In [19] the authors consider C0 coupling between the space-time
slabs with a suitable stabilized formulation that also yields a sequential scheme.
Finally, the interest in space-time isogeometric analysis for complex real-world sim-
ulations is attested by the recent papers [102, 103, 104], where, again, a sequential
(discontinuous) approximation in time is adopted.

In this chapter we focus on the heat equation and on its space-time isogeometric
discretizations, that allows smooth approximation in both space and time. This
originated in [85], focusing on a L2 least squares formulation, that is obtained min-
imizing the L2-norm of the residual in the space-time domain, while in [75], the
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authors focused on the plain Galerkin space-time formulation, whose well-posedness
has been studied, for finite element discretizations and for the heat equation, in
the recent papers [99] and [100]. Here we consider both this formulations, focusing
on the study of stable preconditioning strategies. Indeed, when adopting smooth
approximation in space and in time, the major issue is its computational cost and
the key ingredient is an efficient solver for the linear system, which is global in time.

The preconditioners proposed by the authors in [85] and [75], exploit the Kro-
necker structure of the arising linear systems, extending the original idea in [80].
For the plain Galerkin formulation, and assuming that the spatial domain does not
change with time, the linear system has the structure

A := γWt ⊗Ms + νMt ⊗ Ls, (3.0.1)

where Wt is given by the discretization of the time derivative, Ls is given by the
discretization of the Laplacian in the spatial variables, Mt and Ms are mass ma-
trices in time and space, that are respectively, the matrix representations of the L2

scalar product, and γ, ν > 0 are constants of the problem. The construction of a
preconditioner for (3.0.1) is based on a generalization of the classical Fast Diago-
nalization (FD) method [79]. Indeed, the FD method cannot be directly applied
to (3.0.1), as this would require to compute the eigendecomposition of the pencil
(Wt,Mt) which is numerically unstable. In [75] the authors circumvent this diffi-
culty by introducing an ad-hoc factorization of the time matrices which allows to
design a solver conceptually similar to the FD method.

For the L2 least squares formulation, instead, the linear system has the structure

B := γ2Lt ⊗Ms + ν2Mt ⊗ Js + γνRt ⊗ Ls, (3.0.2)

where Lt is the matrix discretizing the second derivative in time (with initial con-
ditions), Ls is the stiffness matrix in the space variable, Rt is a rank 1 matrix
associated to the final time, and Js is given by the discretization of the Bi-Laplacian
in the spatial variables. Again, Mt and Ms are mass matrices in time and space,
respectively, and γ, ν > 0 are constants of the problem. Thus, the problem becomes
elliptic and a preconditioner for the linear system associated to (3.0.2) can be easily
designed as in [93], again based on the FD method.

Furthermore, in the case of the plain Galerkin formulation, we can consider the
Galerkin (or projected ) L2 least squares form associated to the system (3.0.1), that
is a linear system with matrix

AT (Mt ⊗Ms)
−1A := γ2WT

t M
−1
t Wt ⊗Ms + ν2Mt ⊗ LsM

−1
s Ls + γνRt ⊗ Ls.

This has a structure similar to (3.0.2). In particular both discrete problems are now
elliptic, and the third term appearing is the Kronecker product between a rank 1
matrix (in time) and the stiffness matrix (in space).

The main contribution of this chapter, is the design of two new preconditioners,
one for the projected L2 least squares formulation above and one for (3.0.2), both
of them relying on FD method and Sherman-Morrison formula for matrix inversion
of rank-1 perturbation. The preconditioners introduced here can easily be extended
to rank-r perturbations, with r > 1, employing the Sherman-Morrison-Woodbury
formula, as it is done for finite difference discretizations of the heat-equation in [51].
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The computational cost of the setup of all mentioned preconditioners is O(Ndof )

FLoating Point Operations (FLOPs), while the application cost is O(N
(d+2)/(d+1)
dof )

FLOPs, where d is the number of spatial dimensions and Ndof denotes the total
number of degrees-of-freedom (assuming, for simplicity, to have the same number of
degrees-of-freedom in time and in each spatial direction). We report in this chapter
the numerical benchmarks of [86, 75], and compare them with the performance of the
proposed Sherman-Morrison preconditioners. The results show that the computing
times (serial and single-core execution) are close to optimality, that is, proportional
to Ndof , for all the above mentioned strategies. The preconditioners are also robust
with respect to the polynomial degree and number of elements. Furthermore, all
these approaches are optimal in terms of memory requirement: denoting by Ns the
total number of degrees-of-freedom in space, the storage cost is O(pdNs + Ndof ).
We also remark that global space-time methods in principle facilitate the full par-
allelization of the solver, see [38, 49, 70].

The outline of this chapter is as follows. In Section 3.1 we present the basics of
B-splines based IgA and the main properties of the Kronecker product operation.
The space-time formulation is introduced in Section 3.2 while its plain Galerkin iso-
geometric discretization is given in 3.3, together with the preconditioner introduced
in [75] and its application. In Section 3.4 we introduce the Sherman-Morrison pre-
conditioner for the projected L2 least squares form. The L2 least squares formulation
and its isogeometric discretization are introduced in Section 3.5, while in Section
3.6 we recall the preconditioner introduced in [85] and we discuss its application. In
Section 3.7 we introduce the new preconditioner for the least squares formulation.
Section 3.8 is devoted to the computational costs of the proposed preconditioners
and to memory requirements. We present the numerical results assessing the per-
formance of the proposed preconditioners in Section 3.9. Finally, in the last section
we draw some conclusions and we highlight some future research directions.

3.1 B-splines and preliminaries

Given n and p two positive integers, we consider open knot vector Ξ in [0, 1], recalling
that is a sequence of non-decreasing points Ξ := {ξ1 ≤ · · · ≤ ξn+p+1}, such that

ξ1 = · · · = ξp+1 = 0 and ξn = · · · = ξn+p+1 = 1. Then, b̂i,p : (0, 1) → R are the
univariate B-splines for i = 1, . . . , n, defined according to Cox-De Boor recursion
formulas (see [34]). In this chapter we denote the univariate spline space by

Ŝp
h := span{b̂i,p : i = 1, . . . , n},

where h denotes the mesh-size, i.e. h := max{|ξi+1 − ξi|, i = 1, . . . , n + p}. The
interior knot multiplicity influences the smoothness of the B-splines at the knots
(see [34]). For more details on B-splines properties and their use in IgA we refer to
[29].

Multivariate B-splines are defined as tensor product of univariate B-splines.
We consider functions that depend on d spatial variables and the time variable.
Therefore, given positive integers nl, pl for l = 1, . . . , d and nt, pt, we introduce
d + 1 univariate knot vectors Ξl := {ξl,1 ≤ · · · ≤ ξl,nl+pl+1} for l = 1, . . . , d and
Ξt := {ξt,1 ≤ · · · ≤ ξt,nt+pt+1}. Let hl be the mesh-size associated to the knot vector
Ξl for l = 1, . . . , d, let hs := max{hl | l = 1, . . . , d} be the maximal mesh-size in
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all spatial knot vectors and let ht be the mesh-size of the time knot vector. Let
also p be the vector that contains the degree indexes, i.e. p := (ps, pt), where
ps := (p1, . . . , pd). For simplicity, we assume to have the same polynomial degree in
all spatial directions, i.e., with abuse of notations, we set p1 = · · · = pd =: ps, but
the general case is similar.

We assume that the following quasi-uniformity of the knot vectors holds.

Assumption 3.1. There exists 0 < α ≤ 1, independent of hs and ht, such that each
non-empty knot span (ξl,i, ξl,i+1) of Ξl fulfils αhs ≤ ξl,i+1 − ξl,i ≤ hs for l = 1, . . . , d
and each non-empty knot span (ξt,i, ξt,i+1) of Ξt fulfils αht ≤ ξt,i+1 − ξt,i ≤ ht.

We recall the definition of multivariate B-splines is

B̂i,p(η, τ) := B̂is,ps
(η)̂bit,pt(τ), (3.1.3)

where

B̂is,ps
(η) := b̂i1,ps(η1) . . . b̂id,ps(ηd), (3.1.4)

is := (i1, . . . , id), i := (is, it) and η = (η1, . . . , ηd). The corresponding spline space
is defined as

Ŝp
h := span

{
B̂i,p

∣∣∣ il = 1, . . . , nl for l = 1, . . . , d; it = 1, . . . , nt

}
,

where h := max{hs, ht}. We have that Ŝp
h = Ŝps

hs
⊗ Ŝpt

ht
, where

Ŝps
hs

:= span
{
B̂is,ps

∣∣∣ il = 1, . . . , nl; l = 1, . . . , d
}

(3.1.5)

is the space of tensor-product splines on Ω̂ := (0, 1)d.

Assumption 3.2. We assume that pt, ps ≥ 1 and that Ŝps
hs

⊂ C0(Ω̂) and Ŝpt
ht

⊂
C0 ((0, 1)) .

3.1.1 Space-time isogeometric spaces

The space-time computational domain that we consider is Ω× (0, T ), where Ω ⊂ Rd

and T > 0 is the final time. We make the following assumptions.

Assumption 3.3. We assume that Ω is parametrized by F : Ω̂ → Ω, with F ∈[
Ŝps
hs

]d
on the closure of Ω̂. Moreover, we assume that F−1 has piecewise bounded

derivatives of any order.

We define x = (x1, . . . , xd) := F (η) and t := Tτ . Then the space-time domain

is given by the parametrization G : Ω̂ × (0, 1) → Ω × (0, T ), such that G(η, τ) :=
(F (η), T τ) = (x, t).

We introduce the spline space with initial and boundary conditions, in parametric
coordinates, as

X̂h :=
{
v̂h ∈ Ŝp

h

∣∣∣ v̂h = 0 on ∂Ω̂× (0, 1) and v̂h = 0 on Ω̂× {0}
}
. (3.1.6)
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We also have that X̂h = X̂s,hs ⊗ X̂t,ht , where

X̂s,hs :=
{
ŵh ∈ Ŝps

hs

∣∣∣ ŵh = 0 on ∂Ω̂
}

= span
{
b̂i1,ps . . . b̂id,ps

∣∣∣ il = 2, . . . , nl − 1; l = 1, . . . , d
}
,

X̂t,ht :=
{
ŵh ∈ Ŝpt

ht

∣∣∣ ŵh(0) = 0
}

= span
{
b̂it,pt

∣∣∣ it = 2, . . . , nt

}
.

By introducing a colexicographical reordering of the basis functions, we can write

X̂s,hs = span
{
b̂i1,ps . . . b̂id,ps

∣∣∣ il = 1, . . . , Ns,l; l = 1, . . . , d
}

= span
{
B̂i,ps

∣∣∣ i = 1, . . . , Ns

}
,

X̂t,ht = span
{
b̂i,pt

∣∣∣ i = 1, . . . , Nt

}
,

and then
X̂h = span

{
B̂i,ps

∣∣∣ i = 1, . . . , Ndof

}
, (3.1.8)

where we defined Ns,l := nl − 2 for l = 1, . . . , d, Ns :=
∏d

l=1Ns,l, Nt := nt − 1 and
Ndof := NsNt.

Finally, the isogeometric space we consider is the isoparametric push-forward of
(3.1.8) through the geometric map G, i.e.

Xh := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof

}
. (3.1.9)

We also have that Xh = Xs,hs ⊗Xt,ht , where

Xs,hs := span
{
Bi,ps

:= B̂i,ps
◦ F−1

∣∣∣ i = 1, . . . , Ns

}
(3.1.10)

and
Xt,ht := span

{
bi,pt := b̂i,pt(·/T )

∣∣∣ i = 1, . . . , Nt

}
. (3.1.11)

3.1.2 Kronecker product

The Kronecker product of two matrices C ∈ Cn1×n2 and D ∈ Cn3×n4 is defined as

C⊗D :=

 [C]1,1D . . . [C]1,n2D
...

. . .
...

[C]n1,1D . . . [C]n1,n2D

 ∈ Cn1n3×n2n4 ,

where [C]i,j denotes the ij-th entry of the matrix C. For extensions and properties
of the Kronecker product we refer to [67]. In particular, when a matrix has a
Kronecker product structure, the matrix-vector product can be efficiently computed.
For this purpose, for m = 1, . . . , d+1 we introduce the m-mode product of a tensor
X ∈ Cn1×···×nd+1 with a matrix J ∈ Cℓ×nm , that we denote by X ×m J. This is a
tensor of size n1 × · · · × nm−1 × ℓ× nm+1 × . . . nd+1, whose elements are defined as

[X×m J]i1,...,id+1
:=

nm∑
j=1

[X]i1,...,im−1,j,im+1,...,id+1
[J]im,j.
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Then, given Ji ∈ Cℓi×ni for i = 1, . . . , d+ 1, it holds

(Jd+1 ⊗ · · · ⊗ J1) vec (X) = vec (X×1 J1 ×2 · · · ×d+1 Jd+1) , (3.1.12)

where the vectorization operator “vec” applied to a tensor stacks its entries into a
column vector as

[vec(X)]j = [X]i1,...,id+1
for il = 1, . . . , nl and for l = 1, . . . , d+ 1,

where j := i1 +
∑d+1

k=2

[
(ik − 1)Πk−1

l=1 nl

]
.

3.2 Space-time variational formulation of the Heat

equation

Our model problem is the heat equation with homogeneous boundary and initial
conditions: we look for a solution u such that

γ∂tu−∇ · (ν∇u) = f in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u = 0 in Ω×{0},
(3.2.13)

where Ω ⊂ Rd, T is the final time, γ > 0 is the heat capacity constant and ν > 0
is the thermal conductivity constant. We assume that f ∈ L2(0, T ;H−1(Ω)) and we
introduce the Hilbert spaces

X :=
{
v ∈ L2(0, T ;H1

0 (Ω)) ∩H1(0, T ;H−1(Ω)) | v(x, 0) = 0
}
,

Y := L2(0, T ;H1
0 (Ω)),

endowed with the following norms

∥v∥2X :=
γ2

ν
∥∂tv∥2L2(0,T ;H−1(Ω)) + ν∥v∥2L2(0,T ;H1

0 (Ω)) and ∥v∥2Y := ν∥v∥2L2(0,T ;H1
0 (Ω)),

respectively. Then, the variational formulation of (3.2.13) reads:

Find u ∈ X such that A(u, v) = F(v) ∀v ∈ Y , (3.2.14)

where the bilinear formA(·, ·) and the linear form F(·) are defined ∀w ∈ X and ∀v ∈
Y as

A(w, v) :=

∫ T

0

∫
Ω

(γ∂tw v + ν∇w · ∇v) dΩdt and F(v) :=

∫ T

0

∫
Ω

f v dΩdt.

The well-posedness of the variational formulation above is a classical result, see for
example [99].

The previous setting can be generalized to non-homogeneous initial and bound-
ary conditions. For example, suppose that in (3.2.13) we have the initial condition
u = u0 in Ω × {0} with u0 ∈ L2(Ω). Then, we consider a lifting u0 of u0 such that
u0 ∈ L2(0, T ;H1

0 (Ω))∩H1(0, T ;H−1(Ω)), see e.g. [45]. Finally, we split the solution
u as u = u + u0, where u ∈ X is the solution of the following heat equation with
homogeneous initial and boundary conditions:

γ∂tu−∇ · (ν∇u) = f in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u = 0 in Ω×{0},
where f := f − γ∂tu0 +∇ · (ν∇u0).
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3.3 Space-time Galerkin method

Let Xh ⊂ X be the isogeometric space defined in (3.1.9). We consider the following
Galerkin method for (3.2.14):

Find uh ∈ Xh such that A(uh, vh) = F(vh) ∀vh ∈ Xh. (3.3.15)

Following [99], let Nh : L2(0, T ;H−1(Ω)) → Xh be the discrete Newton potential
operator, defined as follows: given ϕ ∈ L2(0, T ;H−1(Ω)) then Nhϕ ∈ Xh fulfills∫ T

0

∫
Ω

ν∇(Nhϕ) · ∇vh dΩdt = γ

∫ T

0

∫
Ω

ϕ vh dΩdt ∀vh ∈ Xh.

Thus, we define the norm in Xh as

∥w∥2Xh
:= ν∥Nh(∂tw)∥2L2(0,T ;H1

0 (Ω)) + ν∥w∥2L2(0,T ;H1
0 (Ω)).

The stability and the well-posedness of formulation (3.3.15) are guaranteed by
[99, Equation (2.7)] and by a straightforward extension to IgA of [99, Theorem 3.1]
and [99, Theorem 3.2]. We summarize these results in the following Proposition 3.1
and Theorem 3.2.

Proposition 3.1. It holds

A(w, v) ≤
√
2∥w∥X∥v∥Y ∀w ∈ X and ∀v ∈ Y ,

and

∥wh∥Xh
≤ 2

√
2 sup
vh∈Xh

A(wh, vh)

∥vh∥Y
∀wh ∈ Xh.

Theorem 3.2. There exists a unique solution uh ∈ Xh to the discrete problem
(3.3.15). Moreover, it holds

∥u− uh∥Xh
≤ 5 inf

wh∈Xh

∥u− wh∥X ,

where u ∈ X is the solution of (3.2.14).

We have then the following a-priori estimate for h-refinement.

Theorem 3.3. Let q be an integer such that 1 < q ≤ min{ps, pt} + 1. If u ∈
X∩Hq (Ω× (0, T )) is the solution of (3.2.14) and uh ∈ Xh is the solution of (3.3.15),
then it holds

∥u− uh∥Xh
≤ C

√
γ2

ν
+ ν

(
hq−1
t + hq−1

s

)
∥u∥Hq(Ω×(0,T )) (3.3.16)

where C is independent of hs, ht, γ, ν and u.

The proof of (3.3.16) is given in [75, Theorem 2], we conclude with the following
remark.

Remark 3.1. In Theorem 3.2, the degrees pt, ps and the mesh-sizes ht, hs play
a similar role. This motivates our choice pt = ps =: p and ht = hs =: h for the
numerical tests in Section 3.9. In this case, and if the solution u is smooth, (3.3.16)
yields h-convergence of order p. A sharper error analysis is possible taking into
account a different regularity of the solution u in space and time, in the line of the
anisotropic estimates of [14].
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3.3.1 Discrete system

The linear system associated to (3.3.15) is

Au = f , (3.3.17)

where [A]i,j = A(Bj,p, Bi,p) and [f ]i = F(Bi,p). The tensor-product structure of the
isogeometric space (3.1.9) allows to write the system matrix A as sum of Kronecker
products of matrices as

A = γWt ⊗Ms + νMt ⊗ Ls, (3.3.18)

where for i, j = 1, . . . , Nt

[Wt]i,j =

∫ T

0

b′j,pt(t) bi,pt(t) dt and [Mt]i,j =

∫ T

0

bj,pt(t) bi,pt(t) dt, (3.3.19a)

while for i, j = 1, . . . , Ns

[Ls]i,j =

∫
Ω

∇Bj,ps
(x) · ∇Bi,ps

(x) dΩ and [Ms]i,j =

∫
Ω

Bj,ps
(x) Bi,ps

(x) dΩ.

(3.3.19b)
In what follows we define and investigate the application of different preconditioners
for solving (3.3.17).

3.3.2 Galerkin preconditioner

As first attempt we introduce, for the system (3.3.17), the preconditioner

[Â]i,j := Â(B̂j,p, B̂i,p),

where

Â(v̂, ŵ) :=

∫ 1

0

∫
Ω̂

(γ∂tv̂ ŵ + Tν∇v̂ · ∇ŵ) dΩ̂ dτ ∀v̂, ŵ ∈ X̂h.

We have
Â = γWt ⊗ M̂s + νMt ⊗ L̂s, (3.3.20)

where L̂s and M̂s are the equivalent of (3.3.19b) in the parametric domain, i.e. we
define for i, j = 1, . . . , Ns

[L̂s]i,j =

∫
Ω̂

∇B̂j,ps
(η) · ∇B̂i,ps

(η) dΩ̂ and [M̂s]i,j =

∫
Ω̂

B̂j,ps
(η) B̂i,ps

(η) dΩ̂.

(3.3.21)
We emphasize that the time matrices appearing in (3.3.20) are the same ones ap-
pearing in the system matrix (3.3.18). This is because for i, j = 1, . . . , Nt we have

[Wt]i,j =

∫ T

0

b′j,pt(t) bi,pt(t) dt =

∫ 1

0

b̂′j,pt(τ) b̂i,pt(τ) dτ

and

[Mt]i,j =

∫ T

0

bj,pt(t) bi,pt(t) dt = T

∫ 1

0

b̂j,pt(τ) b̂i,pt(τ) dτ.

52 Alen Kushova Chapter 3



Thanks to (3.1.4), the spatial matrices (3.3.21) have the following structure

L̂s =
d∑

l=1

M̂d ⊗ · · · ⊗ M̂l+1 ⊗ L̂l ⊗ M̂l−1 ⊗ · · · ⊗ M̂1 and M̂s = M̂d ⊗ · · · ⊗ M̂1,

(3.3.22)
where for l = 1, . . . , d and for i, j = 1, . . . , Ns,l we define

[L̂l]i,j :=

∫ 1

0

b̂′j,ps(ηk )̂b
′
i,ps(ηk) dηk and [M̂l]i,j :=

∫ 1

0

b̂j,ps(ηk )̂bi,ps(ηk) dηk.

The efficient application of the proposed preconditioner, that is, the solution of a
linear system with matrix Â, should exploit the structure highlighted above. When
the pencils (Wt,Mt), (L̂1, M̂1), . . . , (L̂d, M̂d) admit a stable generalized eigende-
composition, a possible approach is the Fast Diagonalization (FD) method, see
[37] and [79] for details. We will see in Section 3.3.3 that the spatial pencils

(L̂1, M̂1), . . . , (L̂d, M̂d) admit a stable diagonalization, but this is not the case of
(Wt,Mt), that needs a special treatment as explained in Section 3.3.5.

3.3.3 Stable factorization of (L̂l, M̂l) for l = 1, . . . , d

The spatial stiffness and mass matrices L̂l and M̂l are symmetric and positive defi-
nite for l = 1, . . . , d. Thus, the pencils (L̂l, M̂l) for l = 1, . . . , d admit the generalized
eigendecomposition

L̂lUl = M̂lUlΛl,

where the matricesUl contain in each column the M̂l-orthonormal generalized eigen-
vectors and Λl are diagonal matrices whose entries contain the generalized eigenval-
ues. Therefore we have for l = 1, . . . , d the factorizations

UT
l L̂lUl = Λl and UT

l M̂lUl = INs,l
, (3.3.23)

where INs,l
denotes the identity matrix of dimension Ns,l ×Ns,l. Figure 3.1 shows

the shape of the generalized eigenvectors in Ul, with associated eigenvalue in Λl,
for a fixed univariate direction l = 1, . . . , d discretized with degree ps = 3 B-
Splines and uniform partition with nel = 32. The stability of the decomposition
(3.3.23) is expressed by the condition number of the eigenvector matrix. In partic-

ular UT
l M̂lUl = INs,l

implies that

κ2(Ul) := ∥Ul∥2∥U−1
l ∥2 =

√
κ2(M̂l),

where ∥ · ∥2 is the norm induced by the Euclidean vector norm. The condition

number κ2(M̂l) has been studied in [48] and it does not depend on the mesh-size, but
it depends on the polynomial degree. We report in Table 3.1 the behavior of κ2(Ul)
for different values of spline degree ps and for different uniform discretizations with
number of elements denoted by nel. We observe that κ2(Ul) exhibits a dependence
only on ps, but stays moderately low for all low polynomial degrees that are in the
range of interest.
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Figure 3.1. Generalized eigenvectors for the pencils (L̂l, M̂l), with associated eigen-
values for ps = 3 and nel = 32 elements.

nel ps = 2 ps = 3 ps = 4 ps = 5 ps = 6 ps = 7 ps = 8

32 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

64 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

128 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

256 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

512 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

1024 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

Table 3.1. κ2(Ul) for different polynomial degrees ps and number of elements nel.

3.3.4 Instability of the eigendecomposition of (Wt,Mt)

As regards the time pencils, our first attempt was to apply the original idea of [80],
which suggests to diagonalize among time direction too. Unfortunately, while Mt is
symmetric, Wt is neither symmetric nor skew-symmetric. Indeed

[Wt]i,j + [Wt]j,i =

∫ T

0

b′j,pt(t) bi,pt(t) dt +

∫ T

0

b′i,pt(t) bj,pt(t) dt = bi,pt(T ) bj,pt(T )

(3.3.24)
where bi,pt(T ) bj,pt(T ) vanishes for all i = 1, . . . , Nt − 1 or j = 1, . . . , Nt − 1. A nu-
merical computation of the generalized eigendecomposition of the pencil (Wt,Mt),
that is

WtUt = MtUtΛt, (3.3.25)

where Λt is the diagonal matrix of the generalized complex eigenvalues and Ut is the
complex matrix whose columns are the generalized eigenvectors normalized w.r.t.
the norm induced byMt, reveals that the eigenvectors are far fromMt-orthogonality,
i.e. the matrix Ut

∗MtUt is not diagonal. In Figure 3.2 we set T = 1 and plot
these generalized eigenvectors with associated eigenvalue, for pt = 3 and uniform
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Figure 3.2. Generalized eigenvectors for the pencil (Wt,Mt), with associated eigen-
values for pt = 3 and nel = 32 elements. The real part is expressed in blue, while
the imaginary part is in red.

partition with nel = 32. We report in Table 3.2 the condition number κ2(Ut) for
different values of spline degree pt and for different uniform discretizations with nel

number of elements. In contrast to the spatial case (see Section 3.3.3), κ2(Ut) is
large and grows exponentially with respect to the spline degree pt and the level of
mesh refinement. This test clearly indicates a numerical instability when computing
the generalized eigendecomposition of (Wt,Mt). A similar behavior has also been
highlighted in [60] for a SUPG stabilized modification of Wt.

nel pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 8.9 · 102 3.0 · 104 5.0 · 104 3.4 · 105 3.1 · 106 4.2 · 107 7.0 · 108

64 4.4 · 103 2.6 · 105 5.0 · 105 5.4 · 106 8.9 · 107 3.1 · 109 2.0 · 1010

128 2.3 · 104 1.2 · 106 5.8 · 106 1.0 · 108 3.0 · 109 6.4 · 1011 1.3 · 1012

256 1.2 · 105 9.4 · 106 7.6 · 107 2.1 · 109 1.2 · 1011 1.2 · 1013 2.1 · 1013

512 7.0 · 105 8.3 · 107 1.1 · 109 4.9 · 1010 4.5 · 1012 3.6 · 1013 4.9 · 1012

1024 4.1 · 106 8.0 · 108 1.9 · 1010 1.3 · 1012 9.6 · 1012 1.4 · 1012 5.6 · 1012

Table 3.2. κ2(Ut) in the eigendecomposition for different degrees pt and number of
elements nel.

3.3.5 Stable factorization for (Wt,Mt)

The analysis above motivates the search of a different but stable factorization of the
pencil (Wt,Mt). We look now for a factorization of the form

WtUt = MtUt∆t, (3.3.26)

where ∆t is a complex arrowhead matrix, i.e. with non-zero entries allowed on the
diagonal, on the last row and on the last column only. We also require that Ut fulfils
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the orthogonality condition

U∗
tMtUt = INt . (3.3.27)

From (3.3.26)–(3.3.27) we then obtain the factorizations

U∗
tWtUt = ∆t and U∗

tMtUt = INt . (3.3.28)

With this aim, we look for Ut as follows:

Ut :=

[ ◦
Ut r

0T ρ

]
(3.3.29)

where
◦
Ut ∈ C(Nt−1)×(Nt−1), r ∈ CNt−1, ρ ∈ C and where 0 ∈ RNt−1 denotes the null

vector. In order to guarantee the non-singularity of Ut, we further impose ρ ̸= 0.
Accordingly, we split the time matrices Wt and Mt as

Wt =

[ ◦
Wt w

−wT ω

]
and Mt =

[ ◦
Mt m

mT µ

]
, (3.3.30)

where we have defined

ω := [Wt]Nt,Nt , µ := [Mt]Nt,Nt ,

[w]i = [Wt]i,Nt and [m]i = [Mt]i,Nt for i = 1, . . . , Nt − 1,

[
◦
Wt]i,j = [Wt]i,j and [

◦
Mt]i,j = [Mt]i,j for i, j = 1, . . . , Nt − 1.

Recalling (3.3.24), we observe that
◦
Wt is skew-symmetric and, since

◦
Mt is symmet-

ric, we can write the eigendecomposition of the pencils (
◦
Wt,

◦
Mt):

◦
Wt

◦
Ut =

◦
Mt

◦
Ut

◦
Λt with

◦
U∗

t

◦
Mt

◦
Ut = INt−1, (3.3.31)

where
◦
Ut contains the complex generalized eigenvectors and

◦
Λt is the diagonal

matrix of the generalized eigenvalues, that are pairs of complex conjugate pure
imaginary numbers plus, eventually, the eigenvalue zero. From (3.3.29)–(3.3.30), it
follows

U∗
tMtUt =

 INt−1

◦
U∗

t

◦
Mtr+

◦
U∗

tmρ

r∗
◦
Mt

◦
Ut + ρ∗mT

◦
Ut [r∗ρ∗]Mt

[
r
ρ

]  ,
where for the top-left block we have used (3.3.31).

The orthogonality condition in (3.3.27) holds if and only if r and ρ fulfil the two
conditions:


◦
U∗

t

◦
Mtr+

◦
U∗

tmρ = 0, (3.3.32a)

[r∗ρ∗]Mt

[
r
ρ

]
= 1. (3.3.32b)
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Figure 3.3. Real part (blue) and imaginary part (red) of columns of Ut with asso-
ciated diagonal entry in ∆t. Discretization with pt = 3 and nel = 32.

In order to compute r and ρ, we first find v ∈ CNt−1 such that

◦
Mtv = −m; (3.3.33)

then we normalize the vector

[
v
1

]
w.r.t. the ∥ · ∥Mt-norm to get

[
r
ρ

]
:=

[
v
1

]
(
[v∗ 1]Mt

[
v
1

])1
2

that fulfils (3.3.32a)–(3.3.32b). Finally, we get (3.3.26) by defining

∆t := U∗
tWtUt =

[ ◦
Λt g

−g∗ σ

]
, (3.3.34)

where g :=
◦
U∗

t

[
◦
Wt w

] [
r
ρ

]
and σ := [r∗ρ∗]Wt

[
r
ρ

]
. Note that matrix (3.3.34) has

an arrowhead structure. Figure 3.3 shows the plot of the columns of Ut with
associated diagonal entry of ∆t, for pt = 3 and uniform partition with nel = 32.

To assess the stability of the new decomposition (3.3.28), we set T = 1 and we
compute the condition number κ2(Ut) for different values of spline degree pt and
for various uniform discretizations with number of elements nel. Thanks to (3.3.27),
we have κ2(Ut) =

√
κ2(Mt). The results, reported in Table 3.3, show that the

condition numbers κ2(Ut) are uniformly bounded w.r.t. the mesh refinement, they
grow with respect to the polynomial degree but they are moderately small for all the
degrees of interest. We conclude that the factorization (3.3.28) for the time pencil
(Wt,Mt) is stable.
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nel pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 3.2 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

64 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

128 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

256 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

512 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

1024 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

Table 3.3. κ2(Ut) in arrow decomposition for different degrees pt and number of
elements nel.

3.3.6 Preconditioner application

The application of the preconditioner involves the solution of the linear system

Âs = r, (3.3.35)

where Â has the structure (3.3.20). We are able to efficiently solve system (3.3.35)
by extending the FD method. The starting points, that are involved in the setup of
the preconditioner, are the following ones:

� for the pencils (L̂l, M̂l) for l = 1, . . . , d we have the factorizations (3.3.23);

� for the pencil (Wt,Mt) we have the factorization (3.3.28).

Then, by defining Us := Ud ⊗ · · · ⊗U1 and Λs :=
∑d

l=1 INs,d
⊗ · · · ⊗ INs,l+1

⊗Λl ⊗
INs,l−1

⊗ · · · ⊗ INs,1 , we have for the matrix Â the factorization

Â =
(
U∗

t ⊗UT
s

)−1
(γ∆t ⊗ INs + νINt ⊗Λs) (Ut ⊗Us)

−1 . (3.3.36)

Note that the second factor in (3.3.36) has the block-arrowhead structure

γ∆t ⊗ INs + νINt ⊗Λs =


H1 B1

. . .
...

HNt−1 BNt−1

−B∗
1 . . . −B∗

Nt−1 HNt

 (3.3.37)

where Hi and Biare diagonal matrices defined as

Hi := γ[Λt]i,iINs + νΛs and Bi := γ[g]iINs for i = 1, . . . , Nt − 1,

HNt := γσINs + νΛs.

The matrix (3.3.37) has the following easy-to-invert block LU decomposition

γ∆t⊗INs + νINt ⊗Λs (3.3.38)

=


INs

. . .

INs

−B∗
1H

−1
1 . . . −B∗

Nt−1H
−1
Nt−1 INs



H1 B1

. . .
...

HNt−1 BNt−1

S
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where S := HNt +
∑Nt−1

i=1 B∗
iH

−1
i Bi is a diagonal matrix.

Summarizing, the solution of (3.3.35) can be computed by the following algo-
rithm.

Algorithm 1 Extended FD

1: Compute the factorizations (3.3.23) and (3.3.28).
2: Compute q̃ = (U∗

t ⊗UT
s )r.

3: Compute s̃ = (γ∆t ⊗ INs + νINt ⊗Λs)
−1 q̃.

4: Compute s = (Ut ⊗Us) s̃.

3.3.7 Preconditioner robustness: partial inclusion of the ge-
ometry

The preconditioner (3.3.20) does not incorporate any information on the spatial
parametrization F . Thus, the quality of the preconditioning strategy may depend
on the geometry map: we see this trend in the numerical tests presented in the
upper tables of [75, Tables 4,6]. However, we can generalize (3.3.20) by including

in the univariate spatial matrices L̂l, M̂l for l = 1, . . . , d a suitable approximation
of F , without increasing the asymptotic computational cost. A similar approach
has been used first in [87] for the Stokes problem and in [85] for a least squares
formulation of the heat equation. We briefly give an overview of this strategy.

Referring to Section 3.1.1 for the notation of the basis functions, we rewrite the
entries of the system matrix (3.3.17) in the parametric domain as

[A]i,j = A(Bj,p, Bi,p)

= γ

∫ 1

0

∫
Ω̂

1
T
∂τ B̂j,pB̂i,p|det(JG)| dΩ̂ dτ

+

∫ 1

0

∫
Ω̂

ν(∇B̂j,p)
TJ−1

G J−T
G ∇B̂i,p|det(JG)| dΩ̂ dτ

=

∫ 1

0

∫
Ω̂

[
(∇B̂j,p)

T ∂τ B̂j,p

] [νT Id
γ

]
C
[
(∇B̂i,p)

T B̂i,p

]T
dΩ̂ dτ,

where

C :=

[
J−1
F J−T

F | det(JF )|
|det(JF )|

]
and where we used that Bi,p = B̂i,p ◦ G−1, Bj,p = B̂j,p ◦ G−1 and |det(JG)| =
T |det(JF )|. The construction of the preconditioners is based on the following ap-
proximation of the diagonal entries only of C:

[C(η)]l,l ≈ [C̃(η)]l,l := φ1(η1) . . . φl−1(ηl−1)Φl(ηl)φl+1(ηl+1) . . . φd(ηd) for l = 1, . . . , d,
(3.3.39a)

[C(η)]d+1,d+1 ≈ [C̃(η)]d+1,d+1 := φ1(η1) . . . φd(ηd). (3.3.39b)

In order to compute such an approximation, we interpolate the functions [C̃(η)]l,l in
(3.3.39) by piecewise constants in each element and we build the univariate factors φl

and Φl by using the separation of variables algorithm detailed in [85, Appendix C].
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The computational cost of the approximation above is proportional to the number of
elements in Ω, that, when using smooth B-splines, is almost equal toNs, independent
of ps and pt and thus negligible in the whole iterative strategy.

Then we define

[Ã]i,j :=

∫ 1

0

∫
Ω̂

[
(∇B̂j,p)

T ∂τ B̂j,p

] [νT Id
γ

]
C̃
[
(∇B̂i,p)

T B̂i,p

]T
dΩ̂ dτ.

The previous matrix maintains the same Kronecker structure as (3.3.20). Indeed
we have that

Ã = γWt ⊗ M̃s + νMt ⊗ K̃s, (3.3.40)

where

K̃s :=
d∑

l=1

M̃d ⊗ · · · ⊗ M̃l+1 ⊗ K̃l ⊗ M̃l−1 ⊗ · · · ⊗ M̃1, M̃s := M̃d ⊗ · · · ⊗ M̃1,

and where for l = 1, . . . , d and for i, j = 1, . . . , Ns,l we define

[K̃l]i,j :=

∫ 1

0

Φl(ηl)̂b
′
j,ps(ηl)̂b

′
i,ps(ηl) dηl and [M̃l]i,j :=

∫ 1

0

φl(ηl)̂bj,ps(ηl)̂bi,ps(ηl) dηl.

We remark that the application of (3.3.40) can still be performed by Algorithm 1.

Finally, we apply a diagonal scaling on Ã and we define the Galerkin preconditioner
as

ÂG := D
1
2 ÃD

1
2 (3.3.41)

where [D]i,i :=
[A]i,i

[Ã]i,i
for i = 1, . . . , Ndof .

3.3.8 The case of non-constant separable coefficients

We briefly discuss a generalization of the preconditioning strategy to the case of
non-constant equation coefficients γ and ν. We assume that γ and ν are positive
functions defined over Ω × [0, T ] and that they are separable in space and in time,
i.e. we can write

γ(x, t) = γs(x)γt(t), ν(x, t) = νs(x)νt(t),

with γs, γt, νs and νt positive functions.
Now, the first equation of (3.2.13) can be written as

γs∂tu−∇ ·
(
νt
γt
νs∇u

)
=
f

γt
.

We discretize this equation as described in Section 3.2 and we generalize the
definition of the linear system (3.3.18) with

A := Wt ⊗Ms +Mt ⊗Ks,

where Wt is defined as in (3.3.19a), while for i, j = 1, . . . , Nt

[Mt]i,j :=

∫ T

0

νt(t)

γt(t)
bi,pt(t) bj,pt(t) dt
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and for i, j = 1, . . . , Ns

[Ms]i,j :=

∫
Ω

γs(x)Bi,ps
(x) Bj,ps

(x) dΩ and [Ks]i,j :=

∫
Ω

νs(x)∇Bi,ps
(x) · ∇Bj,ps

(x) dΩ.

Then, the preconditioner that we propose is defined as in (3.3.41)

ÂG := D
1
2 ÃD

1
2 ,

but here we generalize (3.3.40) with Ã := Wt⊗ M̆s+Mt⊗ K̆s, where the matrices
K̆s and M̆s are obtained by using an approximation technique analogous to the one
described previously in this section, with γs and νs included in the coefficient matrix
C. The preconditioner Ã can still be applied as described in Section 3.3.6. Note
that, for this purpose, it is crucial that Wt does not incorporate any time-dependent
coefficient, since this would invalidate (3.3.24).

3.4 Galerkin L2 least squares preconditioner

The second attempt of solving (3.3.15) is by considering its Galerkin L2 least squares
formulation, that is

ATM−1Au = g, (3.4.42)

where we recall [A]i,j = A(Bj,p, Bi,p), g := ATM−1f with [f ]i = F(Bi,p) and
M = Mt ⊗ Ms is the mass matrix with Mt and Ms as in (3.3.19). The com-
putation of g requires to invert the mass M, which can be efficiently performed
with different methods, i.e., ad hoc sparse approximations of the inverse [105, 111],
or preconditioning with the parametric mass or its extensions proposed in [52, 28, 76]
or using low rank approximations as in [81, 82, 61]. Here we iteratively invert the
mass with Conjugate Gradients and the preconditioner designed in [76].

The tensor-product structure of the isogeometric space (3.1.9) allows to write
the system matrix ATM−1A as sum of Kronecker products of matrices as

ATM−1A = γ2WT
t M

−1
t Wt ⊗Ms + ν2Mt ⊗ LsM

−1
s Ls + γν

(
Wt +WT

t

)
⊗ Ls,
(3.4.43)

where Wt and Ls are defined in (3.3.19).

For the problem (3.4.42), we therefore introduce the preconditioner

P̂ := γ2WT
t M

−1
t Wt ⊗ M̂s + ν2Mt ⊗ L̂sM̂

−1
s L̂s + γν

(
Wt +WT

t

)
⊗ L̂s, (3.4.44)

where L̂s and M̂s are defined in (3.3.21). Again, the efficient application of the

proposed preconditioner, that is, the solution of a linear system with matrix P̂,
should exploit the structure highlighted above.

Recall that the space pencils (L̂l, M̂l) for l = 1, . . . , d admit the stable factoriza-
tions described in Section 3.3.3, that is

UT
l L̂lUl = Λl and UT

l M̂lUl = INs,l
,

where INs,l
denotes the identity matrix of dimension Ns,l ×Ns,l.
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Figure 3.4. Generalized eigenvectors for the pencil (WT
t M

−1
t Wt, Mt), with associ-

ated eigenvalues for pt = 3 and nel = 32 elements.

3.4.1 Stable factorization in time

The time matrices WT
t M

−1
t Wt and Mt are symmetric positive definite, therefore

they admit a generalized eigendecomposition of the kind

WT
t M

−1
t WtUt = ΛtMtUt, (3.4.45)

where the matrix Ut contains in each column the Mt-orthonormal generalized eigen-
vectors and Λt is the diagonal matrix whose entries contain the generalized eigen-
values. We have the following factorization

UT
t W

T
t M

−1
t WtUt = Λt and UT

t MtUt = INt . (3.4.46)

Figure 3.4 shows the shape of the generalized eigenvectors in Ut, with associated
eigenvalue in Λt, for a fixed univariate direction l = 1, . . . , d discretized with degree
ps = 3 B-Splines and uniform partition. The stability of the decomposition (3.4.45)
is again expressed by the condition number of the eigenvector matrix, and since
UT

t MtUt = INt , it holds κ2(Ut) =
√
κ2(Mt).

We investigate the stability of the diagonalization (3.4.45) by setting T = 1
and computing the condition number κ2(Ut) for different values of spline degree pt
and for various uniform discretizations with number of elements nel. The results, re-
ported in Table 3.4, show that the condition numbers κ2(Ut) are uniformly bounded
w.r.t. the mesh refinement, they grow with respect to the polynomial degree but
they are moderately small for all the degrees of interest. We conclude that the
generalized diagonalization (3.4.45) for the time pencil (WT

t M
−1
t Wt,Mt) is stable.

3.4.2 Preconditioner application

The application of the preconditioner involves the solution of the linear system

P̂s = r, (3.4.47)
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nel pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 3.2 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

64 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

128 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

256 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

512 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

1024 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

Table 3.4. κ2(Ut) in eigendecomposition of the pencil (WT
t M

−1
t Wt, Mt) for differ-

ent degrees pt and number of elements nel.

where P̂ has the structure (3.4.44). We are able to efficiently solve system (3.4.47)
by the FD method and the Sherman-Morrison formula. The starting points, that
are involved in the setup of the preconditioner, are the following ones:

� for the pencils (L̂l, M̂l) with l = 1, . . . , d we have the factorizations (3.3.23);

� for the pencil (WT
t M

−1
t Wt,Mt) we have the factorization (3.4.45).

Then, define Us := Ud⊗· · ·⊗U1 and Λs :=
∑d

l=1 INs,d
⊗· · ·⊗ INs,l+1

⊗Λl⊗ INs,l−1
⊗

· · · ⊗ INs,1 . Notice that M̂−1
s = UsU

T
s , therefore the matrix L̂sM̂

−1
s L̂s admits the

stable factorization

UT
s L̂sM̂

−1
s L̂sUs = Λ2

s. (3.4.48)

The preconditioner P̂ admits the following factorization

P̂ =
(
INt ⊗UT

s

)−1((
UT

t ⊗ INs

)−1 (
γ2Λt ⊗ INs + ν2INt ⊗Λ2

s

)
(Ut ⊗ INs)

−1 + γν
(
Wt +WT

t

)
⊗Λs

)
(INt ⊗Us)

−1 . (3.4.49)

Note that the second factor in (3.4.49) is sum of two matrices, the second one being

γν
(
Wt +WT

t

)
⊗Λs (3.4.50)

where
(
Wt +WT

t

)
is a rank 1 matrix that can be written as

(
Wt +WT

t

)
= eNte

T
Nt
,

with eNt being the last element of the canonical basis of RNt . Here it is possible to
introduce a vector vNt ∈ RNt such that

eNte
T
Nt

= U−T
t vNtv

T
Nt
U−1

t ,

by defining vNt := UT
t eNt that is the last column of UT

t . Thus equation (3.4.49)
can be rewritten as

P̂ =
(
UT

t ⊗UT
s

)−1
(H+K) (Ut ⊗Us)

−1 (3.4.51)

where we have introduced

H := γ2Λt ⊗ INs + ν2INt ⊗Λ2
s,
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for the full diagonal term, and

K := γνvNtv
T
Nt

⊗Λs.

Let us introduce SNt,Ns , the space and time shuffle matrix, such that A ⊗B =
SNt,Ns(B ⊗ A)ST

Nt,Ns
for all A ∈ RNt×Nt and B ∈ RNs×Ns . Under reshuffling with

SNt,Ns , we have the following block diagonal structure

H = SNt,Ns

H1

. . .

HNs

ST
Nt,Ns

, and K = SNt,Ns

K1

. . .

KNs

ST
Nt,Ns

,

where, for i = 1, . . . , Ns, the matrices Hi are diagonal defined as Hi := γ2Λt +
ν2[Λ2

s]i,i ⊗ INt , while Ki = γν[Λs]i,i ⊗ vNtv
T
Nt
.

In order to invert H+K, it is now sufficient to reshuffle the data, and invert the
following independent Ns problems of size Nt ×Nt:

(Hi +Ki)xi = yi for i = 1, . . . , Ns.

Notice that, each Ki is a rank 1 perturbation in the above systems, therefore the
Sherman-Morrison formula gives

xi = H−1
i yi − γν[Λs]i,i

H−1
i vNtv

T
Nt
H−1

i yi

1 + γν[Λs]i,ivT
Nt
H−1

i vNt

for i = 1, . . . , Ns. (3.4.52)

Summarizing, the solution of (3.4.47) can be computed by the following algo-
rithm.

Algorithm 2 Sherman-Morrison FD

1: Compute the factorizations (3.3.23) and (3.4.45).
2: Compute r̃ = (UT

t ⊗UT
s )r.

3: Reshuffle q = ST
Nt,Ns

r̃.

4: Compute [q̃]i = (Hi +Ki)
−1 qi for i = 1, . . . , Ns.

5: Reshuffle s̃ = SNt,Nsq̃
6: Compute s = (Ut ⊗Us) s̃.

3.5 Space-time least squares formulation of the

Heat equation

In this section we present the Least Squares space-time formulation introduced in
[85], which is an alternative well posed space-time variational formulation, w.r.t.
the one presented in Section 3.2. Let us recall the model problem (3.2.13) here. We
seek for a solution u such that

γ∂tu−∇ · (ν∇u) = f in Ω× (0, T ),

u = 0 on ∂Ω× [0, T ],

u = 0 in Ω×{0},
(3.5.53)
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this time assuming f ∈ L2(Ω × (0, T )), while γ > 0 is the heat capacity constant
and ν > 0 is the thermal conductivity constant. We define the space

V := {v ∈ [(H1
0 (Ω)∩H2(Ω))⊗L2(0, T )]∩ [L2(Ω)⊗H1(0, T )] s.t. v = 0 on Ω×{0}},

endowed with the norm

∥v∥2V :=

∫ T

0

∥∆v(·, t)∥2L2(Ω)dt +

∫ T

0

∥∂tv(·, t)∥2L2(Ω)dt. (3.5.54)

The minimum regularity of the spline spaces that we assume is the following.

Assumption 3.4. We assume that ps ≥ 2, pt ≥ 1 and that Ŝps
hs

⊂ C1(Ω̂) and

Ŝpt
ht

⊂ C0 ((0, 1)).

Under Assumptions 3.3 and 3.4, V is a Hilbert space and the ∥ · ∥V-norm is
equivalent to

|||v|||2 := ∥v∥2H2(Ω)⊗L2(0,T ) + ∥v∥2L2(Ω)⊗H1(0,1). (3.5.55)

The Least Squares space-time variational formulation for system (3.2.13) reads: find
u ∈ V such that

u = argmin
v∈V

1

2
∥γ∂tv − ν∆v − f∥2L2(Ω×(0,T )). (3.5.56)

Its Euler-Lagrange equation is

B(u, v) = F(v), ∀v ∈ V , (3.5.57)

where the bilinear form B(·, ·) and the linear form F(·) are defined as

B(v, w) :=
∫ T

0

∫
Ω

(γ2∂tv∂tw + ν2∆v∆w − γν∂tv∆w − γν∆v∂tw) dΩdt,

F(w) :=

∫ T

0

∫
Ω

f(γ∂tw − ν∆w) dΩdt.

(3.5.58)

Notice that B is a V-elliptic continuous bilinear form and F is continuous in V .
Therefore, the well-posedness of the variational formulation above is a classical result
that follows from Lax-Milgram Theorem.

The previous setting can be generalized to non-homogeneous initial and bound-
ary conditions. For example, suppose that in (3.2.13) we have the initial condition
u = u0 ∈ Ω×{0}, with u0 ∈ H1

0 (Ω), we lift u0 to ũ0 ∈ (H1
0 (Ω)∩H2(Ω))⊗L2(0, T )∩

L2(Ω)⊗H1(0, T ). Then ũ = u− ũ0 ∈ V is the solution of
γ∂tũ−∇ · (ν∇ũ) = f̃ in Ω× (0, T ),

ũ = 0 on ∂Ω× [0, T ],

ũ = 0 in Ω×{0},
(3.5.59)

where f̃ := f − γ∂tũ0 + ∇ · (ν∇ũ0). For a detailed description of the variational
formulation of problems (3.5.53)-(3.5.59) and their well-posedness see, for example,
[45, 96].
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3.5.1 Space-time Galerkin method

Denote by Vh := Xh endowed with the ∥ · ∥V-norm. Thanks to Assumption 3.4, it
holds

Vh ⊂ (H1
0 (Ω) ∩H2(Ω))⊗H1(0, T ) ⊂ V . (3.5.60)

Therefore, we consider a Galerkin method for (3.5.57), that is, the least squares
approximation of the system (3.5.53): find uh ∈ Xh such that

uh = argmin
vh∈Vh

1

2
∥γ∂tvh − ν∆vh − f∥2L2(Ω×(0,T )). (3.5.61)

Its Euler-Lagrange equation is

B(uh, vh) = F(vh), ∀vh ∈ Vh, (3.5.62)

Well-posedness and quasi optimality follow from standard arguments.

Theorem 3.4. The minimization problem (3.5.61) and the variational problem
(3.5.62) are equivalent and they admit a unique solution uh ∈ Vh. It also holds:

∥u− uh∥V ≤
√
2 inf
vh∈Vh

∥u− vh∥V (3.5.63)

Proof. The proof of the equivalence and the existence and uniqueness of the solution
follow by using Lax-Milgram Theorem, while the proof of (3.5.63) is a consequence
of the Ceà Lemma and the symmetry of the bilinear form B.

We have then the following a-priori estimate for h-refinement.

Theorem 3.5. Let qs and qt be two positive integers such that qs ≥ 2 and qt ≥ 1. If
u ∈ V ∩ (Hqs(Ω) ⊗H1(0, T )) ∩ (H2(Ω) ⊗Hqt(0, T )) is the solution of (3.5.53) and
uh ∈ Vh is the solution of (3.5.62), then

∥u− uh∥V ≤ C(hks−2
s ∥u∥Hks (Ω)⊗H1(0,T ) + hkt−1

t ∥u∥H2(Ω)⊗Hkt (0,T )), (3.5.64)

where ks := min{qs, ps + 1}, kt := min{qt, pt + 1},C is a constant that depends only
on ps,pt,α and the parameterization G

The result follows from the anisotropic approximation estimates that are devel-
oped in [14]. An overview of the proof is given in [85].

3.5.2 Discrete system

Before introducing the discrete system, we rewrite the bilinear form B(·, ·) in an
equivalent way, through the following Lemma.

Lemma 3.6. The bilinear form B(·, ·) can be written as

B(vh, wh) = γ2
∫ T

0

∫
Ω

∂tvh∂twh dΩdt + ν2
∫ T

0

∫
Ω

∆vh∆wh dΩdt + γν

∫
Ω

∇vh(x, T ) · ∇wh(x, T ) dΩ,

(3.5.65)
for all vh, wh ∈ Vh.
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Proof. Let vh, wh ∈ Vh. First note that ∂tvh, ∂twh ∈ (H1
0 (Ω) ∩ H2(Ω)) ⊗ L2(0, T ),

from (3.5.60), and ∂tvh, ∂twh = 0 on ∂Ω × [0, T ]. Using Green’s formula and inte-
grating by parts yields to

−
∫ T

0

∫
Ω

(∂tvh∆wh +∆vh∂twh) dΩdt =

−
∫ T

0

∫
∂Ω

(∂tvh∇wh +∇vh∂twh) · n dΩdt +

∫ T

0

∫
Ω

[∇(∂tvh)∇wh +∇vh∇(∂twh)] dΩdt =

+

∫ T

0

∂t

[∫
Ω

∇vh · ∇wh dΩ

]
dt =

+

∫
Ω

[∇vh(x, T ) · ∇wh(x, T )−∇vh(x, 0) · ∇wh(x, 0)] dΩ =

+

∫
Ω

[∇vh(x, T ) · ∇wh(x, T )] dΩ,

where n ∈ Rd is the external normal unit vector to ∂Ω. Then (3.5.65) follows.

Remark 3.2. Note that the identity (3.5.65) holds also in the continuous setting
(see [85, Appendix B]).

The linear system associate to (3.5.62) is

Bu = f , (3.5.66)

where [B]i,j := B(Bj,p, Bi,p) and [f ]i := F(Bi,p). The discrete system matrix B can
be written as sum of Kronecker product matrices

B = γ2Lt ⊗Ms + ν2Mt ⊗ Js + γνRt ⊗ Ls, (3.5.67)

where the time matrices involved are, for i, j = 1, . . . , Nt

[Lt]i,j :=

∫ T

0

b′j,pt(t) b
′
i,pt(t) dt, [Mt]i,j :=

∫ T

0

bj,pt(t) bi,pt(t) dt, [Rt]i,j := bj,pt(T ) bi,pt(T ),

(3.5.68a)
and the space matrices are i, j = 1, . . . , Ns

[Js]i,j :=

∫
Ω

∆Bj,ps
(x)∆Bi,ps

(x) dΩ, [Ms]i,j :=

∫
Ω

Bj,ps
(x) Bi,ps

(x) dΩ,

[Ls]i,j :=

∫
Ω

∇Bj,ps
(x) · ∇Bi,ps

(x) dΩ.

(3.5.68b)

3.6 Diagonalizable preconditioner

The matrix B in (3.5.66) is symmetric and positive definite. Thus, we design and
analyze a suitable symmetric positive definite preconditioner to be used for a pre-
conditioned Conjugate Gradients method. Recall X̂h is the spline space defined in
Section 3.1.1, satisfying the regularity condition of Assumption 3.4.
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The definition of the preconditioner is associated with the bilinear form B̂ :
X̂h × X̂h → R defined as

B̂(v̂h, ŵh) := γ2
∫ 1

0

∫
Ω̂

∂τ v̂h∂τ ŵh dΩ̂ dτ + ν2
d∑

l=1

∫ 1

0

∫
Ω̂

∂2v̂h
∂η2l

∂2ŵh

∂η2l
dΩ̂ dτ (3.6.69)

and with the corresponding norm

∥v̂h∥2B̂ := B̂(v̂h, v̂h). (3.6.70)

Thus, the definition of the preconditioner is

[B̂]i,j := B̂(B̂j,p, B̂i,p), i, j = 1, . . . , Ndof , (3.6.71)

and has the following structure

B̂ = γ2L̂t ⊗ M̂s + ν2M̂t ⊗ J̃s, (3.6.72)

where for i, j = 1, . . . , Nt

[L̂t]i,j :=

∫ 1

0

b̂′j,pt(τ )̂b
′
i,pt(τ) dτ, [M̂t]i,j :=

∫ 1

0

b̂j,pt(τ )̂bi,pt(τ) dτ,

while for i, j = 1, . . . , Ns

[J̃s]i,j :=
d∑

l=1

∫ 1

0

∂2B̂j,ps
(η)

∂η2l

∂2B̂i,ps
(η)

∂η2l
dΩ̂, [M̂s]i,j :=

∫ 1

0

B̂j,ps
(η)B̂i,ps

(η) dΩ̂

Notice that L̂t, M̂t and M̂s correspond to Lt,Mt and Ms, respectively, where the
integration is performed on the parametric domain Ω̂. Moreover, the matrices J̃s

and M̂s can be further factorized as sum of Kronecker products as

[J̃s]i,j =
d∑

l=1

M̂d ⊗ . . .⊗ M̂l−1 ⊗ Ĵl ⊗ M̂l−1 ⊗ . . .⊗ M̂1, M̂s = M̂d ⊗ . . .⊗ M̂1,

where for l = 1, . . . , d and for i, j = 1, . . . , Ns,l

[Ĵl]i,j :=

∫ 1

0

b̂′′j,ps(ηl)̂b
′′
i,ps(ηl) dηl, [M̂l]i,j :=

∫ 1

0

b̂j,ps(ηl)̂bi,ps(ηl) dηl.

The efficient application of the proposed preconditioner, that is, the solution of a
liner system with matrix B̂, should exploit the structure highlighted above. Again
a possible approach is Fast Diagonalization method.

Finally, the following spectral stability of the preconditioned matrix B̂−1B holds
true.

Theorem 3.7. Under Assumptions 3.13.3 and 3.4, it holds

θ ≤ λmin(B̂
−1B), λmax(B̂

−1B) ≤ Θ,

where θ and Θ are positive constants that depend on G, but do not depend on
hs, ht, ps and pt.

For the proof we refer to [85, Theroem 4].
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3.6.1 Stable factorization of (Ĵl, M̂l) for l = 1, . . . , d

The spatial matrices Ĵl and M̂l are symmetric and positive definite for l = 1, . . . , d.
Thus, the pencils (Ĵl, M̂l) for l = 1, . . . , d admit the generalized eigendecomposition

ĴlVl = M̂lVlΛl,

where the matricesVl contain in each column the M̂l-orthonormal generalized eigen-
vectors and Λl are diagonal matrices whose entries contain the generalized eigenval-
ues. Therefore we have for l = 1, . . . , d the factorizations

VT
l ĴlVl = Λl and VT

l M̂lVl = INs,l
, (3.6.73)

where INs,l
denotes the identity matrix of dimension Ns,l × Ns,l. The stability of

the decomposition (3.6.73) is expressed by the condition number of the eigenvector

matrix. In particular VT
l M̂lVl = INs,l

implies that κ2(Vl) =

√
κ2(M̂l) and it does

not depend on the mesh-size, but it depends on the polynomial degree. Indeed, we
report in Table 3.5 the behavior of κ2(Vl) for different values of spline degree ps and
for different uniform discretizations with number of elements denoted by nel. We
observe that κ2(Vl) exhibits a dependence only on ps, but stays moderately low for
all low polynomial degrees that are in the range of interest.

nel ps = 2 ps = 3 ps = 4 ps = 5 ps = 6 ps = 7 ps = 8

32 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

64 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

128 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

256 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

512 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

1024 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

Table 3.5. κ2(Vl) for different polynomial degrees ps and number of elements nel.

3.6.2 Stable factorization in time

The time matrices L̂t and M̂t are symmetric positive definite, therefore they admit
a generalized eigendecomposition of the kind

L̂tVt = ΛtM̂tVt, (3.6.74)

where the matrix Vt contains in each column the M̂t-orthonormal generalized eigen-
vectors and Λt is the diagonal matrix whose entries contain the generalized eigen-
values. We have the following factorization

VT
t L̂tVt = Λt and VT

t M̂tVt = INt . (3.6.75)

Figure 3.5 shows the shape of the generalized eigenvectors in Vt, with associated
eigenvalue in Λt, for a fixed univariate direction l = 1, . . . , d discretized with degree
ps = 3 B-Splines and uniform partition. The stability of the decomposition (3.6.74)
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Figure 3.5. Generalized eigenvectors for the pencil (L̂t, M̂t), with associated eigen-
values for pt = 3 and nel = 32 elements.

is again expressed by the condition number of the eigenvector matrix, and since

VT
t M̂tVt = INt , it holds κ2(Vt) =

√
κ2(M̂t).

We investigate the stability of the diagonalization (3.6.74) by computing the
condition number κ2(Vt) for different values of spline degree pt and for various
uniform discretizations with number of elements nel. The results, reported in Table
3.6, show that the condition numbers κ2(Vt) are uniformly bounded w.r.t. the
mesh refinement, they grow with respect to the polynomial degree but they are
moderately small for all the degrees of interest. We conclude that the generalized
diagonalization (3.6.74) for the time pencil (L̂t, M̂t) is stable.

nel pt = 2 pt = 3 pt = 4 pt = 5 pt = 6 pt = 7 pt = 8

32 3.2 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

64 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

128 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

256 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

512 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

1024 3.3 · 100 5.2 · 100 8.3 · 100 1.3 · 101 2.2 · 101 3.6 · 101 5.9 · 101

Table 3.6. κ2(Vt) for different degrees pt and number of elements nel.

3.6.3 Preconditioner application

The application of the preconditioner involves the solution of the linear system

B̂−1s = r, (3.6.76)

where B̂ has the structure (3.6.72). We are able to efficiently solve system (3.6.76)
by Fast Diagonalization (FD) method. The starting point, is the setup of the pre-
conditioner, that is
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� for the pencils (Ĵl, M̂l), with l = 1, . . . , d we have the factorization (3.6.73).

� for the pencil (L̂t, M̂t) we have the factorization (3.6.75).

Then, by defining Vs := Vd ⊗ · · · ⊗V1 and Λs :=
∑d

l=1 INs,d
⊗ · · · ⊗ INs,l+1

⊗Λl ⊗
INs,l−1

⊗ · · · ⊗ INs,1 , we have for the matrix B̂ the factorization

B̂ =
(
VT

t ⊗VT
s

)−1 (
γ2Λt ⊗ INs + ν2INt ⊗Λs

)
(Vt ⊗Vs)

−1 . (3.6.77)

Notice that, the second factor in (3.6.77) is diagonal. Therefore, the solution of
(3.6.76) can be computed by the following algorithm.

Algorithm 3 Fast Diagonalization

1: Compute the factorizations (3.6.73) and (3.6.75).
2: Compute q̃ = (VT

t ⊗VT
s )r.

3: Compute s̃ = (γ2Λt ⊗ INs + ν2INt ⊗Λs)
−1

q̃.
4: Compute s = (Vt ⊗Vs) s̃.

3.6.4 Preconditioner robustness: partial inclusion of the ge-
ometry

The spectral estimate in Theorem 3.7 show the dependence on G, that is, the
geometry parametrization affects the performance of our preconditioner (3.6.71), as
it is confirmed by the numerical tests in Section 3.9. In this section, we present
a strategy to partially incorporate G in the preconditioner, without increasing its
computational cost. The same idea has been used in [87] for the Stokes problem.

Let us split the bilinear form B(·, ·) as

B(vh, wh) = Bt(vh, wh) + Bs(vh, wh)−R(vh, wh), ∀vh, wh ∈ Vh,

where

Bt(vh, wh) := γ2
∫ T

0

∫
Ω

∂tvh∂twh dΩdt, Bs(vh, wh) := ν2
∫ T

0

∫
Ω

∆vh∆wh dΩdt,

R(vh, wh) := γν

∫ T

0

∫
Ω

∂tvh∆wh +∆vh∂twh dΩdt.

Using that vh = v̂h ◦G−1, wh = ŵh ◦G−1 and for i = 1, . . . , d,

∂2vh
∂x2i

=
d∑

j,k=1

∂2v̂h ◦G−1

∂ηj∂ηk
[J−1

F ]k,i[J
−1
F ]j,i +

d∑
j=1

∂v̂h ◦G−1

∂ηj

∂[J−1
F ]j,i
∂ηi

,

we can write Bt and Bs as

Bt(vh, wh) =

∫ 1

0

∫
Ω̂

cd+1∂τ v̂h∂τ ŵh dΩ̂ dτ, Bs(vh, wh) = Bs,1(v̂h, ŵh) + Bs,2(v̂h, ŵh),
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with

Bs,1(v̂h, ŵh) :=
d∑

l=1

∫ 1

0

∫
Ω̂

cl
∂2v̂h
∂η2l

∂2ŵh

∂η2l
dΩ̂ dτ,

Bs,2(v̂h, ŵh) :=
d∑

r,s=1
r ̸=s

d∑
j,k=1
j ̸=k

∫ 1

0

∫
Ω̂

g1rsjk
∂2v̂h
∂ηk∂ηj

∂2ŵh

∂ηr∂ηs
dΩ̂ dτ+

+
d∑

j,k=1

∫ 1

0

∫
Ω̂

g2kj
∂v̂h
∂ηk

∂ŵh

∂ηj
dΩ̂ dτ+

+
d∑

r=1

d∑
j,k=1

∫ 1

0

∫
Ω̂

g3rjk
∂2v̂h
∂ηk∂ηj

∂ŵh

∂ηr
+
∂v̂h
∂ηr

∂2ŵh

∂ηk∂ηj
dΩ̂ dτ,

and where we have defined

cl := ν2
(
∥[J−1

F ]·,l∥2
)4 |det(JF )|T, for l = 1, . . . , d, cd+1 := γ2|det(JF )|T−1,

while g1rsjk, g
2
j,k, g

3
rjk are functions that depend on the parameterization G. The

preconditioner will be based on an approximation of Bt,Bs,1 only. In particular we
approximate cl for l = 1, . . . , d+ 1 as

cl(η, τ) ≈ µ1(η1) . . . µl−1(ηl−1)ωl(ηl)µl+1(ηl+1) . . . µd(ηd)µd+1(τ), (3.6.78a)

cd+1(η, τ) ≈ µ1(η1) . . . µd(ηd)ωd+1(τ). (3.6.78b)

The functions cl in (3.6.78) are first interpolated by constants in each element
and then the construction of the univariate factors µl and ωl is performed by the
separation of variables algorithm detailed in [85, Appendix C]. The resulting com-
putational cost is proportional to the number of elements, which for smooth splines i
roughly equal to Ndof , independent of the degrees ps and pt, and therefore negligible
in the whole iterative strategy.

This first step leads to a matrix of this form

B̃ = L̂G
t ⊗ M̂G

s + M̂G
t ⊗ J̃G

s

where, with the notation of the basis functions in Section 3.1.1, for i, j = 1, . . . , Nt

[L̂t]
G
i,j :=

∫ 1

0

ωd+1(τ )̂b
′
j,pt(τ )̂b

′
i,pt(τ) dτ, [M̂t]

G
i,j :=

∫ 1

0

µd+1(τ )̂bj,pt(τ )̂bi,pt(τ) dτ,

while

J̃G
s =

d∑
l=1

M̂G
d ⊗ . . .⊗ M̂G

l+1 ⊗ ĴG
l ⊗ M̂G

l−1 ⊗ . . .⊗ M̂G
1 , M̂G

s = M̂G
d ⊗ . . .⊗ M̂G

1 ,

and for l = 1, . . . , d and for i, j = 1, . . . , Ns,l

[Ĵl]
G
i,j :=

∫ 1

0

ωl(ηl)̂b
′′
j,ps(ηl)̂b

′′
i,ps(ηl) dηl, [M̂l]

G
i,j :=

∫ 1

0

µl(ηl)̂bj,ps(ηl)̂bi,ps(ηl) dηl.

The matrix B̃ maintains the Kronecker structure of (3.6.71) and Algorithm 3 can
still be used to compute its application.
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Finally, we apply a diagonal scaling and define the preconditioner as

B̂G := D1/2B̃D1/2 (3.6.79)

whereD is the diagonal matrix whose entries are [D]i,i :=
[B]i,i

[B̂G]i,i
for i = 1, . . . , Ndof .

Remark 3.3. For the model problem considered, the approximation of the geometry
parametrization in the time direction is trivial. Notice that the coefficients in (3.6.78)
do not depend on τ . Indeed, in our case it holds

Lt =
1

T
L̂t, Mt = TM̂t,

and hence we could set explicitly L̂G
t = Lt and M̂G

t = Mt, which is exact. However,
we want to present the more general approximating strategy above which could be
used also when the spatial geometry or equation’s coefficients depend on time.

3.7 L2 least squares preconditioner

In this section, we propose a second preconditioner for problem (3.5.66), which
exploits the Kronecker structure of (3.5.67). The definition of the preconditioner is

Q̂ := γ2Lt ⊗ M̂s + ν2Mt ⊗ L̂sM̂
−1
s L̂s + γνRt ⊗ L̂s, (3.7.80)

where L̂s and M̂s are defined in (3.3.21), while Lt,Mt andRt are defined in (3.5.68a).

We recall that, by Remark 3.3, Lt =
1

T
L̂t and Mt = TM̂t. Therefore, the precon-

ditioner Q̂ can be written as

Q̂ =
γ2

T
L̂t ⊗ M̂s + ν2TM̂t ⊗ L̂sM̂

−1
s L̂s + γνRt ⊗ L̂s. (3.7.81)

Notice that,instead of the matrix J̃s of the previous section, we consider the
matrix L̂sM̂

−1
s L̂s in the spacial factor of the middle term. This choice is motivated

by the spectral equivalence between the two matrices, see [58, Proposition 4.1].
We investigate numerically the stability of such spectral equivalence, and report in
Figure 3.6 the eigenvalues of (L̂sM̂

−1
s L̂s)

−1Js, which are clustered close to 1, for
different mesh sizes h and different polynomial degrees p. In conclusion the spectral
equivalence is stable under h-refinement and p-refinement.

Finally, the efficient application of the preconditioner exploits the Kronecker
structure in (3.7.80), and again the implementation involves Fast Diagonalization
method, together with Sherman-Morrison formula.

3.7.1 Stable factorization in space and time

The space pencils (L̂l, M̂l) for l = 1, . . . , d admit the stable factorizations described
in Section 3.3.3, that is

UT
l L̂lUl = Λl and UT

l M̂lUl = INs,l
,
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Figure 3.6. Eigenvalues of (L̂T
s M̂

−1
s L̂s)

−1J̃s for different degrees p and number of
elements nel.

where INs,l
denotes the identity matrix of dimension Ns,l ×Ns,l.

Whereas, the time pencil (L̂t, M̂t) admit the stable factorization described in
Section 3.6.2, that is

VT
t L̂tVt = Λt and VT

t M̂tUt = INt ,

where INt denotes the identity matrix of dimension Nt ×Nt.

3.7.2 Preconditioner application

The application of the preconditioner involves the solution of the linear system

Q̂s = r, (3.7.82)

where Q̂ has the structure (3.7.81). We are able to efficiently solve system (3.7.82)
by the FD method and the Sherman-Morrison formula. The starting points, that
are involved in the setup of the preconditioner, are the following ones:

� for the pencils (L̂l, M̂l) for l = 1, . . . , d we have the factorizations (3.3.23);

� for the pencil (L̂t, M̂t) we have the factorization (3.6.75).

Then, define Us := Ud⊗· · ·⊗U1 and Λs :=
∑d

l=1 INs,d
⊗· · ·⊗ INs,l+1

⊗Λl⊗ INs,l−1
⊗

· · · ⊗ INs,1 . Notice that M̂−1
s = UsU

T
s , therefore the matrix L̂sM̂

−1
s L̂s admits the

stable factorization (3.4.48), that is

UT
s L̂sM̂

−1
s L̂sUs = Λ2

s.

The preconditioner Q̂ admits the following factorization

Q̂ =
(
INt ⊗UT

s

)−1((
VT

t ⊗ INs

)−1
(
γ2

T
Λt ⊗ INs + ν2T INt ⊗Λ2

s

)
(Vt ⊗ INs)

−1 + γνRt ⊗Λs

)
(INt ⊗Us)

−1 . (3.7.83)
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Note that the second factor in (3.7.83) is sum of two matrices, the second one being

γνRt ⊗Λs (3.7.84)

where Rt is a rank 1 matrix that can be written as Rt = eNte
T
Nt
, with eNt being the

last element of the canonical basis of RNt . Here it is possible to introduce a vector
vNt ∈ RNt such that

eNte
T
Nt

= V−T
t vNtv

T
Nt
V−1

t ,

by defining vNt := VT
t eNt that is the last column of VT

t . Thus equation (3.7.83)
can be rewritten as

Q̂ =
(
VT

t ⊗UT
s

)−1
(H+K) (Vt ⊗Us)

−1 (3.7.85)

where we have introduced

H :=
γ2

T
Λt ⊗ INs + ν2T INt ⊗Λ2

s

for the full diagonal term, and

K := γνvNtv
T
Nt

⊗Λs. (3.7.86)

Introducing SNt,Ns , the space and time shuffle matrix, such that A ⊗ B =
SNt,Ns(B ⊗ A)ST

Nt,Ns
for all A ∈ RNt×Nt and B ∈ RNs×Ns . Under reshuffling with

SNt,Ns , we have the following block diagonal structure

H = SNt,Ns

H1

. . .

HNs

ST
Nt,Ns

, and K = SNt,Ns

K1

. . .

KNs

ST
Nt,Ns

,

where, for i = 1, . . . , Ns, the matrices Hi are diagonal matrices defined as Hi :=
γ2

T
Λt + ν2T [Λ2

s]i,i ⊗ INt , while Ki = γν[Λs]i,i ⊗ vNtv
T
Nt
.

In order to invert H+K, it is now sufficient to reshuffle the data, and invert the
following independent Ns problems of size Nt ×Nt:

(Hi +Ki)xi = yi for i = 1, . . . , Ns.

Notice that, each Ki is a rank 1 perturbation in the above systems, therefore the
Sherman-Morrison formula gives

xi = H−1
i yi − γν[Λs]i,i

H−1
i vNtv

T
Nt
H−1

i yi

1 + γν[Λs]i,ivT
Nt
H−1

i eNt

for i = 1, . . . , Ns. (3.7.87)

Summarizing, the solution of (3.7.82) can be computed by Algorithm 2, with the
proper notation for the involved matrices.

3.8 Computational cost and memory requirement

In this section we discuss the computational costs and memory requirements in the
implementation of Algorithms 1,2 and 3. First, notice that the matrix A in (3.3.18)
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is neither positive definite nor symmetric and we choose GMRES as linear solver for
the system (3.3.17). Whereas, the matrix ATM−1A in (3.4.43) and B in (3.5.67)
are symmetric positive definite, therefore we choose Conjugate Gradients (CG) as
linear solver for solving (3.4.42) and (3.5.66). Clearly, the computational cost of each
iteration of the CG solver, or GMRES solver, depends on both the preconditioner
setup and application cost, and on the residual computation cost.

We assume for simplicity that, for each univariate direction l = 1, . . . , d, the
space matrices have dimension ns × ns, while the time matrices involved in the
preconditioners, have dimension Nt × Nt. Thus the total number of degrees-of-
freedom is Ndof = NsNt = nd

sNt.

We remark that the setup of the preconditioners has to be performed only once,
since the matrices involved do not change during the iterative procedure.

3.8.1 Setup and application cost of Algorithm 1

The setup of Â and ÂG includes the operations performed in Step 1 of Algorithm
1, i.e. d spatial eigendecompositions, that have a total cost of O(dn3

s) FLOPs, and
the factorization of the time matrices. The computational cost of the latter, that is
the sum of the cost of the eigendecomposition (3.3.31) and of the cost to compute
the solution v of the linear system (3.3.33), yields a cost of O(N3

t ) FLOPs. Then,
the total cost of the spatial and time factorizations is O(dn3

s + N3
t ) FLOPs. Note

that, if Nt = O(ns), this cost is optimal for d = 2 and negligible for d = 3. The

setup cost of ÂG includes also the the construction of the diagonal matrix D, that
has a negligible cost, and the computation of the 2d approximations φ1, . . . , φd and
Φ1, . . . ,Φd in (3.3.39), whose cost is negligible too, as mentioned in Section 3.3.7.

The application of the preconditioner is performed by Steps 2-4 of Algorithm 1.
Exploiting (3.1.12), Step 2 and Step 4 costs 4(dnd+1

s Nt +N2
t n

d
s) = 4Ndof (dns +Nt)

FLOPs. The use of the block LU decomposition (3.3.38) makes the cost for Step 3
equal to O(Ndof ) FLOPs.

In conclusion, the total cost of Algorithm 1 is 4Ndof (dns+Nt)+O(Ndof ) FLOPs.
The non-optimal dominant cost of Step 2 and Step 4 is determined by the dense
matrix-matrix products. However, these operations are usually implemented on
modern computers in a very efficient way. For this reason, in our numerical tests,
the overall serial computational time grows almost as O(Ndof ), as reported in [75,
Figure 5].

3.8.2 Setup and application cost of Algorithm 2

We apply Algorithm 2 both for the preconditioner P̂ of Section 3.4 and for the
preconditioner Q̂ of Section 3.7. We discuss in detail the first strategy, since the
second is analogous.

First notice that, for the projected least squares formulation of Section 3.4, we
have to consider also the setup of the right hand side g = ATM−1f , which requires
to invert the mass matrixM = Mt⊗Ms. Here we follow the preconditioned iterative
technique proposed in [76], whose computational cost of each iteration for inverting
the mass is O(pNdof ) FLOPs, assuming p = ps ≈ pt. We recall no inversion of the
mass is need for the strategy presented in 3.7.
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The setup of P̂ includes the operations performed in Step 1 of Algorithm 2, i.e. d
spatial eigendecompositions, that have a total cost of O(dn3

s) FLOPs, and one time
eigendecomposition, that have a total cost of O(N3

t ) FLOPs. Then, the total cost
of the spatial and time factorizations is O(dn3

s +N3
t ) FLOPs. Again, if Nt = O(ns),

this cost is optimal for d = 2 and negligible for d = 3.
The application of the preconditioner is performed by Steps 2-6 of Algorithm 2.

Exploiting again (3.1.12), Step 2 and Step 6 costs 4Ndof (dns + Nt) FLOPs. The
cost of the reshuffling in Step 3 and Step 5 is negligible. Step 4 requires to solve
Ns independent problems of size Nt ×Nt. The Sherman-Morrison formula together
with the time decomposition, allow to compute each solution by first inverting the
diagonal matrices Hi for i = 1, . . . , Ns, and then computing the correction term in
(3.4.52). Both of these steps cost O(NtNs) = O(Ndof ) FLOPs. In conclusion, the
total cost of Algorithm 2 is 4NdofO(dns +Nt) +O(Ndof ).

3.8.3 Setup and application cost of Algorithm 3

The setup of the preconditioners B̂ and B̂G include again the eigendecomposition of
the pencils, that is Step 1 of Algorithm 3. Therefore, the cost of the factorizations is
O(dn3

s+N
3
t ) FLOPs. We remark this cost is optimal for d = 2 and negligible for d =

3, provided that Nt ≈ ns. The setup cost of B̂G includes also the the construction
of the diagonal matrix D, that has a negligible cost, and the computation of the
2(d + 1) univariate approximations µ1, . . . , µd+1 and ω1, . . . , ωd+1, that are used to
incorporate the information of the geometry into the preconditioner. As mentioned
above, this cost is negligible.

The application of the preconditioner is performed by Steps 2-4 of Algorithm
(3). Exploiting (3.1.12), Step 2 and Step 4 costs 4Ndof (dns + Nt) FLOPs, while
Step 3 has an optimal cost, as it requires O(Ndof ) FLOPs. Thus, the total cost of
Algorithm 3 is 4Ndof (dns+Nt)+O(Ndof ) FLOPs. We remark that the non-optimal
dominant cost is given by the dense matrix-matrix products of Step 2 and Step 4,
which, however, are usually implemented on modern computers in a high efficient
way, as they are BLAS level 3 operations.

3.8.4 Computational cost of the residuals

The other dominant computational cost in a CG or GMRES iteration is the cost
of the residual computation. In Algorithm 1, this involves the multiplication of
the matrix A with a vector. This multiplication is done by exploiting the special
structure (3.3.18), that allows a matrix-free approach and the use of formula (3.1.12).
As mentioned above, the computational cost of a single matrix-vector product is
O(Ndofp

d) FLOPs, if we assume p = ps ≈ pt.
In Algorithm 2, the multiplication by ATM−1A is done by exploiting the kro-

necker structure in (3.3.18) together with the above mentioned iterative technique
for the inversion of the mass matrix. Notice that, this allows a matrix free approach
and uses the formula (3.1.12). In particular we do not need to compute and to store
the whole matrix ATM−1A, but only the time and spatial factors of the matrix A
are enough. The time matrices Mt and Wt are banded with a band of width 2pt+1
and the spatial matrices Ls and Ms have roughly Ns(2ps +1)d nonzero entries. As-
suming p = ps ≈ pt, the computational cost of a single matrix-vector product is
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given by:

� the multiplication by A, whose cost in FLOPs is

O
(
(2ps + 1)dNsNt + (2pt + 1)NtNs

)
= O(pdNdof )

� the inversion of the mass M, which costs O(pNdof ) FLOPs;

� the multiplication by AT , that costs again O(pdNdof ) FLOPs.

The overall cost is thus O(pdNdof ) FLOPs. Notice that the number of iterations
required in the CG solver for inverting the massMs over 3D objects, with a tolerance
of 10−8, may be around 5, see [76, Tables 1]. This factor, together with the possible

higher number of iterations required by the iterative strategy preconditioned by P̂,
may cause lack of performance for this preconditioning strategy w.r.t the previous
one.

In Algorithm 3, the residual computation consists in the multiplication between
B and a vector. This multiplication can be computed by exploiting the special
structure (3.5.67) and the formula (3.1.12). Again, we do not need to compute and
store the whole matrix B but only its factors Lt,Mt,Rt,Js,Lsand Ms. With this
matrix-free approach, noting again that the time matrices Lt,Mt,Rt are banded
matrices with a band of width 2pt + 1 and the spatial matrices Js,Ls,Ms have a
number of non-zeros per row approximately equal to (2ps + 1)d, the computational
cost of a single matrix-vector product is O(Ndofp

d) FLOPs, if we assume p = ps ≈ pt.
The numerical experiments reported in [75, Table 5] and [85, Table 3] show that

the dominant cost in the iterative solver is represented by the residual computation.
This is a typical behavior of the FD-based preconditioning strategies, see [75, 85,
87, 93].

3.8.5 Memory requirements

We now investigate the memory consumption of the preconditioning strategies pro-
posed, giving the details for the preconditioner Â, since the other cases are anal-
ogous. For the preconditioner, we have to store the eigenvector spatial matrices,
U1, . . . ,Ud, the time matrix Ut and the block-arrowhead matrix (3.3.37). The
memory required is roughly

N2
t + dn2

s + 2Ndof .

This extends analogously to the preconditioners proposed in Sections 3.4, 3.6 and
3.7.

For the system matrix A, we have to store the time factors Mt and Wt and the
spatial factors Ms and Ls. Thus the memory required is roughly

2(2pt + 1)Nt + 2(2ps + 1)dNs ≈ 4ptNt + 2d+1pdsNs.

The projected least squares approach of Section 3.4, further requires the application
of M−1. Using the approach of [76], requires a further spatial eigendecomposition
of the mass matrix M, thus the memory required is again N2

t + dn2
s + 2Ndof , plus a

diagonal scaling D whose memory consumption is Ndof .
These numbers show that memory-wise our space-time strategies are very ap-

pealing when compared to other approaches, even when space and time variables
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are discretized separately, e.g., with finite differences in time or other time-stepping
schemes. For example if we assume d = 3, pt ≈ ps = p and N2

t ≤ Cp3Ns, then
the total memory consumption is O(p3Ns + Ndof ), that is equal to the sum of the
memory needed to store the Galerkin matrices associated to spatial variables and
the memory needed to store the solution of the problem.

3.9 Numerical Results

In this section we present the numerical experiments that assess the performance of
the preconditioners. As regards the orders of convergence of the discretizations of
Section 3.2 and Section 3.5, we refer respectively to [75] and [85].

We consider only sequential executions and we force the use of a single compu-
tational thread in a Intel Core i7-5820K processor, running at 3.30 GHz and with
64 GB of RAM.

The tests are performed with Matlab R2023a and GeoPDEs toolbox [107]. We
use the eigMatlab function to compute the generalized eigendecompositions present
in Step 1 of Algorithms 1,2 and 3 , while Tensorlab toolbox [98] is employed to
perform the multiplications with Kronecker matrices. The solution of the linear
system (3.3.33) is performed by Matlab direct solver (backslash operator “\”). The
linear system (3.3.17) is solved by GMRES (Matlab routine gmres), while the linear
systems 3.4.42 and 3.5.66 are solved with CG (Matlab routine pcg). The tolerance in
the iterative solvers is set equal to 10−8 and the null vector is the initial guess in all
tests. We remark that GMRES computes and stores a full orthonormal basis for the
Krylov space, and this might be unfeasible if the number of iterations is too large.
This issue could be addressed by switching to a different solver for nonsymmetric
systems, like e.g. BiCGStab, or using the restarted version of GMRES.

We use the same mesh-size in space and in time hs = ht =: h, and use splines
of maximal continuity and same degree in space and in time pt = ps =: p. For the
sake of simplicity, we also consider uniform knot vectors, and denote the number of
elements in each parametric direction by nel :=

1
h
.

To assess the performance of our preconditioning strategies, we set T = 1 and
we focus on two 3D spatial domains Ω ⊂ R3, represented in Figure 3.7a and Figure
3.7b: the cube and the rotated quarter of annulus, respectively.

In out tables, the symbol “∗” denotes that the construction of the matrix factors
of A (see (3.3.18)) goes out of memory, while the symbol “ ∗ ∗” indicates that the
dimension of the Krylov subspace is too high and there is not enough memory to store
all the GMRES iterates. We remark that in all the tables the total solving time of
the iterative strategies includes also the setup time of the considered preconditioner.

3.9.1 Performance of the preconditioners: cube domain

In the cube domain, we set homogeneous Dirichlet and zero initial boundary condi-
tions and we fix f such that the exact solution is u = sin (πx) sin (πy) sin (πz) sin (t).

Clearly, in this computational domain, the preconditioners Â and P̂ are direct
solvers. Moreover, since we are solving on the parametric domain, we have ÂG = Â
and B̂G = B̂.

In view of this observations, we analyze the performance of B̂ and Q̂. As a
comparison we also consider as preconditioner for CG the Incomplete Cholesky with
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(a) Cube. (b) Rotated quarter of annulus.

Figure 3.7. Computational domains.

zero fill-in (IC(0)) factorization of B, that is executed with Matlab routine ichol.
Table 3.7 report the number of iterations and the total solving time, that includes the
setup time of the preconditioner. The results for B̂ (upper table) and IC(0) (lower
table) are taken from [85, Table 1]. The matrix-vector products of CG are computed
in a matrix-free way using its time and spacial factors. Matrix B is assembled when
we want to use the IC(0) preconditioner. In any case, the assembly times are never

included in the reported times. The number of iterations obtained with B̂ and Q̂
are stable with respect to the polynomial degree p := pt = ps. The performance
of B̂ is stable also with respect to the number of elements nel, while Q̂ seems to
converge to a direct solver. Even in the case when the number of iterations of B̂
might be larger than that of IC(0), the overall computational time is significantly
lower, up to two orders of magnitude for the problems considered. This is due to
the higher setup and application cost of the IC(0) preconditioner.

3.9.2 Performance of the preconditioners: rotated quarter
of annulus

The second computational domain Ω is a quarter of annulus with center in the
origin, internal radius 1 and external radius 2, rotated by π/2 along the axis y =
−1. Boundary data and forcing function are set such that the exact solution is
u = −(x2 + y2 − 1)(x2 + y2 − 4)xy2 sin (z) sin (t).

We analyze the performance of Â, ÂG, P̂, B̂, B̂G and Q̂. In the GMRES solver,
the maximum dimension of the Krylov subspace is set equal to 100 for both the
preconditioners Â and ÂG, up to nel = 64. We are able to reach convergence and
to perform the tests with ÂG, nel = 128 and p = 1, 2, 3 by setting the maximum
Krylov subspace dimension equal to 25.

In Table 3.8 we first report the number of iterations and the total solving time
of GMRES preconditioned with Â (upper table) and ÂG (middle table), taken from

[75, Table 4]. The non-trivial geometry clearly affects the performance of Â, but,

when we include some information on the parametrization by using ÂG, the number
of iterations is more than halved and it is stable w.r.t. p and nel. Moreover, the
computational times are one order of magnitude lower for the highest degrees p and
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B̂ + CG Iterations / Time

nel p = 2 p = 3 p = 4 p = 5

8 9 / 0.06 11 / 0.07 11 / 0.18 11 / 0.28

16 11 / 0.27 11 / 0.69 12 / 1.80 12 / 3.80

32 12 / 5.10 12 / 13.17 12 / 27.31 12 / 52.95

64 13 / 100.09 13 / 227.93 13 / 458.86 13 / 924.44

128 13 / 2012.94 13 / 4235.96 ∗ ∗

Q̂ + CG Iterations / Time

nel p = 2 p = 3 p = 4 p = 5

8 3 / 0.03 5 / 0.08 5 / 0.19 4 / 0.26

16 3 / 0.13 5 / 0.78 5 / 2.18 3 / 2.61

32 2 / 1.79 4 / 7.17 3 / 12.70 2 / 19.60

64 2 / 32.36 4 / 113.51 3 / 186.92 2 / 356.48

128 2 / 468.76 3 / 1639.75 ∗ ∗

IC(0) + CG Iterations / Time

nel p = 2 p = 3 p = 4 p = 5

8 9 / 0.18 7 / 1.69 6 / 14.04 6 / 80.39

16 22 / 5.01 16 / 45.54 12 / 355.99 10 / 1913.90

32 64 / 157.05 ∗ ∗ ∗

Table 3.7. Cube domain. Performance of B̂, Q̂ and IC(0).
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Â Iterations / Time

nel p = 1 p = 2 p = 3 p = 4 p = 5

8 34 / 0.20 37 / 0.21 42 / 0.42 46 / 0.63 50 / 1.13

16 43 / 1.15 46 / 1.65 50 / 3.42 54 / 5.80 57 / 11.87

32 50 / 22.75 53 / 31.10 57 / 54.02 61 / 96.06 64 / 184.84

64 57 / 586.73 60 / 764.26 67 / 1254.81 67 / 1858.55 71 / 3188.51

128 ∗∗ ∗∗ ∗∗ ∗ ∗

ÂG Iterations / Time

nel p = 1 p = 2 p = 3 p = 4 p = 5

8 11 / 0.06 12 / 0.09 12 / 0.11 13 / 0.18 14 / 0.29

16 13 / 0.26 14 / 0.52 14 / 1.18 14 / 1.44 15 / 3.85

32 15 / 4.73 15 / 6.76 15 / 12.67 15 / 21.47 16 / 40.54

64 16 / 107.24 16 / 135.74 18 / 249.27 16 / 370.31 17 / 695.44

128 17 / 2623.57 17 / 3105.76 17 / 5614.10 ∗ ∗

P̂ Iterations / Time

nel p = 1 p = 2 p = 3 p = 4 p = 5

8 93 / 1.90 95 / 3.15 98 / 2.84 104 / 6.28 107 / 19.14

16 119 / 5.60 118 / 16.24 117 / 38.84 119 / 112.74 117 / 232.96

32 129 / 178.08 127 / 285.19 125 / 645.68 125 / 1711.45 124 / 4038.55

64 133 / 1607.33 130 / 3834.92 129 / 8981.30 144 / 19868.87 165 / 43930.63

128 136 / 29764.56 133 / 74537.02 131 /157773.58 ∗ ∗

Table 3.8. Rotated quarter domain. Performance of Â, ÂG and P̂.

numbers of elements nel.

Next, in the lower table of Table 3.8 we report the results for the preconditioner P̂
obtained by solving the projected least squares problem (3.4.42). Recall in this case
the iterative solver is the preconditioned conjugate gradient method, with tolerance
10−8 and initial guess the null vector. In this case the number of iterations with
respect to the preconditioner Â is more than doubled, although they are stable with
respect to the degrees and number of elements, we suggest to use P̂ as a last resort.

In Table 3.9, we report the results obtained in [85, Table 2], for B̂ (top section

of the table) and B̂G (middle section of the table), applied to the same problem in

the least squares formulation framework. For the preconditioner B̂, the numbers
of iterations have more than doubled, while still remaining stable with respect to
degrees and numbers of elements. Finally, in the lower section of Table 3.9 we
present the results obtained with the preconditioner Q̂, which is stable w.r.t. the
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B̂ + CG Iterations / Time

nel p = 2 p = 3 p = 4 p = 5

8 107 / 0.21 107 / 0.48 114 / 1.17 123 / 2.73

16 126 / 2.56 128 / 6.90 133 / 17.04 135 / 35.17

32 142 / 52.77 143 / 132.24 148 / 292.53 151 / 572.84

64 153 / 1056.21 155 / 2415.23 156 / 4956.68 159 / 9906.33

128 164 / 22106.01 166 / 47539.02 ∗ ∗

B̂G + CG Iterations / Time

nel p = 2 p = 3 p = 4 p = 5

8 24 / 0.09 24 / 0.13 26 / 0.37 26 / 0.60

16 35 / 0.77 34 / 1.96 33 / 4.62 33 / 9.35

32 42 / 17.03 41 / 39.57 40 / 82.35 41 / 161.73

64 46 / 333.20 44 / 716.03 49 / 1577.55 53 / 3384.08

128 48 / 6767.08 50 / 14814.09 ∗ ∗

Q̂ + CG Iterations / Time

nel p = 2 p = 3 p = 4 p = 5

8 101 / 0.35 111 / 1.27 136 / 3.02 172 / 6.78

16 132 / 3.08 140 / 14.98 161 / 41.14 175 / 92.71

32 139 / 72.11 151 / 190.92 169 / 444.41 186 / 938.47

64 142 / 1424.39 156 / 3197.97 172 / 6781.49 189 / 14399.77

128 145 / 19993.49 154 / 54146.41 ∗ ∗

Table 3.9. Rotated quarter domain. Performance of B̂, B̂G and Q̂.

degrees and numbers of elements, and behaves like B̂, suggesting that including the
information of the geometry may boost its performance.

3.10 Conclusions

In this chapter we proposed a review of several preconditioners suited for space-
time Galerkin isogeometric discretizations of the heat equation. Our preconditioners
are represented by a suitable sum of Kronecker products of matrices, that makes
the computational cost of their construction (setup) and application, as well as
the storage cost, very appealing. In particular, inspired by the FD technique, the
application of the preconditioner Â exploits an ad-hoc factorization of the time
matrices. The preconditioners P̂ and Q̂ factorize in time direction as sum of diagonal
blocks and rank-1 block perturbations, while in space have a diagonal structure.
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Lastly, the preconditioner B̂ admits a full diagonal factorization.
The application cost of all the preconditioners is almost equal to O(Ndof ) and

does not depend on the polynomial degree.
At the same time, the storage cost is roughly the same that we would have by

discretizing separately in space and in time, if we assume Nt ≤ CpdNs. Indeed, in
this case the memory used for the whole iterative solver is O(pdNs +Ndof ).

In this review, we have compared the performance of the four preconditioners
Â, B̂, P̂ and Q̂, first on the parametric 3D cube spacial domain, and then on a
rotated quarter of ring. In the first computational domain Â and P̂ are direct
solvers and Q̂ seem to converge, for finer meshes and higher degrees, to a direct
solver. The preconditioner B̂ is although stable under mesh refinement and degree
elevation.

On the rotated quarter of ring geometry, the performances of ÂG and B̂G, that
are the versions of Â and B̂ with a partial inclusion of the geometry’s information,
are outstanding when compared to their parametric versions. Thus the inclusion of
information for the preconditioners P̂ and Q̂ seems to be a natural way forward as
a future development of this work.

As a final comment, we mention that our methods has a strong potential for
parallelization, and this will be an interesting future direction of study.
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Chapter 4

Schrödinger equation

Space-time finite element methods originated in the papers [47, 22, 88, 89], where
standard finite elements are ascribed an extra dimension for the time and, typically,
adopt a discontinuous approximation in time, since this produces a time marching
algorithm with a traditional step-by-step format (see e.g. [97]). Over the years,
the theory of space-time methods has been developed mainly for evolutionary equa-
tions of the parabolic type and hyperbolic type, whereas, for quantum mechanics,
and more precisely for Schrödinger’s equation, there are few contributions and the
methods are still in development.

To our knowledge, one of the first works concerning space-time variational for-
mulations for the (nonlinear) Schrödinger equation, is [64], in which Karakashian
and Makridakis proposed a space–time method combining a conforming Galerkin
discretization in space and an upwind DG time-stepping. This method reduces to
a Radau IIA Runge-Kutta time discretization in the case of constant potentials. In
[36], for the linear Schrödinger equation the authors propose two variational formu-
lations that are proved to be well posed: a strong formulation, with no relaxation
of the original equation, and an ultraweak formulation, that transfers all derivatives
onto test functions. The proposed discretization for the ultraweak form is based on
a discontinuous Petrov-Galerkin (DPG) method, that addresses optimal stability,
and quasi-optimal error rates in L2-norm. In [56] a space–time ultraweak Trefftz
discontinuous Galerkin (DG) method for the Schrödinger equation with piecewise-
constant potential is proposed and analyzed, proving well-posedness and stability
of the method, and optimal high-order h-convergence error estimates in a skeleton
norm, for the one and two dimensional cases. Recently, in [57], Hain and Urban pro-
posed a space–time ultraweak variational formulation with optimal inf-sup constant.
The formulation in [57] is related to the ultraweak DPG method in [36], but differs
in the choice of the test and trial spaces. Hain and Urban first fix a conforming
test space, and then construct an optimal trial space, while Demkowicz et al. first
constructs a trial space and then a suitable test space. The discretization proposed
in [57] uses high order B-splines with maximum regularity and can be extended to
the Isogeometric Analysis (IgA) framework.

Introduced in [63], see also the book [29], IgA, is an evolution of the classical
finite element methods. In IgA, both the approximation of the solution of the par-
tial differential equation that models the problem, and the representation of the
computational domain, are accomplished using B-spline functions, or their general-
izations (NURBS). This is meant to simplify the interoperability between computer
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aided design and numerical simulations. IgA also benefits from the approximation
properties of splines, whose high-continuity yields higher accuracy when compared
to C0 piecewise polynomials, see e.g., [41, 20, 94].

In this chapter we focus on the linear time dependent Schrödinger equation with-
out potential. Starting from the well posed space-time strong formulations in [36],
we derive a well posed space-time isogeometric Petrov-Galerkin discretization, that
is essentially a Galerkin approximation of the space-time least squares variational
formulation of the model problem. The matrix associated to the discrete linear sys-
tem can be written as sum of Kronecker products, and has the same structure of
the one arising from [57]. The main contribution of this chapter, is the development
of a stable preconditioner that leads to a fast solver for the problem modeled in the
parametric domain. As it was done in [85, 75] for parabolic problems, our precondi-
tioner exploits the Kronecker structure of the linear system, and makes use of Fast
Diagonalization method (FD) [79]. In this work, FD is applied among the space
direction only. Although, the computational cost of the setup of the resulting pre-
conditioner is O(Ndof ) FLoating-Point Operations (FLOPs), while its application

is O(N
(1+2)/(d+1)
dof ) FLOPs, where d is the number of spatial dimensions and Ndof

denotes the total number of degrees-of-freedom (assuming, for simplicity, to have
the same number of degrees-of-freedom in time and in each spatial direction). We
remark that global space-time methods, in principle, facilitate the full parallelization
of the solver, see [38, 49, 70].

The outline of the chapter is as follows. The model problem is introduced in
Section 4.1. In Section 4.2 we present the basics of B-splines based IgA and the
best approximation properties. The isogeometric least squares discretization is in-
troduced in Section 4.3 and compared to the ultraweak form of [57], while in Section
4.4 we define the preconditioner for the parametric domain and we discuss its appli-
cation. We present the numerical results assessing the performance of the proposed
preconditioner in Section 4.5. Finally, in the last section we draw some conclusions
and we highlight some future research directions.

4.1 Model problem

We consider a bounded domain Ω ⊂ Rd, usually d = 1, 2, 3, with Lipschitz boundary,
and a time interval (0, T ), where T > 0 is the final time. The space-time domain
is denoted by Q := (0, T ) × Ω. Assuming Dirichlet boundary conditions, denote
by ΓD := (0, T ) × ∂Ω the Dirichlet boundary of the space-time cylinder Q, while
Q0 = {0} × Ω is the initial side. Our model problem is the Schrödinger equation
with homogeneous boundary and initial conditions: we look for a solution u such
that 

i∂tu− ν∆u = f in Q,
u = 0 on ΓD,

u = 0 in Q0,

(4.1.1)

where i is the imaginary unit and ν > 0 is a constant coefficient usually depending
on Planck’s constant ℏ and the mass of the modeled physical particle. We assume
that f ∈ L2(Q) and denote by S := i∂t−ν∆ the Schrödinger operator, S∗ its adjoint
operator, and (·, ·) the complex scalar product in L2(Q).

The previous setting can be generalized to non-homogeneous initial and bound-
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ary conditions. For example, suppose that in (4.1.1) we have the initial condition
u = u0 ∈ H1

0 (Ω) in Q0. Then, we consider a lifting u0 ∈ H1 ((0, T );H1
0 (Ω)) of u0

such that the solution u can be split as u = u+u0, where u ∈ V is the solution of the
following Schrödinger equation with homogeneous initial and boundary conditions:

i∂tu− ν∆u = f in Q,
u = 0 on ΓD,

u = 0 in Q0,

where f := f − Su0.

4.1.1 Space-time variational formulation

Let us introduce the Hilbert spaces

V :=
{
v ∈ L2(Q) : Sv ∈ L2(Q) and (S∗w, v)− (w,Sv) = 0 ∀w ∈ C∞

0 (Rd+1) : w|ΓD∪({T}×Ω) = 0
}
,

W := L2(Q),

endowed with the following norms

∥v∥2V := ∥v∥2L2(Q) + ∥Sv∥2L2(Q) and ∥w∥W := ∥w∥L2(Q),

respectively. Then, the space-time variational formulation of (4.1.1) reads:

Find u ∈ V such that A(u, v) = F(v) ∀v ∈ W , (4.1.2)

where the sesquilinear form A(·, ·) and the linear form F(·) are defined ∀v ∈
V and ∀w ∈ W as

A(v, w) :=

∫
Ω

∫ T

0

(Sv)w dt dΩ and F(w) :=

∫
Ω

∫ T

0

f w dt dΩ.

The well-posedness of Problem (4.1.2) can be reduced to the density of smooth
functions in V and in another Hilbert space. This depends on the domain and
it holds when Q is smoothly diffeomorphic to an hypercube. The details are in
Appendix B and the main result is the following.

Theorem 4.1. Under Assumption B.1, the linear Schrödinger operator S : V →
L2(Q) is a continuous bijections, that is problem (4.1.2) is well posed.

4.2 Isogeometric framework and preliminaries

With the same notations introduced in Section 3.1, let n and p be two positive
integers, and let Ξ be an open knot vector in [0, 1]. Denote by Z = {ζ1, . . . , ζr} the
vector of breakpoints, that is the vector of knots without repetition. The univariate
spline space is Ŝp

h := span{b̂i,p}mi=1, where b̂i,p : (0, 1) → R are the univariate B-spline
basis functions, and h := max{|ξi+1 − ξi|, i = 1, . . . , n+ p} .

Multivariate B-splines are defined as tensor product of univariate B-splines.
Thus, we introduce d+ 1 univariate knot vectors Ξl and Ξt, with associated break-
points Zl and Zt, for l = 1, . . . , d. Let hs := max{hl | l = 1, . . . , d} with hl the
mesh-size in direction l, and denote by ht the mesh-size in time direction. Assume
that the following local quasi-uniformity of the knot vectors holds.
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Assumption 4.1. There exists θ ≥ 1, independent of hs and ht, such that θ−1 ≤
ζl,i/ζl,i+1 ≤ θ for i = 1, . . . , rl, l = 1, . . . , d and θ−1 ≤ ζt,i/ζt,i+1 ≤ θ for i = 1, . . . , rt.

Given p := (pt,ps), where ps := (p1, . . . , pd), the multivariate spline space is

Ŝp
h = Ŝpt

ht
⊗ Ŝps

hs
with Ŝps

hs
as in 3.1.5. From now on we consider p1 = · · · = pd =:

ps, but the general case is similar. Finally, let us make the following regularity
assumption.

Assumption 4.2. We assume that pt ≥ 1, ps ≥ 2 and that Ŝpt
ht

⊂ C0 ((0, 1)) and

Ŝps
hs

⊂ C1(Ω̂).

4.2.1 Isogeometric spaces

The space-time computational domain that we consider is (0, T )× Ω, where T > 0
is the final time and Ω ⊂ Rd is the space domain. The choice of considering the
time as first variable will be clarified in Section 4.4.4. The following assumptions
asserts the regularity of the parametrization.

Assumption 4.3. We assume that Ω is parametrized by a smooth diffeomorphism
F : Ω̂ → Ω.

Denote by x = (x1, . . . , xd) := F (η) and t := Tτ . Then the space-time domain

is given by the parametrization G : (0, 1) × Ω̂ → (0, T ) × Ω, such that G(τ,η) :=
(Tτ,F (η)) = (t,x).

We denote by X̂h,0 the spline space with initial and boundary conditions, in
parametric coordinates, defined in 3.1.6. Analogously, the spline space with ho-
mogeneous Dirichlet final and boundary conditions, in parametric coordinates, is

X̂h,T :=
{
v̂h ∈ Ŝp

h

∣∣∣ v̂h = 0 on {T} × Ω̂ and v̂h = 0 on (0, 1)× ∂Ω̂
}
. (4.2.3)

Recall that, by reordering the basis functions, it holds

X̂h,0 = span
{
B̂i,p

∣∣∣ i = 1, . . . , Ndof

}
, (4.2.4)

where Ndof = NtNs, with Nt := nt − 1, Ns :=
∏d

l=1Ns,l and Ns,l := nl − 2 for
l = 1, . . . , d. We can proceed analogously with the space with final conditions.
Finally, we denote by Xh,0 the isogeometric space defined in 3.1.9 as the isoparametric
push-forward of (4.2.4) through the geometric map G, that is

Xh,0 := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof

}
. (4.2.5)

Recall that, the following tensor-product structure holds true,

Xh,0 = Xt,ht,0 ⊗Xs,hs ,

where Xt,ht,0 is given as in 3.1.11, while Xs,hs is defined in 3.1.10. Analogously, we
define Xh,T , the isogeometric space with homogeneous Dirichlet and final conditions.

Xh,T := span
{
Bi,p := B̂i,p ◦G−1

∣∣∣ i = 1, . . . , Ndof

}
, (4.2.6)
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4.2.2 Best approximation in V norm

In this section we recall the approximation properties of splines. For the best ap-
proximation estimate of isogeometric spaces in Sobolev norms, we refer to [4, 14].
The following results states the orders of approximation with Xh,0 in the V norm.

Theorem 4.2. For all u ∈ (Hqt(0, T )⊗H2
0 (Ω))∩(H1

0 (0, T )⊗Hqs(Ω)), where qt ≥ 1
and qs ≥ 2 the best approximation in Xh,0 satisfies

inf
uh∈Xh,0

∥u− uh∥V ≤ C
(
hkt−1
t ∥u∥Hkt (0,T )⊗H2(Ω) + hks−2

s ∥u∥H1(0,T )⊗Hks (Ω)

)
, (4.2.7)

where kt := min{qt, pt + 1}, ks := min{qs, ps + 1}, and C is a constant that depends
only on pt, ps, θ and the parametrization G.

Proof. The result follows from the anisotropic error estimates developed in [14].
We report here only the main steps, since the proof is similar to the one of [85,
Proposition 4]. The generalization of [14, Theorem 5.1] to the d+1 dimensional case,
gives the existence of a projection Πh : (Hqt(0, T )⊗H2

0 (Ω))∩(H1
0 (0, T )⊗Hqs(Ω)) →

Xh,0, such that

∥u− Πhu∥L2(0,T )⊗L2(Ω) ≤ C1

(
hkt−1
t ∥u∥Hkt−1(0,T )⊗L2(Ω) + hks−2

s ∥u∥L2(0,T )⊗Hks−2(Ω)

)
,

∥u− Πhu∥H1(0,T )⊗L2(Ω) ≤ C2

(
hkt−1
t ∥u∥Hkt (0,T )⊗L2(Ω) + hks−2

s ∥u∥H1(0,T )⊗Hks−2(Ω)

)
,

∥u− Πhu∥L2(0,T )⊗H2(Ω) ≤ C3

(
hkt−1
t ∥u∥Hkt−1(0,T )⊗H2(Ω) + hks−2

s ∥u∥L2(0,T )⊗Hks (Ω)

)
.

(4.2.8)

From the following inequality

∥u− vh∥2V = ∥u− vh∥2L2(Q) + ∥S(u− vh)∥2L2(Q)

≤ ∥u− vh∥2L2(Q) + 2∥∂t(u− vh)∥2L2(Q) + 2ν∥∆(u− vh)∥2L2(Q)

≤ ∥u− vh∥2L2(0,T )⊗L2(Ω) + 2∥u− vh∥2H1(0,T )⊗L2(Ω) + 2ν∥u− vh∥2L2(0,T )⊗H2(Ω),

with the choice vh = Πhu, and by (4.2.8) with obvious upper bounds on the right
hand side, it holds

∥u− Πhu∥V ≤ C
(
hkt−1
t ∥u∥Hkt (0,T )⊗H2(Ω) + hks−2

s ∥u∥H1(0,T )⊗Hks (Ω)

)
,

therefore, (4.2.7) follows immediatly.

Remark 4.1. From Theorem 4.2, when u is smooth or qt = qs, the order of conver-
gence is dominated by the space direction. This motivates our choice pt = ps =: p
and ht = hs =: h for our numerical tests in Section 4.5. In this case, and if u is
smooth, (4.2.7) yields h-convergence of order p− 1.

4.3 Space-time discretizations of the Schrödinger

equation

In this section we compare three different space-time spline discretizations of prob-
lem 4.1.2. The well posedness of the discrete problems relies on the inf-sup theory.
More precisely, given Vh ⊂ V and Wh ⊂ W two discrete spaces, parametrized by
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(a) Instability of space-time Galerkin method. (b) Stability of space-time least squares method.

Figure 4.1. Inf-sup test for the space-time discretizations.

the mesh size h, with dim(Vh) = dim(Wh), consider the following Petrov-Galerkin
approximation problem:

Find uh ∈ Vh such that A(uh, wh) = F(wh) ∀wh ∈ Wh. (4.3.9)

It is well known that: it exists a unique solution uh ∈ Vh, if and only if,

∃α > 0 such that 0 < α ≤ αh := inf
vh∈Vh

sup
wh∈Wh

|A(vh, wh)|
∥vh∥V∥wh∥W

, (4.3.10)

Moreover, the existence of the inf-sup constant α > 0 ensures the following quasi-
optimality result.

Theorem 4.3. If u ∈ V is the solution of (4.1.2), and uh ∈ Vh is the solution of
(4.3.9), it holds

∥u− uh∥V ≤ 1

α
inf

vh∈Vh

∥u− vh∥V . (4.3.11)

4.3.1 Instability of the space-time Galerkin method

Let Vh := Xh,0 be the isogeometric space defined in (4.2.5) endowed with the ∥ · ∥V-
norm, and choose Wh := Xh,0 endowed with the ∥ ·∥W-norm. Consider the following
Galerkin formulation of (4.1.2):

Find uh ∈ Vh such that A(uh, wh) = F(wh) ∀wh ∈ Wh. (4.3.12)

The stability and the well-posedness of formulation (4.3.12) are not guaranteed.
Indeed the discrete inf-sup constant αh depends on the mesh size h and degenerates
under mesh refinement, as shown in Figure 4.1a.

4.3.2 Least squares space-time method

In order to retrieve a well posed space-time discretization to (4.1.2), given the
quadratic functional J : V → R, defined as

J (u) :=
1

2
∥Su− f∥2L2(Q),
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we can write the least squares space-time formulation of (4.1.1): find u ∈ V such
that

u = argmin
v∈V

J (v),

which is a well posed problem and its Euler-Lagrange equations are

(Su,Sv) = (f, Sv) , ∀v ∈ V .

This suggests to consider the following least squares discretization method for
problem (4.1.2). Let Vh := Xh,0 be the isogeometric space defined in (4.2.5) endowed
with the ∥ · ∥V-norm, and choose Wh := S(Vh) endowed with the ∥ · ∥W-norm.
Consider the following discrete problem:

Find uh ∈ Vh such that A(uh, wh) = F(wh) ∀wh ∈ Wh. (4.3.13)

S is a bijection between Vh and Wh, which means, for any h > 0 it exists the discrete
inf-sup constant αh > 0. Consider 0 < α := ∥S−1∥−1

W→V , and for all wh ∈ Wh take
vh = S−1(wh), and it holds

0 < α∥vh∥V∥wh∥W ≤ ∥wh∥2W = (Svh, wh) = A(vh, wh),

that is,

0 < α ≤ sup
wh∈Wh

|A(vh, wh)|
∥vh∥V∥wh∥W

.

Taking the infimum for vh ∈ Vh proves (4.3.10), that is the discrete inf-sup αh is
uniformly bounded from below by a positive constant α > 0. This is investigated
numerically in Figure 4.1b. The following a-priori error estimate for h-refinements
is a direct consequence of quasi-optimality Theorem 4.3 and best approximation
Theorem 4.2.

Corollary 4.3.1. Given u ∈ V ∩ (Hqt(0, T )⊗H2
0 (Ω))∩ (H1

0 (0, T )⊗Hqs(Ω)), where
where qt ≥ 1 and qs ≥ 2, and uh ∈ Vh the solution of (4.3.13), it holds

∥u− uh∥V ≤ C
(
hkt−1
t ∥u∥Hkt (0,T )⊗H2(Ω) + hks−2

s ∥u∥H1(0,T )⊗Hks (Ω)

)
(4.3.14)

where kt := min{qt, pt + 1} and ks := min{qs, ps + 1}.

4.3.3 Ultraweak space-time method

Here we recall also the following ultraweak discretization that has been proposed in
[57]. Let Wh := Xh,T be the isogeometric space with final conditions endowed with
the ∥ ·∥W-norm, and fix Vh := S(Wh) endowed with the ∥ ·∥L2(Q)-norm. Notice that,
∀vh ∈ Vh, wh ∈ Wh, it holds

A(vh, wh) = (S(vh), wh) = (vh,S(wh))− i (vh(·, 0), wh(·, 0))L2(Ω) ,

with (·, ·)L2(Ω) denoting the complex scalar product in L2(Ω). Therefore, introducing
the sesquilinear form

Auw(vh, wh) := (vh,S(wh)) , ∀vh ∈ Vh, wh ∈ Wh, (4.3.15)
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we have the following ultraweak formulation of (4.1.2):

Find uh ∈ Vh such that Auw(uh, wh) = F(wh) + i (u0, wh(·, 0))L2(Ω) ∀wh ∈ Wh,
(4.3.16)

where now the right hand side contains eventually the initial data u0. As regards
the well posedness and stability of (4.3.16) we refer to [57].

We conclude this section by noting that the discrete ultraweak operator is the
same operator that arises from the least squares discretization. The difference is
clearly based on the initial or final conditions included in the discretization spaces.
For least squares the discrete spaces include initial conditions, while for ultraweak
they include final conditions.

Remark 4.2. For the least squares form with uh = S(wh) and vh, wh ∈ Xh,0, it holds

A(vh, uh) = (S(vh), uh) = (S(vh),S(wh)) .

For the ultraweak form with uh = S(vh) and vh, wh ∈ Xh,T , it holds

Auw(uh, wh) = (uh,S(wh)) = (S(vh),S(wh)) .

4.4 Fast solver for the parametric domain

In this section, first we consider the matrix representation of the least squares dis-
cretization, then we focus on the case Q = (0, T ) × (0, 1)d That is the parametric
domain in space times a finite interval in time direction. In this framework, the
isogeometric map F is the identity operator, and we are able to introduce a stable
and fast solver for problem (4.3.13).

4.4.1 Matrix structure

The least squares space-time discretization (4.3.13) can be written as:

Find uh ∈ Vh such that A(uh,Svh) = F(Svh) ∀vh ∈ Vh,

and in particular, for all vh ∈ Vh, we point out that

A(uh,Svh) =
∫
Ω

∫ T

0

(Suh) (Svh) dt dΩ

=

∫
Ω

∫ T

0

∂tuh∂tvh + ν2∆uh∆vh + iν∂t∇uh · ∇vh − iν∇uh · ∂t∇vh dt dΩ,

and

F(Svh) =
∫
Ω

∫ T

0

f (Svh) dt dΩ =

∫
Ω

∫ T

0

f (i∂tvh −∆vh) dt dΩ.

Therefore, the linear system associated to (4.3.13) is

Au = f , (4.4.17)

where [A]i,j = A (Bj,p,S(Bi,p)) and [f ]i = F (S(Bi,p)). The tensor-product structure
of the isogeometric space (4.2.5) allows to write the system matrix A as sum of
Kronecker products of matrices as

A = Ms ⊗ Lt + ν2Bs ⊗Mt + νLs ⊗ (Wt +W∗
t ) , (4.4.18)
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where for i, j = 1, . . . , Ns

[Ls]i,j =

∫
Ω

∇Bj,ps
(x) · ∇Bi,ps

(x) dΩ, [Ms]i,j =

∫
Ω

Bj,ps
(x) Bi,ps

(x) dΩ,

[Bs]i,j =

∫
Ω

∆Bj,ps
(x)∆Bi,ps

(x) dΩ.

(4.4.19a)

while for i, j = 1, . . . , Nt

[Lt]i,j =

∫ T

0

b′j,pt(t) b
′
i,pt(t) dt, [Mt]i,j =

∫ T

0

bj,pt(t) bi,pt(t) dt,

[Wt]i,j = i

∫ T

0

b′j,pt(t) bi,pt(t) dt.

(4.4.19b)

4.4.2 Preconditioner definition

We introduce, for the system (4.4.17), the preconditioner

P̂ := M̂s ⊗ Lt + ν2L̂T
s M̂

−1
s L̂s ⊗Mt + νL̂s ⊗ (Wt +W∗

t ), (4.4.20)

where the matrices Lt,Mt and Wt are defined in (4.4.19b), while L̂s and M̂s are

L̂s =
d∑

l=1

M̂d ⊗ · · · ⊗ M̂l+1 ⊗ L̂l ⊗ M̂l−1 ⊗ · · · ⊗ M̂1, and M̂s = M̂d ⊗ · · · ⊗ M̂1,

and for l = 1, . . . , d, with indexes i, j = 1, . . . , Ns,l, it holds

[L̂l]i,j :=

1∫
0

b̂′j,p(xl)̂b
′
i,p(xl)dxl, and [M̂l]i,j :=

1∫
0

b̂j,p(xl)̂bi,p(xl)dxl.

The efficient application of the proposed preconditioner, that is, the solution of a
linear system with matrix P̂, should exploit the structure highlighted above. When
the pencils (L̂1, M̂1), . . . , (L̂d, M̂d) admit a stable generalized eigendecomposition, a
possible approach is the Fast Diagonalization (FD) method, see [37, 79] for details.

4.4.3 Stable factorization of (L̂l, M̂l) for l = 1, . . . , d

The spatial stiffness and mass matrices L̂l and M̂l are symmetric and positive defi-
nite for l = 1, . . . , d. Thus, the pencils (L̂l, M̂l) for l = 1, . . . , d admit the generalized
eigendecomposition

L̂lUl = M̂lUlΛl,

where the matricesUl contain in each column the M̂l-orthonormal generalized eigen-
vectors and Λl are diagonal matrices whose entries contain the generalized eigenval-
ues. Therefore we have for l = 1, . . . , d the factorizations

UT
l L̂lUl = Λl and UT

l M̂lUl = INs,l
, (4.4.21)
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Figure 4.2. Generalized eigenvectors of the pencils (L̂l, M̂l) with associated eigen-
values for ps = 3 and nel = 32 elements.

where INs,l
denotes the identity matrix of dimension Ns,l ×Ns,l.

Figure 4.2 shows the shape of the generalized eigenvectors in Ul, with associ-
ated eigenvalue in Λl, for a fixed univariate direction l = 1, . . . , d discretized with
degree ps = 3 B-Splines and uniform partition. The stability of the decomposi-
tion is expressed by the condition number of the eigenvector matrix. In particular
UT

l M̂lUl = INs,l
implies that

κ2(Ul) := ∥Ul∥2∥U−1
l ∥2 =

√
κ2(M̂l),

where ∥ · ∥2 is the norm induced by the Euclidean vector norm. The condition

number κ2(M̂l) has been studied theoretically in [48] and numerically in [85] and it
does not depend on the mesh-size, but it depends on the polynomial degree. Indeed,
we report in Table 4.1 the behavior of κ2(Ul) for different values of spline degree
ps and for different uniform discretizations with number of elements denoted by nel.
We observe that κ2(Ul) exhibits a dependence only on ps, but stays moderately low
for all low polynomial degrees that are in the range of interest.

nel ps = 2 ps = 3 ps = 4 ps = 5 ps = 6 ps = 7 ps = 8

32 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

64 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

128 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

256 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

512 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

1024 2.7 · 100 4.5 · 100 7.6 · 100 1.3 · 101 2.1 · 101 3.5 · 101 5.7 · 101

Table 4.1. κ2(Ul) for different polynomial degrees ps and number of elements nel.

Moreover, in [58] it is shown that there is spectral equivalence between B̂s and

L̂T
s M̂

−1
s L̂s. We investigate numerically this spectral equivalence, and Figure 4.3a
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(a) Eigenvalues of (L̂T
s M̂

−1
s L̂s)

−1B̂s for different degrees p and number of ele-
ments nel.

(b) Eigenvalues of (Ŵ∗
t M̂

−1
t Ŵt)

−1L̂t for different degrees p and number of
elements nel.

Figure 4.3. Numerical investigation of spectral equivalence.

shows the eigenvalues of (L̂T
s M̂

−1
s L̂s)

−1B̂s are clustered and close to 1, for splines
of degree p = 2, 3, 4 and different uniform partitionas with nel = 8, 16, 32, 64, 128.
In conclusion the spectral equivalence is stable under mesh refinement.

As regards the time pencils, the spectral equivalence between L̂t and Ŵ∗
tM̂

−1
t Ŵt

is unstable under mesh refinement, see Figure 4.3b where we performed the analo-
gous test, therefore we kept the full structure of the time pencils in the precondi-
tioner.

4.4.4 Application of the preconditioner

The application of the preconditioner involves the solution of the linear system

P̂s = r, (4.4.22)

where P̂ has the structure (4.4.20). We are able to efficiently solve system (4.4.22)
by the Fast Diagonalization method. The starting point, is the setup of the precon-
ditioner, that is the factorizations (4.4.21) of the pencils (L̂l, M̂l) for l = 1, . . . , d.

Then, define Us := Ud ⊗ · · · ⊗ U1 and Λs :=
∑d

l=1 INs,d
⊗ · · · ⊗ INs,l+1

⊗ Λl ⊗
INs,l−1

⊗· · ·⊗INs,1 . Notice that M̂
−1
s = UsU

T
s , therefore the matrix L̂sM̂

−1
s L̂s admits

the stable factorization
UT

s L̂sM̂
−1
s L̂sUs = Λ2

s.

The preconditioner P̂ admits the following factorization

P̂ =
(
UT

s ⊗ INt

)−1 (INs ⊗ Lt + ν2Λ2
s ⊗Mt + νΛs ⊗ (Wt +W∗

t )
)
(Us ⊗ INt)

−1 .
(4.4.23)
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Note that the second factor in (4.4.23) that is

H :=
(
INs ⊗ Lt + ν2Λ2

s ⊗Mt + νΛs ⊗ (Wt +W∗
t )
)

is sum of three Kronecker matrices, whose space factors are diagonal matrices. We
have the following block diagonal structure

H =

H1

. . .

HNs

 ,
where Hi, for i = 1, . . . , Ns, are banded matrices with bandwidth 2pt +1 defined as

Hi := Lt + ν2[Λ2
s]i,iMNt + ν[Λs]i,i (Wt +W∗

t ) .

In order to invert H, it is now sufficient to invert the following independent Ns

problems of size Nt ×Nt:

Hixi = yi for i = 1, . . . , Ns. (4.4.24)

Summarizing, the solution of (4.4.22) can be computed by the following algo-
rithm.

Algorithm 4 Fast Diagonalization

1: Compute the factorizations (4.4.21).
2: Compute y = (UT

s ⊗ INt)r.
3: Compute xi = H−1

i yi for i = 1, . . . , Ns.
4: Compute s = (Us ⊗ INt) s̃.

We conclude with the following remark for a possible parallel implementation of
Algorithm 4.

Remark 4.3. The decision to consider time as the first variable allows us to write
the matrix H in a block diagonal form. In view of an efficient parallel implementa-
tion, this natural diagonal block structure does not require data shuffling, reducing
the communication cost between nodes.

4.4.5 Computational cost and memory requirements

In this section we discuss the computational costs and memory requirements in
the implementation of Algorithm 4. First, notice that the matrix A in (4.4.18) is
symmetric positive definite therefore we choose Conjugate Gradients (CG) as linear
solver for solving the system (4.4.17). Clearly, the global computational cost of the
iterative CG solver depends on both the preconditioner setup and application cost.
The setup has to be performed only once, while the application of the preconditioner
is performed at each iteration. Denoting by Niter the number of iterations required
to get convergence, the global computational cost is:

COST = SETUP+Niter ∗ APPLICATION.
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We assume for simplicity that Ns,l = ns for each univariate direction l = 1, . . . , d,
that is the space matrices have dimension ns × ns, while the time matrices involved
in the preconditioners have dimension Nt × Nt. Thus the total number of degrees-
of-freedom is Ndof = NsNt = nd

sNt.

The setup of P̂ includes the operations performed in Step 1 of Algorithm 4, i.e.
d spatial eigendecompositions, that have a total cost of O(dn3

s) FLOPs, and the
construction of the block diagonal matrix H, which costs O(ptNtNs) = O(ptNdof ).
We remark that the setup of the preconditioners has to be performed only once,
since the matrices involved do not change during the iterative procedure.

The application of the preconditioner is performed by Steps 2-4 of Algorithm
4. Exploiting the properties of the Kronecker product, Step 2 and Step 4 costs
O(dnd+1

s Nt) = O(dnsNdof ) FLOPs. The cost of solving each sparse problem (4.4.24)
makes the cost for Step 3 equal to O(p2tNtNs) = O(p2tNdof ) FLOPs. The non-
optimal dominant cost of Step 2 and Step 4 is determined by the dense matrix-
matrix products. However, these operations are usually implemented on modern
computers in a very efficient way and the overall serial computational time grows
almost as O(Ndof ), see i.e. [85, 75]

The other dominant computational cost in a CG iteration is the cost of the
residual computation. In Algorithm 4, this involves the multiplication of the matrix
A with a vector. This multiplication is done by exploiting the special structure
(4.4.18), that allows a matrix-free approach. With the matrix-free approach, noting
that the time matrices Lt,Mt,Wt are banded matrices with bandwidth 2pt + 1,
and the spatial matrices Js,Ls,Ms have a number of non-zeros per row equal to
(2ps + 1)d, the computational cost of a single matrix-vector product is O(Ndofp

d)
FLOPs, if we assume p = ps ≈ pt.

Considering also ns = Nt = N
1/(d+1)
dof , we conclude that the total cost, in FLOPs,

of Algorithm 4 is

O(dN
3/(d+1)
dof ) +Niter ∗

(
O(dN

(d+2)/(d+1)
dof ) +O(p2Ndof ) +O(pdNdof )

)
.

The dominant cost in the iterative solver is therefore represented by the residual
computation. This is a typical behaviour of the FD-based preconditioning strategies,
see [85, 93, 87].

We now investigate the memory consumption of the preconditioning strategy
proposed. For the preconditioner, we have to store the eigenvector spatial matrices,
U1, . . . ,Ud, the diagonal matrices Λ1, . . . ,Λd and the banded time pencils Lt,Mt

and Wt of size Nt ×Nt. The memory required is roughly

O(d(n2
s + ns)) +O(ptNdof ) +O(ptNt).

For the system matrix A, in addition to the time factors Lt,Mt and Wt, we
need to store the spatial factors Ms,Bs and Ls. Thus the memory further required
is roughly

O(pdsNs).

These numbers show that memory-wise our space-time strategy is very appeal-
ing when compared to other approaches, even when space and time variables are
discretized separately, e.g., with finite differences in time or other time-stepping
schemes. For example if we assume d = 3, pt ≈ ps = p and N2

t ≤ Cp3Ns, then
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the total memory consumption is O(p3Ns + Ndof ), that is equal to the sum of the
memory needed to store the Galerkin matrices associated to spatial variables and
the memory needed to store the solution of the problem.

We remark that we could avoid storing the factors of A by using the matrix-free
approach of [94]. The memory and the computational cost of the iterative solver
would significantly improve, both for the setup and the matrix-vector multiplica-
tions. However, we do not pursue this strategy, as it is beyond the scope of this
work.

Remark 4.4. In view of Remark 4.2, the matrices associated with the resulting
linear systems (least squares and ultraweak) are distinct submatrices extracted from
the representative matrix of the operator without boundary conditions. Therefore,
the preconditioner proposed in this section for the least squares form, together with
its factorization and application, can be extended to the ultraweak form, with the
same computational costs and memory requirements.

4.5 Numerical Results

This section is devoted to the computation of the solution of Schrödinger problem
(4.1.1), and to its extension to non-homogeneous conditions, with the discretization
proposed in (4.3.13). We first present the numerical experiments that assess the
convergence behavior of the least squares Petrov-Galerkin approximation and then
we analyze the performance of the preconditioners.

We consider only sequential executions and we force the use of a single compu-
tational thread in a Intel Core i5-1035G1 processor, running at 1 GHz and with 16
GB of RAM.

The tests are performed with Matlab R2023a and GeoPDEs toolbox [107]. We
use the eigMatlab function to compute the generalized eigendecompositions present
in Step 1 of Algorithm 4,while Tensorlab toolbox [98] is employed to perform the
multiplications with Kronecker matrices occurring in Step 2 and Step 4. The solution
of the linear systems (4.4.24) in Step 3 is performed pagewise by Matlab direct solver
(pagewise backslash operator pagemldivide). The linear system is solved by CG,
with tolerance equal to 10−8 and with the null vector as initial guess in all tests.

According to Remark 4.1, we use the same mesh-size in space and in time hs =
ht =: h, and use splines of maximal continuity and same degree in space and in time
pt = ps =: p. For the sake of simplicity, we also consider uniform knot vectors, and
denote the number of elements in each parametric direction by nel :=

1
h
.

In our tables, the symbol “ ∗ ∗” denotes that the invertion of the matrix A in
(4.4.18), by Matlab direct solver backslash operator “\”, requires more than 2 hours
of computational time, while the symbol “∗” indicates that the number of iterations
in the CG solver exceeds the upper bound set to 200 iterates. We remark that in
all the tables the total solving time of the iterative strategies includes also the setup
time of the considered preconditioner.
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(a) Left - Real part of the smooth Gaussian solution computed with space-time splines
discretization of degree p = 3, over a uniform mesh with 64 elements in space and 128
elements in time. Right - Real part of the exact solution.

(b) Error convergence in V-norm. (c) Error convergence in L2(Q)-norm.

Figure 4.4. Smooth solution and error convergence of the space-time least squares
discretization.
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(a) Left - Real part of the non-regular solution computed with space-time splines dis-
cretization of degree p = 4, over a uniform mesh with 512 elements in space and 1024
elements in time. Right - Real part of the exact solution.
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(b) Error convergence in V-norm.

Figure 4.5. Non-regular solution and error convergence of the space-time discretiza-
tion.
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4.5.1 Orders of convergence

Consider the Schrödinger equation as modeled in (4.1.1), for the space-time domain
Q = (0, T )× (0, 1), with T = 2. The reference solution is the complex Gaussian

u(t, x) =
αβ√
β2 − iγt

exp

{
− x2

β2 − iγt

}
, (4.5.25)

where α = β = 1.5 and γ = 2.5. Here the Dirichlet boundary condition is u|ΓD
,

the initial condition is u(0, x) and the right hand side is f = Au. The problem is
discretized with a uniform mesh in both space and time directions. The solution for
p = 3 is shown in Figure 4.4a. In Figure 4.4b it is shown the convergence analysis
of the error under h-refinement and for different polynomial degrees p = 2, 3, 4.
The errors are computed both with ∥ · ∥V-norm, for which the convergence Theorem
4.3 holds, and with ∥ · ∥L2(Q)-norm, even if this case is not covered by theoretical
results. For this smooth solution, the error study reveals optimal convergence under
h-refinement in V-norm. The numerical results seem to exclude superconvergence
in the L2(Q) norm, see Figure 4.4c

The second test considers the following example from [36]. Consider the space
domain Ω = (0, 1), the final time T = 2, and the space-time domain Q = (0, T ) ×
(0, 1). Homogeneous Dirichlet boundary conditions are considered on ΓD. Let us
denote by ek and ω2

k, which is, for k = 1, 2, . . . , an eigenpair of

−∆ek = ω2
kek, a.e. in Ω.

By normalizing ek such that ∥ek∥L2(Ω) = 1, we consider f(t, x) =
∑+∞

k=1 fk(t)ek(x),
where fk(t) are the Fourier coefficients of f decomposed in the orthonormal basis ek
at a given time t. By the following specific choice of coefficients

fk(t) =
1

k
exp

{
iω2

kt
}

for k = 1, 2, . . . ,

we considered as right hand side in (4.1.1) the following high mode truncated ex-
pansion

fM =
M∑
k=1

1

k
exp

{
iω2

kt
}
ek(x),

with M ≫ 0. Notice that, the solution to (4.1.1) with this specific right hand side,
is

u(t, x) =
M∑
k=1

−it
k

exp
{
iω2

kt
}
ek(x).

We computed the solution for different polynomial degrees, on a uniform mesh, for
an high mode right hand side fM , with M = 625. In 4.5a it is plotted the real part
of the numerical solution for splines with degree p = 4, together with the real part
of the explicit solution. The solution of such a problem is non-regular and it can
be shown that u(t, ·) ∈ H1/2(Ω), while u(·, x) ∈ H1/4(0, T ). Figure 4.5b shows the
error convergence for the high mode right hand side fM , with M = 652 modes, that
is optimal for each polynomial degree p = 2, 3, 4.
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Figure 4.6. Real part of the numerical approximation of (4.5.26) at four different
time frames.

4.5.2 Performance of the preconditioner in the parametric
domain

The computational space domain is Ω = (0, 1)2 and the space-time domain is Q =
(0, T )× Ω with T = 1. The reference solution is a traveling wave, that is

u(t,x) = a exp

{
−i |x|

2 + t2

ω2

}
, (4.5.26)

with wave number ω = 0.2 and amplitude a = 4
√
2/ω2. Here the Dirichlet boundary

conditions are u|ΓD
. The right hand side is the following

f(t,x) = a

(
4i

ω2
+

4|x|2

ω4
+

2t

ω2

)
exp

{
−i |x|

2 + t2

ω2

}
.

The numerical solution on a mesh of 64 elements per univariate direction is shown
in Figure 4.6 for different time frames.

We analyze the performance of the proposed preconditioner P̂ for a variety of
uniform partitions up to nel = 64 per univariate directions, and polynomial degree
p = 2, 3, 4. In Table 4.2 it is reported the computational clock time cost of solv-
ing the linear system both directly using Matlab backslash and iteratively by CG
solver, reporting also the number of iterations for this latter case. When solving
with CG we investigate the performance of the solver with preconditioner P̂, and
compare it with a classical algebraic preconditioner as incomplete Cholesky factor-
ization (ICHOL). Matlab backslash is clearly inefficient, since performing Gaussian
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Table 4.2. Parametric domain. Performance of P̂.

Performance of preconditioner

nel Ndof backslash (time) P̂ (iter / time) ICHOL (iter / time)
Degree p = 2

8 1000 0.0306 7 / 0.0426 12 / 0.0256
16 5832 0.7974 7 / 0.0659 38 / 0.1338
32 39304 27.46 7 / 0.2992 174 / 3.9153
64 287496 1148 7 / 2.7304 ∗

Degree p = 3
8 1331 0.0618 8 / 0.0302 10 / 0.0172
16 6859 1.6415 9 / 0.0982 32 / 0.2884
32 42875 118 8 / 0.4703 148 / 8.1482
64 300763 ∗∗ 8 / 4.7142 ∗

Degree p = 4
8 1728 0.1587 10 / 0.0427 10 / 0.0548
16 8000 2.6433 10 / 0.2289 28 / 0.4363
32 46656 419 10 / 1.2329 127 / 14.1742
64 314432 ∗∗ 10 / 9.0219 191 / 176

elimination requires N3
dof FLOPs. Using classical preconditioners in CG iterative

solvers is a reasonable approach for small size problem, but the number of iterations
grows with the size of the problem. The performance of the preconditioner P̂ with
CG, is identical among h-refined meshes, and seams reasonably p-robust. The num-
ber of iterations never exceeds 10, and the total amount of time required to solve
the discrete problem, is always cheaper than the other approaches we tested.

4.6 Conclusions

In this chapter we proposed and studied a space-time least square method for the
Schrödinger equation in the framework of isogeometric analysis. Our scheme is
based on smooth spline in space and time, that allows, in the particular case of
the parametric domain, to introduce a suitable preconditioner for the arising linear
system. Our preconditioner P̂ is represented by a sum of Kronecker products of
matrices, that makes the computational cost of its construction (setup) and appli-
cation, as well as the storage cost, very appealing. In particular the construction
of the preconditioner exploits a spectral equivalence between the space matrices Bs

and LT
s M

−1
s Ls that, thanks to the FD technique, admits a stable block-diagonal

factorization.

The application cost for a serial execution is almost equal to O(Ndof ), and the
block-diagonal structure is suitable for parallel implementation on distributed mem-
ory machines, and this will be an interesting future direction of study.

At the same time, the storage cost is roughly the same that we would have by
discretizing separately in space and in time, if we assume Nt ≤ CpdNs. Indeed, in
this case the memory used for the whole iterative solver is O(pdNs+Ndof ). Although,
our approach could be coupled with a matrix-free idea, and this is expected to further
improve the efficiency of the overall method.
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As a final comment, it would be interesting to further exploits the structure of
time pencils, in order to achieve a full factorization of the proposed preconditioner.
This may also give a hint in proposing an ad-hoc preconditioner for the isogeometric
framework, which we are still working on.
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Chapter 5

Final conclusions

In this thesis we focused on two topics, an energy conserving isogeometric discretiza-
tion for the wave equation in mixed-form and fast preconditioners for space-time
formulations of the heat and Schrödinger equation.

For the first part, the proposed semi-discretization in space relies on tensor prod-
uct projections into spline spaces, with good approximation properties, and that
commute with the divergence operator, according to the De Rham complex for
splines. The fully discrete problem is obtained applying Crank-Nicolson time step-
ping method to the semi-discrete form, and is proved to be energy preservative. We
proved convergence estimates for the semi-discretization in two working hypothesis:
firstly for rigorous assumptions on the projections, and then for more relaxed and
practical conditions. The theoretical convergence analysis is covered by numerical
results, and energy conservation is confirmed as a key property of the proposed
approach.

For the second part of this thesis, we proposed several preconditioners for the
fast solution of linear systems arising from space-time isogeometric discretizations
of evolutionary equations. The preconditioners are represented by a suitable sum of
Kronecker products of matrices, which is essential for a fast application. The main
idea relies on the factorization of univariate pencils in the Kronecker structure. This
is primarily achieved through the Fast Diagonalization method, except for the time
direction where it proves to be unstable. Different stable factorizations in time have
been proposed, leading to stable fast solvers for the above mentioned problems.

As a conclusive remark, the innovations of this work have to be investigated in
more complicated geometries or multi-patch domains, which is still an open problem,
and this certainly represents one of the future directions of development.
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Appendix A

Computation of quasi-interpolants

In this section we want to discuss the implementation of L̂Π
1
, as given in (2.3.28).

The construction of the projection LΠ1, and the projections in the periodic spaces,
are analogous. Let us recall that

L̂Π
1
= (L̂πp1,Ξ1 ⊗ L̂π

c

p2−1,Ξ′
2
)× (L̂π

c

p1−1,Ξ′
1
⊗ L̂πp2,Ξ2)

This is applied to project bivariate vector functions f = (f1, f2), that in our practical

case are the functions ĉb̂i,h as in Section 2.5. This means that we need to compute

L̂πp1,Ξ1 ⊗ L̂π
c

p2−1,Ξ′
2
(f1) and L̂π

c

p1−1,Ξ′
1
⊗ L̂πp2,Ξ2(f2). With some abuse of notation,

these tensorizations must be interpreted as commuting compositions of the kind

L̂πp1,Ξ1 ⊗ L̂π
c

p2−1,Ξ′
2
(f1) = L̂πp1,Ξ1

(
L̂π

c

p2,Ξ′
2
(f1)

)
,

Notice that L̂π
c

p2,Ξ′
2
projection is applied to f1 seen as a function of x2 for a fixed x1,

while the L̂πp1,Ξ1 projection is applied at the result of the previous computation by
seeing it as a function of x1 for any fixed x2, as it is specified in [12, Section 2.2.2].

We focus on applying L̂πp1,Ξ1 ⊗ L̂π
c

p2−1,Ξ′
2
(f1), that is:

L̂πp1,Ξ1

(
L̂π

c

p2,Ξ′
2

(
f1(x1, x2)

))
= L̂πp1,Ξ1

(
n2−1∑
i2=1

µi2(x1)D̂i2(x2)

)

=

n2−1∑
i2=1

L̂πp1,Ξ1

(
µi2(x1)

)
D̂i2(x2)

=

n2−1∑
i2=1

n1∑
i1=1

µi1,i2 b̂i1(x1)D̂i2(x2),

and the coefficients µi1,i2 will depend only on f1. In order to compute these coeffi-
cients µi1,i2 we may perform the following steps:

1. First evaluate f1 on the Cartesian grid given by breakpoints and midpoints
of the first univariate direction, and breakpoints, midpoints and further mid-
points of the second univariate direction, see Figure A.1a.

2. Use these pointwise evaluations to project f1(x1, ·) with L̂π
c

p2,Ξ′
2
. This means to

perform L̂π
c

p2,Ξ′
2
(f1(x1, ·)) for every x1 in the set of breakpoints and midpoint

107



(a) Given the function f1(x1, x2) = (1+x1)
2sin(πx2/2), we highlight the evaluation

over knots midpoints and further midpoints respectively in blue green and red.

(b) Here we see the coefficients µi2(x1)
n2−1
i2=1 in blue and green for knots and midpoint.

Figure A.1. Graphical visualization of intermediate steps in the computation of
µi1,i2 .
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of the first univariate direction. We recall that in our implementation this
requires to use Cavalieri-Simpson composite quadrature formula. We end up
with a set of coefficients {µi2(x1)}n2−1

i2=1 , for every fixed x1. In Figure A.1b,
these coefficients are highlighted in blue and green circles, respectively for
breakpoints and midpoints of x1 direction, for the case p = 2.

3. Due to the choice of step 1, for a fixed index i2, the function µi2(x1) is already
evaluated over the breakpoints and midpoints of x1 direction. Therefore we
can perform a projection L̂πp1,Ξ1(µi2) for every i2 = 1, . . . , n2 − 1. We end
up with a set of coefficients {µi1,i2}

n1,n2−1
i1=1,i2=1 over the parametric domain that

uniquely identify the bivariate spline that approximates f1.

The procedure to compute L̂π
c

p1−1,Ξ′
1
⊗ L̂πp2,Ξ2(f2) is analogous, we just need to

swap the evaluation points required per univariate direction. After projecting the
two scalar components f1 and f2, we have two sets of coefficients whose union
corresponds to the degrees of freedom of the spline function that approximates f in
the discrete space X̂1

h.
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Appendix B

Well-posedness of the space-time
variational formulation

Here we extend the results presented in [36] on the well posedness of (4.1.2). First
we introduce a suitable notation, such that this appendix can be read indepen-
dently from the previous chapters. Let us recall Q = (0, T ) × Ω, with Ω ⊂ Rd,
d = 1, 2, 3, while ΓD = (0, T ) × ∂Ω. Consider Γ0 = ΓD ∪ ({0} × Ω) and ΓT =
ΓD ∪ ({T} × Ω) and let us define D0 :=

{
ϕ ∈ C∞

0 (Rd+1) : ϕ|Γ0 = 0
}
, which is the

space of smooth functions of Rd+1 with compact support such that restricted to
Q satisfy both homogeneous Dirichlet and initial conditions. Analogously define
DT :=

{
ψ ∈ C∞

0 (Rd+1) : ψ|ΓT
= 0
}
, that instead satisfies homogeneous Dirichlet

and final conditions. Recall S := i∂t − ν∆, and notice that integration by parts
gives: ∫

Ω

∫ T

0

(Sϕ)ψ dt dΩ =

∫
Ω

∫ T

0

ϕ
(
Sψ
)
dt dΩ, ∀ϕ ∈ D0, and ∀ψ ∈ DT .

The space V in (4.1.2) is the domain of S : V ⊂ L2(Q) → L2(Q), that can be written
as:

V :=
{
v ∈ L2(Q) : Sv ∈ L2(Q) and (Sψ, v)− (ψ,Sv) = 0 ∀ψ ∈ DT

}
, (2.0.1)

and we have C∞
0 (Q) ⊂ V ⊂ L2(Q), that is S is densely defined. Denoting by

S∗ : V∗ ⊂ L2(Q) → L2(Q) the adjoint operator, whose domain is given by

V∗ :=
{
w ∈ L2(Q) : ∃g ∈ L2(Q) such that (Sv, w) = (v, g) ∀v ∈ V

}
, (2.0.2)

we have S∗w := g, with S∗ = S, and C∞
0 (Q) ⊂ V∗ ⊂ L2(Q). Notice that we are

identifying L2(Q)′ ≡ L2(Q) through Riesz isomorphism. We endow both V and V∗

with the norms ∥ · ∥V and ∥ · ∥V∗ respectively, such that

∥v∥2V := ∥v∥2L2(Q) + ∥Sv∥2L2(Q), and ∥v∥2V∗ := ∥v∥2L2(Q) + ∥S∗v∥2L2(Q).

Define the boundary operators B : V → (V∗)′ and B∗ : V∗ → (V)′, such that

⟨Bv,w⟩ := (Sv, w)L2(Q) − (v,S∗w)L2(Q), (2.0.3a)

⟨B∗w, v⟩ := (S∗w, v)L2(Q) − (w,Sv)L2(Q), (2.0.3b)
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hold true for all v, w ∈ L2(Q) such that Sv,S∗w ∈ L2(Q). From [36, Lemma A.2],
we have

V∗ = (B(V))⊥, (2.0.4)

and, from (2.0.1), it holds
V = (B∗(DT ))

⊥. (2.0.5)

In particular, from [36, Lemma 2.1], it holds D0 ⊂ V and DT ⊂ V∗, and in addition
we make the following density assumption.

Assumption B.1. We assume that D0
∥·∥V

= V and DT
∥·∥V∗

= V∗.

Under Assumption B.1, from [36, Lemma 2.2], it holds

V∗ = (B(V))⊥ = (B(D0))
⊥, (2.0.6)

and
V = (B∗(V∗))⊥ = (B∗(DT ))

⊥. (2.0.7)

The proof of well posedness of Theorem 4.1 is given in [36, Theorem 2.4]. As-
sumption B.1 is needed to prove injectivity of S. In [36, Theorem 3.1], the verification
of the density assumption B.1 has been proved for the case d = 1.

We now prove that, Assumption (B.1) is verified for every d-dimensional hyper-
cube Ω, with integer d ≥ 1.

Lemma B.1. Given Q = (0, T ) × Ω, with Ω = [0, 1]d and integer d ≥ 1, then
Assumption (B.1) holds true.

Proof. We prove that D0 is dense in V , the other stated density result is analogous.
The case d = 1 is in [36, Theorem 3.1], thus we fix an integer d > 1. Consider v ∈ V ,
first we extend v to the whole Rd+1 domain.

1. Extending along space directions: Let us extend the space-time domain among
the space directions as follows. Denote by Q1,c = Q, Q1,l := [0, T ]× [−1, 0]×
[0, 1]d−1 and Q1,r := [0, T ]× [1, 2]× [0, 1]d−1. Analogously, for i = 2, . . . , d, we
introduce Qi,c :=

⋃
j∈{l,c,r}Qi−1,j, then Qi,l := [0, T ] × [−1, 2]i−1 × [−1, 0] ×

[0, 1]d−i and Qi,r := [0, T ]× [−1, 2]i−1× [1, 2]× [0, 1]d−i, considering [0, 1]0 = ∅.
Finally let us call ΩE :=

⋃
j∈{l,c,r}Qd,j the enlarged space-time cylinder. Then,

we introduce the intermediate extension operators, Ei : Qi,c → Qi+1,c for
i = 1, . . . , d− 1, and Ed : Qd,c → QE, such that

Eif(t,x) :=


−f(t, x1, . . . ,−xi, . . . , xd) (t,x) ∈ Qi,l,

f(t, x1, . . . , xi, . . . , xd) (t,x) ∈ Qi,c,

−f(t, x1, . . . , 2− xi, . . . , xd) (t,x) ∈ Qi,r.

We denote the reverse operators by E ′
i, defined as E ′

ig(t,x) = g(t,x) −
g(t, x1, . . . ,−xi, . . . , xd) − g(t, x1, . . . , 2 − xi, . . . , xd), for (t,x) ∈ Qi,c, and for
i = 1, . . . , d. The definitions are to be interpreted almost everywere, and fi-
nally our extension operator from Q to QE is E := Ed ◦ · · · ◦ E1, while its
reverse operator from QE to Q is E ′ = E ′

1 ◦ · · · ◦ E ′
d. It is easy to see by a

change of variable that

(Ef, g)L2(QE) = (f, E ′g)L2(Q), ∀f ∈ L2(Q), ∀g ∈ L2(QE).
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Next, we claim that
SEv = ESv, ∀v ∈ V .

Clearly, Ev is in L2(QE) and notice that E ′Sφ = SE ′φ for all φ ∈ C∞
0 (QE).

Therefore, it holds

⟨SEv, φ⟩C∞
0 (QE) = (Ev, Sφ)L2(QE) = (v, E ′Sφ)L2(Q) =

= (v,SE ′φ)L2(Q) = (Sv, E ′φ)L2(Q) − ⟨Bv,E ′φ⟩.

Now, since E ′φ|ΓT
= 0, we have E ′φ ∈ V∗, and thus ⟨Bv,E ′φ⟩ = 0 by (2.0.4).

It follows that

⟨SEv, φ⟩C∞
0 (QE) = (Sv, E ′φ)L2(Q) = (ESv, Eφ)L2(QE),

completing the proof of the claim. We also conclude that SEv is in L2(QE)
whenever v ∈ V .

2. Extending along time direction: Let Ẽ denote the extension of E by zero
to Rd+1, and τδ be the translation operator in t direction, i.e., τδw(t,x) =
w(t− δ,x). From [21] it holds

lim
δ→0

∥τδw − w∥L2(Rd+1) = 0, ∀w ∈ L2(Rd+1). (2.0.8)

Introducing QE,δ = (−δ, T + δ)× (−1, 2)d, by a change of variables, it holds

(τδẼf, g)L2(QE,δ) = (Ef, τ−δg)L2(QE), ∀f ∈ L2(Q), ∀g ∈ L2(QE,δ).

Denoting by Rδ the restriction operator of function on Rd+1 to QE,δ, we now
claim that

SRδτδẼv = RδτδẼSv, ∀v ∈ V .

The proof is analogous to the one in Step 1. Given φ ∈ C∞
0 (QE,δ) it holds

⟨SRδτδẼv, φ⟩C∞
0 (QE,δ) = (τδẼv,Sφ)L2(QE,δ) = (Ev,Sτ−δφ)L2(QE)

= (v, E ′Sτ−δφ)L2(Q) = (v,SE ′τ−δφ)L2(Q)

= (Sv, E ′τ−δφ)L2(Q) − ⟨Bv,E ′τ−δφ⟩.

Now, since E ′τ−δφ|ΓT
= 0, we have E ′τ−δφ ∈ V∗, and thus ⟨Bv,E ′τ−δφ⟩ = 0

by (2.0.4). It follows that

⟨SRδτδẼv, φ⟩C∞
0 (QE,δ) = (ẼSv, τ−δφ)L2(QE) = (τ−δẼSv, φ)L2(QE,δ),

which proves the claim.

3. Mollify: Consider the mollifier ρϵ ∈ C∞
0 (Rd+1), defined by

ρϵ(t,x) := ϵ−d−1ρ1(ϵ
−1t, ϵ−1x1, . . . , ϵ

−1xd), forϵ > 0,

where

ρ1(t,x) :=

{
ke−1/(1−|(t,x)|2), if |(t,x)|2 < 1,

0 if |(t,x)|2 ≥ 1,
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with | · | denoting the Euclidean norm in Rd+1, and k is a constant chosen
such that

∫
Rd+1 ρ1 = 1. Notice that, given δ > 0 small enough, i.e., δ <

min{T/2, 1/2}, the convolutions vϵ := ρϵ ∗ τδẼv and sϵ := ρϵ ∗ τδẼSv are
smooth functions that satisfy

lim
ϵ→0

∥vϵ − τδẼv∥L2(Rd+1) = 0, and lim
ϵ→0

∥sϵ − τδẼSv∥L2(Rd+1) = 0. (2.0.9)

Moreover, the smooth function Svϵ need not coincide to sϵ everywere, but
they coincide on Q whenever ϵ < δ/2. Thus, consider δ = 3ϵ, and let ϵ <
min{T/6, 1/6} go to zero. We have

∥Svϵ−Sv∥L2(Q) = ∥sϵ−Sv∥L2(Q) ≤ ∥sϵ−τδẼSv∥L2(Rd+1)+∥τδẼSv−ẼSv∥L2(Rd+1)

and
∥vϵ − v∥L2(Q) ≤ ∥vϵ − τδẼv∥L2(Q) + ∥τδẼv − Ẽv∥L2(Q)

Using (2.0.8) and (2.0.9), it follows that

lim
ϵ→0

∥vϵ − v∥V = 0.

To conclude, we examine the value of vϵ at the edges of the space-time cylinder.
We have

vϵ(t, 0, x2, . . . , xd) =

∫
Rd+1

ρϵ(t− σ,−r1, x2 − r2, . . . , xd − rd)τδẼv(σ, r1, . . . , rd) dr1 . . . drd dσ,

with the integrand in the inner integral being the product of an even function
ρϵ, with respect to r1, and an odd function τδẼv of r1. Thus vϵ(t, 0, x2, . . . , xd) =
0 and the same holds for vϵ(t, 1, x2, . . . , xd) and the other univariate space di-

rections. Moreover since τδẼv is identically zero in a neighborhood of (0,x),
we conclude that vϵ|Γ0 = 0.

Next we extend this result to smooth parameterizations of Ω.

Theorem B.2. Given Q = (0, T )× Ω, with Ω = F ([0, 1]d), F : [0, 1]d → Ω smooth
diffeomorphism, and integer d ≥ 1, then Assumption (B.1) holds true.

Proof. We prove that D0 is dense in V , the other stated density result is analogous.
Given v ∈ V , recall G : [0, 1]d+1 → Q is the parameterization of the space-time
cilinder, such that G(τ,η) := (Tτ,F (η)) = (t,x). Define v̂ := v ◦G. Clearly v̂ ∈
L2([0, 1]d+1), and Sv̂ ∈ L2([0, 1]d+1). Moreover (Sv, ϕ)L2([0,1]d+1) − (v,Sϕ)L2([0,1]d+1) =
0, for all ϕ ∈ C∞

0 (Rd+1) such that ϕ|G−1(ΓT ) = 0. By applying Lemma 1, it exists

{v̂ϵ}ϵ>0 ⊂ C∞
0 (Rd+1) such that v̂ϵ|G−1(Γ0) = 0, that satisfies

lim
ϵ→0

∥v̂ϵ − v̂∥2L2([0,1]d+1) + ∥Sv̂ϵ − Sv̂∥2L2([0,1]d+1) = 0.

Therefore define vϵ := v̂ϵ◦G−1 and notice that {vϵ}ϵ>0 ⊂ D0. Moreover, by a change
of variable,

lim
ϵ→0

∥vϵ − v∥2V ≤ C lim
ϵ→0

∥v̂ϵ − v̂∥2L2([0,1]d+1) + ∥Sv̂ϵ − Sv̂∥2L2([0,1]d+1) = 0.

This completes the proof.
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