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Chapter 1
Introduction

The topic of this thesis lies at the interface between microlocal analysis, quantum field theory and stochas-
tic processes. Since the 1970s, it has emerged that a number of physical systems are modelled by what is
known in the literature as a stochastic partial differential equation (SPDE). An SPDE arises as a combi-
nation of partial differential equations (PDEs) and of randomness which are both ubiquitous tools used
to model several physical phenomena. On the one hand, PDEs have always been exploited to describe
macroscopic phenomena such as heat diffusion, electro-magnetic dynamics, interface and fluid dynam-
ics. On the other hand, randomness plays a prominent rôle in dealing with systems with uncertainty
or with chaotic microscopic interactions and it is modelled by a stochastic process, which is tipically a
Gaussian white noise. Therefore, SPDEs combine the best of both worlds and they arise in applications
ranging from statistical mechanics to models for interface growth and many other areas of physics, such
as quantum field theory - see [CS20, PW81, MW17]. As a basic example of an SPDE, we can mention
the stochastic heat equation which is a linear parabolic PDE with an additive white noise arising, for
instance, from a microscopic model of a polymer in a liquid - see [CS20]. At the same time, notable
examples of nonlinear SPDEs include the stochastic Schrödinger equation, see [BDR21], arising from
models of Bose-Einstein condensates or of superconductivity, the Kardar-Parisi-Zhang (KPZ) equation,
see [KPZ86], which is used to model interface dynamics, and the nonlinear parabolic Anderson model,
see [CM94, GIP15, HL18], which describes the motion of a massive particle through a random porous
media.

In general, the solution theory for linear SPDEs with additive noise is well-understood and it shares the
same mathematical challenges as that of their classical counterparts, such as proving existence, unique-
ness as well as regularity of the solutions. However, this is not the case for nonlinear SPDEs because
of the highly singular nature of the Gaussian white noise and of the underlying nonlinear terms, which
are a priori meaningless from a mathematical viewpoint. In this regard, a breakthrough in the analysis
of a large class of nonlinear SPDEs has been recently made thanks to the theory of regularity structures
[Hai14, Hai15] and to paracontrolled calculus formulated in [GIP15]. The aim of these novel frameworks
is to establish existence and uniqueness of the solutions to an underlying SPDE by means of a fixed point
argument. Furthermore, in order to address the problem of singularities arising from nonlinear terms,
these approaches adopt a regularization argument similar to that of quantum field theory. Despite the
absolute relevance of these frameworks, they fall short in giving any information on the explicit form of
the solutions and of their correlation functions, which would be important to make contact with physical
experiments.
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8 CHAPTER 1. INTRODUCTION

In order to strengthen the interplay between renormalization and SPDEs, it has been recently devel-
oped a novel framework to solve a large class of nonlinear SPDEs, which is based on algebraic quantum
field theory, a mathematically rigorous approach to quantum field theory - see [DDRZ21, BDR21]. In
contrast to the theory of regularity structures and paracontrolled calculus, this approach allows to con-
struct both solutions and correlation functions by means of a perturbative series. Moreover, it has the
advantage of providing a rigorous method to discuss renormalization by means of microlocal analysis, see
[Hör03], a collection of techniques which gives a systematic and detailed description of the singularities
of a given distribution. However, this framework suffers of a weak point shared by several approaches to
quantum field theory, that is, the lack of any control on the convergence of the perturbative series. This
hurdle can be mainly ascribed to the coarseness of microlocal techniques exploited to discuss quantum
field singularities. As a matter of fact, in the context of quantum field theory, one is interested in es-
tablishing if a given physical quantity is either smooth or singular, while in the realm of SPDEs this is
by far insufficient since one often considers a more refined class of distributions, elements of a suitable
Besov space. These function spaces, which shall be discussed in Section 2.1, are endowed with a Banach
structure whose norm estimates the scaling degree of a given distribution at any point of an Euclidean
space. In addition, in the context of SPDEs, Besov spaces play a prominent rôle in formulating a fixed
point argument to prove existence and uniqueness of the solutions to a given SPDE - see [Hai14, GIP15].

Therefore, as a consequence of these remarks, the main contribution of this thesis is to develop the
mathematical tools which allow us to better study the behavior of the perturbative solutions to a large
class of SPDEs.
To this end, in Chapter 3, we shall introduce a novel microlocal structure, called Besov wavefront set,
which aims at describing the Besov singularities of an underlying distribution - see [DRS22].
Furthermore, in Chapter 4, we shall formulate the reconstruction theorem, one of the cornerstones of
the theory of regularity structures, on smooth manifolds - see [RS21]. This formulation shall rely on
the framework of germs of distributions, introduced in [CZ20], which allows to formulate and to prove
the reconstruction theorem in the language of distribution theory without any reference to regularity
structures. In addition, this generalization can be read as a first step to extend the Hairer’s framework
to smooth manifolds. As a matter of fact, on account of quantum field theory on curved spacetimes, it
would be desiderable to formulate the theory of regularity structures on arbitrary smooth manifolds in
order to strengthen the interplay between SPDEs and quantum field theory.

Synopsis: Chapter 2 is devoted to recalling the main notions and tools which shall be used in Chapters
3 and 4.

In Section 2.1, we shall give an overview of the theory of Besov spaces. In particular, we shall focus
on recalling two equivalent characterizations. In Subsection 2.1.1, we shall discuss the Fourier-analytical
formulation of Besov spaces, which is defined starting from a Littlewood-Paley partition of unity. At the
same time, in Subsection 2.1.5, we shall discuss the characterization of Besov distributions by means of a
scaling property. This characterization shall be the one mostly used in this thesis and it shall play a key
rôle in Chapter 3. Furthermore, in Subsection 2.1.6, we shall recall the definition of Hölder and Sobolev
spaces and their relations with Besov spaces. In particular, we shall emphasize the interplay bewteen
Hölder spaces and the class of Besov spaces Bα∞,∞(Rd), where α ∈ R.

The Section 2.2 shall be devoted to recollecting the basic notions of the theory of pseudodifferential
operators (ΨDOs), which are a generalization of differential operators. More into the detail, in Subsection
2.2.1, we shall give an overview of the theory of symbols. In Subsection 2.2.2, we shall introduce the
space of ΨDOs and we shall recall its properties, such as its invariance with respect to the action of
diffeomorphisms. In addition, we shall recall how pseudodifferential operators act on Besov spaces. At
last, Subsection 2.2.3 shall be devoted to discussing the microlocal behavior of ΨDOs. More precisely,
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we shall recall the notion of operator wavefront set and that of characteristic set.
In Section 2.3, we shall recollect the basic notions and properties concerning the theory of the smooth

wavefront set. More in detail, we shall see that the smooth wavefront set establishes sufficient conditions
for the well-posedness of a priori ill-defined operations between distributions, such as the pullback and the
product. At last, we shall recall the propagation of singularities theorem for a suitable class of hyperbolic
partial differential equations. This result aims at characterizing the smooth wavefront set of a solution
to a partial differential equation in terms of the principal symbol of the corresponding operator.

In Section 2.4, we shall present a succinct overview of the theory of germs of distributions [CZ20],
which aims at formulating the reconstruction theorem without any reference to regularity structures.
More precisely, in Subsection 2.4.1, we shall recall the notion of germ of distributions and that of co-
herence. In addition, we shall present some examples of coherent germs, such as the one given by the
Taylor polynomial of an Hölder function. In Subsection 2.4.2, we shall recall the formulation of the
reconstruction theorem in the context of germs of distributions. Lastly, in Subsection 2.4.3, we outline
an application of the reconstruction theorem to prove Young’s product theorem, which provides sufficient
conditions to multiply two Besov distributions.

In Chapters 3, 4, we shall discuss the main contributions of this Ph.D. thesis, namely the Besov wave-
front set introduced in [DRS22] and the reconstruction theorem on smooth manifolds as outlined in [RS21].

In Chapter 3, we shall introduce the notion of Besov wavefront set, which aims at characterizing the
directions in Fourier space along which a given distribution lies or does not lie in a suitable Besov space
Bα,loc∞,∞(Rd), where α ∈ R. Throughout this chapter, we shall emphasize that this form of wavefront set is
a refinement of its smooth counterpart.

In Section 3.1, we shall define the Besov wavefront set of an underlying distribution by means of
its Fourier transform. Although this definition sets out correctly the notion of Besov wavefront set, it
is rather involved to use concretely. For this reason, in Section 3.2, we shall establish two equivalent
characterizations of the notion of Besov wavefront set, which shall be very useful from an operational
viewpoint. The first one relies on pseudodifferential operators, while the second one characterizes the
Besov wavefront set in terms of its smooth counterpart. These characterizations shall play a prominent
rôle in the proofs of several structural properties of the Besov wavefront set.

In Section 3.3, we shall outline the structural properties of the Besov wavefront set. Analogously to
the its smooth counterpart, this form of wavefront set shall allow us to formulate sufficient criteria for
the well-posedness of a few operations between distributions. We shall emphasize that these sufficient
conditions are weaker than those formulated by Hörmander in the smooth setting. Without entering
into details, we summarize the main results of Section 3.3. In Subsection 3.3.2, given an embedding
f : Ω1 → Ω2 between two open sets Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 , we shall establish a criterion for the existence of
the pullback of a given distribution along f , which generalizes the one formulated by Hörmander in the
context of the smooth wavefront set. As a byproduct, we shall prove that the Besov wavefront set of a
distribution is invariant under the action of diffeormophisms. This result shall allow us to define the Besov
wavefront set of distributions on a smooth manifold. In Subsection 3.3.3, we shall establish a sufficient
criterion for the existence of the product between two distributions with prescribed Besov wavefront sets.
This result can be read as a microlocal formulation of Young’s product theorem. In Subsection 3.3.4, we
shall discuss the interplay between the Besov wavefront set and Schwartz kernels. As a first step, we shall
prove an estimate for the Besov wavefront set of Ku, where K : D(Ω2) → D′(Ω1) is a linear map with
Schwartz kernel K ∈ D′(Ω1 × Ω2) while Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 are two open sets. Subsequently, we shall
establish a sufficient criterion for the extension of K to E′(Ω2) by means of the Besov wavefront set of
the Schwartz kernel K. This result shall entail a microlocal formulation of Schauder estimates, which are
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often used to estimate the regularity of a solution to a suitable (stochastic) partial differential equation.
At last, in Subsection 3.3.5, we shall discuss the propagation of singularities within the context of the

Besov wavefront set. More precisely, we shall prove a propagation of singularities theorem for a certain
class of hyperbolic partial differential equations.

In Section 3.4, we shall present an application of the results obtained in the previous sections in the
context of coherent germs of distributions. More precisely, given a coherent germ defined as the tensor
product between two distributions u ∈ Bα1

∞,∞(Rd) and v ∈ Bα2
∞,∞(Rd) with α1 + α2 > 0, we shall prove

that its reconstruction coincides with the pullback of the germ along the diagonal, that is the product
between u and v. This shall lead us to conjecture that, given an arbitrary coherent germ, its reconstruc-
tion coincides with the pullback of the germ along the diagonal.

In Chapter 4, we shall formulate Hairer’s reconstruction theorem, one of the main results of the theory
of regularity structures, on smooth manifolds. To this end, we shall rely on the framework of germs of
distributions introduced in [CZ20]. This framework allows us to formulate and to prove the reconstruction
theorem in the language of the theory of distributions, without any reference to regularity structures.
For this reason, it shall turn out to be well-suited to our aims.

More precisely, in Section 4.1, we shall extend the notion of coherent germ of distributions to an
arbitrary smooth manifold. In addition, we shall prove that the notion of coherence is independent of
the choice of the atlas.

In Section 4.2, we shall prove the reconstruction theorem for coherent germs of distributions supported
on a smooth manifold.

In Appendix A, we shall summarize the basic notions and results of the theory of distributions, which
are used in this thesis.

In Appendix B, we shall discuss the coherence of germs of distributions on an open subset of Rd. It
plays a prominent rôle in the formulation of the theory of germs of distributions on smooth manifolds -
see Chapter 4.



Chapter 2
Preliminaries

2.1 Besov Spaces

The aim of this section is to recall the main definitions and results concerning the theory of Besov spaces.
These spaces have recently found several applications in many fields of mathematics, such as partial
differential equations and Fourier analysis, e.g. [BCD11, Hai14, GIP15, BL22A].

In Subsections 2.1.1 and 2.1.5, we shall discuss two different albeit equivalent characterizations of
Besov spaces, that is the Fourier-analytical approach and the local means formulation. At the same time,
Sections 2.1.2 and 2.1.3 outline the most important embedding theorems and duality properties of Besov
spaces. In Subsection 2.1.4, we shall give a succint overview of paradifferential calculus, which addresses
the problem of multiplying two Besov distributions. To conclude, Subsection 2.1.6 shall be devoted to
recalling Hölder and Sobolev spaces and to emphasizing their relations with Besov spaces. For further
details concerning these topics, refer to [BCD11, Sect. 2.7], [Tri06, Chap. 1] and to [Saw18, Chap. 2].

In this section, we shall make use of the notions introduced in Appendix A, where we summarize the
basic concepts of the theory of distributions as well as relevant results concerning the Fourier transform.
In the following, we denote by D(Rd) and D′(Rd) the space of compactly supported smooth functions and
its topological dual respectively. In addition, S(Rd) and S′(Rd) stand for the space of rapidly decreasing
functions and the space of tempered distributions respectively. At the same time, E′(Rd) ⊂ D′(Rd)
denotes the space of compactly supported distributions.

Given u ∈ S′(Rd), we denote by û its Fourier transform. At the same time, ǔ and F−1u stand for the
inverse Fourier transform of u.

2.1.1 The Fourier-analytical approach

In this subsection, we shall define Besov spaces according to the Fourier-analytical approach. For this
purpose, the first step consists of introducing a Littlewood-Paley partition of unity, which is a suitable
decomposition of unity in Fourier space. Nevertheless, it will first be convenient to give a definition of a
Fourier multiplier operator. In what follows, we shall make use of the notions introduced in Appendix
A, particularly Section A.11. Let

O(Rd) := {f ∈ C∞(Rd) : ∀ℓ ∈ Nd0,∃C,N > 0 s.t. |∂ℓf(x)| ≤ C⟨x⟩N}, (2.1.1)

11



12 CHAPTER 2. PRELIMINARIES

where N0 := N ∪ {0} and ⟨·⟩ denotes the Japanese bracket, defined by

⟨x⟩ := (1 + |x|2) 1
2 , (x ∈ Rd). (2.1.2)

Definition 2.1.1: Let ψ ∈ O(Rd). The Fourier multiplier operator associated to ψ is the continuous
map ψ(D) : S′(Rd) → S′(Rd) defined as

ψ(D)u = F−1{ψ(ξ)û(ξ)}, ∀u ∈ S′(Rd).

Definition 2.1.2: If N is a positive integer, a Littlewood-Paley partition of unity is a sequence
(ψj)j∈N0

of functions such that

• ψj ∈ D(Rd) and ψj ≥ 0 for all j ≥ 0;

• ψj is supported in {2j−N ≤ |ξ| ≤ 2j+N} for all j ≥ 1 while ψ0 is supported in {|ξ| ≤ 2N};

•
∑∞
j=0 ψj(ξ) = 1 for any ξ ∈ Rd;

• for any multi-index α = (α1, . . . , αd) ∈ Nd0, ∃Cα > 0, such that

|∂αψj(ξ)| ≤ Cα⟨ξ⟩−|α|, j ≥ 1,

where |α| :=
∑d
i=1 αi;

• ψj(ξ) = ψj(−ξ) for all j ≥ 0.

The existence of a Littlewood-Paley partition of unity as in Definition 2.1.2 is proven in [BCD11, Prop.
2.10]. Moreover, given a sequence (ψj)j∈N0

as in Definition 2.1.2, the Fourier multiplier operator ψj(D) is
said to be a Littlewood-Paley block. It formally holds true the following Littlewood-Paley decomposition:

Id =

∞∑
j=0

ψj(D). (2.1.3)

The previous identity makes sense in S′(Rd).
Remark 2.1.3: Here, we recall the usual construction of a Littlewood-Paley decomposition of unity. Let
ψ ∈ D(Rd) be an even positive function supported in {2−N ≤ |ξ| ≤ 2N} and let ψ̃ ∈ D(Rd) be such that

ψ̃(·) = ψ(·)∑
k∈Z ψ(2

−k·)
.

Then, a Littlewood-Paley partition of unity (χj)j∈N0 can be generated by setting

χj(·) := ψ̃(2−j ·), χ0(·) := 1−
∑
j≥0

ψ̃(2−j ·).

For further details, the interested reader may refer to [BCD11, Sect. 2.2].

Definition 2.1.4: Let α ∈ R and let 1 ≤ p, q ≤ ∞. If (ψj)j∈N0
is a Littlewood-Paley partition of unity,

we call Besov space Bαp,q(Rd) the set of all u ∈ S′(Rd) such that

∥u∥Bα
p,q(Rd) :=


(∑

j≥0 2
jqα∥ψj(D)u∥q

Lp(Rd)

) 1
q

<∞ if q <∞,

supj≥0 2
jα∥ψj(D)u∥Lp(Rd) <∞ if q = ∞.

(2.1.4)

In addition, we say that u ∈ Bα,locp,q (Rd) if ϕu ∈ Bαp,q(Rd) for any ϕ ∈ D(Rd).
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Remark 2.1.5: Observe that u ∈ Bαp,q(Rd) if and only if

(ψj(D)u)j∈N0 ∈ ℓαq (L
p(Rd)).

Here, given a Banach space (E, ∥ · ∥E), ℓαq (E) denotes the space of all E-valued sequences a = (aj)j∈N0

such that it is finite

∥a∥ℓαq (E) :=


(∑

j≥0 2
jqα∥aj∥qE

) 1
q

if q <∞,

supj≥0 2
jα∥aj∥E if q = ∞.

(2.1.5)

Moreover, for the sake of simplicity, we set ℓq(E) := ℓ0q(E) and ℓq := ℓ0q(R).
Definition 2.1.4 does not depend on the choice of the Littlewood-Paley partition of unity. This property

is stated in the following theorem - see [Saw18, Th. 2.1].

Theorem 2.1.6: Let (ψj)j∈N0 , (ψ̃j)j∈N0 be two Littlewood-Paley partitions of unity as per Definition

2.1.2. Then ∥(ψj(D)u)j∈N0
∥ℓαq (Lp(Rd)) and ∥(ψ̃j(D)u)j∈N0

∥ℓαq (Lp(Rd)) are equivalent, i.e. there exist c, C >
0 such that

c∥(ψ̃j(D)u)j∈N0
∥ℓαq (Lp(Rd)) ≤ ∥(ψj(D)u)j∈N0

∥ℓαq (Lp(Rd)) ≤ C∥(ψ̃j(D)u)j∈N0
∥ℓαq (Lp(Rd))

for every u ∈ S′(Rd).
A further property of Besov spaces is the completeness under the norm in Equation (2.1.4) - see

[BCD11, Th. 2.72].

Theorem 2.1.7: Let 1 ≤ p, q ≤ ∞ and α ∈ R. Bαp,q(Rd) equipped with the norm as per Equation (2.1.4)
is a Banach space.

Convolutions inequalities for Besov spaces We outline the properties of the convolution between
two Besov distributions. The following theorem asserts that the convolution is a continuous bilinear map
between suitable Besov spaces as per Definition 2.1.4 - see [KS21, Th. 2.2].

Theorem 2.1.8: Let α1, α2 ∈ R. Let 1 ≤ p, p1, p2 ≤ ∞ and let 1 ≤ q, q1, q2 ≤ ∞ be such that

1

q
≤ 1

q1
+

1

q2
, 1 +

1

p
=

1

p1
+

1

p2
.

If u ∈ Bα1
p1,q1(R

d) and v ∈ Bα2
p2,q2(R

d), then u ∗ v ∈ Bα1+α2
p,q (Rd) and there exists a constant C > 0 such

that

∥u ∗ v∥
B

α1+α2
p,q (Rd)

≤ C∥u∥Bα1
p1,q1

(Rd)∥v∥Bα2
p2,q2

(Rd),

where ∗ stands for the convolution operator as per Definition A.7.1.

2.1.2 Embedding theorems

The purpose of this subsection is to sum up a few notable embedding theorems for Besov spaces.

Theorem 2.1.9: Let 1 ≤ p, q ≤ ∞ and α ∈ R. The following statements hold true:

1. S(Rd) ↪→ Bαp,q(Rd) ↪→ S′(Rd).

2. If p, q <∞ , then D(Rd) is densely embedded in Bαp,q(Rd). In particular, S(Rd) is dense in Bαp,q(Rd).
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Remark 2.1.10: Being S(Rd) continuously embedded in Bαp,q(Rd), the first statement of Theorem 2.1.9

entails that Bαp,q(Rd) is nontrivial.

Remark 2.1.11: If q = ∞, it is possible to prove that the closure of D(Rd) with respect to ∥ · ∥Bα
p,q

is

the space of all u ∈ S′(Rd) such that

lim
j→∞

2jα∥ψj(D)u∥Lp(Rd) = 0.

The interested reader may refer to [BCD11, Remark 2.75].

As mentioned in Remark 2.1.5, Bαp,q(Rd) can be identified with the sequence space ℓαq (L
p(Rd)). As

a matter of fact, the next propositions follow from the definition of ℓq and of ℓαq (E) - see [Saw18, Prop.
2.2, Prop. 2.3].

Proposition 2.1.12: Let α ∈ R and let 1 ≤ p, q1, q2 ≤ ∞. If q1 ≤ q2, then

Bαp,q1(R
d) ↪→ Bαp,q2(R

d). (2.1.6)

Proposition 2.1.13: Let α1, α2 ∈ R and let 1 ≤ p, q ≤ ∞. If α1 ≤ α2, then

Bα2
p,q(Rd) ↪→ Bα1

p,q(Rd). (2.1.7)

We conclude by stating a Sobolev-type embedding theorem for Besov spaces - see [BCD11, Th. 2.71].

Theorem 2.1.14: Let 1 ≤ p1 ≤ p2 ≤ ∞, 1 ≤ q1 ≤ q2 ≤ ∞ and α ∈ R. Then

Bαp1,q1(R
d) ↪→ B

α−d
(

1
p1

− 1
p2

)
p2,q2 (Rd). (2.1.8)

2.1.3 Duality

In this subsection, we shall deal with the duality properties of Besov spaces. To this end, we first introduce
some useful notations and definitions. Given p ∈ [1,∞], the conjugate exponent to p is the real number
p′ ∈ [1,∞] such that

1

p
+

1

p′
= 1. (2.1.9)

Furthermore, given a Banach space (E, ∥ · ∥E), its dual space E′ is defined as the set of all continuous
linear functionals L : E → R. E′ is, in turn, a Banach space when endowed with the operator norm

∥L∥E′ := sup
∥v∥E≤1

|L(v)|, (L ∈ E′).

Roughly speaking, the duality of Bαp,q(Rd) can be deduced by the well-known dualities (Lp(Rd))′ =

Lp
′
(Rd) and (ℓq)′ = ℓq

′
- see [Saw18, Th. 2.17], [BCD11, Prop. 2.76].

Theorem 2.1.15: Let 1 ≤ p, q < ∞ and α ∈ R. Then, for any L ∈ (Bαp,q(Rd))′, there exists a unique

u ∈ B−α
p′,q′(Rd) such that

L(φ) = ⟨u, φ⟩ ∀φ ∈ S(Rd),

where the pairing ⟨u, v⟩ is defined as

⟨u, φ⟩ :=
∑
j,j′

∫
Rd

(ψj(D)u)(x)(ψj′(D)φ)(x)dx.
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Moreover, there exists a positive constant C such that

∥u∥B−α

p′,q′ (R
d) ≤ C∥L∥(Bα

p,q(Rd))′ .

Conversely, if u ∈ B−α
p′,q′(Rd), there is a constant c > 0 such that

|⟨u, φ⟩| ≤ c∥u∥B−α

p′,q′ (R
d)∥φ∥Bα

p,q(Rd), ∀φ ∈ S(Rd).

Therefore, the functional S(Rd) ∈φ 7→ ⟨u, φ⟩ ∈ C continuously extends to Bαp,q(Rd).
Remark 2.1.16: B−α

p′,q′(Rd) can generally be identified with the dual space of the closure of D(Rd)
with respect to ∥ · ∥Bα

p,q
(Rd) for 1 ≤ p, q ≤ ∞. Therefore, when p and q are finite, it turns out that

B−α
p′,q′(Rd) = (Bαp,q(Rd))′ by using the second statement of Theorem 2.1.9.

2.1.4 Paradifferential calculus

In this subsection, we shall focus on the analysis of the product between two Besov distributions. A
renown approach to address this issue is paradifferential calculus. For this topic, we mainly refer to
[BCD11, Sect. 2.8] and [GIP15].
Let (ψj)j∈N0 be a Littlewood-Paley partition of unity as per Definition 2.1.2 and let u, v ∈ S′(Rd). Taking
into account the Littlewood-Paley decompositions, see Equation (2.1.3),

u =
∑
j≥0

ψj(D)u, v =
∑
j≥0

ψj(D)v,

the product u · v can be writteny formall as

u · v =
∑
j≥0

∑
j′≥0

ψj(D)u · ψj′(D)v. (2.1.10)

The idea at the core of paradifferential calculus is to decompose the sum on the right-hand side of Equation
(2.1.10) in three parts. The first one coincides with the product between the low frequencies of u with
the high ones of v, while the second is the symmetric counterpart of the first. These two contributions
are called paraproducts. The third term, dubbed resonant term or remainder, consists of those products
where the indices j and j′ are such that |j − j′| ≤ 1. It encodes the potential ultraviolet divergences
preventing the well-posedness of Equation (2.1.10). Therefore, we introduce the following definitions.

Definition 2.1.17: Let u, v ∈ S′(Rd) and let (ψj)j∈N0 be a Littlewood-Paley partition of unity as per
Definition 2.1.2. The paraproduct between v and u is defined as

Tuv = T (u, v) :=
∑
j≥1

Sj−1u · ψj(D)v, (2.1.11)

where Sj−1u :=
∑j
i=0 ψi(D)u. The resonant term between u and v is defined by

R(u, v) =
∑

|j−j′|≤1

ψj(D)u · ψj′(D)v. (2.1.12)

On account of Equations (2.1.11) and (2.1.11), paraproducts and the resonant term are bilinear maps.
In addition, at least formally, the operators T and R realize the so-called Bony decomposition, cf. [Bo81],

u · v = Tuv + Tvu+R(u, v). (2.1.13)
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As anticipated, the only hurdle to give meaning to Equation (2.1.13) lies in the resonant term. At the
same time, Tuv and Tvu are always well-defined distributions, see [BCD11, Th. 2.82]. In the following, we
recall the continuity properties of the paraproduct and of the remainder. In particular, Theorem 2.1.19
shall clarify under which conditions the Bony decomposition is not formal, see [BCD11, Th. 2.85].

Theorem 2.1.18: For any (α1, α2) ∈ R× (−∞, 0) and any (p, q1, q2) ∈ [1,∞]3 there exists C > 0 such
that

∥T (u, v)∥Bα1
p,q(Rd) ≤ C |α1|+1∥u∥L∞(Rd)∥v∥Bα1

p,q(Rd),

∥T (u, v)∥
B

α1+α2
p,q (Rd)

≤ C |α1+α2|+1

−t
∥u∥Bα2

∞,q1
(Rd)∥v∥Bα1

p,q2
(Rd), with

1

q
= min

{
1,

1

q1
+

1

q2

}
.

Theorem 2.1.19: Let (α1, α2) ∈ R2 and let (p1, p2, q1, q2) ∈ [1,∞]4 be such that

1

p
:=

1

p1
+

1

p2
≤ 1,

1

q
:=

1

q1
+

1

q2
≤ 1.

If α1 + α2 > 0, then there exists a constant C > 0 such that

∥R(u, v)∥
B

α1+α2
p,q (Rd)

≤ Cα1+α2+1

α1 + α2
∥u∥Bα1

p1,q1
(Rd)∥v∥Bα2

p2,q2
(Rd), ∀(u, v) ∈ Bα1

p1,q1(R
d)×Bα2

p2,q2(R
d).

In addition, if α1 + α2 = 0 and q = 1, there exists C > 0 such that

∥R(u, v)∥B0
p,∞(Rd) ≤ C∥u∥Bα1

p1,q1
(Rd)∥v∥Bα2

p2,q2
(Rd), ∀(u, v) ∈ Bα1

p1,q1(R
d)×Bα2

p2,q2(R
d).

To conclude this subsection, we recall Young product theorem, which is a direct consequence of Theorems
2.1.18 and 2.1.19 applied to the class of Besov spaces with p = q = ∞, see [Hai14, Prop. 4.14].

Theorem 2.1.20: Let α1, α2 ∈ R be such that α1 + α2 > 0. Then (u, v) 7→ u · v extends to a bilinear
continuous map from Bα1,loc

∞,∞ (Rd)×Bα2,loc
∞,∞ (Rd) to Bα1∧α2,loc

∞,∞ (Rd), where we set α1 ∧ α2 := min{α1, α2}.
In Subsection 3.3.3, we shall discuss a reformulation of Theorem 2.1.20 from the viewpoint of microlocal
analysis.

2.1.5 Local means

In the following, we recall an equivalent characterization of the Besov norm in Equation (2.1.4), called
local means formulation. The content of this subsection is mainly inspired by [Tri06, Sect. 1.4]. Firstly,
we introduce some helpful notations. If α ∈ R, we set

⌊α⌋ := max{N ∈ Z : N ≤ α}. (2.1.14)

Given f ∈ C∞(Rd), x ∈ Rd and λ ∈ (0, 1], we denote by fλx : Rd → R the scaled version of f , defined as
follows

fλx (y) := λ−df(λ−1(y − x)), y ∈ Rd. (2.1.15)

Let B(0, 1) := {y ∈ Rd : |y| < 1}. We shall denote by D(B(0, 1)) the space of smooth functions with
compact support in B(0, 1).

Remark 2.1.21: We say that a measurable function ω : (0, 1] → R lies in Lq((0, 1), λ−1dλ) if it is finite

∥ω∥Lq((0,1),λ−1dλ) :=


(∫ 1

0
|ω(λ)|q dλλ

) 1
q

if q <∞,

supλ∈(0,1]|ω(λ)| if q = ∞.

In the following, we shall denote Lq((0, 1), λ−1dλ) by Lqλ to simplify the notation.
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The next discussion explains the reason why the approach via local means has been introduced. Let
ψ0 ∈ D(Rd) be as in Definition 2.1.2 and let ψ ∈ D(Rd) be as in Remark 2.1.3. We set ψj(·) = ψ(2−j ·)
for any j ≥ 1. Note that, on the basis of Definition 2.1.1, it descends

(ψj(D)u)(x) = F−1{ψj(ξ)û(ξ)}(x) = (F−1{ψj} ∗ u)(x) = u(2jdψ̌(2j(· − x))) = u(ψ̌2−j

x ), (2.1.16)

where we used that F−1{uv} = ǔ ∗ v̌ and F−1{ψj}(x) = 2jdψ̌(2jx). For instance, if u ∈ Bα∞,∞(Rd),

|u(ψ̌2−j

x )| ≤ ∥u∥Bα
∞,∞

2jα, ∀x ∈ Rd,∀j ≥ 1.

Since ψ̌ ∈ S(Rd), one needs to know u on the whole Euclidean space in order to estimate u(ψ̌2−j

x ) at each
point x ∈ Rd. Therefore, it would be suitable to switch the compactness of the support from ψ to ψ̌.
This is achievable by local means. Given κ ∈ D(B(0, 1)), local means are defined by

u(κλx) =

∫
Rd

u(y)κλx(y)dy

with x ∈ Rd and λ > 0. In order to define Besov spaces via local means, we need to introduce a suitable
subclass of test functions.

Definition 2.1.22: Let α ∈ R. We call B⌊α⌋ the subset of D(B(0, 1)) whose elements κ are such that
there exists ϵ > 0

κ̌(ξ) ̸= 0 if
ε

2
< |ξ| ≤ 2ε , and (∂ℓκ̌)(0) = 0 if |ℓ| ≤ ⌊α⌋. (2.1.17)

Remark 2.1.23: If α < 0, then the second condition in Equation (2.1.17) is empty.

Definition 2.1.24: Let α ∈ R, let κ ∈ B⌊α⌋ and let κ ∈ D(B(0, 1)) be such that κ̌(0) ̸= 0. We call

Bαp,q(Rd), p, q ∈ [1,∞], the space of distributions u ∈ S′(Rd) such that

∥u∥κ,κ
Bα

p,q(Rd)
:= ∥u(κx)∥Lp

x(Rd) +

∥∥∥∥∥u(κλx)∥Lp
x(Rd)

λα

∥∥∥∥
Lq

λ

<∞ (2.1.18)

where Lpx(Rd) denotes Lp(Rd, dx). In addition, we say that u ∈ S′(Rd) lies in Bα,locp,q (Rd) if, for any

compact set K ⊂ Rd,

∥u∥κ,κBα
p,q(K) := ∥u(κx)∥Lp

x(K) +

∥∥∥∥∥u(κλx)∥Lp
x(K)

λα

∥∥∥∥
Lq

λ

<∞ , (2.1.19)

where Lpx(K) := Lp(K, dx).

Remark 2.1.25: On account of Equation (A.11.3), the second condition in Equation (2.1.17) and the
condition κ̌(0) ̸= 0 in Definition 2.1.24 amount to

∫
Rd x

ℓκ(x)dx = 0 if |ℓ| ≤ ⌊α⌋ and
∫
Rd κ(x)dx ̸= 0

respectively.

Remark 2.1.26: As a result of Definition 2.1.22 and Definition 2.1.24, observe that the kernels κ and κ
play the rôle of a Littlewood-Paley partition of unity. Moreover, different choices for κ and κ in Equation
(2.1.18) yield equivalent norms. Therefore, we can avoid to write the superscripts κ and κ.

The following theorem states the equivalence between Equations (2.1.4) and (2.1.18) - see [Tri06, th.
1.10].
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Theorem 2.1.27: Let α ∈ R and 1 ≤ p, q ≤ ∞. Let κ, κ be as in Definition 2.1.24 and let (ψj)j∈N0
be a

Littlwood-Paley partition of unity as per Definition 2.1.2. Then, for any u ∈ S′(Rd), there exist C, c > 0
such that

c∥u∥κ,κ
Bα

p,q(Rd)
≤ ∥(ψj(D)u)j∈N0∥ℓαq (Lp(Rd)) ≤ C∥u∥κ,κ

Bα
p,q(Rd)

.

In Chapter 3, we shall often refer to Definition 2.1.24 rather than to Definition 2.1.4.
In the following, we recall a few equivalent characterizations of the Besov norm defined in Equation 2.1.24
when α < 0 - see [BL22B, Prop A.5], [Tri06, Cor. 1.12].

Proposition 2.1.28: Let α < 0, 1 ≤ p, q ≤ ∞ and let u ∈ S′(Rd). Then the following statements are
equivalent:

(i) u lies in Bαp,q(Rd).

(ii) For any κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0∥∥∥∥∥u(κλx)∥Lp
x(Rd)

λα

∥∥∥∥
Lq

λ

<∞. (2.1.20)

(iii) There exists κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0∥∥∥∥∥u(κλx)∥Lp
x(Rd)

λα

∥∥∥∥
Lq

λ

<∞. (2.1.21)

(iv) Let r > −α. We set
Br := {ϕ ∈ D(B(0, 1)) : ∥ϕ∥Cr(Rd) ≤ 1},

where ∥ · ∥Cr(Rd) has been introduced in Equation (A.1.3). Then it holds true that∥∥∥∥ sup
ϕ∈Br

∣∣∣∣∥u(ϕλx)∥Lp
x(Rd)

λα

∣∣∣∣∥∥∥∥
Lq

λ

<∞, (2.1.22)

Remark 2.1.29: Proposition 2.1.28 still holds true for Besov spaces Bα,locp,q (Rd) with α < 0. In this case,
in Equations (2.1.20), (2.1.21), (2.1.22) the norm ∥ · ∥Lp

x(Rd) is replaced by ∥ · ∥Lp
x(K) for any compact set

K ⊂ Rd.
In the following, we give the definition of the Besov space Bα,locp,q (Ω), where Ω is an arbitrary domain of

Rd - see [Tri06, Sect. 4.1.2].

Definition 2.1.30: Let Ω ⊂ Rd, let 1 ≤ p, q ≤ ∞ and let α ∈ R. The Besov space Bα,locp,q (Ω) is the set

of all u ∈ D′(Ω) such that ϕu lies in Bαp,q(Rd) as per Definition 2.1.24 for any ϕ ∈ D(Ω).

The last part of this subsection shall be devoted to Besov spaces with p = q = ∞. The following
proposition shows that the space of compactly supported distributions E′(Rd) can be characterized in
terms of Besov spaces Bα∞,∞(Rd).
Proposition 2.1.31: Let u ∈ E′(Rd) and let ord(u) ∈ N0 be the order of u as per Definition A.2.5. Then

u ∈ B
−d−ord(u)
∞,∞ (Rd). Furthermore

E′(Rd) =
⋃
α∈R

Bα∞,∞,c(Rd),

where we set
Bα∞,∞,c(Rd) := Bα∞,∞(Rd) ∩ E′(Rd) (2.1.23)
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Proof. Fix κ ∈ D(B(0, 1)) such that κ̌(0) ̸= 0. Given that ∥∂ℓκλx∥L∞(Rd) = λ−|ℓ|−d∥∂ℓκλx∥L∞(Rd), it turns
out

∥κλx∥Cm(Rd) ≤ ∥κ∥Cm(Rd)λ
−m−d, (2.1.24)

for some m ∈ N0. Therefore, from the definition of E′(Rd) and from Equation (2.1.24), there exists a
constant C > 0 such that

|u(κλx)| ≤ C∥κλx∥Cord(u)(Rd) ≤ C∥κ∥Cord(u)(Rd)λ
−ord(u)−d

uniformly for λ ∈ (0, 1] and x ∈ supp(u). We infer that u ∈ B
−d−ord(u)
∞,∞ (Rd) per Proposition 2.1.28. In

addition, it follows immediately

E′(Rd) =
⋃
α∈R

Bα∞,∞,c(Rd).

In the following, we prove an embedding result concerning Besov spaces Bα∞,∞,c(Rd) introduced in Equa-
tion (2.1.23). The following proposition shall play a key rôle as a technical tool in Subsection 3.3.5 when
proving a regularity result for solutions to a specific class of first order hyperbolic partial differential
equations.

Proposition 2.1.32: Let α ∈ R. Then Bα∞,∞(Rd) ∩ E′(Rd) ↪→ Bα2,∞(Rd).

Proof. Let u ∈ Bα∞,∞(Rd) ∩ E′(Rd) and let κ ∈ B⌊α⌋ as per Definition 2.1.22. Being u compactly

supported and bearing in mind that L∞(K) ↪→ L2(K) for any compact set K ⊂ Rd, it descends that there
exists a constant C > 0 such that

∥u(κλx)∥L2
x(Rd) ≤ C∥u(κλx)∥L∞

x (Rd) ≤ C∥u∥Bα
∞,∞(Rd)λ

α,

uniformly for λ ∈ (0, 1]. Analogously, it turns out that there exists a constant c > 0 such that

∥u(κλx)∥L2
x(Rd) ≤ c∥u∥Bα

∞,∞(Rd)λ
α,

uniformly for λ ∈ (0, 1]. On account of Definition 2.1.24, we infer that u ∈ Bα2,∞(Rd).

Eventually, we prove an equivalent characterization of the elements lying in Bα∞,∞(Rd) in terms of their
Fourier transform. The following result shall inspire a definition of Besov wavefront set in Section 3.1.

Proposition 2.1.33: Let u ∈ S′(Rd) and let α ∈ R. Then u ∈ Bα∞,∞(Rd) if and only if, for any κ ∈ B⌊α⌋
and κ ∈ D(B(0, 1)) such that κ̌(0) ̸= 0, it holds true that

|⟨û(ξ), eix·ξκ̌(ξ)⟩| ≲ 1 , |⟨û(ξ), eix·ξκ̌(λξ)⟩| ≲ λα , (2.1.25)

uniformly for λ ∈ (0, 1] and x ∈ Rd.

Proof. Bearing in mind that u(φ) = û(φ̌) and φ̌λx(ξ) = eix·ξφ̌(λξ), it descends

u(κx) = ⟨û(ξ), eix·ξκ̌(ξ)⟩, u(κλx) = ⟨û(ξ), eix·ξκ̌(λξ)⟩. (2.1.26)

The statement is an immediate consequence of the previous identities and of Definition 2.1.24.



20 CHAPTER 2. PRELIMINARIES

2.1.6 Relations with other function spaces

Hölder Spaces

In this subsection, we shall define Hölder spaces and we shall see under which conditions such class of
functions fits into the framework of Besov spaces. For further details concerning this topic, the reader
may refer to [Saw18, Sect. 2.2.2]

Definition 2.1.34: Let m ∈ N0 and τ ∈ (0, 1]. The Hölder space Cm,τ (Rd) is the set of all functions
f ∈ Cm(Rd) such that

∥f∥Cm,τ (Rd) := ∥f∥Cm(Rd) +
∑
|ℓ|=m

sup
x,y∈Rd

x ̸=y

|∂ℓf(x)− ∂ℓf(y)|
|x− y|τ

<∞. (2.1.27)

In addition, we say that f ∈ Cm(Rd) lies in Cm,τloc (Rd) if, for any compact set K ⊂ Rd,

∥f∥Cm,τ (K) := ∥f∥Cm(K) +
∑
|ℓ|≤m

sup
x,y∈K
x ̸=y

|∂ℓf(x)− ∂ℓf(y)|
|x− y|τ

<∞. (2.1.28)

The norm ∥f∥Cm,τ (Rd) can be equivalently characterized in terms of the m-th order Taylor polynomial of
f .

Proposition 2.1.35: Let f ∈ Cm,τloc (Rd) with m ∈ N0 and τ ∈ (0, 1]. Then, for any compact set K ⊂ Rd,
there exist c, C > 0 such that

c∥f∥Cm,τ (K) ≤ max

{
∥f∥Cm(K), sup

x,y∈K
x ̸=y

|f(y)− Px(y)|
|x− y|m+τ

}
≤ C∥f∥Cm,γ(K),

where Px is the the m-th order Taylor polynomial of f centered at x, that is,

Px(y) =
∑

|ℓ|≤m

∂ℓf(x)
(y − x)ℓ

ℓ!
∀y ∈ Rd. (2.1.29)

Remark 2.1.36: The space Cm,τ (Rd) equipped with the norm in Equation (2.1.27) is a Banach space.

The following theorem states that Hölder spaces are closely related to the class of Besov spaces with
p = q = ∞ - see [Saw18, Th. 2.7, Th. 2.8].

Theorem 2.1.37: Let α ∈ (0,∞) \ N. Then Bα∞,∞(Rd) = C⌊α⌋,α−⌊α⌋(Rd), that is, the norms in
Equations (2.1.4) and (2.1.27) are equivalent, where ⌊α⌋ has been defined in Equation (2.1.14).

If α ∈ N, the space Bα∞,∞(Rd) is strictly larger than the space Cα−1,1(Rd). As a matter of fact, the
following theorem holds true.

Theorem 2.1.38: Let α ∈ N. Then f ∈ Bα∞,∞(Rd) if and only if f ∈ Cα−1(Rd) is such that

∥f∥Cα−1(Rd) +
∑

|ℓ|=α−1

sup
x,h∈Rd

h̸=0

|∂ℓf(x+ h)− 2∂ℓf(x) + ∂ℓf(x− h)|
|h|

<∞. (2.1.30)

Remark 2.1.39: In general, if α > 0, it shows that the Besov space Bα∞,∞(Rd) coincides with the

Hölder-Zygmund space Cα∗ (Rd). Here, Cα∗ (Rd) is defined as the Hölder space C⌊α⌋,α−⌊α⌋(Rd) if
α ∈ (0,∞)\N. Otherwise if α ∈ N, the space Cα∗ (Rd) is the set of all f ∈ Cα−1(Rd) that satisfy Equation
(2.1.30).
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Theorems 2.1.37 and 2.1.38 still hold true for the local analogues of function spaces at hand.
In view of Chapter 3, we recall a result regarding the behaviour of the Fourier transform of a Hölder

function - see [SS07, Chap. 3, Chap. 5]. First we introduce the Landau notation. Given two real-valued
functions f, g on Rd, we write

f(x) = O(g(x)) as |x| → +∞,

if there exist C,L > 0 such that
|f(x)| ≤ C|g(x)|, ∀|x| ≥ L.

Proposition 2.1.40: Let τ ∈ (0, 1] and let f : Rd → C be such that there exists ε > 0

sup
x∈Rd

(1 + |x|)d+ε|f(x)| <∞. (2.1.31)

If
f̂(ξ) = O(|ξ|−d−τ ) as |ξ| → +∞, (2.1.32)

then there exists c > 0 such that

|f(x+ h)− f(x)| ≤ c|h|τ , ∀x ∈ Rd,∀h ∈ B(0, 1),

where B(0, 1) = {y ∈ Rd : |y| ≤ 1}.

Proof. By using the Fourier inversion formula, it turns out that

|f(x+ h)− f(x)| =
∣∣∣∣(2π)−d ∫

Rd

f̂(ξ)ei(x+h)·ξdξ − (2π)−d
∫
Rd

f̂(ξ)eix·ξdξ

∣∣∣∣
=

∣∣∣∣(2π)−d ∫
Rd

f̂(ξ)(eih·ξ − 1)eix·ξdξ

∣∣∣∣ ≤ (2π)−d
∫
Rd

|f̂(ξ)||eih·ξ − 1|dξ

= (2π)−d
∫
|ξ|≤|h|−1

|f̂(ξ)||eih·ξ − 1|dξ︸ ︷︷ ︸
=:|A|

+(2π)−d
∫
|ξ|>|h|−1

|f̂(ξ)||eih·ξ − 1|dξ︸ ︷︷ ︸
=:|B|

We start by analyzing |B|. It is useful to recall

|eix − 1| ≤ 2min{|x|, 1}. (2.1.33)

On account of Equation (2.1.32), it descends that there exists C > 0 such that

|B| ≤ 2−d+1π−1

∫
|ξ|>|h|−1

|f̂(ξ)|dξ ≤ 2−d+1π−1C

∫
|ξ|>|h|−1

1

|ξ|d+γ
dξ =

2−d+1π−1C

1− τ
|h|τ , (2.1.34)

where we applied that |eih·ξ − 1| ≤ 2 on {ξ : |ξ| ≥ |h|−1} in the first inequality. Focusing on |A|, we split
it as follows

|A| = (2π)−d
∫
|ξ|≤1

|f̂(ξ)||eih·ξ − 1|dξ︸ ︷︷ ︸
=:|A1|

+(2π)−d
∫
1<|ξ|≤|h|−1

|f̂(ξ)||eih·ξ − 1|dξ︸ ︷︷ ︸
=:|A2|

Being f̂ bounded on B(0, 1), we get

|A1| ≤ (2π)−d∥f̂∥L∞(B(0,1))

∫
|ξ|≤1

|ξ · h|dξ ≤ (2π)−dLd(B(0, 1))∥f̂∥
L∞(B(0,1))

|h|, (2.1.35)
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where Ld(B(0, 1)) denotes the d-dimensional volume of B(0, 1). At the same time, on account of Equa-
tions (2.1.32) and (2.1.33), it descends

|A2| ≤ π−1C

∫
1<|ξ|<|h|−1

|ξ|−d−τ |ξ · h|dξ ≤ π−1C|h|
∫
1<|ξ|<|h|−1

|ξ|−τ−d+1dξ

≤ π−1C
|h|

1− τ
(|h|τ−1 − 1) =

π−1C

1− τ
|h|τ (1− |h|1−τ ) ≤ π−1C

1− τ
|h|τ . (2.1.36)

As a result, combining Equations (2.1.34), (2.1.35) and (2.1.36), we conclude

|f(x+ h)− f(x)| ≤ c(|h|+ |h|τ ) ≤ c|h|τ , ∀x ∈ Rd,∀h ∈ B(0, 1),

where we set c := max{ 2−d+1π−1C
1−γ , (2π)−1Ld(B(0, 1))∥f̂∥

L∞(B(0,1))
}.

Sobolev Spaces

To conclude this chapter, we shall give a succint overview of the theory of Sobolev spaces. In particular,
we shall emphasize their relations with Besov spaces. For further information on this topic, refer to
[BCD11, Sect. 1.4].

Definition 2.1.41: Let s ∈ R. We call fractional Sobolev space Hs(Rd) the set of all u ∈ S′(Rd)
such that

⟨D⟩su := F−1{⟨ξ⟩sû(ξ)} ∈ L2(Rd). (2.1.37)

The norm of Hs(Rd) is given by
∥u∥Hs(Rd) := ∥⟨D⟩su∥L2(Rd). (2.1.38)

In addition, we say that u ∈ S′(Rd) lies in Hs
loc(Rd) if φu ∈ Hs(Rd) for any φ ∈ D(Rd).

The Fourier multiplier operator ⟨D⟩s defines a Bessel potential - see [BCCS22]. For this reason,
Hs(Rd) is also called Bessel potential space.

Remark 2.1.42: Observe that u lies in Hs(Rd) if and only if it holds true∫
Rd

⟨ξ⟩2s|û(ξ)|2dξ <∞.

This fact is a direct consequence of Plancherel’s theorem, see Theorem A.11.10.

Theorem 2.1.43: Let s ∈ R. Then Hs(Rd) equipped with the scalar product

(u, v) :=

∫
Rd

⟨ξ⟩2sû(ξ)v̂(ξ)dξ

is a Hilbert space.

The following result shows that the family of Sobolev spaces is a decreasing filtration with respect to
s - see [FJ99, Cor. 9.3.1].

Theorem 2.1.44: Let s, s′ ∈ R be such that s′ ≤ s. Then

Hs(Rd) ↪→ Hs′(Rd).

To conclude this compendium, we recall some notable duality properties of Hs(Rd) starting from the
following density result - see [BCD11, Prop. 1.58].
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Theorem 2.1.45: Let s ∈ R. Then S(Rd) is dense in Hs(Rd).
Theorem 2.1.46: Let s ∈ R. Then, if L ∈ (Hs(Rd))′, there exists a unique u ∈ H−s(Rd) such that

L(ψ) = ⟨u, ψ⟩, ∀ψ ∈ S(Rd).

Conversely, if u ∈ H−s(Rd), then

|⟨u, ψ⟩| ≤ ∥u∥H−s(Rd)∥ψ∥Hs(Rd), ∀ψ ∈ S(Rd),

and the functional S(Rd) ∈ψ 7→ ⟨u, ψ⟩ ∈ C continuously extends to Hs(Rd). Moreover, it holds true
that ∥L∥(Hs(Rd))′ = ∥u∥H−s(Rd).

We recall that the Sobolev norm in Equation (2.1.38) can be equivalently characterized in terms of a
Littlewood-Paley partition of unity.

Theorem 2.1.47: Let s ∈ R and let (ψj)j∈N0
be a Littlewood-Paley partition of unity as per Definition

2.1.2. Then there exist two positive constants c, C such that

c∥u∥Hs(Rd) ≤ ∥(ψj(D)u)j∈N0
∥ℓs2(L2(Rd)) ≤ C∥u∥Hs(Rd),

for every u ∈ S′(Rd). Hence Hs(Rd) = Bs2,2(Rd).
Resorting to Besov spaces, it is possible to show an improved version of Sobolev lemma, as stated by

the proposition below - see [Hör97, Prop. 8.6.10].

Proposition 2.1.48: Let s ∈ R. Then Hs(Rd) ↪→ B
s− d

2∞,∞(Rd).
At last, we prove a few notable embeddings of Besov spaces into suitable Sobolev spaces - see [DRS21].

First we recall Hölder inequality, c.f. [Bre10, Th. 4.6].

Theorem 2.1.49: Let (Ω,Σ, µ) be a measure space and let 1 ≤ p, p′ ≤ ∞ be such that 1/p+ 1/p′ = 1.
Then, if f ∈ Lp(Ω,Σ, µ) and g ∈ Lp

′
(Ω,Σ, µ),

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω)∥g∥Lp′ (Ω). (2.1.39)

Theorem 2.1.50: Let α ∈ R. Then the following statements hold true:

(i) If p ≥ 2 and q > 2, Bα,locp,q (Rd) ↪→ Hs
loc(Rd) for any s < α.

(ii) If p ≥ 2 and q = 2, Bα,locp,q (Rd) ↪→ Hs
loc(Rd) for any s ≤ α.

Proof. We exploit the characterization of Besov spaces via local means as per Definition 2.1.24. We prove
the two assertions separately.

(a) Fix an arbitrary compact set K ⊂ Rd. Since Hs(K) = Bs2,2(K) per Theorem 2.1.47, we show that,

if u ∈ Bα,locp,q (Rd), then there exists CK > 0 such that

∥u∥Bs
2,2(K) ≤ CK∥u∥Bs

p,q(K)

for any s < α. To this end, let κ ∈ B⌊s⌋ and κ ∈ D(B(0, 1)) such that κ̌(0) ̸= 0, where B⌊s⌋ has
been defined as per Definition 2.1.22. Bearing in mind that Lp(K) ↪→ L2(K) for p ≥ 2, it follows
immediately that there exists c′K > 0 such that

∥u(κx)∥L2
x(K) ≤ c′K∥u(κx)∥Lp

x(K).
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Again by applying Lp(K) ↪→ L2(K) for p ≥ 2, it descends

∥u∥2Bs
2,2(K) =

∫ 1

0

∥u(κλx)∥2L2
x(K)

λ2s
dλ

λ
≤ c′′K

∫ 1

0

∥u(κλx)∥2Lp
x(K)

λ2s
dλ

λ
= c′′K

∫ 1

0

∥u(κλx)∥2Lp
x(K)

λ2α︸ ︷︷ ︸
L

q
2
λ

1

λ2(s−α)︸ ︷︷ ︸
L

(
q
2
)′

λ

dλ

λ

≤ c′′K∥λ2(α−s)∥
L

(
q
2
)′

λ

∥λ−2α∥u(κλx)∥2Lp
x(K)∥L

q
2
λ

= c′′K∥λ2(α−s)∥
L

(
q
2
)′

λ

∥u∥2Bα
p,q(K) <∞

where we exploited Hölder inequality in the second bound, ( q2 )
′ denotes the conjugate exponent

of q
2 as per Equation (2.1.9) and L

q
2

λ is the Lebesgue space as per Remark 2.1.21. Moreover we

conclude ∥λ2(α−s)∥
L

(
q
2
)′

λ

is finite since s < α.

(b) If p ≥ 2 and q = 2, the proof of the second statement is analogous. The only difference is the
presence of the L∞

λ -norm of λ2(α−s), which is finite for s ≤ α.

2.2 Pseudodifferential operators

In this section, we present a succinct overview of the theory of pseudodifferential operators, which are
a generalization of differential operators. By means of a Fourier transform, any differential operator
P (x,D) with smooth coefficients acting on a tempered distribution can be written as

P (x,D)u = F−1{P (x, ξ)û(ξ)},

where P (x, ξ) is a polynomial function of the Fourier variable ξ, see Example 2.2.16 below. In order
to define pseudodifferential operators, we shall generalize this representation of differential operators by
considering more general smooth functions, called symbols. In Chapter 3, pseudodifferential operators
shall play a prominent rôle in providing an equivalent characterization of the Besov wavefront set - see
Theorem 3.2.1.

This section is divided in three parts. In Subsection 2.2.1 we shall focus on the theory of symbols.
Asymptotic sums of symbols and the notion of ellipticity are sketched. At the same time, in Subsection
2.2.2 we outline the leading concepts and properties concerning pseudodifferential operators. In particular,
we shall see that the set of pseudodifferential operators is closed under composition and invariant under
diffeomorphisms. At last, we concisely recall how pseudodifferential operators act on Besov spaces. In
Subsection 2.2.3, we introduce the basic notions to analyze the microlocal behaviour of pseudodifferential
operators. For further information on all these topics, see [Hin21], [GS94, Chap. 1, Chap. 3]. Moreover,
the interested reader may refer to Appendix A where we summarize the basic elements of the theory of
distributions, which shall be used in this section.

In the following, for x = (x1, . . . , xd) ∈ Rd and a multi-index ℓ = (ℓ1, . . . , ℓd) ∈ Nd0, we set

∂ℓx := ∂ℓ1x1
· · · ∂ℓdxd

, Dℓ
x := Dℓ1

x1
· · ·Dℓd

xd
, ℓ! = ℓ1! · · · ℓd!,

where Dxj = −i∂xj .
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2.2.1 Symbols

In order to define pseudodifferential operators, we need to introduce a class of symbols. To this end, this
subsection shall be devoted to recalling the main definitions and properties concerning symbols. For this
topic, we mainly refer to [Hin21, Chap. 3].

Definition 2.2.1: Let m ∈ R. The space of symbols of order m, Sm(Rd;Rn), is the collection of all
functions a ∈ C∞(Rd × Rn) such that, for every compact set K ⊂ Rd and for every γ ∈ Nd0, ℓ ∈ Nn0 ,

∥a∥K,γ,ℓ := sup
(x,ξ)∈K×Rn

|∂γx∂ℓξa(x, ξ)|
⟨ξ⟩m−|ℓ| <∞, (2.2.1)

where ⟨ξ⟩ has been defined in Equation (2.1.2). In addition, we define the space of residual symbols as

S−∞(Rd;Rn) :=
⋂
m∈R

Sm(Rd;Rn). (2.2.2)

Sm(Rd;Rn) is a Fréchet space with the topology induced by the semi-norms in Equation (2.2.1).

Remark 2.2.2: Let m,m′ ∈ R be such that m ≤ m′. By Definition 2.2.1, Sm(Rd;Rn) ↪→ Sm
′
(Rd;Rn).

Therefore, Sm(Rd;Rn) identifies an increasing filtration with respect to m.

Remark 2.2.3: On account of Definition 2.2.1, the maps

Dγ
x : S

m(Rd;Rn) → Sm(Rd;Rn), Dℓ
ξ : S

m(Rd;Rn) → Sm−|ℓ|(Rd;Rn),

are continuous.

Example 2.2.4: Let m ≥ 0 and let a ∈ C∞(Rd × Rn) be such that

a(x, ξ) :=
∑

|ℓ|≤m

aℓ(x)ξ
ℓ, ∀(x, ξ) ∈ Rd × Rn,

where aℓ ∈ C∞(Rd) for every ℓ ∈ Nd0 such that |ℓ| ≤ m. It descends that a lies in Sm(Rd;Rn).
Example 2.2.5: Let m ∈ R. Then ⟨ξ⟩m lies in Sm(Rd;Rn).

We introduce the subclass of homogeneous symbols, which include those introduced in Example 2.2.4.

Definition 2.2.6: Let m ∈ R. A function a ∈ C∞(Rd × Rn) is said to be an homogeneous symbol
of order m if

a(x, λξ) = λma(x, ξ), ∀λ > 0, ∀|ξ| ≥ 1, (2.2.3)

and, if for every compact set K ⊂ Rd and for every γ ∈ Nd0, ℓ ∈ Nn0 , there exists CK,γ,ℓ > 0 such that

|∂γx∂ℓξa(x, ξ)| ≤ CK,γ,ℓ|ξ|m−|ℓ|, ∀x ∈ K, ∀|ξ| ≥ 1. (2.2.4)

We denote the space of all homogeneous symbols of order m by Smhom(Rd;Rn).
By Definition 2.2.6, it holds true that Smhom(Rd;Rn) is a subspace of Sm(Rd;Rn).
Proposition 2.2.7: Let m,m′ ∈ R. If a ∈ Sm(Rd;Rn) and b ∈ Sm

′
(Rd;Rn), then ab ∈ Sm+m′

(Rd;Rn).
In particular, the pointwise multiplication of symbols

Sm(Rd;Rn)× Sm
′
(Rd;Rn) ∈(a, b) 7→ ab ∈ Sm+m′

(Rd;Rn)

is a continuous bilinear map.
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Asymptotic sums of symbols In this paragraph, we see under which conditions an asymptotic sum
of symbols converges to an element lying in Sm(Rd;Rn) as per Definition 2.2.1 - see [Hör94, Prop. 18.1.3
].

Proposition 2.2.8: For j ∈ N0, let aj ∈ Smj (Rd,Rn), where (mj)j∈N0
is a sequence of real numbers

with limj→∞mj → −∞. Define m′
k := supj≥kmj . Then there exists a ∈ Sm

′
0(Rd;Rn) such that

supp(a) ⊂
⋃
j∈N0

supp(aj) and

a−
k−1∑
j=0

aj ∈ Sm
′
k(Rd;Rn), ∀k ∈ N0. (2.2.5)

In addition, a is unique up to an element lying in S−∞(Rd;Rn). We say that a is asymptotic to
∑∞
j=0 aj

and we write

a ∼
∞∑
j=0

aj .

Remark 2.2.9: On account of Definition 2.2.1, Equation (2.2.5) can be read as follows: For every k ∈ N0,
every compact set K ⊂ Rd and every γ ∈ Nd0, ℓ ∈ Nn0 , there exists Ck,K,γ,ℓ such that∣∣∣∣∂γx∂ℓξ(a(x, ξ)− k−1∑

j=0

aj(x, ξ)

)∣∣∣∣ ≤ Ck,K,γ,ℓ⟨ξ⟩m
′
k−|ℓ|, ∀(x, ξ) ∈ K× Rn. (2.2.6)

If a is to be asymptotic to
∑∞
j=0 aj as per Proposition 2.2.8, then Equation (2.2.6) can be simplified,

as stated by the following proposition - see [Hör94, Prop. 18.1.4].

Proposition 2.2.10: For j ∈ N0, let aj ∈ Smj (Rd,Rn), where (mj)j∈N0
is a sequence of real numbers

such that limj→∞mj → −∞. Moreover, let a ∈ C∞(Rd × Rn) be such that

(a) For every compact set K ⊂ Rd and for every γ ∈ Nd0, ℓ ∈ Nn0 , there exists C, µ > 0 such that

|∂γx∂ℓξa(x, ξ)| ≤ C⟨ξ⟩µ, ∀(x, ξ) ∈ K× Rn; (2.2.7)

(b) There exists a sequence (µk)k∈N0 with limk→∞ µk = −∞ such that for every compact set K ⊂ Rd
and every k ∈ N, there exists C > 0 such that

|a(x, ξ)−
k−1∑
j=0

aj(x, ξ)| ≤ C⟨ξ⟩µk ∀(x, ξ) ∈ K× Rn. (2.2.8)

Then a ∈ Sm(Rd;Rn), m = supj∈N0
mj , and a ∼

∑∞
j=0 aj .

Ellipticity This paragraph is devoted to discussing elliptic symbols.

Definition 2.2.11: Let m ∈ R. A symbol a ∈ Sm(Rd;Rn) is called elliptic if there exists a symbol
b ∈ S−m(Rd;Rn) such that ab− 1 ∈ S−1(Rd;Rn).
The following proposition collects a few notable conditions which are equivalent to ellipticity.

Proposition 2.2.12: Let m ∈ R and let a ∈ Sm(Rd;Rn). The following statements are equivalent:

(1) a is elliptic.
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(2) There exist L,C > 0 such that, if |ξ| ≥ L,

|a(x, ξ)| ≥ C|ξ|m. (2.2.9)

(3) There exist C,C ′ > 0 such that

|a(x, ξ)| ≥ C|ξ|m − C ′|ξ|m−1, ∀|ξ| ≥ 1. (2.2.10)

Remark 2.2.13: By statement (2) of Proposition 2.2.12, if a ∈ Sm(Rd;Rn) is elliptic, it turns out that
a+ ã is also elliptic for any ã ∈ Sm−1(Rd;Rn). Therefore, ellipticity is a property of the equivalence class

[a] ∈ Sm(Rd;Rn)/Sm−1(Rd;Rn).

Example 2.2.14: Let m ∈ R and let a ∈ Sm(Rd;Rn) be such that a(x, ξ) = ⟨ξ⟩m. On account of
Definition 2.2.11, then a is elliptic. As a matter of fact, there exists b(x, ξ) = ⟨ξ⟩−m, lying in S−m(Rd;Rn),
such that

ab− 1 = 0 ∈ S−∞(Rd;Rn) ↪→ S−1(Rd;Rn).

2.2.2 Quantizations and Pseudodifferential Operators

After introducing a class of symbols in the previous subsection, we are in position to define the space
of pseudodifferential operators. To this purpose, we start by giving the definition of quantization of a
symbol. For this section, we mainly refer to [Hin21].

Definition 2.2.15: Let m ∈ R and let a ∈ Sm(Rd×Rd;Rd). Its quantization, Op(a) : S(Rd) → S′(Rd),
is defined as

(Op(a)u)(x) := (2π)−d
∫
Rd

∫
Rd

ei(x−y)·ξa(x, y, ξ)u(y)dydξ, u ∈ S(Rd). (2.2.11)

Op(a) is referred to as a pseudodifferential operator (ΨDO) of order m while a is dubbed full
symbol of Op(a). We denote the space of all these operators by Ψm(Rd). In addition, we set

Ψ−∞(Rd) :=
⋂
m∈R

Ψm(Rd). (2.2.12)

Example 2.2.16: Let m ∈ R and let a ∈ Sm(Rd;Rd) be as in Example 2.2.4. Then Op(a) lies in
Ψm(Rd). Moreover, on account of Equation (2.2.11), it descends that, for any u ∈ S(Rd),

(Op(a)u)(x) = (2π)−d
∫
Rd

∫
Rd

ei(x−y)·ξa(x, ξ)u(y)dydξ = (2π)−d
∑
|ℓ|≤m

∫
Rd

∫
Rd

ei(x−y)·ξaℓ(x)ξ
ℓu(y)dydξ

=
∑
|ℓ|≤m

aℓ(x)

∫
Rd

eix·ξξℓû(ξ)
dξ

(2π)d
=

∑
|ℓ|≤m

aℓ(x)(D
ℓu)(x).

Therefore,

Op(a) =
∑

|ℓ|≤m

aℓ(x)D
ℓ.

Example 2.2.17: Let m ∈ R. Let a ∈ Sm(Rd × Rd;Rd) be such that a(x, y, ξ) = ⟨ξ⟩m, where ⟨ξ⟩ has
been defined in Equation (2.1.2). Then ⟨D⟩m := Op(a) lies in Ψm(Rd).
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On account of Equation (2.2.11), we note that the Schwartz kernel K ∈ S′(Rd×Rd) of Op(a) is given by

K(x, y) = (2π)−d
∫
Rd

ei(x−y)·ξa(x, y, ξ)dξ, (2.2.13)

which can be understood as the inverse Fourier transform of a(x, y, ξ) with respect to ξ. In particular,
K is smooth away from the diagonal.

Proposition 2.2.18: Let K ∈ S′(Rd×Rd) be the Schwartz kernel of a pseudodifferential operator. Then

singsupp(K) ⊂ {(x, x) : x ∈ Rd}.

Proposition 2.2.18 is a direct consequence of the theory of oscillatory integrals. For this topic, the
interested reader can refer to [Hör03, Sect. 7.8].

By means of a duality argument, the action of a ΨDO of order m can be continuously extended to
S′(Rd). As a matter of fact, given a ∈ Sm(Rd × Rd;Rd), it turns out that, for any u, v ∈ S(Rd),

⟨Op(a)u, v⟩ = (2π)−d
∫
Rd

∫
Rd

∫
Rd

a(x, y, ξ)u(y)v(x)ei(x−y)·ξdydξdx

ξ 7→−ξ
x 7→y
= (2π)−d

∫
Rd

∫
Rd

∫
Rd

a(y, x,−ξ)v(y)u(x)ei(x−y)·ξdydξdx

= ⟨u,Op(a†)v⟩,

where we set
a†(x, y, ξ) = a(y, x,−ξ).

It descends that
⟨Op(a)u, v⟩ = ⟨u,Op(a†)v⟩, ∀u, v ∈ S(Rd). (2.2.14)

Being S(Rd) dense in S′(Rd), Op(a) continuously extends to S′(Rd) via Equation (2.2.14).
In the following, we recall that Equation (2.2.11) can be equivalently replaced either by the left

quantization of a left symbol aL ∈ Sm(Rd;Rd), independent from y, or by the right quantization of a
right symbol aR ∈ Sm(Rd;Rd), independent from x:

(OpL(aL)u)(x) = (2π)−d
∫
Rd

∫
Rd

ei(x−y)·ξaL(x, ξ)u(y)dydξ, u ∈ S(Rd), (2.2.15)

(OpR(aR)u)(x) = (2π)−d
∫
Rd

∫
Rd

ei(x−y)·ξaR(y, ξ)u(y)dydξ, u ∈ S(Rd). (2.2.16)

This fact is the content of the following theorem - see [Hin21, Th. 4.8].

Theorem 2.2.19: Let a ∈ Sm(Rd × Rd;Rd). Then there exists a unique left symbol aL ∈ Sm(Rd;Rd)
such that

Op(a) = Op(aL) = OpL(aL),

and a unique right symbol aR ∈ Sm(Rd;Rd) such that

Op(a) = Op(aR) = OpR(aR).

In addition, aL, aR are given by the asymptotic sums

aL(x, ξ) ∼
∑
ℓ∈Nd

0

1

ℓ!
(∂ℓξD

ℓ
xa(x, y, ξ))|y=x,
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aR(y, ξ) ∼
∑
ℓ∈Nd

0

(−1)|ℓ|

ℓ!
(∂ℓξD

ℓ
ya(x, y, ξ))|x=y.

Definition 2.2.20: We call aL and aR the left and right reductions of the full symbol a respectively.
Setting A = Op(a), we write

σL(A) := aL, σR(A) := aR.

The following theorem states that Ψ−∞(Rd) coincides with the space of quantizations of residual
symbols. In particular, it entails that the elements lying in Ψ−∞(Rd) are smoothing operators.

Proposition 2.2.21: An operator A : S(Rd) → S′(Rd) lies in Ψ−∞(Rd) if and only if its Schwartz kernel
K ∈ S′(Rd × Rd) is smooth and satisfies

sup
x,y∈Rd

⟨x− y⟩N |∂ℓx∂kyK(x, y)| <∞,

for every N ∈ N0, ℓ, k ∈ Nd0. In addition, there exist unique symbols aL, aR ∈ S−∞(Rd;Rd) such that
A = OpL(aL) = OpR(aR).

Adjoints In this paragraph, we discuss adjoints of pseudodifferential operators - see [Hin21, Cor. 4.13].

Definition 2.2.22: Let A ∈ Ψm(Rd). We define its adjoint A∗ : S(Rd) → S′(Rd) by∫
Rd

(A∗u)(x)v(x)dx =

∫
Rd

u(x)(Av)(x)dx, ∀u, v ∈ S(Rd).

Proposition 2.2.23: If A ∈ Ψm(Rd), then A∗ ∈ Ψm(Rd). In particular, if A = Op(a), then A∗ =
Op(a∗), where a∗(x, y, ξ) = a(x, y, ξ).

Composition In the following, we recall that the composition of ΨDOs yields another ΨDO - see
[Hin21, Th. 4.16]. To this end, we recall the definition of proper map and we introduce an important
subclass of pseudodifferential operators, called properly supported.

Definition 2.2.24: A continuous map f : Rd1 → Rd2 is called proper if f−1(K) is a compact subset in
Rd1 for any compact set K ⊂ Rd2 .
Definition 2.2.25: Let π1 : Rd × Rd → Rd and let π2 : Rd × Rd → Rd be the canonical projections
defined by π1(x, y) = x and π2(x, y) = y respectively. We say that A ∈ Ψm(Rd) with Schwartz kernel
K ∈ S′(Rd × Rd) is properly supported if π1, π2 are proper maps when restricted to supp(K).

Proposition 2.2.26: Let A ∈ Ψm(Rd), B ∈ Ψm
′
(Rd). Suppose that at least one among A,B is properly

supported. Then AB ∈ Ψm+m′
(Rd) and its left symbol is given by

σL(AB) ∼
∑
ℓ∈Nd

0

1

ℓ!
∂ℓξσL(A)D

ℓ
xσL(B).

On account of Proposition 2.2.26, it is possible to prove the pseudolocality of ΨDOs - see [Hin21,
Prop. 4.17].

Proposition 2.2.27: Let A ∈ Ψm(Rd). Then

singsupp(Au) ⊂ singsupp(u), ∀u ∈ S′(Rd). (2.2.17)

A is said to be a pseudolocal operator.
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Principal symbol In the following, we define the principal symbol of an operator A ∈ Ψm(Rd), which
coincides with the leading contibution to a.

Definition 2.2.28: Let m ∈ R and let A ∈ Ψm(Rd). Then the principal symbol of A is defined by

σm(A) := [σL(A)] ∈ Sm(Rd;Rd)/Sm−1(Rd;Rd),

where [σL(A)] denote the equivalence class of σL(A). In order to lighten the notation, we shall omit the
square brackets.

The following proposition collects a few notable properties of a principal symbol - [Hin21, Prop. 4.21].

Proposition 2.2.29: The following statements hold true:

• If A ∈ Ψm(Rd), then σm(A) = [σR(A)].

• Let A ∈ Ψm(Rd). Then σm(A∗) = σm(A), where A∗ is the adjoint of A as per Definition 2.2.22.

• LetA ∈ Ψm(Rd), B ∈ Ψm
′
(Rd) with at least one amongA,B properly supported. Then σm+m′(AB) =

σm(A)σm′(B).

Elliptic ΨDOs By recalling Definition 2.2.11, we introduce the notion of elliptic operator.

Definition 2.2.30: Let m ∈ R. An operator A ∈ Ψm(Rd) is called elliptic if its principal symbol σm(A)
is elliptic.

Example 2.2.31: Let m ∈ R. If a(x, ξ) = ⟨ξ⟩m with ⟨ξ⟩ defined as per Equation (2.1.2), then ⟨D⟩m :=
OpL(a) is an elliptic ΨDO of order m.

We also recall that an elliptic ΨDO admits an inverse operator, called parametrix - see [Hin21, Th. 4.26],
[GS94, Th. 4.1].

Theorem 2.2.32: Let m ∈ R and let A ∈ Ψm(Rd) be elliptic. Then there exists Q ∈ Ψ−m(Rd), properly
supported, such that

AQ− I ∈ Ψ−∞(Rd), QA− I ∈ Ψ−∞(Rd).

Q is said to be a parametrix of A.

Invariance of ΨDOs under diffeomorpshims In this paragraph, we shall discuss the behaviour
of ΨDOs under the action of a local diffeomorphism. We give a result in which the pullback of a
diffeomorphism plays a key rôle. For details concerning the pullback of a distribution, the interested
reader can refer to Appendix A.9.

We start by introducing the notion of local symbol.

Definition 2.2.33: Let Ω ⊂ Rd be an open set and let m ∈ R. A function a ∈ C∞(Ω × Rd) is a local
symbol of order m if ϕa ∈ Sm(Rd;Rd) for all ϕ ∈ D(Ω). We denote the space of local symbols of order
m by Sm(Ω;Rd).
Given a ∈ Sm(Ω;Rd), its left quantization identifies an operator

OpL(a) : S
′(Rd) → D′(Ω), (2.2.18)

where OpL(a) is defined as per Equation (2.2.15). By analogy with Definition 2.2.15, we denote the space
of ΨDOs as in Equation 2.2.18 by Ψm(Ω).

Remark 2.2.34: Since D(Ω) ↪→ E′(Ω) ↪→ S′(Rd), the domain of OpL(a) in Equation (2.2.18) can be
restricted to D(Ω) or to E′(Ω).
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Remark 2.2.35: Let Ω ⊂ Rd be an open set. If A ∈ Ψm(Ω) is properly supported as per Definition
2.2.25, then A : D(Ω) → D(Ω), A : C∞(Ω) → C∞(Ω), A : E′(Ω) → E′(Ω) and A : D′(Ω) → D′(Ω) are
continuous linear operators, see [GS94, Chap. 3].

The following theorem states that the class of m-th order pseudodifferential operators is invariant
under change of coordinates on Rd - see [Hin21, Th. 5.2].

Proposition 2.2.36: Let Ω1,Ω2 ⊂ Rd be two open sets, let f : Ω1 → Ω2 be a diffeomorphism and let
f∗ : D′(Ω2) → D′(Ω1) be the pullback map along f . If A ∈ Ψm(Ω2), then

Af : D(Ω1) → D′(Ω1), D(Ω1) ∈u 7→ f∗A((f−1)∗u)

lies in Ψm(Ω1). In addition,

σm(Af )(x, ξ) = σm(A)(f(x), (tdf(x))−1ξ),

where σm(A) and σm(Af ) are the principal symbols of A and Af respectively as per Definition 2.2.28
while df denotes the differential map of f .

Remark 2.2.37: Let Ω1,Ω2 ⊂ Rd be two open sets and let f : Ω1 → Ω2 be a diffeomorphism. Suppose
that A,Af are defined as in Proposition 2.2.36. On account of Remark 2.2.35, if A is properly supported
as per Definition 2.2.35, it descends that Af is also properly supported.

ΨDOs on Besov spaces To conclude this review, we state a result regarding the action of pseudodif-
ferential operators on Besov spaces as per Definition 2.1.4 - see [Abe12, Sect. 6.6].

Theorem 2.2.38: Let m ∈ R, α ∈ R, 1 ≤ p, q ≤ ∞ and let A ∈ Ψm(Rd). Then A : Bαp,q(Rd) →
Bα−mp,q (Rd) is a bounded linear operator. In particular, if A is properly supported, then the restriction of

A to Bα,locp,q (Rd) is a continuous linear operator from Bα,locp,q (Rd) to Bα−m,locp,q (Rd).

2.2.3 Microlocalization

This subsection is devoted to recalling the basic notions and results concerning the microlocal behaviour
of a symbol or, equivalently, of its quantization. Here, we shall only consider properly supported ΨDOs,
as per Definition 2.2.25. We start by giving the definition of operator wavefront set, which establishes the
microlocal non-triviality of a ΨDO. The notion of triviality is closely related to the behaviour of symbols
as |ξ| → ∞. Roughly speaking, a pseudodifferential operator is microlocally trivial at (x0, ξ0) if its full
symbol lies in S−∞(Rd;Rn) in a conic neighborhood of (x0, ξ0). For the sake of completeness, we first
recall the definition of a conic set.

Definition 2.2.39: A subset Γ ⊂ Rn \ {0} is called conic if

ξ ∈ Γ ⇒ λξ ∈ Γ, ∀λ > 0.

A (proper) conic neighborhood Γ of ξ0 ∈ Rn \ {0} is a conic set such that {λξ0 : λ > 0} ⊊ Γ.

Example 2.2.40: Given ξ0 ∈ Rn \ {0} and ϵ > 0, an open conic neighborhood of ξ0 can be defined by

Γ :=

{
ξ ∈ Rn \ {0} :

∣∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣∣ < ϵ

}
.

Definition 2.2.41: Let Ω ⊂ Rd be an open set and let πΩ : Ω × (Rn \ {0}) → Ω be the canonical
projection such that πΩ(x, ξ) = x for any (x, ξ) ∈ Ω× (Rn \ {0}). A subset V ⊂ Ω× (Rn \ {0}) is called
(fibrewise) conic if

(x, ξ) ∈ V ⇒ (x, λξ) ∈ V, ∀λ > 0.
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A conic neighborhood of (x0, ξ0) ∈ Ω× (Rn \ {0}) is a (fibrewise) conic set V ⊂ Ω× (Rn × {0}) such
that πΩ(V ) is a neighborhood of x0 and V ∩ ({x0} × (Rn \ {0})) is a conic neighborhood of ξ0 as per
Definition 2.2.39.

Definition 2.2.42: Let a ∈ Sm(Rd;Rn). Then (x0, ξ0) ∈ Rd × (Rn \ {0}) does not lie in the essential
support of a,

ess supp(a) ⊂ Rd × (Rn \ {0}),
if there exist an open conic neighborhood V of (x0, ξ0) as per Definition 2.2.41 such that for all γ ∈ Nd0,
ℓ ∈ Nn0 , k ∈ R, there exists C > 0 such that

|∂γx∂ℓξa(x, ξ)| ≤ C⟨ξ⟩−k, ∀(x, ξ) ∈ V, |ξ| ≥ 1, (2.2.19)

where ⟨ξ⟩ has been defined as per Equation (2.1.2).

Remark 2.2.43: By Definition 2.2.42, observe that ess supp(a) is a fiberwise closed conic set as per
Definition 2.2.41.

Definition 2.2.44: Let A = OpL(a) ∈ Ψm(Rd). The operator wavefront set of A is

WF ′(A) := ess supp(a). (2.2.20)

The following proposition collects a few notable properties of the operator wavefront set - see [Hin21,
Prop. 6.4].

Proposition 2.2.45: Let A,B ∈ Ψm(Rd). Then the following statements hold true:

• If the Schwartz kernel of A lies in E′(Rd × Rd), then WF ′(A) = ∅ if and only if A ∈ Ψ−∞(Rd).

• WF ′(A+B) ⊂WF ′(A) ∪WF ′(B).

• If at least one among A,B is properly supported, WF ′(AB) ⊂WF ′(A) ∩WF ′(B).

• WF ′(A∗) =WF ′(A), where A∗ is the adjoint of A as per Definition 2.2.22.

Example 2.2.46: If A = OpL(a) ∈ Ψm(Rd) is elliptic as per Definition 2.2.30, then

WF ′(A) = supp(a)× (Rd \ {0})

Example 2.2.47: Let A =
∑

|ℓ|≤m aℓ(x)D
ℓ where aℓ ∈ C∞(Rd) for all ℓ ∈ Nd0 with |ℓ| ≤ m. Then

WF ′(A) =

( ⋃
|ℓ|≤m

supp(aℓ)

)
× (Rd \ {0})

A further important concept is that of elliptic set, which refines at a microlocal level the notion of
ellipticity of ΨDOs, as per Definition 2.2.30.

Definition 2.2.48: Let A ∈ Ψm(Rd). A point (x0, ξ0) ∈ Rd × (Rd \ {0}) lies in the elliptic set of A,
denoted by Ell(A), if there exist an open conic neighborhood V of (x0, ξ0) as per Definition 2.2.41 and
C > 0 such that

|σm(A)(x, ξ)| ≥ C|ξ|m, ∀(x, ξ) ∈ V, |ξ| ≥ 1, (2.2.21)

where σm(A) is the principal symbol as per Definition 2.2.28. If (x0, ξ0) ∈ Ell(A), we say that A is
elliptic at (x0, ξ0). In addition, we define the characteristic set of A, denoted by Char(A), as the
complement of Ell(A), that is,

Char(A) := {(x, ξ) ∈ Rd × (Rd \ {0}) : σm(A)(x, ξ) = 0}. (2.2.22)
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Remark 2.2.49: On account of Definition 2.2.11, the notion of Ell(A) can be equivalently reformulated as
follows: (x0, ξ0) ∈ Ell(A) if and only if there exists b ∈ S−m(Rd;Rd) such that σm(A)b−1 ∈ S−1(Rd;Rd)
in a conic neighborhood of (x0, ξ0).

Remark 2.2.50: Given A ∈ Ψm(Rd), its elliptic set is a fiberwise closed conic set as per Definition
2.2.41.

At last, we point out that the construction of a parametrix, as per Theorem 2.2.32, can be microlo-
calized. As a matter of fact, the following proposition holds true - see [Hin21, Prop. 6.15].

Proposition 2.2.51: Let A ∈ Ψm(Rd) and let C ⊂ Rd be a closed subset. Then there exists Q ∈
Ψ−m(Rd), properly supported, such that

C ∩WF ′(AQ− I) = ∅, C ∩WF ′(QA− I) = ∅. (2.2.23)

Q is a microlocal parametrix of A on C .

2.3 Smooth Wavefront Set

In this section, we shall concisely outline the definition and the main properties of the smooth wavefront
set of a distribution. Its purpose is to establish the directions in Fourier space which cause the appearance
of singularities of an underlying distribution.
As shown in Appendix A, some operations between distributions can be only defined in limited cases.
For instance, the product of distributions is well-defined when the singular supports of the distributions
are disjoint, see Theorem A.5.3. However, in Subsections 2.3.2 and 2.3.3, we shall see that the notion of
smooth wavefront set establishes sufficient criteria to extend the definition of operations such as pullback
and multiplication to the whole space of distributions. In Subsection 2.3.4, we shall see how the smooth
wavefront set transforms under a push-forward along a projection map. In Subsection 2.3.5, given a linear
map K : D(Ω2) → D′(Ω1) with Schwartz kernel K ∈ D′(Ω1 ×Ω2), we shall discuss the smooth wavefront
set of Ku for any u ∈ D(Ω2). Moreover, we shall see under which conditions K can be extended to
E′(Ω2). Lastly, in Subsection 2.3.6 we discuss the problem of the propagation of singularities, which aims
at characterizing the smooth wavefront set of a solution to a partial differential equations. For further
details concerning this topic, the reader may refer to [Hör03, Chap. VIII], [Hin21], [FJ99, Chap. 11]. In
this section, we shall make use of the notions introduced in Appendix A.

2.3.1 Basic definitions

In this subsection, we shall define the notion of smooth wavefront set of a distribution. By means of
the Paley-Wiener-Schwartz theorem, the singular behaviour of a distribution can be analyzed in terms
of those directions along which its Fourier transform is not rapidly decreasing. Therefore, we recall a
suitable version of the Paley-Wiener-Schwartz theorem - see [FJ99, Th. 10.2.2].

Proposition 2.3.1: Let v ∈ E′(Rd). Then v lies in D(Rd) if and only if for all N ∈ N0 there exists
CN > 0 such that

|v̂(ξ)| ≤ CN ⟨ξ⟩−N , ∀ξ ∈ Rd, (2.3.1)

where ⟨ξ⟩ has been defined in Equation (2.1.2).

Remark 2.3.2: Proposition 2.3.1 yields an equivalent characterization of the singular support of a
distribution. Let Ω ⊂ Rd be an open set. If u ∈ D′(Ω), then a point x ∈ Ω does not lie in singsupp(u) if

and only if there exists ϕ ∈ D(Ω), ϕ(x) = 1, such that ϕ̂u satisfies Equation (2.3.1).
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In the following, we give a precise notion of singular direction. In particular, we shall require that the
complement of the set of all singularities, called frequency set, is an open conic neighbourhood as per
Definition 2.2.39.

Definition 2.3.3: Let v ∈ E′(Rd). A direction ξ0 ∈ Rd \ {0} does not lie in the frequency set of v,
denoted by ξ0 ̸∈ Σ(v), if there exists an open conic neighborhood Γ of ξ0 such that Equation (2.3.1) is
valid for any ξ ∈ Γ.

On account of Definition 2.3.3, Proposition 2.3.1 can be equivalently stated as follows:

Lemma 2.3.4: Let v ∈ E′(Rd). Then v lies in D(Rd) if and only if Σ(v) = ∅.
The frequency set of v shrinks when v is localized by a compactly supported smooth function - see [Hör03,
Lemma 8.1.1].

Lemma 2.3.5: Let v ∈ E′(Rd) and let ϕ ∈ D(Rd). Then

Σ(ϕv) ⊂ Σ(v).

Let Ω ⊂ Rd be an open set and let u ∈ D′(Ω). Given x ∈ Ω, we set

Σx(u) :=
⋂

ϕ∈D(Ω),
ϕ(x)̸=0

Σ(ϕu)

In particular, notice that Σx(u) = ∅ if and only if there exists ϕ ∈ D(Ω) with ϕ(x) ̸= 0 such that
ϕu ∈ D(Ω), that is, x ̸∈ singsupp(u).
Having introduced these basic notions, we observe that the singular behaviour of a distribution is charac-
terized both by its singular support, which identifies the singular points, and by its frequency set, which
expresses the singular directions. We give the definition of smooth wavefront set of a distribution as a
combination of these two types of information.

Definition 2.3.6: Let Ω ⊂ Rd and let u ∈ D′(Ω). The smooth wavefront set of u is

WF (u) := {(x, ξ) ∈ Ω× (Rd \ {0}) : ξ ∈ Σx(u)}. (2.3.2)

Remark 2.3.7: Denoting the cotangent bundle of Ω without the zero section by T ∗Ω and taking into
account the identification

T ∗Ω \ {0} ≃ Ω× (Rd \ {0}),

WF (u) can be read as a subset of T ∗Ω \ {0}. This viewpoint is crucial if we wish to develop the theory
in a more general geometrical setting, where Ω is replaced by a smooth manifold.

WF (u) is a (fiberwise) closed conic set of Ω× (Rd \{0}) as per Definition 2.2.41. Moreover, as mentioned
above, the notion of smooth wavefront set refines that of singular support. As matter of fact, the
projection of WF (u) on Ω coincides with singsupp(u) - see [FJ99, Prop 11.1.1].

Proposition 2.3.8: Let Ω ⊂ Rd and let u ∈ D′(Ω). Then

singsupp(u) = {x ∈ Ω : ∃ξ ∈ Rd \ {0}, (x, ξ) ∈WF (u)}.

Concerning the projection of WF (u) on Rd \ {0}, the following result holds true.

Proposition 2.3.9: Let Ω ⊂ Rd and let πξ : Ω× (Rd \ {0}) → Rd \ {0} be the canonical projection such
that πξ(x, ξ) = ξ. If u ∈ E′(Ω), then πξ(WF (u)) = Σ(u).

In the following example, we show how to compute the smooth wavefront set of the Dirac delta.
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Example 2.3.10: Let δ ∈ D′(Rd) be the Dirac delta centered at the origin. Since singsupp(δ) = {0}, it
suffices to evaluate Σ0(u). Given ϕ ∈ D(Ω) with ϕ(0) ̸= 0, it turns out that

ϕ̂δ(ξ) = ϕ(0), ∀ξ ∈ Rd.

It descends that ϕ̂δ is nowhere rapidly decreasing. Therefore, we infer that Σ0(δ) = Rd \ {0} and

WF (δ) = {(0, ξ) : ξ ∈ Rd \ {0}}.

Pseudodifferential characterization In this paragraph, we recall the characterization of the smooth
wavefront set in terms of properly supported pseudodifferential operators as per Definition 2.2.25. This
characterization is mainly outlined in [GS94, Chap. 7] and [Hin21, Sect. 6.3].

Proposition 2.3.11: Let Ω ⊂ Rd be an open set and let u ∈ D′(Ω). Then (x0, ξ0) ∈ Ω× (Rd \ {0}) does
not lie in WF (u) if and only if there exists A ∈ Ψ0(Ω), elliptic at (x0, ξ0) as per Definition 2.2.48, such
that Au ∈ C∞(Ω). Therefore,

WF (u) =
⋂

A∈Ψ0(Ω)
Au∈C∞(Ω)

Char(A),

where Char(A) is the characteristic set of A introduced in Equation (2.2.22).

Microlocality of Pseudodifferential Operators An important property of the smooth wavefront set
of a distribution is that it is shrinked by the action of pseudodifferential operators as per Definition 2.2.15
- see [Hin21, Prop. 6.27], [GS94, Lemma 7.2]. On account of this property, we say that pseudodifferential
operators are microlocal. In this paragraph, we only consider properly supported pseudodifferential
operators as per Definition 2.2.25.

Proposition 2.3.12: Let Ω ⊂ Rd be an open set and let m ∈ R. If A ∈ Ψm(Ω), then

WF (Au) ⊂WF ′(A) ∩WF (u), u ∈ D′(Ω),

where WF ′(A) has been introduced in Definition 2.2.44.

We conclude by stating a microlocal elliptic regularity result - see [Hin21, Prop. 6.28].

Proposition 2.3.13: Let Ω ⊂ Rd be an open set and let m ∈ R. If A ∈ Ψm(Ω), then

WF (u) ⊂ Char(A) ∪WF (Au), u ∈ D′(Ω).

In particular, if A is elliptic, then

WF (u) =WF (Au), u ∈ D′(Ω).

2.3.2 Pullbacks and Smooth Wavefront Sets

In Appendix A.9, we proved that the pullback of a distribution along a submersion is always well-defined.
However, the pullback of a distribution along an embedding is, in general, an ill-defined operation because
of singularities. The aim of this subsection is to discuss under which conditions this operation can be
extended to distributions. In particular, we shall see that the smooth wavefront set plays a key rôle in
providing a sufficient criterion to pull back an underlying distribution along an embedding. To this end,
we first introduce a topology on the space of distributions with a given bound for the wavefront set. The
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content of this subsection is mainly inspired by [Hör03, Sect. 8.2].
Let Ω ⊂ Rd be an open set and let V be a closed cone in Ω × (Rd \ {0}) as per Definition 2.2.41. We
define

D′
V (Ω) := {u ∈ D′(Ω) :WF (u) ⊂ V }.

Lemma 2.3.14: Let u ∈ D′(Ω). Then u ∈ D′
V (Ω) if and only if for any ϕ ∈ D(Ω) and for any closed

cone Γ ⊂ Rd as per Definition 2.2.39 such that

V ∩ (supp(ϕ)× Γ) = ∅, (2.3.3)

it follows that
sup
ξ∈Γ

|ξ|N |ϕ̂u(ξ)| <∞, ∀N ∈ N0. (2.3.4)

In view of Lemma 2.3.14, we can endow D′
V (Ω) with a notion of convergence.

Definition 2.3.15: Let (uj)j∈N0
be a sequence in D′

V (Ω) and let u ∈ D′
V (Ω). We say that (uj)j∈N0

converges to u in D′
Γ(Ω) if

(i) uj
D′

→ u as per Definition A.2.4,

(ii) for any ϕ ∈ D(Ω) and for any closed cone Γ ⊂ Rd such that Equation (2.3.3) is satisfied, it holds
true that

lim
j→∞

sup
ξ∈Γ

|ξ|N |ϕ̂uj(ξ)− ϕ̂u(ξ)| = 0 ∀N ∈ N0.

We write uj
D′

V→ u.

We recall that D(Ω) is dense in D′
V (Ω) - see [Hör03, Th. 8.2.3].

Theorem 2.3.16: Let Ω ⊂ Rd. For any u ∈ D′
V (Ω) there exists a sequence (uj)j∈N0

⊂ D(Ω) such that

uj
D′

Γ→ u.

We are now in position to state the main result of the subsection, which gives a sufficient condition
to pullback a distribution along an embedding. Moreover, this statement establishes how the smooth
wavefront sets transform under pullbacks - see [Hör03, Th. 8.2.4].

Definition 2.3.17: Let Ω1 ⊂ Rd1 , Ω2 ⊂ Rd2 be open sets with d1 < d2 and let f : Ω1 → Ω2 be a smooth
map. We say that f is an immersion if its differential, df(x), is injective for every x ∈ Ω1.

Definition 2.3.18: Let Ω1 ⊂ Rd1 , Ω2 ⊂ Rd2 be open sets with d1 < d2 and let f : Ω1 → Ω2 be an
immersion. We say that f : Ω1 → Ω2 is an embedding if f is a diffeomorphism between Ω1 and f [Ω1].

Theorem 2.3.19: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be open sets with d1 < d2 and let f : Ω1 → Ω2 be an
embedding. Moreover let

Nf := {(f(x), η) ∈ Ω2 × Rd2 : tdf(x)η = 0} (2.3.5)

be the set of normals of f . For any u ∈ D′(Ω2) such that

Nf ∩WF (u) = ∅, (2.3.6)

there exists a unique f∗u ∈ D′(Ω1) so that f∗u = u ◦ f if u ∈ C∞(Ω2). In addition, for any closed conic
subset V of Ω2 × (Rd2 \ {0}) with V ∩Nf = ∅, f∗ : D′

V (Ω2) → D′
f∗V (Ω1) is a continuous map, where

f∗V := {(x, tdf(x)η) : (f(x), η) ∈ V }.
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In particular,

WF (f∗u) ⊂ f∗WF (u),

for every u ∈ D′(Ω2) abiding to Equation (2.3.6).

Remark 2.3.20: Theorem 2.3.19 can be improved by assuming that f : Ω1 → Ω2 is an immersion as
per Definition 2.3.17. In the present subsection, we have focused on the particular case of pullbacks
along embeddings. This is in light of the fact that the product between two distributions, when no
issue arise in its definition, is expressed explicity as a suitable pullback along the diagonal embedding
δ : Ω → Ω× Ω, δ(x) = (x, x), where Ω ⊂ Rd is an open set - see Subsection 2.3.3.

At last, we recall that the smooth wavefront set of a distribution is invariant under the action of diffeo-
morphisms - [FJ99, Prop. 11.1.2].

Proposition 2.3.21: Let Ω1,Ω2 ⊂ Rd be open sets. If f : Ω1 → Ω2 is a diffeomorphism, then

WF (f∗u) = f∗WF (u).

Remark 2.3.22: Proposition 2.3.21 is especially important since it is the building block to extend the
notion of smooth wavefront set to distributions supported on any arbitrary smooth manifold. Let M
be a d-dimensional smooth manifold and let A = {(Ui, hi)}i be a smooth atlas thereon. On account of
Remark 2.3.7, if u ∈ D′(M) as per Definition A.10.1, we define WF (u) as the subset of T ∗M \ {0} such
that its restriction to Ui is given by (hi)

∗WF ((h−1
i )∗u). On account of Proposition 2.3.21, this definition

is well-posed and invariant under a change of local coordinates. For further details, the interested reader
may refer to [Hör03, Chap. VIII].

2.3.3 Product of distributions

In the framework of the theory of distrubutions, one of the questions is to establish under which conditions
the product of two distributions is well-defined. We recall that this operation is always well-defined when
the distributions have disjoint singular supports, see Theorem A.5.3. However, even if a point lies in
both singular supports, we are able to define the product of two distributions after assuming a suitable
condition on the smooth wavefront sets, called Hörmander criterion. To this purpose, we observe that,
if u, v are two scalar functions on Ω, then the product u(x)v(x) can be seen as the pullback of the tensor
product u(x)v(y) along the diagonal. Therefore, we first recall an estimate for the smooth wavefront set
of the tensor product between two distributions - see [Hör03, Th. 8.2.9].

Theorem 2.3.23: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets. If u ∈ D′(Ω1) and v ∈ D′(Ω2), then

WF (u⊗ v) ⊂ (WF (u)×WF (v)) ∪ ((supp(u)× {0})×WF (v)) ∪ (WF (u)× (supp(v)× {0})). (2.3.7)

Theorem 2.3.24: Let u, v ∈ D′(Ω) be such that

(x, ξ) ∈WF (u) ⇒ (x,−ξ) ̸∈WF (v) (Hörmander criterion). (2.3.8)

Then the product uv ∈ D′(Ω) can be defined as

uv := δ∗(u⊗ v),

where δ : Ω → Ω× Ω, δ(x) := (x, x), is the diagonal map. In addition,

WF (uv) ⊂ {(x, ξ1 + ξ2) : (x, ξ1) ∈WF (u) or ξ1 = 0, (x, ξ2) ∈WF (v) or ξ2 = 0}.
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Proof. Since
tdδ(x)(ξ1, ξ2) = ξ1 + ξ2 ∀ξ1, ξ2 ∈ Rd,

then Nδ = {(ξ,−ξ) : ξ ∈ Rd}, where Nδ denotes the set of normals of the diagonal map, see Equation
(2.3.5). On account of Equation (2.3.8) and Theorem 2.3.23, it descends that

Nδ ∩WF (u⊗ v) = ∅.

Therefore, by applying Theorem 2.3.19, we conclude that there exists δ∗(u⊗ v) and

WF (δ∗(u⊗ v)) ⊂ δ∗WF (u⊗ v) = {(x, ξ1 + ξ2) : (x, ξ1) ∈WF (u) or ξ1 = 0, (x, ξ2) ∈WF (v) or ξ2 = 0}.

2.3.4 Push-forwards and Smooth Wavefront Sets

In this subsection, we shall see how the smooth wavefront set transforms under push-forwards along
projection maps - see [FJ99, Def. 11.2.1, Prop. 11.2.1]. To start with, we recall the definition of push-
forward of a distribution along a projection map, which can be understood as a partial evaluation against
the constant function 1.

Definition 2.3.25: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets, let K ∈ D′(Ω1×Ω2) and let π : Ω1×Ω2 →
Ω1 be the canonical projection defined by π(x1, x2) = x1. Suppose that π is a proper map when restricted
to supp(K). The push-forward of K along π, π∗(K), is the element in D′(Ω1) such that, for any
ϕ ∈ D(Ω1),

⟨π∗(K), ϕ⟩ := ⟨K,ϕ⊗ ψ⟩, (2.3.9)

where ψ ∈ D(Ω2) is identically one on a neighbourhood of

{x2 ∈ Ω2 : ∃x1 ∈ supp(ϕ), (x1, x2) ∈ supp(K)}.

Remark 2.3.26: Equation (2.3.9) is independent from the choice of ψ. Let ϕ ∈ D(Ω1). If ψ, ψ̃ ∈ D(Ω2)
are chosen as in Definition 2.3.25, then

ψ − ψ̃ ≡ 0 on {x2 ∈ Ω2 : ∃x1 ∈ supp(ϕ), (x1, x2) ∈ supp(K)}.

Therefore, it descends that

⟨K,ϕ⊗ ψ⟩ − ⟨K,ϕ⊗ ψ̃⟩ = ⟨K,ϕ⊗ (ψ − ψ̃)⟩ = 0.

Remark 2.3.27: If K ∈ L1(Ω1 × Ω2) ∩ E′(Ω1 × Ω2), then

π∗(K)(x1) =

∫
Rn

K(x1, x2)dx2 (x1 ∈ Ω1).

Proposition 2.3.28: Let K ∈ D′(Ω1 × Ω2) and let π : Ω1 × Ω2 → Ω1 be as in Definition 2.3.25. Then

WF (π∗(K)) = {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ Ω2, (x1, x2, ξ1, 0) ∈WF (K)}.
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2.3.5 Schwartz Kernels and Smooth Wavefront Sets

This subsection is devoted to discussing the smooth wavefront set of Ku, where K : D(Ω2) → D′(Ω1) is
a linear map with Schwartz kernel K ∈ D′(Ω1 × Ω2) - see [Hör03, Th. 8.2.12]. For details concerning
Schwartz kernels, the interested reader may refer to Appendix A.8.

Theorem 2.3.29: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets and let K : D(Ω2) → D′(Ω1) be a linear
map with Schwartz kernel K ∈ D′(Ω1 × Ω2). Then, for any u ∈ D(Ω2),

WF (Ku) ⊂ {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ supp(u), (x1, x2, ξ1, 0) ∈WF (K)}.

Proof. Let π : Ω1 ×Ω2 → Ω1 be the projection on the first factor. If u ∈ D(Ω2), then Ku can be defined
as the distribution lying in D′(Ω1) such that

(Ku)(ϕ) = ⟨K(1⊗ u), ϕ⊗ 1⟩ ∀ϕ ∈ D(Ω1).

On account of Definition 2.3.25, we infer that Ku = π∗(K(1⊗ u)), where π∗ is the push-forward along π
as per Definition 2.3.25. Since WF (1 ⊗ u) = ∅, then the product K(1 ⊗ u) is well-defined per Theorem
2.3.24. Here, K(1⊗ u) denotes the standard product between smooth functions and distributions as per
Definition A.5.2. Furthermore, Theorem 2.3.24 implies that

WF (K(1⊗ u)) ⊂ {(x1, x2, ξ1, ξ2) ∈WF (K) : x2 ∈ supp(u)}.

To conclude, Proposition 2.3.28 entails that

WF (π∗(K(1⊗ u))) ⊂ {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : x2 ∈ supp(u), (x1, x2, ξ1, 0) ∈WF (K)}.

The following theorem generalizes the previous one to the case in which u lies in E′(Ω2) - see [Hör03, Th.
8.2.13], [FJ99, Th. 11.4.1].

Theorem 2.3.30: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets, let K ∈ D′(Ω1 × Ω2) be the Schwartz
kernel of K : D(Ω2) → D′(Ω1) and let u ∈ E′(Ω2). Define

−WF ′
Ω2

(K) = {(x2, ξ2) ∈ Ω2 × (Rd2 \ {0}) : ∃x1 ∈ Ω1, (x1, x2, 0,−ξ2) ∈WF (K)}. (2.3.10)

If
WF (u) ∩ (−WF ′

Ω2
(K)) = ∅, (2.3.11)

then there exists a unique Ku ∈ D′(Ω1). In addition,

WF (Ku) ⊂WFΩ1
(K) ∪WF ′(K) ◦WF (u),

whereWF ′(K)◦WF (u) := {(x1, ξ1) : ∃(x2, ξ2) ∈WF (u), (x1, x2, ξ1,−ξ2) ∈WF (K)} whileWFΩ1
(K) :=

{(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ Ω2, (x1, x2, ξ1, 0) ∈WF (K)}.

Proof. Let π : Ω1 × Ω2 → Ω1 be the projection on the first factor. In analogy to the proof of Theorem
2.3.29, Ku, if it exists, is defined as the distribution in Ω1 such that

Ku = π∗(K(1⊗ u)),

where π∗ is the push-forward by π as per Definition 2.3.25. We start to prove that the product between
K and 1⊗ u is well-defined. On account of Theorem 2.3.23, it descends that

WF (1⊗ u) ⊂ (Ω1 × {0})×WF (u) = {(x1, x2, 0, ξ2) : (x2, ξ2) ∈WF (u)}.
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Combining Equation (2.3.11) and Theorem 2.3.24, it follows that there exists K(1 ⊗ u) ∈ D′(Ω1 × Ω2)
and

WF (K(1⊗ u)) ⊂{(x1, x2, ξ1, ξ2 + ξ′2) : (x2, ξ2) ∈WF (u), (x1, x2, ξ2, ξ
′
2) ∈WF (K)}

∪WF (K) ∪WF (1⊗ u).

At last, on account of Proposition 2.3.28, we deduce that

WF (π∗(K(1⊗ u))) ⊂ {(x1, ξ1) : ∃(x2, ξ2) ∈WF (u), (x1, x2, ξ1,−ξ2) ∈WF (K)} ∪WFΩ1
(K).

2.3.6 The propagation of singularities

As explained in Subsection 2.3.1, the notion of smooth wavefront set characterizes all those directions
in Fourier space along which an underlying distribution is singular - see Definition 2.3.6. The aim of
this subsection is to recall the propagation of singularities theorem. According to this result, the smooth
wavefront set of a solution to a suitable partial differential equation is characterized by means of the
principal symbol of the corresponding differential operator. In what follows, we shall focus on the problem
of the propagation of singularities related to a large class of hyperbolic partial differential equations. More
precisely, it asserts that the singularities of the solution propagate along the flow induced by the principal
symbol, which is reinterpreted as a Hamiltonian function. We shall mainly refer to [Hin21, Sect. 7.2,
Chap. 8].

Let A ∈ Ψ1(Rd) be properly supported as per Defintion 2.2.25. In addition, we assume that the
principal symbol of A, denoted by σ1(A), lies in S

1
hom(Rd;Rd) as per Definition 2.2.6 and it is real-valued.

Given u0 ∈ D′(Rd), we want to analyze the microlocal behavior of the solution u ∈ D′(R × Rd) of an
initial value problem of the form {

Dtu = Au, (t, x) ∈ R× Rd

u(0, x) = u0(x), x ∈ Rd,
(2.3.12)

where Dt := −i∂t. Here, we denote by u0(x) and u(t, x) the integral kernels of u0 and u respectively as
per Remark A.8.2. We denote the solution map associated to Equation (2.3.12) by

S (t, 0) : u0 7→ u(t), t ∈ R.

It shows that S (t, 0) is a continuous operator from the Sobolev space Hs(Rd) as per Definition 2.1.41
into itself - see [Hin21, Th. 7.1]. In addition, S (t, 0) is invertible and S (t, 0)−1 = S (0, t). As already
anticipated, the main intuition behind the propagation of singularities theorem is to read σ1(A) as a
Hamiltonian function. Therefore, σ1(A) determines a unique Hamiltonian vector field Xσ1(A), defined by

Xσ1(A)|(x,ξ) =
d∑
j=1

∂ξjσ1(A)(x, ξ)∂xj
|(x,ξ) −

d∑
j=1

∂xj
σ1(A)(x, ξ)∂ξj |(x,ξ), ∀(x, ξ) ∈ Rd × Rd. (2.3.13)

Let (x0, ξ0) ∈ Rd and let ρ ∈ C∞(J(x0,ξ0),Rd × Rd) be the local solution of the Cauchy problem{
dρ(t)
dt = Xσ1(A)|ρ(t),
ρ(0) = (x0, ξ0),

(2.3.14)
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where J(x0,ξ0) ⊂ R is an open interval containing 0. As a result, the Hamiltonian flow associated with
Xσ1(A) is defined as the map

Φ : J(x0,ξ0) × Rd × Rd → Rd × Rd s.t. (t, x0, ξ0) 7→ Φt(x0, ξ0) := ρ(t). (2.3.15)

In this setting, the proof of the propagation of singularities theorem is based on Egorov’s theorem - see
[Hin21, Th. 8.3].

Theorem 2.3.31: Let m ∈ R and let b ∈ Sm(Rd;Rd). Given B0 := Op(b) ∈ Ψm(Rd), we set

B(t) := S (t, 0) ◦B0 ◦ S (0, t), t ∈ R.

Then for any t ∈ R, B(t) ∈ Ψm(Rd) up to an element lying in Ψ−∞(Rd) as per Equation (2.2.12), i.e.
there exists R ∈ C∞(R,Ψ−∞(Rd)) such that B(t) − R(t) ∈ Ψm(Rd). In addition, the principal symbol
of B(t) is given by

σm(B(t))(x, ξ) = b(Φt(x, ξ)), (2.3.16)

where Φt is the flow from t to 0 induced by the Hamiltonian vector field Xσ1(A) as per Equation (2.3.13).
In other words Φt(x, ξ) = ρ(t) where ρ satisfies Equation 2.3.14.

We now are in position to prove the following propagation singularities theorem - see [Hin21, Th. 7.4].

Theorem 2.3.32: Let A ∈ Ψm(Rd) be such that its principal symbol σ1(A) lies in S
1
hom(Rd;Rd) as per

Definition 2.2.6 and it is real-valued. In addition, let u0 ∈ D′(Rd) and let u ∈ D′(R×Rd) be the solution
of the initial value problem as per Equation (2.3.12). Then

WF (u(t)) = ΦtWF (u0), (2.3.17)

where Φt is the flow from t to 0 induced by the Hamiltonian vector field Xσ1(A) as per Equation (2.3.15)
while we set

ΦtWF (u0) := {Φt(x, ξ) ∈ Rd × (Rd \ {0}) : (x, ξ) ∈WF (u0)}.

Proof. We only prove the inclusion ⊂, since the other inclusion follows immediately by inverting the time
direction. Let (x0, ξ0) ̸∈ WF (u0). On account of Proposition 2.3.11, there exists a properly supported
pseudodifferential operator B ∈ Ψ0(Rd), elliptic at (x0, ξ0) as per Definition 2.2.48, such that Bu0 ∈
C∞(Rd). Therefore, we set B(t) := S (t, 0) ◦ B ◦ S (0, t) so that B(t)u(t) = S (t, 0)Bu0 ∈ C∞(Rd). On
account of Theorem 2.3.31, we infer that B(t) lies in Ψ0(Rd) and it is elliptic at Φ−1

t (x0, ξ0). Therefore,
this entail that Φ−1

t (x0, ξ0) ̸∈WF (u(t)).

Theorem 2.3.32 asserts that the singularities of the initial data propagate along the Hamiltonian flow
induced by σ1(A). In Subsection 3.3.5, we shall prove Theorem 2.3.32 for a more specific class of first
order hyperbolic partial differential equations within the framework of the Besov wavefront set.

2.4 Germs of Distributions

In this section, we give a succinct overview of the theory of germs of distributions as outlined in [CZ20].
The aim of this theory is to formulate and to prove Hairer’s reconstruction theorem, c.f [Hai14, Th.
3.10], in a purely distributional language without any reference to regularity structures. More precisely,
in [CZ20], the authors deal with the following problem: if for any x ∈ Rd we are given a distribution Fx ∈
D′(Rd), we wonder whether there exists a global distribution RF ∈ D′(Rd) which is well-approximated
by Fx locally around each x ∈ Rd. We shall see that, under a suitable assumption on the family
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of distributions (Fx)x∈Rd , called coherence, the existence of the desired distribution RF ∈ D′(Rd) is
guaranteed. This is the content of the reconstruction theorem formulated in [CZ20]. We underline that
the framework developed in [CZ20] is established in the Bα∞,∞ setting. In a recent paper [BL22B], the

reconstruction theorem has been extended to Besov spaces Bαp,q(Rd) with p, q ∈ [1,∞]. A few years
earlier, this generalization was discussed in [HL17] within the framework of regularity structures. In
this section, we shall point out that the framework of germs of distributions is well-suited to extend
the reconstruction theorem to the case of distributions supported on any arbitrary smooth manifold as
discussed in Chapter 4.

In Subsection 2.4.1, we recall the basic notions at the heart of the theory of germs of distributions.
More precisely, we recall the definition of germ of distributions and the notion of coherence. In Subsection
2.4.2, we recall the formulation of the reconstruction theorem within the current framework. In Subsection
2.4.3, we discuss an application of the reconstruction theorem, which provides an alternative proof of
Young’s product theorem (Theorem 2.1.20).

Throughout this section, we denote by ≲ an inequality holding true up to a multiplicative finite
constant. Given a compact set K ⊂ Rd and R > 0, we define the R-enlargement of K as

KR := {y ∈ Rd : |y − x| ≤ R, x ∈ K}. (2.4.1)

In addition, we denote by B(0, 1) the unit open ball in Rd centered at the origin. Given a function
f : Rd → R, x ∈ Rd and λ > 0, we recall that fλx : Rd → R denotes the scaled version of f , defined as

fλx (y) := λ−df(λ−1(y − x)), y ∈ Rd.

2.4.1 Germs of Distributions and Coherence

In this subsection, we introduce the basic notions at the heart of the theory of germs of distributions,
which aims at formulating Hairer’s reconstruction theorem [Hai14, Th. 3.10] in a purely distributional
language. We shall mainly refer to [CZ20].

We start by giving the definition of germ of distributions.

Definition 2.4.1: A family F = (Fx)x∈Rd of distributions, Fx ∈ D′(Rd) for any x ∈ Rd, is said to be a
germ if, for any ψ ∈ D(Rd), the map x 7→ Fx(ψ) is measurable.

Remark 2.4.2: A germ F can be read as an element of D′(Rd × Rd), whose integral kernel F (x, y) ≡
Fx(y) is such that the map x 7→ ⟨Fx(y), ψ(y)⟩ is measurable for any ψ ∈ D(Rd).
On account of the previous definition, a germ F = (Fx)x∈Rd can be read as a family of local approximations
for a global distribution RF . As a matter of fact, we are interested in finding a distribution RF ∈ D′(Rd)
which is well-approximated by Fx around each point x ∈ Rd. More precisely, we investigate the existence
of RF ∈ D′(Rd) such that for any κ ∈ D(Rd) with κ̌(0) ̸= 0 and for any compact set K ⊂ Rd

lim
λ→0+

|(RF − Fx)(κ
λ
x)| = 0, ∀x ∈ K. (2.4.2)

In particular, Equation (2.4.2) entails the uniqueness of RF - see [CZ20, Lemma 4.2].

Lemma 2.4.3: Let F = (Fx)x∈Rd be a germ as per Definition 2.4.1, let κ ∈ D(Rd) with κ̌(0) ̸= 0 and let
K ⊂ Rd be a compact set. If there exist two distributions RF1,RF2 ∈ D′(Rd) satisfying Equation (2.4.2)
uniformly for x ∈ K, then RF1(φ) = RF2(φ) for any φ ∈ D(K).

In Subsection 2.4.2, we shall see that the existence of a distribution RF ∈ D′(Rd) satisfying Equation
(2.4.2) is guaranteed as soon as one considers a coherent germ F = (Fx)x∈Rd , which we define in the
following.
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Definition 2.4.4: Let γ ∈ R and let F = (Fx)x∈Rd be a germ as per Definition 2.4.1. F is called
γ-coherent if there exists κ ∈ D(Rd) with κ̌(0) ̸= 0 such that for any compact set K ⊂ Rd there exists
ζK ≤ min{0, γ} such that

|(Fy − Fx)(κ
λ
x)| ≲ λζK(|x− y|+ λ)γ−ζK , (2.4.3)

uniformly for x, y ∈ K and for λ ∈ (0, 1]. We say that F is (ζ, γ)-coherent where ζ = (ζK)K is the
family of exponents in Equation (2.4.3). In particular, if ζK = ζ for any compact set K, F is said to be
(ζ, γ)-coherent.

Remark 2.4.5: In Definition 2.4.4, we can replace the constraint λ ∈ (0, 1] by λ ∈ (0, ϵ], for any fixed
ϵ > 0. As a matter of fact, if λ ∈ (0, ϵ], the bound in Equation (2.4.3) still holds true with a different
multiplicative constant.

Remark 2.4.6: We point out that the coherence condition as per Equation (2.4.3) depends on the test
function κ ∈ D(Rd) with κ̌(0) ̸= 0. However, we shall recall in Proposition 2.4.11 that κ in Equa-
tion (2.4.3) can be replaced by any test function ϕ ∈ D(B(0, 1)), provided that we adjust suitably the
exponents ζK. This entails that the set of γ-coherent germs is a vector space.

Remark 2.4.7: The bound in Equation (2.4.3) can be read as a generalized Hölder condition. Moreover,
using the language of the theory of regularity structures, the notion of coherent germ is inspired by that
of modelled distribution - see [Hai14, Def. 3.1].

In light of Definition 2.4.4, we can introduce a family of semi-norms which establishes the coherence of a
germ. Let γ ∈ R and let F = (Fx)x∈Rd be a germ. Then F is (ζ, γ)-coherent as per Definition 2.4.4 if
and only if there exists κ ∈ D(Rd) with κ̌(0) ̸= 0 such that for every compact set K ⊂ Rd

∥F∥cohK,κ,γ,ζK
:= sup

x,y∈K
λ∈(0,1]

|(Fy − Fx)(κ
λ
x)|

λζK(|x− y|+ λ)γ−ζK
<∞. (2.4.4)

Example 2.4.8: Let F = (Fx)x∈Rd be a (ζ, γ)-coherent germ as per Definition 2.4.4 and let u ∈ D′(Rd).
Then the germ G := (u− Fx)x∈Rd is still (ζ, γ)-coherent.

Homogeneity In this paragraph, we recall that a coherent germ satisfies a homogeneity condition - see
[CZ20, Lemma 4.12].

Lemma 2.4.9: Let F = (Fx)x∈Rd be a γ-coherent germ with γ ∈ R as per Definition 2.4.4. Then, for
any compact set K ⊂ Rd, there exists βK < γ such that

|Fx(κλx)| ≲ λβK (2.4.5)

uniformly for x ∈ K and λ ∈ (0, 1], where κ is chosen as in Definition 2.4.4. We say that F is locally
homogeneous with exponents β = (βK)K. If βK = β for any compact set K, F is said to be globally
homogeneous of degree β.

Remark 2.4.10: It is worth pointing out that the case βK > 0 is rather trivial. As a matter of fact, if
βK > 0 for a compact set K ⊂ Rd, then RF = 0 satisfies Equation (2.4.2) on K. In addition, on account
of Lemma 2.4.3, RF = 0 is the only solution to Equation (2.4.2).

Analogously to the notion of coherence, we introduce a family of semi-norms which estimate the homo-
geneity of a coherent germ F = (Fx)x∈Rd . Let β ∈ R. For any compact set K ⊂ Rd, we define

∥F∥homK,κ,β := sup
x∈K,
λ∈(0,1]

|Fx(κλx)|
λβ

, (2.4.6)

where κ ∈ D(Rd) is chosen as in Definition 2.4.4.
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Enhanced coherence In this paragraph, we recall that the coherence condition as per Equation (2.4.3)
can be enhanced. This allows us to introduce the notion of enhanced coherence. The idea at the heart of
enhanced coherence is to replace κ in Equation (2.4.3) by an arbitrary test function, provided that the
exponents ζK are suitably adjusted - see [CZ20, Prop. 3.1].

Proposition 2.4.11 (Enhanced coherence): Let γ ∈ R and let F = (Fx)x∈Rd be a (ζ, γ)-coherent germ
as per Definition 2.4.4. Then for any compact set K ⊂ Rd and for any integer r > −ζK2

,

|(Fy − Fx)(ϕ
λ
x)| ≲ ∥ϕ∥Cr(Rd)λ

ζK2 (λ+ |x− y|)γ−ζK2 (2.4.7)

uniformly for x, y ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)). In addition, the set of all γ-coherent germs is a
vector space

Proposition 2.4.11 asserts that coherence implies its enhanced formulation. The converse implication
holds true trivially. As a result, we give the following equivalent definition of coherence.

Definition 2.4.12: Let γ ∈ R. A germ F = (Fx)x∈Rd is said to be γ-coherent if for any compact set
K ⊂ Rd there exists ζK ≤ min{γ, 0} such that, for any integer r > −ζK,

|(Fy − Fx)(ϕ
λ
x)| ≲ ∥ϕ∥Cr(Rd)λ

ζK(λ+ |x− y|)γ−ζK ,

uniformly for x, y ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)).

Remark 2.4.13: In Appendix B, we formulate coherence and enhanced coherence on open sets. This
local formulation allows us to extend the same notions to distributions on smooth manifolds.

At last, we give a few notable examples of coherent germs.

Example 2.4.14: Let u ∈ D′(Rd). We define Fx := u for any x ∈ Rd. Since Fy − Fx = 0 for any
x, y ∈ Rd, then F = (Fx)x∈Rd if (ζ, γ)-coherent for any γ ∈ R and for any family of exponents ζ = (ζK)K.

A prototypical example of germ is given by the Taylor polynomial of a Hölder function - see Subsection
2.1.6. General germs can be read as generalized local Taylor expansions.

Example 2.4.15: Let f ∈ Bα,loc∞,∞(Rd) with α ∈ (0,∞)\N. On account of Propositions 2.1.35 and 2.1.38,

it descends that, for any compact set K ⊂ Rd,

|f(y)− Px(y)| ≲ |x− y|α ∀x, y ∈ K,

where Px is the ⌊α⌋-th order Taylor polynomial of f centered at x as per Equation (2.1.29) while ⌊α⌋
has been defined in Equation (2.1.14). As shown in [CZ20, Example 4.11], the germ (Px)x∈Rd is (0, α)-
coherent.

2.4.2 Reconstruction Theorem

As mentioned in the previous subsection, given a germ (Fx)x∈Rd , we wish to find a global distribution
RF which is approximated by Fx locally at any point x ∈ Rd. The solution to this problem is known
as reconstruction theorem, which is one of the cornerstones of the theory of regularity structures - see
[Hai14, Th. 3.10]. In this Subsection, we recall the formulation of this theorem in the framework of
the theory of germs of distributions, without any reference to regularity structures. As a matter of fact,
under the assumption of coherence of the germ (Fx)x∈Rd as per Definition 2.4.4, this result entails the
existence of the desired distribution RF ∈ D′(Rd) - see [CZ20, Th. 5.1]. In addition, we point out that
the reconstruction theorem formulated in [CZ20] is established in the Bα∞,∞ setting. In a recent paper

[BL22B], it has been extended to Besov spaces Bαp,q(Rd) with p, q ∈ [1,∞] as per Definition 2.1.24. In
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Section 4.2, we shall see that the framework introduced in [CZ20] is well-suited for the extension of the
reconstruction theorem to the smooth manifold setting. In what follows, KR denotes the R-enlargement
of a compact set K as per Equation (2.4.1).

Theorem 2.4.16: Let γ ∈ R and let F = (Fx)x∈Rd be a (ζ, γ)-coherent germ as per Definition 2.4.4. In
addition, suppose that F is locally homogeneous with exponents β = (βK)K as per Lemma 2.4.9. Then
there exists RF ∈ D′(Rd), called reconstruction of F , such that, for any compact set K ⊂ Rd and for
any integer r > max{−αK2

,−βK2
},

|(RF − Fx)(ϕ
λ
x)| ≲ ∥ϕ∥Cr(Rd)∥F∥cohK2,κ,αK2

,γ

{
λγ if γ ̸= 0,

1 + |log λ| if γ = 0,
(2.4.8)

uniformly for ϕ ∈ D(B(0, 1)), x ∈ K, λ ∈ (0, 1], where ∥F∥coh
K2,κ,αK2

,γ
has been defined as per Equation

(2.4.4). If λ > 0, then RF is unique. If λ ≤ 0, the distribution RF is non-unique.

Remark 2.4.17: As shown in [CZ20, Sect. 11], the reconstruction of a γ-coherent germ with γ ≤ 0 is
non-unique. As a matter of fact, its construction depends on the choice of the cover of Rd and of the
partition of unity subordinated to such cover. This fact remains true also in the smooth manifold setting
- see Theorem 4.2.4.

Remark 2.4.18: Let γ < 0. If F = (Fx)x∈Rd is a γ-coherent germ as per Definition 2.4.4, then RF is
defined up to an element lying in Bγ,loc∞,∞(Rd) as per Definition 2.1.24. If u ∈ Bγ,loc∞,∞(Rd), we prove that
RF + u satisfies the bound in Equation (2.4.8) for γ < 0. To this end, we recall that for any compact set
K ⊂ Rd and for any integer r > −γ, it holds true that

|u(ϕλx)| ≲ ∥ϕ∥Cr(Rd)λ
γ (2.4.9)

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)) - see Proposition 2.1.28. Therefore, given a compact
set K ⊂ Rd, it descends that

|(RF + u− Fx)(ϕ
λ
x)| ≤ |(RF − Fx)(ϕ

λ
x)|+ |u(ϕλx)| ≲ ∥ϕ∥Cr(Rd)λ

γ ,

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)), where the second inequality descends from Equations
(2.4.8) and (2.4.9). As a result, we conclude that RF + u is a reconstruction of F . Conversely, let RF1

and RF2 be two distributions which satisfy the bound in Equation 2.4.8. Given a compact set K ⊂ Rd,
it descends that

|(RF1 − RF2)(ϕ
λ
x)| ≤ |(RF1 − Fx)(ϕ

λ
x)|+ |(RF2 − Fx)(ϕ

λ
x)| ≲ λγ

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)). Therefore, Proposition 2.1.28 entails that RF1−RF2 ∈
Bγ,loc∞,∞(Rd). This proves that the reconstruction of a γ-coherent germ with γ < 0 is non-unique and it is

defined up to an element lying in Bγ,loc∞,∞(Rd)
In the following, we recall a regularity result concerning the reconstruction of a coherent germ - see [CZ20,
Th. 12.7].

Theorem 2.4.19: Let F = (Fx)x∈Rd be a (ζ, γ)-coherent germ as per Definition 2.4.4. In addition,
suppose that F is homogeneous of degree β < γ as per Lemma 2.4.9. If β > 0, then RF = 0. If β ≤ 0,
then RF ∈ Bβ,loc∞,∞(Rd) and, for any compact set K ⊂ Rd, it holds true that

∥RF∥Bβ
∞,∞(K) ≲ (∥F∥coh

K2,κ,ζ,γ
+ ∥F∥hom

K2,κ,β
),

where κ ∈ D(Rd) has been chosen as in Definition 2.4.4 while ∥F∥coh
K2,κ,ζ,γ

, ∥F∥hom
K2,κ,β

have been defined in

Equations (2.4.4) and (2.4.6) respectively.
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Example 2.4.20: Let u ∈ D′(Rd). We consider the constant germ Fx = u introduced in Example 2.4.14.
Being Fx = u for any x ∈ Rd, it holds true that RF = u.

Example 2.4.21: Let f ∈ Bα∞,∞(Rd) with α ∈ (0,∞) \ N and let P = (Px)x∈Rd be the germ given by
the ⌊α⌋-th order Taylor polynomial of f as per Example 2.4.15, where ⌊α⌋ is as per Equation (2.1.14). As
already mentioned in Example 2.4.15, the germ P = (Px)x∈Rd is (0, α)-coherent. Therefore, on account
of Theorem 2.4.16, there exists a unique reconstruction RP . In particular, we show that RP = f . To
this end, we recall that for any compact set K ⊂ Rd

|f(y)− Px(y)| ≲ |x− y|α ∀x, y ∈ K, (2.4.10)

see Proposition 2.1.35. Given a compact set K ⊂ Rd, it descends that∣∣∣∣ ∫
Rd

(f(y)− Px(y))χ
λ
x(y)dy

∣∣∣∣ ≤ ∫
Rd

|f(y)− Px(y)||ϕλx(y)|dy

≲
∫
Rd

|x− y|α|ϕλx(y)|dy ≲ λα
∫
Rd

|ϕλx(y)|dy ≲ ∥ϕ∥L∞(Rd)λ
α,

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)), where the second bound descends from Equation
(2.4.10). As a result, we infer that f is the reconstruction of P .

To conclude, we recall a special case of Theorem 2.4.16. The following result shall play a leading rôle in
the proof of the reconstruction theorem for germs of distributions on smooth manifolds in Section 4.2 -
see [CZ20, Th. 4.4].

Theorem 2.4.22: Let γ ∈ R and let F = (Fx)x∈Rd be a (ζ, γ)-coherent germ as per Definition 2.4.4.
Then there exists RF ∈ D′(Rd) such that, for any compact set K ⊂ Rd and for any ψ ∈ D(Rd),

|(RF − Fx)(ψ
λ
x)| ≲

{
λγ if γ ̸= 0,

1 + |log λ| if γ = 0,
(2.4.11)

uniformly for x ∈ K and for λ ∈ (0, 1]. If λ > 0, RF is unique and it is called the reconstruction of F . If
λ ≤ 0, the distribution RF is non-unique.

Remark 2.4.23: Since Theorems 2.4.22 and 2.4.16 are local statements, they still hold true for germs
of distributions on open sets - see Appendix B.

2.4.3 Young’s Product Theorem

In Subsection 2.4.2, we recalled the formulation of the reconstruction theorem in the context of germs
of distributions, without any reference to the theory of regularity structures. Given a coherence germ
(Fx)x∈Rd as per Definition 2.4.4, this result asserts the existence of a global distribution which is approx-
imated by Fx locally at any point x ∈ Rd.

As shown in [CZ20, Sect. 14], the reconstruction theorem allows to prove the existence of the product
between two Besov distributions u ∈ Bα1,loc

∞,∞ (Rd) and v ∈ Bα2,loc
∞,∞ (Rd) when α1 + α2 > 0. This result is

known as Young’s product theorem, see Theorem 2.1.20, which was proven by means either of Bony’s
paraproducts, see Subsection 2.1.4, or of wavelet analysis - see [Bo81], [BCD11, Th. 2.52] and [Hai14,
Prop. 4.14]. Furthermore, if α1 + α2 ≤ 0, the reconstruction theorem entails that there exists still a
non-unique and non-canonical product.

Since Bα1
∞,∞(Rd) ↪→ Bα1−ε

∞,∞ (Rd) for any ε > 0, see Theorem 2.1.13, we can assume without loss of

generality that α1 ̸∈ N. Since Bα1
∞,∞(Rd) concides with the Hölder space C⌊α1⌋,α1−⌊α⌋(Rd) (see Theo-

rem 2.1.37), this assumption is convenient for what follows. Otherwise, if α1 ∈ N, it holds true that
Cα1−1,1(Rd) ⊂ Bα1

∞,∞(Rd) on account of Theorem 2.1.38.



2.4. GERMS OF DISTRIBUTIONS 47

Let α1 ∈ (0,∞)\N and let α2 < 0. In addition, let u ∈ Bα1,loc
∞,∞ (Rd) and v ∈ Bα2,loc

∞,∞ (Rd). From the theory
of distributions, the product between u and v, denoted by uv, is in general ill-defined. Nonetheless, on
account of Theorem 2.1.37, we can approximate the product uv locally at a point x ∈ Rd, replacing u by
its ⌊α1⌋-order Taylor polynomial centered at x, that is,

Px(y) =
∑

|ℓ|≤⌊α1⌋

∂ℓu(x)
(y − x)ℓ

ℓ!
∀y ∈ Rd,

where ⌊α⌋ has been introduced in Equation (2.1.14). Therefore, we define the germ F = (Fx)x∈Rd , where,
for any x ∈ Rd,

Fx(φ) := (vPx)(φ) = v(Pxφ), ∀φ ∈ D(Rd).

The germ F can be interpreted as a family of local approximations of the product uv. The following
proposition asserts that F is a coherent germ - see [CZ20, Prop. 14.4].

Proposition 2.4.24: Let u ∈ Bα1,loc
∞,∞ (Rd) and let v ∈ Bα2,loc

∞,∞ (Rd) with α1 ∈ (0,∞)\N and α2 < 0. Then
the germ F = (Fx)x∈Rd is (α2, α1 + α2)-coherent as per Definition 2.4.4. In addition, F is homogeneous
of degree α2 as per Lemma 2.4.9.

On account of the previous proposition, the germ F fulfills the hypotheses of the reconstruction theorem.
Therefore, the following result is a consequence of Theorem 2.4.16 by setting M(u, v) := RF - see [CZ20,
Th. 14.1].

Theorem 2.4.25: Let α1 ∈ (0,∞) \ N and let α2 < 0. If α1 + α2 > 0, then there exists a bilinear
continuous map M : Bα1,loc

∞,∞ (Rd) × Bα2,loc
∞,∞ (Rd) → Bα2,loc

∞,∞ (Rd) such that it extends the usual product

M(u, v) = uv when u ∈ C∞(Rd). In addition, for any compact set K ⊂ Rd and for any integer r > −α2,
it holds true that

|(M(u, v)− vPx)(ϕ
λ
x)| ≲ ∥ϕ∥Cr(Rd)λ

α1+α2 ,

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)).
If α1 + α2 ≤ 0, there exists a bilinear continuous map M : Bα1,loc

∞,∞ (Rd) × Bα2,loc
∞,∞ (Rd) → Bα2,loc

∞,∞ (Rd)
such that, for any compact set K ⊂ Rd and for any integer r > −α2,

|(M(u, v)− vPx)(ϕ
λ
x)| ≲ ∥ϕ∥Cr(Rd)

{
λα1+α2 if α1 + α2 < 0,

1 + |log λ| if α1 + α2 = 0
(2.4.12)

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)). In this case, the map M is neither unique nor
canonical.

In addition, for any compact set K ⊂ Rd, it holds true that

∥M(u, v)∥Bα2
∞,∞(K) ≲ ∥u∥Bα1

∞,∞(K4)
∥v∥Bα2

∞,∞(K4)
,

where K4 denotes the 4-enlargement of K as per Equation (2.4.1).

Remark 2.4.26: Let α1 ∈ (0,∞) \ N and let α2 < 0 such that α1 + α2 > 0. Since C∞(Rd) is not
densely embedded into Bα1,loc

∞,∞ (Rd), it descends that the map M : C∞(Rd)×Bα2,loc
∞,∞ (Rd) → Bα2,loc

∞,∞ (Rd),
M(u, v) = uv, cannot be uniquely extended to M : Bα1,loc

∞,∞ (Rd) × Bα2,loc
∞,∞ (Rd) → Bα2,loc

∞,∞ (Rd). For this

reason, Theorem 2.4.25 does not entail the uniqueness of M : Bα1,loc
∞,∞ (Rd) × Bα2,loc

∞,∞ (Rd) → Bα2,loc
∞,∞ (Rd).

For further details, the interested reader may refer to [CZ20, Remark 4.12].
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Chapter 3
Besov Wavefront Set

Handling the singularities of a distribution represents one of the main issues of several physical theories,
such as quantum field theory. Because of this, it became necessary to develop a theory which characterizes
in detail the singularities of an underlying distribution. As a matter of fact, in the 1950s, Lars Hörmander
moved the first steps in this direction by introducing a framework, known as microlocal analysis - see
[Hör03],[Hör94]. It is a collection of mathematical techniques, which involves the study of singularities
of a distribution resorting to Fourier theory. In particular, a key tool to analyze singularities is provided
by the notion of smooth wavefront set, which is a refinement of that of singular support - see Section 2.3.
The smooth wavefront set aims at characterizing the singularities of an underlying distribution, linking
the singular points to their respective singular directions in Fourier space. Such information is provided
by a suitable analysis of the behavior of the Fourier transform of the distribution under investigation. For
these reasons, microlocal analysis and, in particular, the notion of wavefront set have increasingly become
important in mathematical analysis and have found broad applications in theoretical and mathematical
physics. As an example, microlocal techniques play a leading rôle in the construction of a quantum field
theory on curved backgrounds, as well as in a rigorous mathematical formulation of renormalization using
the language of distributions - see [FR16, BFDY15, BF09, BF00].

The smooth wavefront set, however, turns out to be a rough attempt at describing singularities, since
it detects only the directions of rapid decrease in Fourier space of a given distribution. As a matter of
fact, in many concrete situations, one might be interested in establishing other notions of regularity. As
a consequence, this led to developing more refined forms of wavefront set such as the so-called Sobolev
wavefront set (see [Hör97]), which aims at estimating the singular behavior of a distribution comparing it
with that of an element lying in a suitable Sobolev space Hs(Rd) as per Definition 2.1.41. In [JS02], it has
emerged that the Sobolev wavefront has relevant applications in quantum field theory. At the same time,
in recent works (see [Vas08, Vas12]), the Sobolev wavefront set has been used to estimate the singular
behavior of the solutions to wave equations on a large class of Lorentzian manifolds with boundary.

One field of mathematical analysis in which the singular behavior of distributions plays a key rôle is
that of nonlinear stochastic partial differential equations (SPDEs). As a matter of fact, their analysis
presents several mathematical challenges because of the singular behavior of the random source and
of non-linearities. In the last few years, significant steps forward in the analysis of SPDEs have been
made by the theory of regularity structures [Hai14] as well as by that of paracontrolled distributions
[GIP15]. Although these frameworks apply suitable renormalization techniques to give meaning to ill-
defined products between distributions, microlocal analysis never comes into play. As a matter of fact,
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since the solution to a SPDE is tipically an element lying in a suitable Besov space Bα∞,∞(Rd) with
α ∈ R [BL22A, GIP15, Hai15], one relies on Bony’s paradifferential calculus [Bo81] (see Subsection
2.1.4), which appears to better capture the singular behavior of Besov distributions. For this reason, at
first sight, the notion of smooth wavefront set seems to be far from the ideal tool to characterize the
singular directions of a distribution lying in a Besov space Bα∞,∞(Rd). Nevertheless, in a few recent
works, see [DDRZ21, BDR21], it has been developed a novel framework for the study of solutions to a
large class of non-linear SPDEs resorting to microlocal techniques. In particular, microlocal analysis has
been used to construct solutions by means of a recursive scheme as well as to discuss the renormalization
and its associated freedom. However, this novel approach is not able to establish a convergence of the
perturbative series with respect to the norm of a Banach space, such as a Besov one. This can be partly
ascribed to the fact that the smooth wavefront set fails to characterize the Besov-type behavior of the
underlying distributions. In the context of the theory of stochastic partial differential equations, Besov
spaces, which are endowed with a Banach structure, play an important rôle in formulating a fixed point
argument to prove the existence of solutions - see [Hai15, GIP15].

Therefore, having in mind these facts and inspired by the notion of Sobolev wavefront set, it seems
natural to aim at formulating a notion of Besov spaces from a microlocal viewpoint. In a recent joint
work with Claudio Dappiaggi and Paolo Rinaldi (see [DRS22]), we introduced a refinement of the smooth
wavefront set, named Besov wavefront set, which characterizes the microlocal behavior of an underlying
distribution comparing it with that of an element lying in a suitable Besov space Bα∞,∞(Rd). As a result,
for instance, it is able to provide a refined estimate of singular directions of distributions such as |x|α and
the Dirac delta δ. We focused on the class of Besov spaces with p = q = ∞ since it is currently the most
commonly used in the concrete applications. Following the same rationale of the smooth wavefront set,
we shall first give the definition of Besov wavefront set of a distribution in terms of the behavior of its
Fourier transform. Although this definition correctly characterizes the concept of Besov wavefront set, it
is rather cumbersome to use in applications. For this reason, we shall prove an equivalent characterization
in terms of a suitable class of pseudodifferential operators (ΨDOs) of order zero as per Definition 2.2.15.
By employing this alternative formulation, we shall be able to prove several structural properties of the
Besov wavefront set.

Contents. In Section 3.1, we give the definition of Besov wavefront set of a distribution resorting to
Fourier space techniques - see Definition 3.1.1. This definition is based on Proposition 2.1.33 as well as
on Definition 2.1.24. In addition, we shall prove a few basic properties of the Besov wavefront set which
are an immediate consequence of its definition.

Since Definition 3.1.1 appears to be somewhat difficult to use from an operational viewpoint, we
shall prove in Section 3.2 two alternative, albeit equivalent, characterizations of the Besov wavefront set,
which shall be rather helpful in proving several structural properties. The first one is based on properly
supported pseudodifferential operators as per Definition 2.2.25 (see Theorem 3.2.1), while the second one
establishes that the Besov wavefront set can be characterized by means its smooth counterpart.

In Section 3.3, we prove a large set of structural properties of the Besov wavefront set, resorting to
the characterizations discussed in Section 3.2. In Subsection 3.3.1, we prove the microlocal properties
of ΨDOs and an elliptic regularity result in the framework of the Besov wavefront set, which are an
adaptation of Proposition 2.3.12. In Subsection 3.3.2, we establish a sufficient criterion in terms of Besov
wavefront set for the well-posedness of the pullback of an underlying distribution along an embedding -
see Theorem 3.3.5. This result generalizes the one formulated by Hörmander within the framework of the
smooth wavefront set, see Subsection 2.3.2. More precisely, being the Besov wavefront set a refinement
of its smooth counterpart, it entails a weaker criterion than the one established by the smooth wavefront
set. As a byproduct, we shall also prove that the Besov wavefront set is invariant under the action of
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diffeomorphisms. This result is noteworthy since it allows to extend the notion of Besov wavefront set to
distributions supported on an arbitrary smooth manifold. In Subsection 2.3.3, similarly to the smooth
setting, we address the issue of the multiplication between distributions in the context of the Besov
wavefront set. In particular, we formulate a counterpart of the Hörmander criterion for the existence of
the product of two distributions - see Theorem 3.3.10. If the product exists, we also establish an estimate
of the associated Besov wavefront set. This result can be read as a microlocal version of the renowned
Young’s product theorem (Theorem 2.1.20). In Subsection 3.3.4, we prove an estimate for the Besov
wavefront of Ku, where K : D(Ω2) → D′(Ω1) is a linear map while Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 are two open
sets. In addition, we establish a sufficient condition to extend the map K to E′(Ω2), which adapts the
one formulated by Hörmander in the smooth setting as outlined in Subsection 3.3.4. This result entails a
microlocal formulation of Schauder estimates [Sim97] - see Theorem 3.3.15 and Corollary 3.3.16. Lastly,
in Subsection 3.3.5, we prove a propagation of singularities theorem for a certain class of hyperbolic
partial differential equations - see Theorem 3.3.19. This result characterizes the singularities of a solution
to a suitable hyperbolic partial differential equation in terms of the principal symbol of the corresponding
differential operator.

In Section 3.4, we present an application of the results of the previous sections in the context of
coherent germs of distributions as per Definition 2.4.4. More precisely, given a coherent germ defined
as the tensor product of two Besov distributions, we prove that its reconstruction coincides with the
pointwise product of the two distributions at hand.

Notations. Throughout of this chapter, we shall denote with ≲ an inequality holding true up to a
multiplicative finite constant. In general, given a function f : Rd → R and a point x ∈ Rd, we recall that
fλx : Rd → Rd denotes the rescaled version of f , defined as

fλx (y) := λ−df(λ−1(y − x)), y ∈ Rd,

for λ ∈ (0, 1]. We denote by B(0, 1) the unit open ball in Rd centered at the origin. In addition, given
u ∈ S′(Rd), we denote by û its Fourier transform. At the same time, ǔ denotes the inverse Fourier
transform of u.

3.1 Basic Definitions and Properties

The smooth wavefront set, defined in Subsection 2.3.1, turns out to be a coarse first attempt at describing
singularities, since its complement only captures those directions along which an underlying distribution,
upon localization, is smooth. In many concrete situations, we might be interested in employing a more
refined notion of regularity. For instance, since the random source of a stochastic partial differential
equation is tipically a Besov distribution, it might be informative to estimate the singular behavior of
a solution of such an equation by comparing it with that of an element lying in a suitable Besov space
Bα∞,∞(Rd) as per Definition 2.1.24 - see [Hai14, Hai15, GIP15, BL22A]. With these scenarios in mind, we
develop a more refined form of wavefront set, named Besov wavefront set, whose complement consists of
all those directions in Fourier space along which an underlying distribution lies in a suitable Bα∞,∞(Rd).
We focus on the Besov spaces Bα∞,∞(Rd), since they are the most commonly used in concrete applications.
The following discussion is mainly based on [DRS22].

In order to introduce the Besov wavefront set, we proceed in two different, albeit equivalent ways. The
first one we discuss in this Section is based on Fourier methods. The second one, outlined in Section 3.2,
characterizes the Besov wavefront set by means of properly supported pseudodifferential operators as per
Definition 2.2.25 - see Theorem 3.2.1. This alternative formulation is rather useful from an operational
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viewpoint since it proves instrumental in establishing several structural properties of the Besov wavefront
set - see Section 3.3. In what follows, we rely on Proposition 2.1.33 as well as Definition 2.1.24.

Definition 3.1.1: Let α ∈ R and let u ∈ D′(Rd). A point (x0, ξ0) ∈ Rd × (Rd \ {0}) does not lie in the
Bα∞,∞(Rd)-wavefront set of u, (x0, ξ0) ̸∈WFα(u), if there exist ϕ ∈ D(Rd) with ϕ(x0) ̸= 0 and an open
conic neighborhood Γ of ξ0 as per Definition 2.2.39 such that for any κ ∈ B⌊α⌋ as per Definition 2.1.22,

for any κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0 and for any compact set K ⊂ Rd,∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(ξ)eix·ξdξ

∣∣∣∣ ≲ 1, (3.1.1)

∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ ≲ λα, (3.1.2)

uniformly for λ ∈ (0, 1] and for x ∈ K.

Remark 3.1.2: Analogously to the smooth wavefront set, see Remark 2.3.7, from a geometrical viewpoint
the Besov counterpart should be read as a subset of T ∗Rd \ {0}, which denotes the cotangent bundle
of Rd without the zero section. In addition, on account of Definition 3.1.1, it descends that the Besov
wavefront set is a closed conic set in Rd × (Rd \ {0}) as per Definition 2.2.41.

Remark 3.1.3: On account of the localization via ϕ in Equations (3.1.1) and (3.1.2), without loss of
generality, we can consider u ∈ E′(Rd) in Definition 3.1.1.

Remark 3.1.4: On account of Propositions 2.1.28 and 2.1.33, if α < 0 in Definition 3.1.1, it suffices to
check that for any κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ ≲ λα,

uniformly for λ ∈ (0, 1] and for x lying in compact sets.

In the following, we prove a few basic properties of the Besov wavefront set which follow directly from
Definition 3.1.1 - see [DRS22, Prop. 25, Prop. 26, Cor. 27].

Proposition 3.1.5: Let u ∈ D′(Rd) and let α ∈ R. Then u ∈ Bα,loc∞,∞(Rd) if and only if WFα(u) = ∅.

Proof. Let u ∈ Bα,loc∞,∞(Rd) and let (x0, ξ0) ∈ Rd × (Rd \ {0}). On account of Proposition 2.1.33, given

κ ∈ B⌊α⌋ as per Definition 2.1.22 and κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0, it holds true that for any ϕ ∈ D(Rd)∣∣∣∣ ∫
Rd

ϕ̂u(ξ)eix·ξκ̌(λξ)dξ

∣∣∣∣ ≲ λα ,

∣∣∣∣ ∫
Rd

ϕ̂u(ξ)eix·ξκ̌(ξ)dξ

∣∣∣∣ ≲ 1, ∀x ∈ Rd,∀λ ∈ (0, 1].

As a result, Equations (3.1.1) and (3.1.2) are satisfied by choosing Γ = Rd and ϕ ∈ D(Rd) with ϕ(x0) ̸= 0.
On account of Definition 3.1.1, it descends that WFα(u) = ∅.
Conversely, let WFα(u) = ∅. On account of Definition 3.1.1, Equations (3.1.1) and (3.1.2) hold true for
any ϕ ∈ D(Rd) and for Γ = Rd. Therefore, on account of Proposition 2.1.33, ϕu lies in Bα∞,∞(Rd) for

any ϕ ∈ D(Rd), that is u ∈ Bα,loc∞,∞(Rd).

Remark 3.1.6: In view of the continuous embedding C∞(Rd) ↪→ Bα,loc∞,∞(Rd) for all α ∈ R and on

account of Proposition 3.1.5, it descends that, for any f ∈ C∞(Rd),

WFα(f) = ∅, ∀α ∈ R. (3.1.3)
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In particular, this result implies that, given u ∈ D′(Rd), if x0 ̸∈ singsupp(u), then (x0, ξ0) ̸∈WFα(u) for
all α ∈ R and for any ξ0 ∈ Rd \ {0}. Per hypotesis, Definition A.3.2 entails that there exists an open
neighborhood Ux0

of x0 such that u|Ux0
lies in C∞(Ux0

). Therefore, on account of Equation (3.1.3), it
descends that WFα(ϕu) = ∅ for every ϕ ∈ D(Ux0) with ϕ(x0) ̸= 0 and for all α ∈ R. As a result, for any
ξ0 ∈ Rd \ {0}, we infer that (x0, ξ0) ̸∈WFα(u) for every α ∈ R.
Proposition 3.1.7: If u, v ∈ D′(Rd), then

WFα(u+ v) ⊂WFα(u) ∪WFα(v).

Proof. Let (x0, ξ0) ∈WFα(u+v). On account of Definition 3.1.1, it holds true that, for any test function
ϕ ∈ D(Rd) with ϕ(x0) ̸= 0 and for any open conic neighborhood Γ of ξ0, there exists a compact set K ⊂ Rd
such that for all N ∈ N0∣∣∣∣ ∫

Γ

̂ϕ(u+ v)(ξ)κ̌(λ′ξ)eix
′·ξdξ

∣∣∣∣ > Nλ′α,

∣∣∣∣ ∫
Γ

̂ϕ(u+ v)(ξ)κ̌(ξ)eix
′·ξdξ

∣∣∣∣ > N

for some x′ ∈ K and λ′ ∈ (0, 1]. Therefore, it descends that∣∣∣∣ ∫
Γ

ϕ̂v(ξ)κ̌(λ′ξ)eix
′·ξdξ

∣∣∣∣+ ∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(λ′ξ)eix
′·ξdξ

∣∣∣∣ > Nλ′α,∣∣∣∣ ∫
Γ

ϕ̂v(ξ)κ̌(ξ)eix
′·ξdξ

∣∣∣∣+ ∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(ξ)eix
′·ξdξ

∣∣∣∣ > N,

where we applied the triangle inequality. As a result, we infer that (x0, ξ0) ∈WFα(u) ∪WFα(v).

Corollary 3.1.8: Let u ∈ D′(Rd) and let α1, α2 ∈ R be such that α1 ≤ α2. Then

WFα1(u) ⊂WFα2(u). (3.1.4)

Proof. Let (x0, ξ0) ̸∈WFα2(u). On account of Definition 3.1.1, particularly Equation (3.1.2), it descends
immediately that (x0, ξ0) ̸∈WFα1(u).

Remark 3.1.9: Corollary 3.1.8 should be read as a microlocal reformulation of the inclusionBα2
∞,∞(Rd) ↪→

Bα1
∞,∞(Rd)when α1 ≤ α2, see Proposition 2.1.13.

In the following, we provide some examples on how to compute the Besov wavefront set of specific
distributions.

Example 3.1.10: Let u = δ ∈ D′(Rd) be the Dirac delta centered at the origin and let ξ0 ∈ Rd \ {0}.
Given ϕ ∈ D(Rd) with ϕ(0) ̸= 0, an open conic neighborhood Γ of ξ0 and κ ∈ B−d, it descends that∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ = |ϕ(0)|
∣∣∣∣ ∫

Γ

κ̌(λξ)eix·ξdξ

∣∣∣∣ ≲ ∫
Γ

|κ̌(λξ)|dξ ≲ λ−d
∫
Γ

|κ̌(ξ′)|dξ′, ∀λ ∈ (0, 1],∀x ∈ Rd,

where in the first equality we used that ϕδ = ϕ(0)δ while in the last inequality we applied the change of
variable ξ′ = λξ. Since κ̌ ∈ S(Rd), it holds true that∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ ≲ λ−d, ∀x ∈ Rd,∀λ ∈ (0, 1].

We focus on Equation (3.1.1). Let κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0. Since κ̌ ∈ S(Rd), it descends that∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(ξ)eix·ξdξ

∣∣∣∣ ≲ |ϕ(0)|
∫
Γ

|κ̌(ξ)|dξ ≲ 1, ∀x ∈ Rd.
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Definition 3.1.1 entails that WFα(δ) = ∅ if α ≤ −d. In order to obtain a sharp estimate, we put x = 0
in Equation (3.1.2). Therefore, since κ̌ ∈ S(Rd) and ϕ(0) ̸= 0, it descends that∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(λξ)dξ

∣∣∣∣ = λ−d|ϕ(0)|
∣∣∣∣ ∫

Γ

κ̌(ξ′)dξ′
∣∣∣∣ = cκ,ϕ(0)λ

−d

where the first equality descends from the change of variable ξ′ = λξ. On account of Definition 3.1.1, we
conclude that

WFα(δ) =

{
∅ α ≤ −d,
{(0, ξ) : ξ ∈ Rd \ {0}} α > −d.

Example 3.1.11: Let u = ∂jδ ∈ D′(Rd) be a derivative of the Dirac delta centered at the origin, where
∂j =

∂
∂xj

. In analogy with Example 3.1.10, given ξ0 ∈ Rd \ {0}, we show that (0, ξ0) ̸∈ WFα(u) for any

α ≤ −d − 1. Let ϕ ∈ D(Rd) with ϕ(0) ̸= 0, let Γ be an open conic neighborhood of ξ0 and κ ∈ B−d−1

as per Definition 2.1.22. For the sake of conciseness, we only focus on Equation (3.1.2). Bearing in mind
that ϕ∂jδ = ϕ(0)∂jδ − (∂jϕ)(0)δ and κ̌ ∈ S(Rd), it descends that∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ = ∣∣∣∣ϕ(0)∫
Γ

ξj κ̌(λξ)e
ix·ξdξ − (∂jϕ)(0)

∫
Γ

κ̌(λξ)eix·ξdξ

∣∣∣∣
≲

∫
Γ

|ξj ||κ̌(λξ)|dξ +
∫
Γ

|κ̌(λξ)|dξ ≲ λ−d−1

∫
Γ

|ξ′j ||κ̌(ξ′)|dξ′ + λ−d
∫
Γ

|κ̌(ξ′)|dξ′ ≲ λ−d−1

uniformly for x ∈ Rd and for λ ∈ (0, 1], where in the second inequality we applied the change of variable
ξ′ = λξ. Similarly, we can prove Equation (3.1.1). On account of Definition 3.1.1, it descends that
WFα(u) = ∅ if α ≤ −d − 1. In order to obtain a sharp estimate, we put x = 0 in Equation (3.1.2).
Moreover, we can focus our attention only on the contribution due to ϕ(0)∂jδ. Since κ̌ ∈ S(Rd), it
descends that∣∣∣∣ϕ(0) ∫

Γ

ξj κ̌(λξ)dξ

∣∣∣∣ = λ−d−1|ϕ(0)|
∣∣∣∣ ∫

Γ

ξj κ̌(ξ
′)dξ′

∣∣∣∣ = cκ,ϕ(0)λ
−d−1 ∀λ ∈ (0, 1],

where ξ′ := λξ. As a result, we can conclude that

WFα(∂jδ) =

{
∅ α ≤ −d− 1,
{(0, ξ) : ξ ∈ Rd \ {0}} α > −d− 1.

Example 3.1.12: Let u ∈ E′(Rd). On account of Theorem A.11.11, there exists C > 0 such that

|û(ξ)| ≤ C⟨ξ⟩ord(u) ∀ξ ∈ Rd,

where ⟨ξ⟩ has been defined in Equation (2.1.2) and ord(u) stands for the order of u as per Definition
A.2.5. Let ϕ ∈ D(Rd) be such that ϕ = 1 on supp(u) and let Γ be an open conic neighborhood of
ξ0 ∈ Rd \ {0}. For the sake of coinciseness, we focus only on Equation (3.1.2). Given κ ∈ B−d−ord(u) as
per Definition 2.1.22, it descends that∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ ≤ ∫
Γ

|û(ξ)||κ̌(λξ)|dξ ≤ C

∫
Γ

⟨ξ⟩ord(u)|κ̌(λξ)|dξ

≈
∫
Γ

|ξ|ord(u)|κ̌(λξ)|dξ = λ−d−ord(u)

∫
Γ

|ξ′||κ̌(ξ′)|dξ′, (3.1.5)

uniformly for x ∈ Rd and for λ ∈ (0, 1], where the last equality descends from the change of variable

ξ′ = λξ. As a result, we infer that WFα(u) = ∅ if α ≤ −d − ord(u), that is to say u ∈ B
−d−ord(u)
∞,∞ (Rd).

This is nothing but Proposition 2.1.31.
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Remark 3.1.13: Let u ∈ D′(Rd) and let (x0, ξ0) ∈ Rd× (Rd \{0}). ϕ ∈ D(Rd) with ϕ(x0) ̸= 0, Example
3.1.12 entails that Equation (3.1.2) is satisfied for any α ≤ −d− ord(ϕu). As a result, there exists α̃ ∈ R
such that (x0, ξ0) ̸∈WF α̃(u).

Example 3.1.14: Let u : R2 → R be such that u(x1, x2) = (x21 + x22)
1
4 . On account of Proposition

A.11.14, it descends that û(ξ1, ξ2) = (ξ21+ξ
2
2)

− 5
4 , which is to be understood as an element lying in S′(R2).

Since singsupp(u) = {(0, 0)}, it suffices to analyze the directions (0, 0, ξ1, ξ2) with (ξ1, ξ2) ̸= (0, 0).
Therefore, fix ϕ ∈ D(R2) with ϕ(0, 0) = 1 and an open conic neighborhood Γ of (ξ1, ξ2). We start by
checking Equation (3.1.2). Given κ ∈ B0 as per Definition 2.1.22, λ ∈ (0, 1] and (x1, x2) ∈ R2, it descends
that ∣∣∣∣ ∫

Γ

ϕ̂u(η1, η2)κ̌(λη1, λη2)e
ix1η1eix2η2dη1dη2

∣∣∣∣ ≤ ∫
Γ

|ϕ̂u(η1, η2)||κ̌(λη1, λη2)|dη1dη2

=

∫
Γ

(η21 + η22)
− 5

4 |κ̌(λη1, λη2)|dη1dη2
λη1 7→η1
λη2 7→η2

= λ
1
2

∫
Γ

(η21 + η22)
− 5

4 |κ̌(η1, η2)|dη1dη2 ≲ λ
1
2 .

Although û ̸∈ L1(B(0, 1)), we neglected the localization via ϕ since κ̌ is supported outside the origin.
Focusing on Equation (3.1.1), given κ ∈ D(B(0, 1)) such that κ̌(0) ̸= 0, it descends that∣∣∣∣ ∫

Γ

ϕ̂u(η1, η2)κ̌(η1, η2)e
ix1η1eix2η2dη1dη2

∣∣∣∣ ≤ ∫
Γ

|ϕ̂u(η1, η2)||κ̌(η1, η2)|dη1dη2 ≲ 1,

uniformly for (x1, x2) ∈ R2. In order to obtain a sharp estimate, we set (x1, x2) = (0, 0) in Equation
(3.1.2). Hence it descends that∣∣∣∣ ∫

Γ

(η21 + η22)
− 5

4 κ̌(λη1, λη2)dη1dη2

∣∣∣∣ λη1 7→η1
λη2 7→η2

= λ
1
2

∣∣∣∣ ∫
Γ

(η21 + η22)
− 5

4 κ̌(η1, η2)dη1dη2

∣∣∣∣. (3.1.6)

On account Definition 3.1.1, we conclude that

WFα(u) =

{
∅ α ≤ 1

2 ,
{(0, 0, ξ1, ξ2) : (ξ1, ξ2) ̸= (0, 0)} α > 1

2 .

Example 3.1.15: Let u ∈ S′(R) be such that

u = p.v.

(
1

ix

)
+ πδ,

where p.v.

(
1
ix

)
denotes the Cauchy principal value of 1

ix and δ ∈ D′(R) stands for the Dirac delta

centered at the origin. We shall denote by Θ the Heaviside function. Since singsupp(u) = {0} and
û(·) = Θ(·), it suffices to analyze the directions (0, ξ) such that ξ > 0. Therefore, fix ϕ ∈ D(R) with
ϕ(0) = 1 and the open conic neighborhood Γ = (0,+∞). We start by checking Equation (3.1.2). Given
κ ∈ B0 as per Definition 2.1.22, λ ∈ (0, 1] and x ∈ R, it descends that∣∣∣∣ ∫

Γ

ϕ̂u(η)κ̌(λη)eixηdη

∣∣∣∣ = ∣∣∣∣ ∫
Γ

Θ(η)κ̌(λη)eixηdη

∣∣∣∣ ≤ ∫
Γ

|κ̌(λη)|dη λη 7→η
= λ−1

∫
Γ

|κ̌(η)|dη ≲ λ−1,

where we used that Θ = 1 on Γ and we negleted the localization via ϕ since κ̌ is supported outside the
origin. We now focus on Equation (3.1.1). Let κ ∈ D(B(0, 1)) with κ̌(0) = 0. Since κ̌ ∈ S(R), it descends
that ∣∣∣∣ ∫

Γ

ϕ̂u(ξ)κ̌(ξ)eix·ξdξ

∣∣∣∣ ≲ |ϕ(0)|
∫
Γ

|κ̌(ξ)|dξ ≲ 1, ∀x ∈ R.
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In order to obtain a sharp estimate, we set x = 0 in Equation (3.1.2). Therefore, it descends that∣∣∣∣
Γ

Θ(η)κ̌(λη)dη

∣∣∣∣ = ∣∣∣∣
Γ

κ̌(λη)dη

∣∣∣∣ λη 7→η
= λ−1

∣∣∣∣
Γ

κ̌(λη)dη

∣∣∣∣
On account of Definition 3.1.1, we infer that

WFα(u) =

{
∅ α ≤ 1,
{(0, ξ) : ξ > 0} α > 1.

3.2 Characterizations of the Besov Wavefront Set

In the previous section, we have introduced the concept of Besov wavefront, see Definition 3.1.1, which
estimates the singular behavior of a given distribution in Fourier space comparing it with that of an
element lying in a suitable Besov space Bα∞,∞(Rd) as per Definition 2.1.24. Although Definition 3.1.1
characterizes appropriately the concept of Besov wavefont set of an underlying distribution, it is rather
difficult to use it concretely. For this reason, we shall give two equivalent characterizations of the Besov
wavefront set, which shall be rather helpful in the proof of several results in Section 3.3. More precisely,
the first one relies on properly supported pseudodifferential operators (ΨDOs) as per Definition 2.2.25,
while the second one characterizes the Besov wavefront set in terms of the smooth counterpart as per
Definition 2.3.6. As we shall see in Section 3.3, both characterizations turn out to be well-suited when
trying to extend a few notable operations to distributions with a fixed Besov wavefront set. In particular,
the formulation of the Besov wavefront set in terms of the smooth counterpart shall allow us to apply a
few results stated in Section 2.3. In addition, in Subsection 3.3.5 we shall prove a theorem of propagation
of singularities for a large class of hyperbolic partial differential equations by using the characterization
in terms of pseudodifferential operators. We shall mainly refer to [DRS22, Sect. 3.1].

We start by proving the charaterization of the Besov wavefront set by means of properly supported
ΨDOs, which adapts to the current scenario the content of Proposition 2.3.11 - see [DRS22, Prop. 33].
In the following, we shall mainly make use of the notions introduced in Sections 2.2 and 2.3.

Theorem 3.2.1: Let α ∈ R. If u ∈ D′(Rd), then

WFα(u) =
⋂

A∈Ψ0(Rd),

Au∈Bα,loc
∞,∞(Rd)

Char(A), (3.2.1)

where the intersection is taken only over properly supported pseudodifferential operators as per Definition
2.2.25 and Char(A) stands for the characteristic set of A introduced in Equation (2.2.22).

Proof. Let (x0, ξ0) ̸∈WFα(u). On account of Definition 3.1.1, there exist ϕ ∈ D(Rd) with ϕ(x0) ̸= 0 and
an open conic neighborhood Γ of ξ0 such that for any κ ∈ B⌊α⌋, for any κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0

and for any compact set K ⊂ Rd∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(ξ)eix·ξdξ

∣∣∣∣ ≲ 1,

∣∣∣∣ ∫
Γ

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ ≲ λα, ∀λ ∈ (0, 1],∀x ∈ K, (3.2.2)

On account of Theorem A.11.9, the estimates in Equation (3.2.2) can be equivalently written as

|⟨F−1[IΓ(ξ)ϕ̂u(ξ)], κλx⟩| ≲ λα, |⟨F−1[IΓ(ξ)ϕ̂u(ξ)], κx⟩| ≲ 1 ∀x ∈ K,∀λ ∈ (0, 1],
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where IΓ denotes the characteristic function on Γ, defined by

IΓ(ξ) :=
{

1 if ξ ∈ Γ,
0 otherwise.

On account of Definition 2.1.24, it descends that

F−1[IΓ(ξ)ϕ̂u(ξ)] ∈ Bα,loc∞,∞(Rd). (3.2.3)

Denoting the (d− 1)-dimensional sphere by Sd−1 and given ϵ > 0, we choose ψ ∈ C∞(Sd−1) such that

supp(ψ) ⊂
{
ξ ∈ Rd \ {0} :

∣∣∣∣ ξ|ξ| − ξ0
|ξ0|

∣∣∣∣ < ϵ

}
⊂ Γ,

and ψ(ξ0/|ξ0|) ̸= 0. In addition, let χ ∈ C∞(Rd) be such that χ(ξ) = 0 if |ξ| ≤ c and χ(ξ) = 1 if |ξ| ≥ 2c,
where c is a positive real constant chosen so that χ(ξ0) ̸= 0. We set

a(x, y, ξ) := ϕ(x)ψ

(
ξ

|ξ|

)
χ(ξ)ϕ(y) ∈ S0(Rd × Rd;Rd).

By Definition 2.2.15, A := Op(a) is a properly supported pseudodifferential operator lying in Ψ0(Rd). In
addition, on account of Definition 2.2.30, we infer that A is elliptic at (x0, ξ0). To conclude, combining
Equation (3.2.3) and Theorem 2.2.38, it descends that Au ∈ Bα,loc∞,∞(Rd).
Conversely, let (x0, ξ0) ̸∈

⋂
A∈Ψ0(Rd)

Au∈Bα,loc
∞,∞(Rd)

Char(A). Therefore, there exists A ∈ Ψ0(Rd), elliptic at (x0, ξ0)

as per Definition 2.2.48, such that Au ∈ Bα,loc∞,∞(Rd). We can choose once more ϕ, ψ and χ as in the
previous part of the proof so that

WF ′(B) ⊂ Ell(A),

where B := OpR(ψ(ξ/|ξ|)χ(ξ)ϕ(y)) and where WF ′(B) denotes the operator wavefront set of B as per
Definition 2.2.44. We show that Bu ∈ Bα,loc∞,∞(Rd). On account of Proposition 2.2.51, there exists a

properly supported microlocal parametrix Q ∈ Ψ0(Rd) of A on WF ′(B) such that

WF ′(I −QA) ∩WF ′(B) = ∅.

Therefore, we can split Bu as follows:

Bu = (BQ)(Au) +B(I −QA)u.

Since WF ′(I − QA) ∩WF ′(B) = ∅, it descends that B(I − QA)u ∈ C∞(Rd). Chosen ρ ∈ D(Rd) such
that ρ = 1 on supp(ϕ), it holds true that

(BQ)(Au) = (BQ)(ρAu) +BQ((1− ρ)Au).

On the one hand, being ρ = 1 on supp(ϕ), then (BQ)((1 − ρ)Au) = 0. On the other hand, on account
of Theorem 2.2.38, it descends that (BQ)(ρAu) ∈ Bα,loc∞,∞(Rd). As a result, we conclude that Bu ∈
Bα,loc∞,∞(Rd). Therefore, on account of Proposition 2.1.33, it descends that for any κ ∈ B⌊α⌋ as per

Definition 2.1.22 and for any compact set K ⊂ Rd,∣∣∣∣ ∫
Ell(ψ(D/|D|)χ(D))

ψ

(
ξ

|ξ|

)
χ(ξ)ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ ≲ λα, ∀λ ∈ (0, 1],∀x ∈ K. (3.2.4)
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On account of Remark 2.2.49, there exists a symbol s ∈ S0(Rd;Rd) such that

R(ξ) := 1− ψ

(
ξ

|ξ|

)
χ(ξ)s(ξ) ∈ S−1(Rd;Rd),

for any ξ ∈ Ell(ψ(D/|D|)χ(D)), where Ell(ψ(D/|D|)χ(D)) stands for the elliptic set of ψ(D/|D|)χ(D)
as per Definition 2.2.48. Given x ∈ K and λ ∈ (0, 1], it descends that∣∣∣∣ ∫

Ell(ψ(D/|D|)χ(D))

ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣ = ∣∣∣∣ ∫
Ell(ψ(D/|D|)χ(D))

(
ψ

(
ξ

|ξ|

)
χ(ξ)s(ξ) +R(ξ)

)
ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣
≤

∣∣∣∣ ∫
Ell(ψ(D/|D|)

ψ

(
ξ

|ξ|

)
χ(ξ)s(ξ)ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣+ ∣∣∣∣ ∫
Ell(ψ(D/|D|)

R(ξ)ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣
=

∣∣∣∣〈s(D)ψ

(
D

|D|

)
χ(D)(ϕu), κλx

〉∣∣∣∣︸ ︷︷ ︸
|I1|

+

∣∣∣∣ ∫
Ell(ψ(D/|D|)

R(ξ)ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣︸ ︷︷ ︸
|I2|

. (3.2.5)

On the one hand, Theorem 2.2.38 entails that

|I1| =
∣∣∣∣〈s(D)(Au), κλx

〉∣∣∣∣ ≲ λα, ∀λ ∈ (0, 1],∀x ∈ K.

On the other hand, since R(D) ∈ Ψ−1(Rd) and s(D)ψ

(
D
|D|

)
χ(D)(ϕu) ∈ Bα,loc∞,∞(Rd), it descends that

|I2| ≤
∣∣∣∣〈R(D)s(D)ψ

(
D

|D|

)
χ(D)(ϕu), κλx

〉∣∣∣∣+ ∣∣∣∣ ∫
Ell(ψ(D/|D|))

R2(ξ)ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣
≲ λα+1 +

∣∣∣∣ ∫
Ell(ψ(D/|D|)χ(D))

R2(ξ)ϕ̂u(ξ)κ̌(λξ)eix·ξdξ

∣∣∣∣, ∀λ ∈ (0, 1],∀x ∈ K,

where we applied once more Theorem 2.2.38. Therefore, we conclude that (x0, ξ0) ̸∈WFα(u).

Next we prove the characterization of the Besov wavefront set of a distribution in terms of the smooth
counterpart - see [DRS22, Prop. 35].

Proposition 3.2.2: Let α ∈ R and let u ∈ D′(Rd). Then

WFα(u) =
⋂

v∈Bα,loc
∞,∞(Rd)

WF (u− v), (3.2.6)

where WF denotes the smooth wavefront set introduced in Definition 2.3.6.

Proof. Let (x0, ξ0) ∈ WFα(u) and let v ∈ Bα,loc∞,∞(Rd). On account of Proposition 2.3.11, it holds true
that

WF (u− v) =
⋂

A∈Ψ0(Rd)

A(u−v)∈C∞(Rd)

Char(A),

where Char(A) is the characteristic set of A defined in Equation (2.2.22). Fix A ∈ Ψ0(Rd) such that
A(u− v) ∈ C∞(Rd). Therefore, since Av ∈ Bα,loc∞,∞(Rd) per Theorem 2.2.38, it descends that

Au = A(u− v) +Av ∈ Bα,loc∞,∞(Rd).
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Since (x0, ξ0) ∈WFα(u), Theorem 3.2.1 entails that (x0, ξ0) ∈ Char(A). Therefore,

WFα(u) ⊂
⋂

v∈Bα,loc
∞,∞(Rd)

WF (u− v).

Conversely, let (x0, ξ0) ̸∈WFα(u). On account of Definition 3.1.1, there exist ϕ ∈ D(Rd) with ϕ(x0) = 1
and an open conic neighborhood Γ of ξ0 such that Equations (3.1.1) and (3.1.2) are fulfilled. Choose
v ∈ Bα,loc∞,∞(Rd) such that

v̂(ξ) =

{
ϕ̂u(ξ) if ξ ∈ Γ,

0 if ξ ̸∈ Γ.
(3.2.7)

Setting θ := ϕu − v, on account of Equation (3.2.7), θ̂ vanishes on Γ and therefore (x0, ξ0) ̸∈ WF (θ).
Let χ ∈ D(Rd) be such that χϕ = 1 in a neighborhood of x0. Then, it holds true that χv ∈ Bα∞,∞(Rd)
and (x0, ξ0) ̸∈ WF (χθ). Therefore, observing that u− χv = (1 − χϕ)u+ χθ, it descends that (x0, ξ0) ̸∈
WF (u − χv) since (1 − χϕ)u vanishes in a neighborhood of x0. Since χ(x0) = 1, we can conclude that
(x0, ξ0) ̸∈WF (u− v).

Remark 3.2.3: Let α ∈ R and let u ∈ D′(Rd). Equation (3.2.6) can be equivalently formulated as
follows: (x0, ξ0) ̸∈WFα(u) if and only if there exists v ∈ Bα,loc∞,∞(Rd) such that (x0, ξ0) ̸∈WF (u− v).

At last, we prove that the smooth wavefront set of a distribution can be characterized in turn by means
of the union of all Besov counterparts - see [DRS22, Cor. 36]. The following result is an adaptation to
the case at hand of the one valid in the framework of the Sobolev wavefront set - see [Hin21, Prop. 6.32].

Corollary 3.2.4: If u ∈ D′(Rd), then

WF (u) =
⋃
α∈R

WFα(u). (3.2.8)

Proof. Let (x0, ξ0) ∈
⋃
α∈RWFα(u). Hence there exists α ∈ R such that (x0, ξ0) ∈ WFα

′
(u) for every

α′ ≥ α. On account of Proposition 3.2.2 and of Remark 3.1.6, we choose v ∈ C∞(Rd) such that
(x0, ξ0) ∈WF (u−v). Since WF (u−v) =WF (u), we infer that

⋃
α∈RWFα(u) ⊂WF (u). Since WF (u)

is a closed conic set, it descends that
⋃
α∈RWFα(u) ⊂WF (u).

Conversely, let (x0, ξ0) ̸∈ WFα(u) for all α ∈ R. Therefore, there exists an open conic neighborhood
V ⊂ Rd × (Rd \ {0}) of (x0, ξ0) as per Definition 2.2.41 such that V ∩WFα(u) = ∅ for every α ∈ R. On
account of Theorem 3.2.1, there exists A ∈ Ψ0(Rd), elliptic at (x0, ξ0) as per Definition 2.2.48, such that
WF ′(A) ⊂ V and Au ∈ Bα,loc∞,∞(Rd) for every α ∈ R. Therefore, Remark 3.1.6 entails that Au ∈ C∞(Rd).
On account of Proposition 2.3.11, it descends that (x0, ξ0) ̸∈WF (u).

Remark 3.2.5: Definition 3.1.1 as well as the results proved so far can be straightforwardly adapted to
distributions u ∈ D′(Ω), where Ω is an arbitrary domain of Rd.

3.3 Structural Properties of the Besov Wavefront Set

As explained in Appendix A, a few notable operations such as pullback and multiplication are well-defined
under restrictive assumptions on the distributions at hand. However, in Section 2.3 we have seen that the
smooth wavefront set provides sufficient criteria to extend the definition of these operations to the whole
space of distributions. In this section, we shall see that the notion of Besov wavefront set, introduced in
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Definition 3.1.1, plays a similar rôle to its smooth counterpart by providing weaker conditions to extend
the same operations. We shall also discuss the microlocal properties of pseudodifferential operators as
per Definition 2.2.15 within the current scenario. From an operational viewpoint, the characterization of
the Besov wavefront set in terms of pseudodifferential operators (Theorem 3.2.1) shall be rather useful
in proving the results of this Section.

In Subsection 3.3.1, we discuss the microlocal properties of pseudodifferential operators within the
framework of Besov wavefront set - see Proposition 3.3.1. Moreover, we prove a microlocal elliptic
regularity result in terms of the Besov wavefront set - see Corollary 3.3.3. These results turn out to
be relevant to analyze the Besov regularity of solutions to partial differential equations - see Example
3.3.4. In Subsection 3.3.2, we establish a sufficient condition in terms of the Besov wavefront set to pull
back an underlying distribution along an embedding - see Theorem 3.3.5. In addition, as we shall see
in Example 3.3.6, we emphasize that this condition is weaker than that of Theorem 2.3.19. We also
prove that the Besov wavefront set is invariant under the action of a diffeomorphism. This result is the
cornerstone to extend the notion of Besov wavefront set to distributions supported on an arbitrary smooth
manifold. In Subsection 3.3.3, we deal with the question of the product between two distributions, again
resorting to the concept of Besov wavefront set. Analogously to Theorem 2.3.24, we formulate a version
of Hörmander’s criterion adapted to the current framework and we provide an estimate for the Besov
wavefront set of the product, see Theorem 3.3.10. This result can be read as a microlocal formulation
of the Young’s product theorem (Theorem 2.1.20), which is often used in the applications to nonlinear
stochastic partial differential equations - see [Hai14, Hai15, GIP15, BL22A]. In Subsection 3.3.4, we
discuss the Besov wavefront set of Ku, where K : D(Rd2) → D′(Rd1) is a linear map with Schwartz kernel
K ∈ D′(Rd1 × Rd2). Analogously to Theorem 2.3.29, if u ∈ E′(Rd2), we establish a sufficient condition
in terms of the Besov wavefront sets of K and u for the well-posedness of Ku - see Theorem 3.3.15. In
addition, we prove a bound on the Besov wavefront set of Ku. This result entails in turn a microlocal
version of the renowned Schauder estimates ([Sim97]) which are often used to analyze the regularity of
solutions to (stochastic) partial differential equations, c.f. [Hai14], [GIP15]. Lastly, in Subsection 3.3.5
we shall prove a theorem of propagation of singularities for a large class of hyperbolic partial differential
equations resorting to the formulation of the Besov wavefront set in terms of pseudodifferential operators
as per Theorem 3.2.1. More precisely, this result provides a characterization of singularities of a solution
to a suitable hyperbolic partial differential equation in terms of the Besov wavefront set. In the following,
we shall make use of the notions introduced in Sections 3.1, 3.2 and 2.2. The content of this section is
mainly based on [DRS22, Sect. 4].

3.3.1 Microlocal Properties of Pseudodifferential Operators and Besov Wave-
front Set

This subsection is devoted to discussing the interplay between pseudodifferential operators (ΨDOs) as per
Definition 2.2.15 and distributions from a microlocal viewpoint. More precisely, we prove the microlocality
of ΨDOs and an elliptic regularity result in the framework of the Besov wavefront set as per Definition
3.1.1 as well as Theorem 3.2.1. The following results are of considerable interest to analyze the Besov-type
regularity of a solution to a partial differential equation. Throughout this subsection, we only consider
properly supported ΨDOs as per Definition 2.2.25.
We start by proving the microlocality of pseudodifferential operators within the current scenario, which
is an adaptation of Proposition 2.3.12 - see [DRS22, Prop. 41].

Proposition 3.3.1: Let α,m ∈ R. If A ∈ Ψm(Rd) and u ∈ D′(Rd), then

WFα−m(Au) ⊂WF ′(A) ∩WFα(u), (3.3.1)
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where WF ′ stands for the operator wavefront set as per Definition 2.2.44.

Proof. Let (x0, ξ0) ̸∈ WF ′(A). On account of Proposition 2.2.51, there exists B ∈ Ψ0(Rd) such that
WF ′(B) ∩ WF ′(A) = ∅ and (x0, ξ0) ∈ Ell(B), where Ell(B) stands for the elliptic set of B as per
Definition 2.2.48. As a result, Proposition 2.2.45 yields WF ′(BA) = ∅, that is to say BA ∈ Ψ−∞(Rd).
Therefore, B(Au) lies in C∞(Rd) ↪→ Bα−m,loc∞,∞ (Rd). On account of Theorem 3.2.1, it descends that
(x0, ξ0) ̸∈WFα−m(Au).
Let (x0, ξ0) ̸∈ WFα(u). On account of Theorem 3.2.1, there exists Ã ∈ Ψ0(Rd), elliptic at (x0, ξ0), such
that Ãu ∈ Bα,loc∞,∞(Rd). Fix B ∈ Ψ0(Rd), elliptic at (x0, ξ0), such that WF ′(B) ⊂ Ell(Ã). On account of

Proposition 2.2.51, there exists a microlocal parametrix Q ∈ Ψ0(Rd) of Ã on WF ′(B) such that

WF ′(B) ∩WF ′(I −QÃ) = ∅. (3.3.2)

Hence,

B(Au) = BAQ(Ãu) +BA(I −QÃ)u.

Combining Equation (3.3.2) and Proposition 2.2.45, we infer that BA(I −QÃ) ∈ Ψ−∞(Rd). This entails
that BA(I − QÃ)u ∈ C∞(Rd). At the same time, on account of Proposition 2.2.26, BAQ(Ãu) lies in
Bα−m,loc∞,∞ (Rd) since BAQ ∈ Ψm(Rd) and Ãu ∈ Bα,loc∞,∞(Rd). To conclude, since B(Au) ∈ Bα−m,loc∞,∞ (Rd)
and (x0, ξ0) ∈ Ell(B), the point (x0, ξ0) does not lie in WFα−m(Au) per Theorem 3.2.1.

Subsequently, we prove a kind of converse of Proposition 3.3.1 and a microlocal elliptic regularity result
within the current framework - [DRS22, Prop. 42, Cor. 43]. The following results are an adaptation to
the case at hand of Proposition 2.3.13.

Proposition 3.3.2: Let m,α ∈ R and let A ∈ Ψm(Rd). If u ∈ D′(Rd), then

WFα(u) ⊂ Char(A) ∪WFα−m(Au). (3.3.3)

Proof. Let (x0, ξ0) ̸∈ Char(A)∪WFα−m(Au). On account of Theorem 3.2.1, there exists B ∈ Ψ0(Rd), el-
liptic at (x0, ξ0) as per Definition 2.2.48, such that B(Au) ∈ Bα−m,loc∞,∞ (Rd). Without loss of generality, we

choose a properly supported ΨDO P ∈ Ψ−m(Rd) such that (x0, ξ0) ∈ Ell(P ). On account of Proposition
2.2.26, it descends that PBA ∈ Ψ0(Rd). Therefore, Theorem 2.2.38 entails that (PBA)u ∈ Bα,loc∞,∞(Rd).
Since (x0, ξ0) ∈ Ell(PBA), it descends that (x0, ξ0) ̸∈WFα(u).

Corollary 3.3.3: Let m,α ∈ R and let A ∈ Ψm(Rd) be elliptic as per Definition 2.2.30. If u ∈ D′(Rd),
then

WFα(u) =WFα−m(Au). (3.3.4)

Proof. Since A ∈ Ψm(Rd) is elliptic, it descends that Char(A) = ∅. Therefore, combining Propositions
3.3.1 and 3.3.2, we conclude that WFα(u) =WFα−m(Au).

Proposition 3.3.2 and Corollary 3.3.3 play a key rôle to analyze the Besov-type regularity of solutions to
partial differential equations.

Example 3.3.4: Let ∆ :=
∑d
j=1 ∂

2
j be the Laplace operator on Rd and let h ∈ Bα,loc∞,∞(Rd). In addition,

let u ∈ D′(Rd) be such that

−∆u = h.

Since A is an elliptic ΨDO of order 2, Corollary 3.3.3 yields that u ∈ Bα+2,loc
∞,∞ (Rd).
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3.3.2 Trasformations Properties under Pullback

As explained in Subsection 2.3.2, the pullback of a distribution along an embedding is in general an
ill-defined operation. However, imposing a suitable condition which involves the smooth wavefront set
of the distribution at hand, the feasibility of this operation is guaranteed - see Theorem 2.3.19. In this
Subsection, we shall see that the notion of Besov wavefront set as per Definition 3.1.1 plays a similar
rôle to that of its smooth counterpart but then again, as one should expect, it allows to establish a more
accurate existence result for the pullback in comparison to the one formulated in the smooth setting -
see Theorem 3.3.5. Since the product of two distributions can be defined via pullback as explained in
Subsection 2.3.3, we shall see in Subsection 3.3.3 that this result entails a weaker sufficient condition
than Hörmander’s criterion for the existence of the product. Lastly, as a byproduct we prove that the
Besov wavefront set is invariant under a change of coordinates. This result is noteworthy because it
is instrumental in showing that the definition of Besov wavefront set can be extended to distributions
supported on an arbitrary smooth manifold as per Definition A.10.1. In order to prove the following
results, we shall exploit the characterizations of the Besov wavefront set outlined in Section 3.2.

We start by proving the main result of this subsection, which establishes a sufficient criterion for the
well-posedness of the pullback of a distribution via an embedding within the framework of the Besov
wavefront set - see [DRS22, Th. 38]. On account of Remark 3.2.5, we shall consider distributions lying
in D′(Ω), where Ω is an arbitrary domain of Rd.
Theorem 3.3.5: Let Ω1 ⊂ Rd1 , Ω2 ⊂ Rd2 be two open sets with d1 < d2 and let f : Ω1 → Ω2 be an
embedding as per Definition 2.3.18. Then there exists a unique f∗u ∈ D′(Ω1) for any u ∈ D′(Ω2) such
that there exists α′ > 0 so that

Nf ∩WFα
′
(u) = ∅, (3.3.5)

where Nf stands for the set of normals of f , defined in Equation (2.3.5). In addition, for any u ∈ D′(Ω2)
satisfying Equation (3.3.5) and for all α ∈ R, it holds true that

WFα(f∗u) ⊂ f∗WFα(u), (3.3.6)

where
f∗WFα(u) := {(x, tdf(x)ξ) : (f(x), ξ) ∈WFα(u)} (3.3.7)

and df denotes the differential of f .

Proof. Combining Proposition 3.2.2 and Equation (3.3.5), it descends that there exists v ∈ Bα
′,loc

∞,∞ (Ω2)
as per Definition 2.1.30 such that

Nf ∩WF (u− v) = ∅.

Therefore, on account of Theorem 2.3.19, there exists f∗(u−v) lyingD′(Ω1). Being B
α′,loc
∞,∞ (Ω2) ↪→ C0(Ω2)

per Theorems 2.1.37 and 2.1.38, f∗v is defined as the composition v ◦ f . Therefore, since

f∗u = f∗(u− v) + f∗v,

we conclude that there exists f∗u ∈ D′(Ω1). Next we show Equation (3.3.6). Let α ∈ R and let
(x0,

tdf(x)ξ0) ̸∈ f∗WFα(u). Hence, Equation (3.3.7) implies that (f(x0), ξ0) ̸∈ WFα(u). On account of
Theorem 3.2.1, it descends that there exists A ∈ Ψ0(Ω2), properly supported as per Definition 2.2.25,
such that Au ∈ Bα,loc∞,∞(Ω2) and (f(x0), ξ0) ∈ Ell(A), where Ell(A) stands for the elliptic set of A as per
Definition 2.2.48. Due to Proposition 2.2.36 and Remark 2.2.37, being f a diffeomorphism on its image,
it descends that

Af : D
′(Ω1) → D′(Ω1), D′(Ω1) ∈v 7→ f∗A((f−1)∗v)
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is a properly supported pseudodifferential operator lying in Ψ0(Ω1). Still on account of Proposition 2.2.36,
it holds true that

σ0(Af )(x0,
tdf(x0)ξ0) = σ0(A)(f(x0), ξ0) ̸= 0.

To conclude that (x0,
tdf(x0)ξ0) ̸∈ WFα(f∗u), we show that Af (f

∗u) ∈ Bα,loc∞,∞(Ω1) as per Definition
2.1.30. Given ϕ ∈ D(Ω1) and κ ∈ B⌊α⌋ as per Definition 2.1.22, it holds true that

|⟨ϕAf (f∗u), κλx⟩| = |⟨f∗(Au), ϕκλx⟩| = |⟨Au, (f−1)∗ϕ((f−1)∗κ)λf(x)|det(df
−1)|⟩|

≲ |⟨Au, (f−1)∗ϕ((f−1)∗κ)λf(x)⟩| ≲ λα, ∀λ ∈ (0, 1], ∀x ∈ Ω1,

where in the last inequality we used that Au ∈ Bα,loc∞,∞(Ω2). Analogous estimates yield

|⟨ϕAf (f∗u), κx⟩| ≲ 1,

for any x ∈ Ω1 and κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0. Since (x0,
tdf(x)ξ0) ̸∈ Char(Af ) and Af (f

∗u) =
f∗(Au) ∈ Bα,loc∞,∞(Rd), Theorem 3.2.1 entails that (x0,

tdf(x)ξ0) does not lie in WFα(f∗u).

Remark 3.3.6: In the framework of the smooth wavefront set, a sufficient condition to pullback an
u ∈ D′(Rd) is

Nf ∩WF (u) = ∅, (3.3.8)

see Theorem 2.3.19. We show that Equation (3.3.5) codifies a weaker condition than that in Equation
(3.3.8). On account of Corollary 3.2.4, it descends that Equation (3.3.8) implies Equation (3.3.5). How-
ever, the converse does not hold true in general. For instance, let u ∈ D′(R2) be such that its integral

kernel is ũ(x1, x2) = (x21 + x22)
1
4 and let δ : R → R × R be the diagonal map, δ(x) = (x, x). On account

of Example 3.1.14 and being Nδ = {(x, x, ξ,−ξ)}, it descends that

Nδ ∩WF
1
2 (u) = ∅, Nδ ∩WFα(u) ̸= ∅,

for any α > 1/2. This entails that Nδ ∩WF (u) ̸= ∅. Moreover, on account of Theorem 3.3.5, there exists

δ∗u ∈ D′(R), whose integral kernel is (δ∗ũ)(x) = 2
1
4 |x| 12 .

We conclude this subsection by proving that the Besov wavefront set of a distribution is invariant under
the action of diffeomorphisms - see [DRS22, Th. 39].

Theorem 3.3.7: Let Ω1,Ω2 ⊂ Rd, let f : Ω1 → Ω2 be a diffeormophism and let α ∈ R. If u ∈ D′(Ω2),
then

WFα(f∗u) = f∗WFα(u),

where f∗WFα(u) has been defined in Equation (3.3.7).

Proof. To start with, we prove that WFα(f∗u) ⊂ f∗WFα(u). Let (x0,
tdf(x0)ξ0) ̸∈ f∗WFα(u). Hence,

Equation (3.3.7) entails that (f(x0), ξ0) ̸∈ WFα(u). On account of Theorem 3.2.1, there exists A ∈
Ψ0(Ω2), elliptic at (f(x0), ξ0) as per Definition 2.2.48, such that Au ∈ Bα,loc∞,∞(Ω2). Bearing in mind that
f : Ω1 → Ω2 is a diffeomorphism,

Af : D
′(Ω1) → D′(Ω1), D′(Ω1) ∈v 7→ f∗A((f−1)∗v)

is a properly supported pseudodifferential operator lying in Ψ0(Ω1) on account of Proposition 2.2.36 and
of Remark 2.2.37. In addition, Proposition 2.2.36 entails that

σ0(Af )(x0,
tdf(x0)ξ0) = σ0(A)(f(x0), ξ0) ̸= 0,



64 CHAPTER 3. BESOV WAVEFRONT SET

that is to say Af is elliptic at (x0,
tdf(x0)ξ0), see Definition 2.2.48. In addition, reasoning as in the

proof of Theorem 3.3.5, it turns out that Af (f
∗u) ∈ Bα,loc∞,∞(Ω1) as per Definition 2.1.30. On account of

Theorem 3.2.1, we deduce that (x0,
tdf(x0)ξ0) ̸∈WFα(f∗u).

Conversely, let (x0, ξ0) ̸∈ WFα(f∗u). On account of Theorem 3.2.1, there exists Af ∈ Ψ0(Ω1), properly
supported, such that Af (f

∗u) ∈ Bα,loc∞,∞(Ω1) and (x0, ξ0) ∈ Ell(Af ), where Ell(Af ) stands for the elliptic
set of Af introduced in Definition 2.2.48. For any v ∈ D′(Ω2), we set

Av := (f−1)∗(Af (f
∗v)).

On account of Proposition 2.2.36, it holds true that A ∈ Ψ0(Ω2) and

σ0(A)(f(x0), (
tdf(x0))

−1ξ0) = σ0(Af )(x0, ξ0) ̸= 0.

In view of Remark 2.2.37, A is also properly supported since f is a diffeomorphism. Reasoning as in the
proof of Theorem 3.3.5, it turns out that Au ∈ Bα,loc∞,∞(Ω2). On account of Theorem 3.2.1, it descends
that (x0, ξ0) ̸∈ f∗WFα(u).

Remark 3.3.8: Analogously to Proposition 2.3.21, Theorem 3.3.7 is particularly noteworthy since it
is the cornerstone to define the Besov wavefront set of a distribution supported on a smooth mani-
fold, following the same rationale of Remark 3.1.2. Let M be a d-dimensional smooth manifold and let
A = {(Ui, hi)}i be a smooth atlas thereon. On account of Remark 2.3.7, if u ∈ D′(M) as per Defini-
tion A.10.1, we define WFα(u) as the subset of T ∗M \ {0} such that its restriction to Ui is given by
(hi)

∗WFα((h−1
i )∗u).

3.3.3 Product of distributions and Besov Wavefront Set

A well-known result of the theory of distributions asserts that the product of two distributions is well-
defined if their singular supports are disjoint - see Theorem A.5.3. However, even though the singular
supports are not disjoint, in Subsection 2.3.3 we have shown that the product among two distributions can
be defined imposing a suitable condition on the smooth wavefront sets, called Hörmander’s criterion - see
Theorem 2.3.24. In this Subsection, we address the same issue in the context of the Besov wavefront set
as per Definition 3.1.1 as well as Theorem 3.2.1. More precisely, we formulate a version of Hörmander’s
criterion for the existence of the product of two distributions, adapted to the current framework. If the
product exists, we also establish an estimate of the associated Besov wavefront set - see Theorem 3.3.10.
This result should be read as a microlocal version of the Young’s product theorem (Theorem 2.1.20),
which is often applied to analyze the well-posedness of nonlinear stochastic partial differential equations
- see [Hai14, Hai15, GIP15, BL22A]. Moreover, Theorem 3.3.10 shall play a prominent rôle in Subsection
3.3.4, which discusses the analysis of the Besov wavefront set of Ku, where K is a linear map from D(Ω2)
to D′(Ω1) while Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 are two open sets. Lastly, we shall present in Section 3.4 an
application of Theorem 3.3.10 in the context of coherent germs of distributions as per Definition 2.4.4.

As explained in Subsection 2.3.3, the product between two distributions can be thought as the pullback
of their product tensor along the diagonal. For this reason, since the interplay between the Besov
wavefront set and the pullback of a distribution has already been discussed in Subsection 3.3.2, we wish
to establish an estimate on the singular behaviour of the tensor product of two distributions within the
current framework - see [DRS22, Prop. 44]. We shall omit the proof of this result since it is an adaptation
to the case in hand of the one valid in the context of the Sobolev wavefront set, see [JS02, Prop. B.5],
which is based in turn on [Hör97, Lemma 11.6.3]. First of all we introduce some useful notations. Given
u ∈ D′(Rd) and α ∈ R, we set

WFα0 (u) :=WFα(u) ∪ (supp(u)× {0}), WF0(u) :=WF (u) ∪ (supp(u)× {0}). (3.3.9)
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In the following, on account of Remark 3.2.5, we shall consider distributions supported on an open set of
Rd.
Proposition 3.3.9: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets and let α1, α2 ∈ R. If u ∈ D′(Ω1) and
v ∈ D′(Ω2), then the following inclusions hold true:

WFα1+α2(u⊗ v) ⊂ (WFα1
0 (u)×WF (v)) ∪ (WF (u)×WFα2

0 (v)), (3.3.10)

and, setting α := min{α1, α2, α1 + α2},

WFα(u⊗ v) ⊂ (WFα1(u)×WF0(v)) ∪ (WF0(u)×WFα2(v)). (3.3.11)

At last, we prove a counterpart of Hörmander’s criterion within the context of the Besov wavefront set
- see [DRS22, Th. 45]. In particular, the following result should be read as a microlocal formulation of
the Young’s product theorem, see Theorem 2.1.20.

Theorem 3.3.10: Let Ω ⊂ Rd be an open set and let u, v ∈ D′(Ω). Suppose that for any (x, ξ) ∈
Ω×(Rd\{0}) there exist α′

1, α
′
2 ∈ R with α′

1+α
′
2 > 0 such that (x, ξ) ̸∈WFα

′
1(u) and (x,−ξ) ̸∈WFα

′
2(v).

Then the product uv ∈ D′(Ω) can be defined as

uv := δ∗(u⊗ v),

where δ∗ denotes the pullback along the diagonal map δ : Ω → Ω × Ω, δ(x) := (x, x). In addition, for
any α1, α2 ∈ R, it holds true that

WFα(uv) ⊂ {(x, ξ1 + ξ2) : (x, ξ1) ∈WFα1(u), (x, ξ2) ∈WF0(v) or (x, ξ1) ∈WF0(u), (x, ξ2) ∈WFα2(v)},
(3.3.12)

where we set α := min{α1, α2, α1 + α2}.

Proof. Per hypotesis, there exist α′
1, α

′
2 ∈ R with α′

1 + α′
2 > 0 such that

Nδ ∩WFα
′
1+α

′
2(u⊗ v) = ∅,

where Nδ = {(x, x, ξ,−ξ)} is the set of normals of δ defined in Equation (2.3.5). On account of Theorem
3.3.5, it descends that there exists δ∗(u⊗v) ∈ D′(Ω). Furthermore, on account of Theorem 3.3.5 combined
with Equation (3.3.11), it descends that for any α1, α2 ∈ R

WFα(δ∗(u⊗ v)) ⊂ δ∗WFα(u⊗ v) =

= {(x, ξ1 + ξ2) : (x, ξ1) ∈ WFα1(u), (x, ξ2) ∈WF0(v) or (x, ξ1) ∈WF0(u), (x, ξ2) ∈ WFα2(v)},

where α := min{α1, α2, α1 + α2}.

Remark 3.3.11: Let u ∈ Bα1,loc
∞,∞ (Rd) and let v ∈ Bα2,loc

∞,∞ (Rd) with α1 + α2 > 0. On account of
Proposition 3.1.5, it descends that WFα1(u) =WFα2(v) = ∅. Therefore, on account of Theorem 3.3.10,
there exists uv ∈ D′(Rd). In addition, if we set α1 ∧ α2 := min{α1, α2}, Equation 3.3.12 entails that
WFα1∧α2(uv) = ∅, that is to say uv ∈ Bα1∧α2,loc

∞,∞ (Rd). As mentioned above, on account of Theorem
3.3.10, we recover Young’s product theorem as per Theorem 2.1.20.
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3.3.4 Schwartz Kernels and Besov Wavefront Set

In Subsection 3.1, we introduced the notion of Besov wavefront set, which estimates the directions in
Fourier space of an underlying distribution comparing them with those of an element lying in a suitable
Besov space Bα∞,∞(Rd) as per Definition 2.1.24. The aim of this subsection is to discuss the Besov
wavefront set of Ku, where K : D(Ω2) → D′(Ω1) is a linear map with Schwartz kernel K ∈ D′(Ω1 ×Ω2).
Similarly to a result shown in Subsection 2.3.5, given u ∈ E′(Ω2), we shall establish a criterion for the
existence of Ku that involves a condition on the Besov wavefront sets of K and u as well as an estimate on
the singular behavior of Ku. This result also leads to a generalization of Schauder estimates, see [Sim97],
which is often used to analyze the Bα∞,∞-type regularity of a solution to a partial differential equation,
such as the heat equation. We shall mainly refer to [DRS22, Sect. 4]. For basic notions concerning
Schwartz kernels, the reader may refer to Appendix A.8. On account of Remark 3.2.5, throughout this
subsection we shall consider distributions lying in D′(Ω), where Ω ⊂ Rd is an open set.

Let K : D(Ω2) → D′(Ω1) be a linear map with Schwartz kernel K ∈ D′(Ω1 × Ω2), where Ω1 ⊂
Rd1 ,Ω2 ⊂ Rd2 are two open sets. As observed in the proof of Theorem 2.3.29, for any u ∈ D(Ω2) we can
define Ku as

Ku = π∗(K(1⊗ u)),

where π : Ω1 ×Ω2 → Ω1 is the canonical projection on the first factor while π∗ denotes the push-forward
map along π as per Definition 2.3.25. For this reason, we start by proving two ancillary results. The
first one is a regularity result concerning the push-forward of a distribution lying in Bα∞,∞(Ω1×Ω2) - see
[DRS22, Cor. 47]. The second one asserts how the Besov wavefront set trasforms under push-forwards
- see [DRS22, Prop. 48]. In what follows, on account of Remark 3.1.3, we can only consider compactly
supported distributions.

Corollary 3.3.12: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets, let K ∈ Bα,loc∞,∞(Ω1 × Ω2) with α ∈ R and
let π : Ω1×Ω2 → Ω1 be the canonical projection on the first factor defined by π(x1, x2) = x1. In addition,
suppose that π is a proper map when restricted to supp(K). Then π∗(K) lies in Bα,loc∞,∞(Ω1), where π∗ is
the push-forward map along π as per Definition 2.3.25.

Proof. Without loss generality, we consider K ∈ Bα,loc∞,∞(Ω1 × Ω2) ∩ E′(Ω1 × Ω2). By Definition 2.3.25, it
holds true that

⟨π∗(K), ϕ⟩ = K(ϕ⊗ 1) ∀ϕ ∈ C∞(Ω1).

Let κ ∈ B⌊α⌋ as per Definition 2.1.22. Since κ⊗ 1 ∈ B⌊α⌋, it descends that

|⟨π∗(K), κλx1
⟩| = |K((κ⊗ 1)λ(x1,x2)

)| ≲ λα, ∀λ ∈ (0, 1],∀x1 ∈ Ω1.

At the same time, given κ ∈ D(B(0, 1)) with κ̌(0) ̸= 0, it descends that

|⟨π∗(K), κx1
⟩| = |K((κ⊗ 1)(x1,x2))| ≲ 1, ∀λ ∈ (0, 1],∀x1 ∈ Ω1.

As a result, we conclude that π∗(K) ∈ Bα∞,∞(Ω1) as per Definition 2.1.24.

Proposition 3.3.13: Let K ∈ D′(Ω1 × Ω2) where Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 are two open sets. In addition,
suppose that the canonical projection on the first factor π : Ω1 × Ω2 → Ω1 is proper when restricted to
supp(K). Then, for any α ∈ R, it holds true that

WFα(π∗(K)) ⊂ {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ supp(K), (x1, x2, ξ1, 0) ∈WFα(K)}, (3.3.13)

where π∗ is the push-forward map by π as per Definition 2.3.25.
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Proof. Without loss of generality, we consider K ∈ E′(Ω1 × Ω2). Since K ∈ E′(Ω1 × Ω2), then π∗(K) ∈
E′(Ω1). As a matter of fact, by Definition 2.3.25, it holds true that

⟨π∗(K), ϕ⟩ = K(ϕ⊗ 1), ∀ϕ ∈ C∞(Ω1).

Therefore, in what follows we consider compactly supported distributions. Let (x1, ξ1) ∈ WFα(π∗(K)).
On account of Proposition 3.2.2, it descends that (x1, ξ1) ∈ WFα(π∗(K) − v) for any v ∈ Bα,loc∞,∞(Ω1) ∩
E′(Ω1). In addition, Corollary 3.3.12 entails that for any v ∈ Bα,loc∞,∞(Ω1) ∩ E′(Ω1) there exists ṽ ∈
Bα,loc∞,∞(Ω1×Ω2)∩E′(Ω1×Ω2) such that v = π∗(ṽ). As a result, it holds true that (x1, ξ1) ∈WF (π∗(K−ṽ))
for any ṽ ∈ Bα,loc∞,∞(Ω1 × Ω2) ∩ E′(Ω1 × Ω2). Applying Proposition 2.3.28, it descends that

WF (π∗(K − ṽ)) ⊂ {(x1, ξ1) : ∃x2 ∈ supp(K − ṽ), (x1, x2, ξ1, 0) ∈WF (K − ṽ)},

for any ṽ ∈ Bα,loc∞,∞(Ω1 × Ω2) ∩ E′(Ω1 × Ω2). The arbitrariness of ṽ and Proposition 3.2.2 entail that
x2 ∈ supp(K) and (x1, x2, ξ1, 0) ∈WFα(K). This proves the statement.

We now are in a position to prove the main results of this subsection. The following theorem establishes
a bound on the Besov wavefront set of Ku for any u ∈ D(Ω2) - see [DRS22, Th. 49].

Theorem 3.3.14: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets and let K : D(Ω2) → D′(Ω1) be a linear
map with Schwartz kernel K ∈ D′(Ω1 × Ω2). Then, for all α ∈ R and for any u ∈ D(Ω2),

WFα(Ku) ⊂ {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ supp(u), (x1, x2, ξ1, 0) ∈WFα(K)}. (3.3.14)

Proof. Let π : Ω1×Ω2 → Ω1 be the projection map on the first factor. Moreover, assume that π is proper
when restricted to supp(K). As observed in Theorem 2.3.29, if u ∈ D(Ω2), then Ku can be defined as
the element lying in D′(Ω1) such that

(Ku)(ϕ) := ⟨π∗(K(1⊗ u)), ϕ⟩ = ⟨K(1⊗ u), ϕ⊗ 1⟩ ∀ϕ ∈ D(Ω1),

where π∗ is the push-forward map along π as per Definition 2.3.25. Since 1⊗u ∈ C∞(Ω1 ×Ω2), then the
product K(1⊗u) is well-defined. Here, K(1⊗u) denotes the standard product between smooth functions
and distributions as per Definition A.5.2. Therefore, Theorem 3.3.10 entails that for any α ∈ R

WFα(K(1⊗ u)) ⊂ {(x1, x2, ξ1, ξ2) ∈WFα(K) : x2 ∈ supp(K)}.

To conclude, on account of Proposition 3.3.13, it descends that

WFα(π∗(K(1⊗ u))) ⊂ {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ supp(u), (x1, x2, ξ1, 0) ∈WFα(K)}.

In the following, we generalize the previous theorem to the case when u ∈ E′(Ω2) and we establish a
sufficient criterion for the well-posedness of Ku - see [DRS22, Th. 50].

Theorem 3.3.15: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets, let K : D(Ω2) → D′(Ω1) be a linear map
with Schwartz kernel K ∈ D′(Ω1 × Ω2) and let u ∈ E′(Ω2). In addition, for any α ∈ R, we set

−WFαΩ2
(K) := {(x2, ξ2) ∈ Ω2 × (Rd2 \ {0}) : ∃x1 ∈ Ω2, (x1, x2, 0,−ξ2) ∈WFα(K)}. (3.3.15)

If for any (x2, ξ2) ∈ Ω2 × (Rd \ {0}) there exist α′
1, α

′
2 ∈ R with α′

1 + α′
2 > 0 such that

(x2, ξ2) ̸∈ −WF
α′

1

Ω2
(K) ∪WFα

′
2(u), (3.3.16)
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then there exists Ku ∈ D′(Ω1). In addition, for any α1, α2 ∈ R, it holds true that

WFα(Ku) ⊂ {(x1, ξ1) ∈ Ω1× (Rd1 \{0}) : ∃(x2, ξ2) ∈ Ω2× (Rd2 \{0}), (x1, x2, ξ1, ξ2) ∈ X ∪Y }, (3.3.17)

where we set α := min{α1, α2, α1 + α2}, X := {(x1, x2, ξ1, ξ2) ∈ WFα1(K) : (x2,−ξ2) ∈ WF0(u)}, Y :=
{(x1, x2, ξ1, ξ2) ∈WF0(K) : (x2,−ξ2) ∈WFα2(u)} while WF0 has been defined in Equation (3.3.9).

Proof. As in the proof of Theorem 3.3.14, we wish to define Ku as

Ku := π∗(K(1⊗ u)),

where π∗ is the push-forward along the canonical projection on the first factor π : Ω1 × Ω2 → Ω1

as per Definition 2.3.25. In order to prove the first part of the statement, we show that the product
K(1⊗ u) ∈ D′(Ω1 ×Ω2) is well-defined. Given α2 ∈ R, on account of Equation (3.3.11), it descends that
WFα2(1 ⊗ u) ⊂ (Ω1 × {0}) ×WFα2(u). As a result, combining Theorem 3.3.10 and Equation (3.3.16),
we infer that there exists K(1 ⊗ u) ∈ D′(Ω1 × Ω2). Yet, being u compactly supported, it descends that
π∗(K(1⊗ u)) is a well-defined element lying in D′(Ω1).

At this stage, we focus on Equation (3.3.17). On account of Proposition 3.3.13, it descends that, for
any α ∈ R,

WFα(π∗(K(1⊗ u))) ⊂ {(x1, ξ1) ∈ Ω1 × (Rd1 \ {0}) : ∃x2 ∈ supp(u), (x1, x2, ξ1, 0) ∈WFα(K(1⊗ u))}.

Given α1, α2 ∈ R, we set α := min{α1, α2, α1 + α2}. Theorem 3.3.10, in particular Equation (3.3.12),
entails that a point (x1, x2, ξ1, 0) ∈WFα(K(1⊗ u)) if one of the following conditions is satisfied:

• ∃ξ2 ∈ Rd2 such that (x1, x2, ξ1, ξ2) ∈WFα1(K) and (x2,−ξ2) ∈WF0(u),

• ∃ξ2 ∈ Rd2 such that (x1, x2, ξ1, ξ2) ∈WF0(K) and (x2,−ξ2) ∈WFα2(u).

This concludes the proof.

At last, we prove a result which should be read as a generalization of Schauder estimates - see [DRS22,
Cor. 51]. In particular, the following result is an adaptation to the case in hand of an important result
valid in the context of the Sobolev wavefront set , c.f. [JS02, Prop. B.9]. We first set

WFΩ2
(K) := {(x2, ξ2) ∈ Ω2 × Rd2 : ∃x1 ∈ Ω1, (x1, x2, 0, ξ2) ∈WF (K)}, (3.3.18)

Corollary 3.3.16: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets, let K : D(Ω2) → D′(Ω1) be a linear
map with Schwartz kernel K ∈ D′(Ω1 × Ω2) and let u ∈ E′(Ω2). In addition, suppose that for any
(x2, ξ2) ∈ Ω2 × (Rd2 \ {0}) there exists α1, α2 ∈ R with α1 + α2 > 0 such that

(x2, ξ2) ̸∈ −WFα1

Ω2
(K) ∪WFα2(u), (3.3.19)

where −WFα1

Ω2
(K) has been defined in Equation (3.3.15). If WFΩ2

(K) = ∅ and if there exists ε ∈ R such

that K(Bα∞,∞(Ω2) ∩ E′(Ω2)) ⊂ Bα+ε,loc∞,∞ (Ω1) for any α ∈ R, then it holds true that

WFα−ε(Ku) ⊂WF ′(K) ◦WFα(u) ∪WFΩ1
(K), (3.3.20)

where WF ′(K) ◦WFα(u) := {(x1, ξ1) : ∃(x2, ξ2) ∈ WFα(u), (x1, x2, ξ1,−ξ2) ∈ WF (K)},WFΩ1
(K) :=

{(x1, ξ1) ∈ Ω1 × Rd1 : ∃x2 ∈ Ω2, (x1, x2, ξ1, 0) ∈WF (K)}.
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Proof. On account of Theorem 3.3.15 combined with Equation (3.3.20), it descends that there exists
Ku ∈ D′(Ω1). Let V ⊂ Ω1 × (Rd2 \ {0}) be an open conic neighborhood as per Definition 2.2.41. Due to
Proposition 3.2.2, we infer that WF (u − v) ⊂ V for any v ∈ Bα,loc∞,∞(Ω2). Being Kv ∈ Bα−ε,loc∞,∞ (Ω1) per
assumption and on account of Theorem 2.3.30, it descends that

WFα−ε(Ku) ⊂WF (K(u− v)) ⊂WF ′(K) ◦ V ∪WFΩ1(K) ⊂WF ′(K) ◦ V ∪WFΩ1(K).

In view of the arbitrariness of V , we conclude that

WFα−ε(Ku) ⊂WF ′(K) ◦WFα(u) ∪WFΩ1
(K).

Example 3.3.17: Let K ∈ D′(R1+d × R1+d) be the fundamental solution of the heat equation, whose
integral kernel is

K(t1, x1, t2, x2) =
Θ(t1 − t2)

(4π(t1 − t2))d/2
e
− |x1−x2|2

4(t1−t2) (t1, x1, t2, x2) ∈ R1+d × R1+d,

where Θ is the Heaviside function. On account of Schauder estimates, K is the kernel of a linear map
K : Bα,loc∞,∞(R1+d) → Bα+2,loc

∞,∞ (R1+d), defined by Ku := K ∗ u, where ∗ denotes the convolution as per
Definition A.7.1. In addition, since the heat operator is hypoelliptic, it holds true that

WF (K) = {(t, x, t, x, τ, ξ,−τ,−ξ) : (t, x) ∈ R1+d, (τ, ξ) ∈ R1+d \ {0}}, (3.3.21)

see [Hör90, Sect. 11.1]. On account of Equation (3.3.21), it descends that WFα1

R1+d(K) = ∅ for any

α1 ∈ R, where the subscript Rd+1 should be read as in Equation (3.3.18). Moreover, given u ∈ E′(R1+d),
Example 3.1.12 entails that there exists α2 < 0 such that WFα2(u) = ∅. Then, we are in position to
apply Corollary 3.3.16. Therefore, on account of Equation 3.3.20, it descends that

WFα+2(Ku) ⊂WF ′(K) ◦WFα(u).

Observing that WF ′(K) ◦WFα(u) =WFα(u), we conclude that

WFα+2(Ku) ⊂WFα(u).

3.3.5 Hyperbolic Partial Differential Equations

In Subsection 2.3.6, we discussed the propagation of singularities for a large class of first order hyperbolic
partial differential equations in the context of the smooth wavefront set. The main theorem characterizes
the smooth wavefront set of a solution to a partial differential equation in terms of the principal symbol
of the corresponding differential operator. More precisely, it asserts that the singularities propagate along
the flow induced by the principal symbol, which is read as a Hamiltonian function - see Theorem 2.3.32.
The aim of this subsection is to discuss the same problem in the framework of the Besov wavefront set as
per Definition 3.1.1 as well as Theorem 3.2.1. In particular, we shall prove a propagation of singularities
theorem which adapts to the case in hand Theorem 2.3.32. Since the Besov wavefront set is a refinement
of its smooth counterpart, our result entails a more refined characterization of the singularities of a
solution to an hyperbolic partial differential equation. The formulation of the Besov wavefront set in
terms of pseudodifferential operators as per Theorem 3.2.1 shall play a prominent rôle in the proof of our
propagation of singularities result - see Theorem 3.3.19. In the following, we shall make use of the notions
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introduced in the previous parts, especially in Subsection 2.1.1 and in Section 2.2. We shall mainly refer
to [DRS22, Subsect. 4.1].

In what follows, all pseudodifferential operators shall be assumed to be properly supported as per
Definition 2.2.25. Let A ∈ Ψ1(Rd) as per Definition 2.2.15 be such that its full symbol a ∈ S1(Rd;Rd) as
per Definition 2.2.1 is independent of the spatial component, i.e. a = a(ξ). In addition, we assume that
the principal symbol of A, denoted by σ1(A), is real-valued and it lies in S1

hom(Rd;Rd) as per Definition
2.2.6. Resorting to the notion of Besov wavefront set, we wish to analyze the microlocal behavior of the
distributional solution u ∈ D′(R× Rd) to an initial value problem of the form{

∂tu = iAu, (t, x) ∈ R× Rd,
u(0, x) = u0(x), x ∈ Rd,

(3.3.22)

where u0 ∈ D′(Rd). Here, we denote by u0(x) and u(t, x) the integral kernels of u0 and u respectively as
per Remark A.8.2. Let K ∈ D′(R× Rd) be the fundamental solution for the operator ∂t − iA such that
its integral kernel K(t, x) satisfies{

(∂t − iA)K(t, x) = δ(t)δ(x), (t, x) ∈ R× Rd,
K(0, x) = δ(x), x ∈ Rd.

(3.3.23)

Exploiting standard Fourier methods, it turns out that the integral kernel of K ∈ D′(R× Rd) is

K(t, x) = Θ(t)[eitAδ](x) (t, x) ∈ R× Rd, (3.3.24)

where Θ is the Heaviside function. We prove a regularity result concerning the fundamental solution K
- [DRS22, Prop. 54].

Proposition 3.3.18: Let K ∈ D′(R × Rd) be the fundamental solution of the operator ∂t − iA as per

Equation (3.3.24). Then, K(t, ·) ∈ B
− d

2
2,∞(Rd) for any t ∈ R. In addition, for any v ∈ Bα,loc∞,∞(Rd) with

α ∈ R,

K(t, ·) ∗ v ∈ B
α− d

2 ,loc∞,∞ (Rd),

where ∗ stands for the convolution introduced in Definition A.7.1.

Proof. Let {ψj}j≥0 be a Littlewood-Paley partition of unity as per Definition 2.1.2. On account of
Plancherel’s theorem (Theorem A.11.10), it descends that

∥ψj(Dx)e
itAδ∥L2(Rd) = ∥ψj∥L2(Rd) = 2j

d
2 ∥ψ∥L2(Rd) ∀j ≥ 1.

Therefore, we infer that

sup
j≥0

2−j
d
2 ∥ψj(Dx)e

itAδ∥L2(Rd) <∞.

On account of Definition 2.1.4, it descends that K(t, ·) ∈ B
− d

2
2,∞(Rd) for any t ∈ R.

We focus on the second part of the statement. Let v ∈ Bα,loc∞,∞(Rd) with α ∈ R. On account of

Definition 2.1.4, it holds true that ϕv ∈ Bα∞,∞(Rd) for every ϕ ∈ D(Rd). Therefore, on account of

Theorem 2.1.8, we conclude that K(t, ·) ∗ (ϕv) ∈ B
α− d

2∞,∞(Rd) for any t ∈ R.
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Proposition 3.3.18 asserts that the solution map associated to Equation (3.3.22),

S (t, 0) : u0 7→ u(t) t ∈ R,

is continuous from Bα,loc∞,∞(Rd) to Bα−
d
2 ,loc∞,∞ (Rd). In addition, S (t, 0) is invertible and S −1(0, t) = S (0, t).

As mentioned in Subsection 2.3.6, we recall that, when analyzing the problem of the propagation of
singularities, σ1(A) is interpreted as a Hamiltonian function. Therefore, σ1(A) determines a unique
Hamiltonian vector field given by

Xσ1(A)|(x,ξ) =
d∑
j=1

∂ξjσ1(A)(ξ)∂xj
|(x,ξ), ∀(x, ξ) ∈ Rd × Rd. (3.3.25)

Let ρ : R → Rd × Rd, t 7→ ρ(t) := (x(t), ξ(t)), be the integral curve of Xσ1(A) such that ρ(0) = (x0, ξ0).
Then, the map

Φ: R× Rd × Rd → Rd × Rd s.t. (t, x0, ξ0) 7→ Φt(x0, ξ0) := ρ(t),

is the Hamiltonian flow associated with Xσ1(A). After this premise, we are in position to prove a propa-
gation of singularities theorem for an initial value problem as per Equation (3.3.22) in the framework of
the Besov wavefront set - see [DRS22, Th. 55].

Theorem 3.3.19: Let A ∈ Ψ1(Rd) be such that its principal symbol σ1(A) lies in S
1
hom(Rd;Rd) as per

Definition 2.2.6 and it is real-valued. In addition, let u0 ∈ D′(Rd) and let u ∈ D′(R×Rd) be the solution
of the initial value problem {

∂tu = iAu, (t, x) ∈ R× Rd,
u(0, x) = u0(x), x ∈ Rd.

(3.3.26)

Then, for any α ∈ R,
WFα−

d
2 (u(t)) = ΦtWFα(u0), (3.3.27)

where Φt is the flow from t to 0 associated with Xσ1(A) while we set

ΦtWFα(u0) := {Φt(x, ξ) ∈ Rd × (Rd \ {0}) : (x, ξ) ∈WFα(u0)}, ∀t ∈ R.

Proof. It suffices to prove the inclusion ⊂. The other one follows inverting the time direction. Let
(x0, ξ0) ̸∈WFα(u0). On account of Theorem 3.2.1, there exists A ∈ Ψ0(Rd) such that Au0 ∈ Bα,loc∞,∞(Rd).
If we set A(t) := S (t, 0) ◦ A ◦ S (0, t), then Proposition 3.3.18 entails that A(t)u(t) = S (t, 0)Au0 ∈
B
α− d

2 ,loc∞,∞ (Rd). On account of Egorov’s theorem (Theorem 2.3.31), we infer that A(t) lies in Ψ0(Rd) and
it is elliptic at Φ−1

t (x0, ξ0). Therefore, Theorem 3.2.1 entails that Φ−1
t (x0, ξ0) ̸∈WFα−

d
2 (u(t)).

Remark 3.3.20: It is worth pointing out that the estimate on the Besov wavefront set in Equation
(3.3.27) is not optimal. As a matter of fact, it might be improved if we established a more refined
regularity of K in Proposition 3.3.18, which seems to be difficult to achieve at this stage.

Example 3.3.21: We consider the initial value problem in Equation 3.3.26 with A = Dx ∈ Ψ1(R), where
Dx := −i∂x. Therefore, the principal symbol of A is σ1(A)(ξ) = ξ. In this case, given (x0, ξ0) ∈ R × R,
the Hamilton equations read 

dx(t)
dt = 1 t ∈ R,

dξ(t)
dt = 0 t ∈ R,

(x(0), ξ(0)) = (x0, ξ0).

(3.3.28)
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As a result, we infer that (x(t), ξ(t)) = (x0 + t, ξ0), that is to say Φt(x0, ξ0) = (x0 + t, ξ0). On account of
Theorem 3.3.19, it descends that, for any α ∈ R,

WFα−
d
2 (u(t)) = {(x+ t, ξ) ∈ R× (R \ {0}) : (x, ξ) ∈WFα(u0)} ∀t ∈ R.

Example 3.3.22: In Equation 3.3.26, we consider A ∈ Ψ1(Rd) such that A := ⟨Dx⟩ as per Example
2.2.17. Observe that ∂t − i⟨Dx⟩ arises from the factorization

∂2t − (∆ + 1) = (∂t − i⟨Dx⟩)(∂t + i⟨Dx⟩),

where ∆ denotes the Laplace operator on Rd. In this case, the principal symbol of A is σ1(A)(ξ) = |ξ|.
Taking into account that

Xσ1(A)|(x,ξ) = |ξ|−1
d∑
i=1

ξj∂xj
|(x,ξ) ∀(x, ξ) ∈ Rd × Rd,

we deduce that Φt(x0, ξ0) := (|ξ0|−1ξ0t+x0, ξ0), where (x0, ξ0) ∈ Rd×Rd. On account of Theorem 3.3.19,
it descends that, for any α ∈ R,

WFα−
d
2 (u(t)) = {(|ξ|−1ξt+ x, ξ) ∈ Rd × (Rd \ {0}) : (x, ξ) ∈WFα(u0)} ∀t ∈ R.

3.4 Application to Coherent Germs of Distributions

In Section 3.1, we introduced the notion of Besov wavefront set, which aims at characterizing all the
directions in Fourier space along which an underlying distribution lies in a suitable Besov space Bα,loc∞,∞(Rd)
as per Definition 3.1.1. In Subsection 3.3.2, resorting to the notion of Besov wavefront set, we established
a sufficient condition to extend the pullback map along an embedding to the whole space of distributions -
see Theorem 3.3.5. As a result, since the product between two distributions can be defined as the pullback
of their tensor product along the diagonal, this condition entails a criterion, analogous to the Hörmander
one in the smooth setting, for the existence of the product - see Subsection 2.3.3. This is the content of
Theorem 3.3.10, which can be read as a microlocal formulation of Young’s product theorem (Theorem
2.1.20). In this section, we present an application of these results in the context of coherent germs of
distributions as per Definitions 2.4.4 and 2.4.12. In particular, we shall consider coherent germs defined
as the tensor product of two Besov distributions. By applying Theorems 3.3.5 and 3.3.10, we shall prove
that the reconstruction of such a germ amounts to the product between the two distributions at hand,
which coincides in turn with the pullback of the germ along the diagonal. In addition, Theorem 3.3.10,
particularly Equation (3.3.12), entails an estimate of the Besov regularity of the reconstruction. As a
result, since a coherent germ is an element lying in D′(Rd × Rd) (see Remark 2.4.2), we can conjecture
that its reconstruction coincides with the pullback of the germ along the diagonal.

In the following, by applying Theorems 3.3.5 and 3.3.10, we provide an alternative proof of Theorem
2.4.25 when α1 + α2 > 0. The proof of the following result is inspired by those of [DRS21, Prop. 45,
Prop. 30].

Proposition 3.4.1: Let Ω ⊂ Rd be an open set, let α1 ∈ (0,∞) \ N and let α2 < 0 be such that
α1 + α2 > 0. Let u ∈ Bα1,loc

∞,∞ (Ω) and let v ∈ Bα2,loc
∞,∞ (Ω) as per Definition 2.1.30. Then F = (Fx)x∈Ω,

where

Fx(·) := (Pxv)(·) =
∑

|ℓ|≤⌊α1⌋

∂ℓu(x)

ℓ!
(· − x)ℓv(·) ∀x ∈ Ω, (3.4.1)
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is a (α2, α1 + α2)-coherent germ, whose reconstruction as per Theorem 2.4.16 is RF = uv. In addition,
uv lies in Bα2,loc

∞,∞ (Ω) and, for any compact set K ⊂ Ω, it holds true that

∥uv∥Bα2
∞,∞(K) ≲ ∥u∥Bα1

∞,∞(K1)
∥v∥Bα2

∞,∞(K1)
, (3.4.2)

where K1 is the 1-enlargement of K as per Equation 2.4.1.

Proof. On account of Proposition 2.4.24, the germ F is (α2, α1 + α2)-coherent as per Definition 2.4.4.
Being α1 +α2 > 0, on account of the reconstruction theorem, c.f Theorem 2.4.16, it descends that there
exists a unique RF ∈ D′(Ω) satisfying the bound in Equation (2.4.8) with γ = α1 + α2.

Per hypotheses, Proposition 3.1.5 entails that WFα1(u) = WFα2(v) = ∅. Therefore, on account of
Theorem 2.3.24, it descends that there exists a unique product uv ∈ D′(Ω), defined as uv := δ∗(u ⊗ v)
where δ∗ is the pullback along the diagonal map δ : Ω → Ω×Ω, δ(x) = (x, x). In addition, it holds true
that (uv)(φ) = v(uφ) for any φ ∈ D(Rd). On account of Equation (3.3.12), we infer that WFα2(uv) = ∅,
that is uv ∈ Bα2,loc

∞,∞ (Ω). We show that uv is the reconstruction of F . Let K ⊂ Ω be a compact set. On
account of Theorem 2.1.37 and of Definition 2.1.34, we recall that

u(y) = Px(y) +R(x, y) ∀x, y ∈ K,

where the reminder R(x, y) is such that

|R(x, y)| ≤ ∥u∥Bα1
∞,∞(K)|x− y|α1 ,

uniformly for x, y ∈ K. In addition, R can be written as

R(x, y) =
∑

|ℓ|=⌊α1⌋

fℓ(y)(y − x)ℓ, (3.4.3)

where fℓ is such that

lim
y→x

|fℓ(y)|
|y − x|α1−⌊α1⌋

= Cu ≤ ∥u∥Bα1
∞,∞(K).

As a result, using Equation (3.4.3), it holds true that

|(uv − Pxv)(ϕ
λ
x)| = |v((u− Px)ϕ

λ
x)| = |v(R(x, ·)ϕλx)| ≤

∑
|ℓ|=⌊α1⌋

|v(fℓ(·)(· − x)ℓϕλx)|. (3.4.4)

Setting ϕ̃(y) = yℓϕ(y), it holds true that

(y − x)ℓϕλx(y) = λ|ℓ|ϕ̃λx(y).

Therefore, we infer that

|(uv − Pxv)(ϕ
λ
x)| ≤

∑
|ℓ|=⌊α1⌋

|v(fℓ(·)(· − x)ℓϕλx)| =
∑

|ℓ|=⌊α1⌋

λ|ℓ||v(fℓ(·)ϕ̃λx(y))|

= λ⌊α1⌋
∑

|ℓ|=⌊α1⌋

|v(fℓ(·)ϕ̃λx(y))| = λ⌊α1⌋
∑

|ℓ|=⌊α1⌋

∑
|k|=α1−⌊α1⌋

|v(Cu(· − x)kϕ̃λx)|

η(y)=ykϕ̃(y)

≲ λα1∥u∥Bα1
∞,∞(K1)

|v(ηλx)| ≲ ∥u∥Bα1
∞,∞(K1)

∥v∥Bα2
∞,∞(K1)

λα1+α2 , (3.4.5)
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uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)), where in the last inequality we exploited that
v ∈ Bα2,loc

∞,∞ (Ω) as per Definition 2.1.30 as well as Proposition 2.1.28. This proves that RF = uv.
It remains to be proven Equation (3.4.2). By the triangle inequality, for any x ∈ K, ϕ ∈ D(B(0, 1))

and λ ∈ (0, 1], it holds true that

|(uv)(ϕλx)| ≤ |v(uϕλx)| ≤ |v(Px(·)ϕλx)|︸ ︷︷ ︸
|A|

+ |v(R(x, ·)ϕλx)|︸ ︷︷ ︸
|B|

.

Since |B| has been already estimated as per Equation (3.4.5), we focus on |A|. On account of the triangle
inequality and of Proposition 2.1.28, it descends that

|A| ≤
∑

|ℓ|≤⌊α1⌋

|∂ℓu(x)|
ℓ!

|v((· − x)ℓϕλx)|
η(y):=yℓϕ(y)

=
∑

|ℓ|≤⌊α1⌋

λ|ℓ|
|∂ℓu(x)|

ℓ!
|v(ηλx)|

≲ ∥v∥Bα2
∞,∞(K1)

∑
|ℓ|≤⌊α1⌋

∥∂ℓu∥L∞(K)

ℓ!
λα2+|ℓ| ≲ ∥u∥

B
α1∞,∞(K1)

∥v∥Bα2
∞,∞(K1)

λα2 , (3.4.6)

uniformly for x ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)), where the last inequality descends from ∥∂ℓu∥L∞(K) ≲
∥u∥Bα1

∞,∞(K1)
. As a result, combining the estimates for |A| and |B|, it descends that

|(uv)(ϕλx)| ≲ ∥u∥
B

α1∞,∞(K1)
∥v∥Bα2

∞,∞(K1)
(λα2 + λα1+α2) ≲ ∥u∥

B
α1∞,∞(K1)

∥v∥Bα2
∞,∞(K1)

λα2 ,

uniformly for x ∈ K, ϕ ∈ D(B(0, 1)) and λ ∈ (0, 1]. This concludes the proof of the statement.

Remark 3.4.2: Let Ω ⊂ Rd be an open set. Let u, v be such that they satisfy the hypotheses of
Proposition 3.4.1. We denote by u(x) and v(x) the integral kernels of u and v respectively. Let F ∈
D′(Ω× Ω) be the germ as per Proposition 3.4.1, whose integral kernel as per Remark A.8.2 is given by

F (x, y) ≡ Fx(y) =
∑

|ℓ|≤⌊α1⌋

∂ℓu(x)

ℓ!
(y − x)ℓv(y), ∀x, y ∈ Ω.

Then, we observe that

RF (x) = (δ∗F )(x) = (F ◦ δ)(x) = F (x, x) = u(x)v(x),

where RF (x) denotes the integral kernel of the reconstruction of F as per Remark A.8.2 while δ∗ is the
pullback map along δ : Ω → Ω×Ω, δ(x) = (x, x). In addition, Theorem 3.3.5 provides an estimate of the
Besov wavefront set of RF .

On account of Proposition 3.4.1 and of Remark 3.4.2, we formulate the following conjecture.

Conjecture 3.4.3: Let Ω ⊂ Rd be an open set and let F ∈ D′(Ω×Ω) be a γ-coherent germ with γ > 0.
Then, the unique reconstruction of F is RF = δ∗F , where δ∗ is the pullback along δ : Ω → Ω × Ω,
δ(x) = (x, x). In addition, for any α ∈ R, it holds true that

WFα(RF ) ⊂ δ∗WFα(F ),

where δ∗WFα(F ) is defined as per Equation (3.3.7).

Remark 3.4.4: Let γ ≤ 0 and let F ∈ D′(Ω×Ω) be a γ-coherent germ such that satisfies the hypothesis
of Theorem 3.3.5. On account of Theorem 2.4.16, the reconstruction of F is non-unique. Similarly to
the case of positive coherence, we can conjecture that δ∗F is a choice of reconstruction of F . Therefore,
Theorem 3.3.5 provides a rationale to choose a distinguished reconstruction of F in cases where Theorem
2.4.16 fails to do so. For further details, the reader may refer to [DRS21].



Chapter 4
Reconstruction theorem on smooth manifolds

Martin Hairer’s reconstruction theorem is one of the main results of the theory of regularity structures
(see [Hai14, Hai15]), a novel framework to investigate the well-posedness of a specific class of nonlinear
stochastic partial differential equations (SPDEs) on the Euclidean setting.
Stochastic partial differential equations are closely related to quantum field theory (QFT), in particular
to stochastic quantization [PW81]. As a matter of fact, the idea at the heart of stochastic quantization
is to give meaning to the path integral formulation of an Euclidean quantum field theory by means of
an invariant measure of a nonlinear SPDE. The interaction between SPDEs and quantum field theory
has been also strenghtened by a few recent works [DDRZ21, BDR21], where techniques coming from the
latter, such as renormalization, have been applied within the SPDEs solution theory. On account of the
formulation of QFT on curved backgrounds, see e.g. [BFDY15, BF09, FR16, JS02, BF00], the extension
of the theory of regularity structures on smooth manifolds would be crucial to further strengthen this
interplay. To this end, an initial step should be the formulation of the reconstruction theorem on an
arbitrary smooth manifold. In a recent joint work with Paolo Rinaldi [RS21], we extended this result to
smooth manifolds relying on the theory of germs of distributions [CZ20]. As explained in Section 2.4,
this framework allows to formulate and to prove the reconstruction theorem in the language of theory of
distributions on the Euclidean space Rd, without any reference to regularity structures. More precisely,
the authors deal with the following problem: if for any x ∈ Rd we are given a distribution Fx ∈ D′(Rd),
we wonder whether there exists RF ∈ D′(Rd) which is locally approximated by Fx around each x ∈ Rd.
For instance, given a smooth function f : Rd → R, if Fx(·) is its Taylor polynomial of order m ∈ N
centered at x ∈ Rd, then the sought global distribution is RF (x) = f(x). As a matter of fact, since
|f(y)− Fx(y)| ≲ |y − x|m+1 for y ∈ Rd close to x, f is well-approximated by Fx in a neighborhood of x.
However, if the local approximations Fx are singular objects, the solution to the problem is somewhat
involved. In this situation, under a further assumption on the family (Fx)x∈Rd , dubbed coherence, the
reconstruction theorem entails the existence of the desired global distribution.

Since the notion of distribution is local, it can be easily generalized to any smooth manifold - see
Definition A.10.1. For this reason, since the framework introduced in [CZ20] is completely based on
distribution theory, it shall turn out to be well-suited for the generalization of the reconstruction theorem
to the case of distributions on smooth manifolds as shown in [RS21]. We stress that our results hold true
at the level of smooth manifold without calling for further structures, such as a Riemannian one. Observe
that, in [DDK19], the reconstruction theorem has been formulated within the Riemannian setting.

75
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Contents. This chapter is divided in two sections.

In Section 4.1, we extend the notion of germ of distribution and the notion of coherence to the smooth
manifold setting. In addition, we also formulate enhanced coherence on a smooth manifold. Lastly, we
prove that the notion of coherence is independent of the choice of the atlas - see Proposition 4.1.14. This
entails that coherence is a geometric notion.

In Section 4.2, we prove that the reconstruction theorem for coherent germs of distributions on a
smooth manifold. If the coherence exponent is strictly positive, we show that the reconstruction is
independent of the choice of the atlas - see Theorems 4.2.1 and 4.2.2. Otherwise if the coherence exponent
is non-positive, similarly to the Euclidean case, see Remark 2.4.17, we prove that the reconstruction is
non-unique and, in particular, it depends on the choice of the atlas and of the partition of unity used to
construct it - see Theorem 4.2.4.

Notations. We shall denote by ≲ an inequality holding true up to a multiplicative constant. We denote
by M a d-dimensional connected smooth manifold without boundary. In addition, we denote by (U, h) a
local chart on U , where U ⊂M is an open set and h : U → h(U) ⊂ Rd is a diffeomorphism. The pullback
along h−1 is denoted by (h−1)∗. Given an open set Ω ⊂ Rd, a function f : Ω → R and a point x ∈ Ω, we
recall that fλx : Ω → Rd denotes the rescaled version of f , defined as

fλx (y) := λ−df(λ−1(y − x)), y ∈ Ω,

for λ ∈ (0, 1]. Moreover, we denote by B(0, 1) the unit open ball in Rd centered at the origin.

4.1 Germs of distributions on smooth manifolds

Stochastic partial differential equations (SPDEs) have become increasingly important in applications
ranging from physics to finance. For instance, they play a prominent rôle in quantum field theory, in
particular within stochastic quantization [PW81]. However, their analysis presents several mathematical
challenges. In the last few years, a breakthrough in their study has been made thanks to Hairer’s paper
on the theory of regularity structures - see [Hai14, Hai15]. This novel framework allows to solve a certain
class of nonlinear SPDEs on the Euclidean space Rd by means of a fixed point argument. Always having
in mind applications of SPDEs in physics, on account of quantum field theory on curved backgrounds,
see e.g. [BFDY15, BF09, FR16], it would be desiderable to formulate the theory of regularity structures
on a more general geometrical ground. As a first step in this direction, we wish to extend Hairer’s
reconstruction theorem, one of the cornerstones of this theory, to an arbitrary smooth manifold - see
Subsection 4.2. To this end, we shall rely on the theory of germs of distributions as outlined in Section
2.4 - see [CZ20]. As a matter of fact, this framework allows to formulate and to prove the reconstruction
theorem in the language of the theory of distributions on the Euclidean space Rd, without any reference
to regularity structures. On account of the local nature of distributions, their definition can be easily
extended to any smooth manifold - see Appendix A.10. As a result, the approach adopted in [CZ20]
turns out to be well suited to our purposes. The following discussion is mainly inspired by [RS21].

In this subsection, we generalize the notion of germ of distributions and the notion of coherence to
arbitrary smooth manifolds. Subsequently, in Subsection 4.2 we shall prove the reconstruction theorem
on a smooth manifold. We point out that the following discussion holds true at the level of smooth
manifolds, without resorting to any further structure, such as a Riemannian one. In what follows, we
shall make use of the notions introduced in Section 2.4 and Appendix B.

We start by introducing the notion of germ of distributions on a smooth manifold.
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Definition 4.1.1: Let M be a d-dimensional smooth manifold. We say that a family F = (Fp)p∈M of
distributions, Fp ∈ D′(M) as per Definition A.10.1 for any p ∈M , is a germ on M if, for any φ ∈ D(M)
as per Definition A.1.7, the map p 7→ Fp(φ) is measurable with respect to the Borel σ-algebra of M .

Remark 4.1.2: Let M be a d-dimensional smooth manifold. A germ F on M can be read as an element
lying in D′(M ×M), whose integral kernel F (p, q) ≡ Fp(q) is such that the map p 7→ ⟨Fp(q), φ(q)⟩ is
measurable with respect to the Borel σ-algebra of M for any φ ∈ D(M).

Analogously to the Euclidean case, the idea at the heart of the notion of germ is that F = (Fp)p∈M can
be thought of as a collection of local approximations for a global distribution on M . As we shall see
in Section 4.2, under the assumption of coherence of the germ, the existence of such global distribution
is guaranteed. This is the content of the reconstruction theorem - see Theorem 4.2.1. For this reason,
we extend the notion of coherent germ to the manifold setting. Since, as explained in Appendix B, the
notion of coherence on an Euclidean space is local, relying on Definition B.0.2, we define its counterpart
on a smooth manifold.

Definition 4.1.3: Let M be a d-dimensional smooth manifold, let A = {(Ui, hi)}i∈I be a smooth atlas
thereon and let γ ∈ R. In addition, let F = (Fp)p∈M be a germ of distributions on M as per Definition
4.1.1. The germ F is said to be γ-coherent on (M,A) if for any (U, h) ∈ A there exists κ ∈ D(h(U))
with κ̌(0) ̸= 0 such that for any compact set K ⊂ U there exists ζUK ≤ min{0, γ} such that

|((h−1)∗(Fp)− (h−1)∗(Fq))(κ
λ
h(q))| ≲ λζ

U
K (|h(p)− h(q)|+ λ)γ−ζ

U
K , (4.1.1)

uniformly for p, q ∈ K and λ ∈ (0, 1], where (h−1)∗ is the pullback along h−1 as per Remark A.9.3.

Remark 4.1.4: The previous definition seems to imply that the concept of coherent germ depends on the
choice of the atlas. However, in Proposition 4.1.14 we shall prove that coherence is actually independent
of such choice.

Remark 4.1.5: On account of Definition B.0.2, the supremum among all possible values of λ is DK/4,
where DK := dist(∂h(U),K) while ∂h(U) denotes the boundary of the open set h(U). In Appendix B, we
adopted this choice in order to prove enhanced coherence on an open set. However, since all bounds are
established up to a multiplicative constant and the scaling operation is implicitly studied in the limit as
λ→ 0+, we can impose the constraint λ ∈ (0, 1] in Definition 4.1.3.

Remark 4.1.6: Using the language of regularity structures, a coherent germ as per Definition 4.1.3 can
be read as a modelled distribution on a smooth manifold.

In order to weaken the dependence of the notion of coherence on the atlas, we first prove that it is
independent of the coordinates - see [RS21, Prop 7].

Proposition 4.1.7: Let F = (Fp)p∈M be a γ-coherent germ on (M,A) as per Definition 4.1.3 and let
U ⊂M be an open set. Then the γ-coherence condition in Equation (4.1.1) is independent of the choice
of the local chart on U . In addition, the family of exponents ζU = (ζUK ) is also independent of the choice
of the coordinates.

Proof. Let (U, h), (U, h̃) be two local charts on U . We suppose that the coherence bound in Equation
(4.1.1) holds true with respect to (U, h). To prove the statement, we show that it holds true also with
respect to (U, h̃). Per assumption, there exists κ ∈ D(h(U)) with κ̌(0) ̸= 0 such that for any compact set
K ⊂ Rd there exists ζUK ≤ min{0, γ} for which

|((h−1)∗(Fp)− (h−1)∗(Fq))(κ
λ
h(q))| ≲ λζ

U
K (|h(p)− h(q)|+ λ)γ−ζ

U
K ,

uniformly for p, q ∈ K and for λ ∈ (0, 1], where (h−1)∗ denotes the pullback along h−1 as per Remark
A.9.3. To conclude the proof, we seek a test function χ ∈ D(h̃(U)) with χ̌(0) ̸= 0 such that the coherence



78 CHAPTER 4. RECONSTRUCTION THEOREM ON SMOOTH MANIFOLDS

condition with respect to (U, h̃) is satisfied. For any χ̃ ∈ D(h̃(U)), it holds true that

|((h̃−1)∗(Fp)− (h̃−1)∗(Fq))(χ̃
λ
h̃(q)

)| = |⟨(h ◦ h̃−1)∗(h−1)∗(Fp)− (h ◦ h̃−1)∗(h−1)∗(Fq), χ̃
λ
h̃(q)

⟩|

≲ |⟨(h−1)∗(Fp)− (h−1)∗(Fp), ((h̃ ◦ h−1)∗χ̃)λh(q)⟩|, (4.1.2)

where the last equality descends from Remark A.9.3 and from ∥det d(h ◦ h̃−1)∥L∞(h̃(U)) ≲ 1. Here,

d(h ◦ h̃−1) denotes the differential of the coordinate change induced by h ◦ h̃−1. Therefore, we can choose
χ ∈ D(h̃(U)) with χ̌(0) ̸= 0 such that (h ◦ h̃−1)∗χ = k. As a result, it descends that

|((h̃−1)∗(Fp)− (h̃−1)∗(Fq))(χ
λ
h(q))| ≲ λζ

U
K (|h(p)− h(q)|+ λ)γ−ζ

U
K ≲ λζ

U
K (|h̃(p)− h̃(q)|+ λ)γ−ζ

U
K ,

uniformly for p, q ∈ K and for λ ∈ (0, 1], where the last inequality descends from the uniform bound

sup
p,q∈K,
p ̸=q

|h(p)− h(q)|
|h̃(p)− h̃(q)|

≲ 1.

In the following, we prove that a coherent germ as per Definition 4.1.3 satisfies a homogeneity bound -
[RS21, Lemma 16]. The following result is an adaptation of Lemma 2.4.9 to this setting.

Lemma 4.1.8: Let (M,A) be a d-dimensional smooth manifold and let F = (Fp)p∈M be a γ-coherent
germ of distributions as per Definition 4.1.3. In addition, let (U, h) ∈ A be a local chart. Then, for any
compact set K ⊂ U , there exists βUK < γ such that

|⟨(h−1)∗(Fp), κ
λ
h(p)⟩| ≲ λβ

U
K , ∀p ∈ K, ∀λ ∈ (0, 1], (4.1.3)

where κ ∈ D(h(U)) is chosen as in Definition 4.1.3 while (h−1)∗ denotes the pullback along h−1 as per
Remark A.9.3. We say that F is locally homogeneous in U with exponents βU = (βUK )K. In addition,
if βUK = βU for any compact set K ⊂ U , F is said to be homogeneous of degree βU in U .

Proof. The proof is similar to that of Lemma 2.4.9 - see [CZ20, Lemma 4.12]. We fix a compact set
K ⊂ Rd and a point q ∈ K. Since (h−1)∗(Fq) ∈ D′(h(U)), Remark A.2.2 entails that there exists r ∈ N
such that

|⟨(h−1)∗(Fq), κ
λ
h(p)⟩| ≲ λ−d−r, ∀p ∈ K, ∀λ ∈ (0, 1]. (4.1.4)

In addition, being Diam(ϕ(K)) := supp,q∈K|h(p) − h(q)| < ∞ and on account of Equation (4.1.1), it
descends that

|((h−1)∗(Fp)− (h−1)∗(Fq))(κ
λ
φ(q))| ≲ λζ

U
K (|h(p)− h(q)|+ λ)γ−ζ

U
K ≤ λζ

U
K (Diam(h(K)) + λ)γ−ζ

U
K ≲ λζ

U
K ,

(4.1.5)
uniformly for p, q ∈ K and for λ ∈ (0, 1]. As a result, combining Equations (4.1.4) and (4.1.5), it descends
that

|⟨(h−1)∗(Fp), κ
λ
φ(p)⟩| ≤ |⟨(h−1)∗(Fq), κ

λ
h(p)⟩|+ |((h−1)∗(Fp)− (h−1)∗(Fq))(κ

λ
φ(q))|

≲ λ−d−r + λζ
U
K ≲ λmin{−d−r,ζUK }, ∀p ∈ K,∀λ ∈ (0, 1],

where we applied the triangle inequality. As a result, we can choose βUK < min{−d − r, ζUK , γ}. This
concludes the proof.
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In the following, we prove that the homogeneity exponents are independent of the coordinates - see [RS21,
Prop. 17].

Proposition 4.1.9: Let (M,A) be a d-dimensional smooth manifold and let F = (Fp)p∈M be a γ-

coherent germ as per Definition 4.1.3. In addition, let (U, h), (U, h̃) ∈ A be two local charts on the open
set U ⊂ M . Suppose that F satisfies the homogeneity condition in Equation (4.1.3) with respect to
(U, h). Then F is also locally homogeneous with respect to (U, h̃).

Proof. Let κ ∈ D(h(U)) be as per Definition 4.1.3. Given a compact set K ⊂ U , on account of Equation
(4.1.3), it descends that

|⟨(h̃−1)∗(Fp), ((h ◦ h̃−1)∗κ)λ
h̃(p)

⟩| ≲ || ≲ |⟨(h−1)∗(Fp), κ
λ
h(p)⟩| ≲ λβ

U
K , ∀p ∈ K,∀λ ∈ (0, 1].

where in the first inequality we exploited that ∥det d(h̃ ◦ h−1)∥L∞(h(U)) ≲ 1 while in the last one we
used the homogeneity bound with respect to (U, h) as per Equation (4.1.3). Therefore, we conclude that
(h̃−1)∗(Fp) is locally homogeneous in h̃(U) with exponent βUK .

Enhanched Coherence In this paragraph, similarly to the Euclidean case, we enhance the notion of
coherence on a smooth manifold as per Definition 4.1.3. This leads us to defining the notion of enhanced
coherence adapted to the smooth manifold setting. We recall that the idea behind it is to replace the
test function κ ∈ D(h(U)) in Equation (4.1.1) by an arbitrary test function, provided that we modify
suitably the family of exponents ζ = (ζUK )K. This can be achieved by resorting to the same arguments
for the case of coherence on an open set of Rd - see Appendix B. As a matter of fact, given a γ-coherent
germ F = (Fp)p∈M of a smooth manifold (M,A) and a local chart (U, h) ∈ A, Definition 4.1.3 entails
that the germ Fh(p) := (h−1)∗(Fp) is γ-coherent on the open set h(U) ⊂ Rd as per Definition B.0.2. As a
result, we apply Proposition B.0.6 in order to formulate the following equivalent definition of coherence
on a smooth manifold.

Definition 4.1.10: Let M be a d-dimensional smooth manifold and let A = {(Ui, hi)}i∈I be a smooth
atlas thereon. In addition, let γ ∈ R and let F = (Fp)p∈M be a germ of distributions on M as per
Definition 4.1.1. We say that F is γ-coherent on (M,A) if for any (U, h) ∈ A and for any compact set
K ⊂ U there exists ζUK ≤ min{0, γ} such that, for any integer r > −ζUK ,

|((h−1)∗(Fp)− (h−1)∗(Fq))(ϕ
λ
h(q))| ≲ ∥ϕ∥Cr(Rd)λ

ζUK (|h(p)− h(q)|+ λ)γ−ζ
U
K , (4.1.6)

uniformly for p, q ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)) ⊂ Rd, where B(0, 1) denotes the unit open ball
centered at the origin.

Remark 4.1.11: Definition 4.1.10 proves to be more advantageous than Definition 2.4.4 since the bound
in Equation 4.1.6 is independent of the test function κ. As a by product, it entails that the set of γ-
coherent germs of distributions on a smooth manifold is a vector space. However, Definition 2.4.4 is
rather useful from an operational viewpoint, since it allows to establish coherence by checking the bound
in Equation 2.4.3 only for a test function.

Remark 4.1.12: In Proposition 4.1.7, we proved that the notion of coherence as per Definition 4.1.3 is
independent of the underlying coordinates. As a result, on account of the equivalence between Definitions
4.1.3 and 4.1.10, it descends that also the notion of enhanced coherence is independent of the choice of
the local chart. Equivalently, this independence descends directly from the same arguments used in the
proof of Proposition 4.1.7.
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Remark 4.1.13: On account of Proposition B.0.8, it descends that the notion of coherence on a smooth
manifold is stable under restrictions. More precisely, if F is γ-coherent with respect to (U, h), then F is
still γ-coherent with respect to (V, h) for any open subset V ⊂ U .

In the following, we prove that coherence as per Definition 4.1.10 is independent of the atlas - see
Proposition [RS21, Prop. 13].

Proposition 4.1.14: Let M be a d-dimensional smooth manifold, let A,A′ be two smooth atlases
thereon and let F = (Fp)p∈M be a germ of distributions on M as per Definition 4.1.1. If F = (Fp)p∈M is
γ-coherent with respect to (M,A), then it is also γ-coherent with respect to (M,A′).

Proof. On account of Definition 4.1.10, we shall prove that, for any (U ′, h′) ∈ A′, F satisfies the bound in
Equation (4.1.6) on (U ′, h′). In addition, since the notion of coherence is independent of the underlying
coordinates (Proposition 4.1.7), we can consider U ′ neglecting the local chart h′. In addition, there exists
a family {Ui}i∈J ⊂ A of open sets such that U ′ =

⋃
i∈I(Ui ∩ U ′) =

⋃
i∈i U

′
i , where we set U ′

j := U ∩ Uj .
On account of Proposition 4.1.7 and of Remark 4.1.13, it descends that F satisfies the bound of Equation
(4.1.6) on U ′

i for any i ∈ i. Moreover, being U ′
i ⊂ U for any i ∈ I, we can equip each of them with a

local chart h on U . In order to prove the statement, we shall show that the coherence bound of Equation
(4.1.6) holds true on the union of two open sets U ′

j and U
′
ℓ with U

′
j ∩ U ′

ℓ ̸= ∅.
To this end, we fix a compact set K ⊂ U ′

j ∪U ′
ℓ. We observe that, if the compact set K is contained in one

of the two open sets U ′
J or U ′

ℓ, then Equation (4.1.6) holds true on account of Remark 4.1.13. For this
reason, we shall consider K ⊂ U ′

j ∪ U ′
ℓ such that K ∩ U ′

j ̸= ∅ and K ∩ U ′
ℓ ̸= ∅.

In this situation, we can split the compact set K as K = Kj ∪ Kℓ, where Kj ⊂ U ′
j and Kℓ ⊂ U ′

ℓ are two
compact sets such that Kj ∩Kℓ ̸= ∅. In the following, we shall prove that F satisfies the coherence bound
in Equation (4.1.6) uniformly for p, q ∈ K. Being Kj ⊂ U ′

j and Kℓ ⊂ U ′
ℓ and on account of Remark 4.1.13,

if two points p, q ∈ K lie both in Kj or in Kℓ, then F satisfies the coherence bound in Equation (4.1.6).
Therefore, we only discuss the case with p ∈ Kj \U ′

ℓ and q ∈ Kℓ\U ′
j . It holds true that, for any e ∈ Kj∩Kℓ

and for any ϕ ∈ D(B(0, 1)),

|((h−1)∗(Fp)− (h−1)∗(Fq))(ϕ
λ
h(q))|

≤ |((h−1)∗(Fp)− (h−1)∗(Fe))(ϕ
λ
h(q)))|︸ ︷︷ ︸

|A|

+ |((h−1)∗(Fe)− (h−1)∗(Fq))(ϕ
λ
h(q))|︸ ︷︷ ︸

|B|

,

(4.1.7)

where we applied the triangle inequality. In addition, we fix r ∈ N0 such that r > max{−ζU
′
j

Kj
,−ζU

′
ℓ

Kℓ
}. We

start by estimating |B|. On account of Equation (4.1.6) and of the choice of r, it descends that

|B| ≲ ∥ϕ∥Cr(Rd)λ
ζ
U′
ℓ

Kℓ (|h(e)− h(q)|+ λ)
γ−ζ

U′
ℓ

Kℓ ,

uniformly for e, q ∈ Kℓ and λ ∈ (0, 1]. In addition, noticing that

sup
λ∈(0,1],
e∈Kj∩Kℓ

sup
p∈Kj\U ′

ℓ,

q∈Kℓ\U ′
j

(|h(e)− h(q)|+ λ)
γ−ζ

U′
ℓ

Kℓ

(|h(p)− h(q)|+ λ)
γ−ζ

U′
ℓ

Kℓ

≲ 1, (4.1.8)

it descends that

|B| ≲ ∥ϕ∥Cr(Rd)λ
ζ
U′
ℓ

Kℓ (|h(p)− h(q)|+ λ)
γ−ζ

U′
ℓ

Kℓ , (4.1.9)
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uniformly for p, q ∈ K. The estimate for |A| is more involved. Although the test function in |A| is centered
at h(q), it can be centered at h(e) by exploiting the same argument used in the proof of [CZ20, Prop.
6.2]. As a matter of fact, one can observe that

ϕλh(q) = ϕ̃λ1

h(e), where ϕ̃ := ϕλw,

with λ1, λ2 ∈ (0, 1] and w ∈ B(0, 1) such that

λ1 = |h(q)− h(e)|+ λ, λ2 =
λ

λ1
, w =

h(q)− h(e)

|h(q)− h(e)|+ λ
.

As a result, the coherence bound on U ′
j entails that

|A| = |((h−1)∗(Fp)− (h−1)∗(Fe))(ϕ̃
λ1

h(e))| ≲ ∥ϕ̃∥Cr(Rd)λ
ζ
U′
j

Kj (|h(p)− h(e)|+ λ)
γ−ζ

U′
j

Kj ,

uniformly for p ∈ Kj \U ′
ℓ, e ∈ Kj ∩Kℓ and λ ∈ (0, 1]. By definition of ϕ̃ and on account of Remark A.2.2,

we infer that
∥ϕ̃∥Cr(Rd) ≲ λ−r−d2 ∥ϕ∥Cr(Rd) ≲ λ−r−d∥ϕ∥Cr(Rd).

Therefore, it descends that

|A| ≲ ∥ϕ∥Cr(Rd)λ
ζ
U′
j

Kj
−r−d

(|h(p)− h(e)|+ λ)
γ−ζ

U′
j

Kj ≲ ∥ϕ∥Cr(Rd)λ
ζ̃
U′
j

Kj (|h(p)− h(e)|+ λ)
γ−ζ̃

U′
j

Kj ,

where in the last inequality we set ζ̃
U ′

j

Kj
:= ζ

U ′
j

Kj
− r − d and where we exploited

sup
λ∈(0,1],p∈Kj\U ′

ℓ,
e∈Kj∩Kℓ

(|h(p)− h(e)|+ λ)−r−d ≲ 1.

Resorting to a bound similar to Equation (4.1.8), we infer that

|A| ≲ ∥ϕ∥Cr(Rd)λ
ζ̃
U′
j

Kj (|h(p)− h(q)|+ λ)
γ−ζ̃

U′
j

Kj , (4.1.10)

At last, combining Equations (4.1.7),(4.1.9) and (4.1.10) and setting ζ
U ′

j∪U
′
ℓ

K := min{ζU
′
ℓ

Kℓ
, ζ̃
U ′

j

Kj
}, it descends

that, for any integer r > −ζU
′
j∪U

′
ℓ

K ,

|((h−1)∗(Fp)− (h−1)∗(Fq))(ϕ
λ
h(q))| ≲ ∥ϕ∥Cr(Rd)λ

ζ
U′
j∪U′

ℓ
(|h(p)− h(q)|+ λ)γ−ζ

U′
j∪U′

ℓ
K ,

uniformly for p, q ∈ K, λ ∈ (0, 1] and ϕ ∈ D(B(0, 1)). This entails that F is γ-coherent on U ′
j ∪ U ′

ℓ. In
order to conclude the proof, we analyze the following two scenarios. In the first one, we assume that the
open set U ′ is bounded. In this case, since there exists a finite number of open sets Ui ∈ A such that
U ′ ⊂ ∪i∈IUi, we can iterate the above procedure a finite number of times in order to conclude the proof.
In the second scenario, we assume that the open set U ′ is unbounded. In this case, for any compact
set K ⊂ U ′, there exists a finite family of open sets {Ui}NK

i=1 ⊂ A such that K ⊂ ∪NK
i=1Ui. As a result,

the coherence bound in Equation (4.1.6) is satisfied by iterating the above procedure a finite number of
times.
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Proposition 4.1.14 entails a geometric notion of coherence. To conclude this section, we give two examples
of coherent germs on a smooth manifold.

Example 4.1.15: Let M be a d-dimensional smooth manifold and let u ∈ D′(M) as per Definition
A.10.1. We set Fp := u for any p ∈ M . Since Fp − Fq = 0 for any p, q ∈ M , then we infer that (Fp)p∈M
is γ-coherent for any γ ∈ R.
Example 4.1.16: We point out that our framework is a generalization of the one discussed in Section
2.4. As a matter of fact, we recover the Euclidean case if we choose M = Rd equipped with the trivial
atlas A = {(Rd, Id)}, where Id : Rd → Rd is the identity map. Therefore, for instance, the germ given by
the Taylor polynomial of a Hölder function, see Example 2.4.15, is coherent with respect to this atlas.

4.2 Reconstruction theorem

In the previous section, we introduced the notion of coherent germ of distributions on an arbitrary smooth
manifold - see Definitions 4.1.3 and 4.1.10. Moreover, we proved that this notion is independent of the
atlas, see Proposition 4.1.14. Since a germ can be interpreted as a family of local approximations for an
unknown global distribution, the aim of this section is to investigate the existence of such a distribution.
As explained in Section 2.4, the answer to this problem is given by the reconstruction theorem, which
was originally formulated within the framework of regularity structures - see [Hai14]. With the objective
of the extension to curved backgrounds, we shall rely on its formulation within the theory of germs of
distributions [CZ20]. As a matter of fact, resorting to the notions introduced in Section 4.1, we shall
prove the reconstruction theorem for coherent germs of distributions on a smooth manifold. This result
can be read as a first step for the extension of the theory of regularity structures to smooth manifolds.

In this section, we shall prove the reconstruction theorem for γ-coherent germs of distributions on a
smooth manifold with γ > 0 - see [RS21, Th. 18]. In this scenario, we shall prove that the reconstruction
is independence of the choice of the atlas - see Theorem 4.2.2. In addition, in accordance to the Euclidean
setting, if the coherence exponent is non-positive, we prove existence while showing the non-uniqueness
of the reconstruction - see Theorem 4.2.4. In this case, we shall emphasize that a reconstruction depends
on the atlas and on the partition of unity used to construct it. It is noteworthy to underline that the
following results hold true in the smooth manifold setting, without, for instance, calling for a Riemannian
structure. In addition, the following results are proven as a consequence of the local version of Theorem
2.4.22 - see Remark 2.4.23.

Theorem 4.2.1: Let M be a d-dimensional smooth manifold and let A = {(Ui, hi)}i∈I be a smooth
atlas thereon. Let F = (Fp)p∈M be a γ-coherent germ on (M,A) with γ > 0 as per Definition 4.1.3.
Then there exists a unique distribution RF ∈ D′(M) such that, for any (U, h) ∈ A, for any compact set
K ⊂ U and for any ψ ∈ D(h(U)),

|((h−1)∗(RF )− (h−1)∗(Fp))(ψ
λ
h(p))| ≲ λγ , (4.2.1)

uniformly for p ∈ K and λ ∈ (0, 1], where (h−1)∗ is the pullback along h as per Remark A.9.3. We say
that RF is the reconstruction of F .

Proof. The proof of this statement relies on Theorems 2.4.22 and A.10.2. Definition 4.1.3 entails that,
for any (U, h) ∈ A, the germ Fh(p) := (h−1)∗(Fp) is γ-coherent on the open set h(U) ⊂ Rd with γ > 0 as
per Definition B.0.2. As a result, on account of Theorem 2.4.22, it descends that there exists a unique
distribution (RF )h(U) ∈ D′(h(U)) such that, for any compact set K ⊂ U and for any ψ ∈ D(h(U))

|((RF )h(U) − (h−1)∗(Fp))(ψ
λ
h(p))| ≲ λγ , ∀p ∈ K,∀λ ∈ (0, 1]. (4.2.2)
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Therefore, we infer that there exists a family of local distributions {(RF )h(U) ∈ D′(h(U)) : (U, h) ∈ A}.
At this stage, if we prove that

(RF )h(U) = (h̃ ◦ h−1)∗(RF )h̃(Ũ) on h(U ∩ Ũ) (4.2.3)

for any pair of local charts (U, h), (Ũ , h̃) ∈ A, Theorem A.10.2 entails that the family {(RF )h(U)}(U,h)∈A

identifies a unique distribution RF ∈ D′(M) such that (h−1)∗(RF ) = (RF )h(U) for any (U, h) ∈ A. To
this end, we fix a compact set K ⊂ U ∩ V . By the triangle inequality, it holds true that

|((RF )h(U)−(h̃ ◦ h−1)∗(RF )h̃(Ũ))(ψλh(p))|

≤ |((RF )h(U) − (h−1)∗(Fp))(ψ
λ
h(p))|︸ ︷︷ ︸

|A|

+ |((h̃ ◦ h−1)∗(RF )h̃(Ũ) − (h−1)∗(Fp))(ψ
λ
h(p))|︸ ︷︷ ︸

|B|

, (4.2.4)

for any ψ ∈ D(h(U ∩ Ũ)). On the one hand, since (RF )h(U) is the reconstruction of (h−1)∗(Fp) as per
Theorem 2.4.22, we infer that |A| ≲ λγ uniformly for p ∈ K and λ ∈ (0, 1]. On the other hand, it descends
that

|B| = |((h̃ ◦ h−1)∗(RF )h̃(Ũ) − (h−1)∗(Fp))(ψ
λ
h(p)))|

≲ |((RF )h̃(Ũ) − (h̃−1)∗(Fp))((h ◦ h̃−1)∗ψ)λ
h̃(p)

| ≲ λγ , (4.2.5)

uniformly for p ∈ K and λ ∈ (0, 1], where in the first inequality we used that ∥det d(h◦ h̃−1)∥L∞(h̃(Ũ)) ≲ 1

while in the last inequality we exploited that (RF )h̃(Ũ) satisfies Equation (2.4.11). Therefore, for any
ψ ∈ D(h(U ∩ Ũ)), it descends that

|((RF )h(U) − (h̃ ◦ h−1)∗(RF )h̃(Ũ))(ψλh(p))| ≲ λγ ,

uniformly for p ∈ K and λ ∈ (0, 1]. As a result, being γ > 0,

|((RF )h(U) − (h̃ ◦ h−1)∗(RF )h̃(Ũ))(ψλh(p))| ≲ λγ → 0 as λ→ 0+.

Applying Lemma A.7.11 to the distribution u := (RF )h(U)−(h̃◦h−1)∗(RF )h̃(Ũ) on the open set h(U∩Ũ),
it descends that

(RF )h(U) = (h̃ ◦ h−1)∗(RF )h̃(Ũ) on h(U ∩ Ũ).

As a result, Theorem A.10.2 implies that there exists a unique distribution RF ∈ D′(M) such that
(h−1)∗(RF ) = (RF )h(U) for any (U, h) ∈ A. In addition, (h−1)∗(RF ) satisfies the bound in Equation
(4.2.2).

In the following, given γ > 0, we prove that the reconstruction of a γ-coherent germ of distributions is
independent of the choice of the atlas - see [RS21, Th. 20].

Theorem 4.2.2: Let M be a d-dimensional smooth manifold and let A, Ã be two atlases thereon. Let
γ > 0 and let F = (Fp)p∈M be a γ-coherent germ of distributions on M as per Definition 4.1.3. If

RAF ∈ D′(M) and RÃF ∈ D′(M) are the reconstructions of F with respect to A and Ã as per Theorem
4.2.1, then RAF = RÃF , that is the reconstruction is independent of the atlas.
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Proof. Theorem 4.2.1 implies that there exists a unique reconstruction RAF ∈ D′(M) of F with respect
to the atlas (M,A). On account of Theorem A.10.2, the global distribution RAF ∈ D′(M) is identified
by the family {(RAF )

h(U)}(U,h)∈A, where (RAF )
h(U) ∈ D′(h(U)). In addition, we fix a local chart

(Ũ , h̃) ∈ Ã. On the one hand, we can consider the distribution (h̃−1)∗(RAF ) ∈ D′(h̃(Ũ)). At the same
time, on the other hand, Theorem 4.2.1 applied with reference to the atlas Ã entails that there exists a

unique reconstruction of F , RÃF , such that (h̃−1)∗(RÃF ) = (RÃF )
h̃(Ũ). In order to conclude the proof

of this theorem, on account of Definition A.10.1, it suffices to show that

(h̃−1)∗(RAF ) = (RÃF )
h̃(Ũ) in D′(h̃(Ũ)). (4.2.6)

To this end, Ũ can be covered by a family of local charts {(Ui, hi)}i∈I ⊂ A, for some index I, i.e,
Ũ = ∪i∈I Ũi where we set Ũi := Ũ ∩ Ui. Therefore, we shall prove Equation (4.2.6) restricted to a subset

Ũi. On account of Remark 4.1.13 and by uniqueness of the reconstruction, we infer that (RÃF )
h̃(Ũ)|h̃(Ũi)

=

(RÃF )
h̃(Ũi). Then, we shall prove that, for any i ∈ I,

(h̃−1)∗(RAF |Ũi
) = (RÃF )

h̃(Ũi). (4.2.7)

Given a compact set K ⊂ Ũi and a test function ψ ∈ D(h̃(Ũi)), it holds true that

|((h̃−1)∗(RAF |Ũi
)− (h̃−1)∗(Fp))(ψ

λ
h(p)))|

≲ |((h−1
i )∗(RAF |Ũi

)− (h−1
i )∗(Fp))((h̃ ◦ h−1

i )∗ψ)λhi(p)
)| ≲ λγ , (4.2.8)

uniformly for p ∈ K and λ ∈ (0, 1], where in the first inequality we performed a change of coordinates
while in the last one we exploited that RAF is the reconstruction of F with respect to the atlas A. Being

γ > 0 and on account of Theorem 4.2.1, we recall that (RÃF )
h̃(Ũi) is the unique distribution satisfying

Equation (4.2.8). As a result, we infer that Equation (4.2.7) holds true. Eventually, Equation (4.2.6)
descends from a partition of unity argument. This concludes the proof.

Remark 4.2.3: Let (M,A) be a d-dimensional smooth manifold. On account of Remark 4.1.2, a γ-
coherent germ F is an element of D′(M × M) as per Definition A.10.1. Then, we can formulate a
conjecture similar to that of the Euclidean setting - see Conjecture 3.4.3. If γ > 0, then it holds true that

RF = δ∗MF,

where δM : M → M ×M , δM (p) = (p, p). In addition, Theorem 3.3.5 entails an estimate of the Besov
wavefront set of RF starting from that of F .

In the following, we discuss the reconstruction theorem in the case of a non-positive coherence exponent
- see [RS21, Th. 21]. In this scenario, similarly to the Euclidean space setting, we prove that the
reconstruction is non-unique. As a matter of fact, we show that a reconstruction depends on the atlas
and on the partition of unity used to define it.

Theorem 4.2.4: LetM be a d-dimensional smooth manifold and let A = {(Ui, hi)}i∈I be a smooth atlas
thereon, where I is an index set. Let γ ≤ 0 and let F = (Fp)p∈M be a γ-coherent germ of distributions
on (M,A) as per Definition 4.1.3. Then there exists RF ∈ D′(M) such that, for any (U, h) ∈ A,
(h−1)∗(RF ) ∈ D′(h(U)) satisfies, for any compact set K ⊂ U and for any ψ ∈ D(h(U)),

|((h−1)∗(RF )− (h−1)∗(Fp))(ψ
λ
h(p))| ≲

{
λγ if γ < 0,

1 + |log λ| if γ = 0,
(4.2.9)
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uniformly for p ∈ K and λ ∈ (0, 1], where (h−1)∗ is the pullback along h−1 as per Remark A.9.3. In
addition, the distribution RF is non-unique.

Proof. The proof of this result is similar to that of Theorem 4.2.1 and it is based on the local formulation
of Theorem 2.4.22. For this reason, we only sketch the proof. In addition, we only focus on the case
γ < 0. The proof of the case γ = 0 follows suit. On account of Theorem 2.4.22, for any (Ui, hi) ∈ A there
exists (RF )hi(Ui) ∈ D′(hi(Ui)) such that, for any compact set K ⊂ U and for any ψ ∈ D(hi(Ui)),

|((RF )hi(Ui) − (h−1
i )∗(Fp))(ψ

λ
hi(p)

)| ≲ λγ ∀p ∈ K,∀λ ∈ (0, 1]. (4.2.10)

Being γ < 0, (RF )hi(Ui) is non-unique for any (Ui, hi) ∈ A. However, for any (Ui, hi) ∈ A, we can choose
a reconstruction (RF )hi(Ui) ∈ D′(hi(Ui)). We now introduce a partition of unity (ρi)i∈I subordinated to
the open cover (Ui)i∈I . As a result, analogously to [CZ20, Sect. 11], we can define a global reconstruction
RF ∈ D′(M) by

RF :=
∑
i∈I

ρi(RF )
hi(Ui).

We stress that RF is non-unique. As a matter of fact, it depends on the choice of local reconstructions
(RF )hi(Ui), on the atlas A and on the partition of unity (ρi)i∈I . The dependence on the partition of
unity descends from the lack of the overlapping condition (Equation (A.10.1)).

At last, we prove that a reconstruction RF locally lies in a suitable Besov space Bα∞,∞. The following
result adapts Theorem 2.4.19 to the smooth manifold setting.

Theorem 4.2.5: Let (M,A) be a d-dimensional smooth manifold and let F = (Fp)p∈M be a γ-coherent
germ of distributions on M as per Definition 4.1.3, where γ ∈ R. In addition, let RF ∈ D′(M) be a
reconstruction of F as per Theorems 4.2.4 and 4.2.1 and let (U, h) ∈ A be a local chart. Suppose that F
is homogeneous of degree βU < γ in U as per Lemma 4.1.8. If βU > 0, then (h−1)∗(RF ) = 0 in h(U). If

βU ≤ 0, then (h−1)∗(RF ) lies in Bβ
U ,loc

∞,∞ (h(U)) as per Definition 2.1.30.

Proof. If βU > 0, on account of Remark 2.4.10, we infer that (h−1)∗(RF ) = 0 in h(U). Therefore, we
focus on the case βU ≤ 0. In addition, for the sake of simplicity, we consider the case γ ̸= 0. The case
γ = 0 follows suit. Let κ ∈ D(h(U)) be the test function as in Definition 4.1.3 and let K ⊂ U be a
compact set. Since (h−1)∗(RF ) reconstructs locally the germ F , it holds true that

|((h−1)∗(RF )− (h−1)∗(Fp))(κ
λ
h(p))| ≲ λγ , (4.2.11)

uniformly for p ∈ K and λ ∈ (0, 1]. By the triangle inequality, it descends that

|⟨(h−1)∗(RF ), κλh(p)⟩| ≤ |((h−1)∗(RF )− (h−1)∗(Fp))(κ
λ
h(p))|+ |⟨(h−1)∗(Fp), κ

λ
h(p)⟩| ≲ λβ

U

+ λγ ≲ λβ
U

,

uniformly for p ∈ M and for λ ∈ (0, 1], where the last inequality descends from Equation (4.2.11) and
from the homogeneity bound in Equation (4.1.3). As a consequence, Proposition 2.1.28 entails that

(h−1)∗(RF ) lies in Bβ
U ,loc

∞,∞ (h(U)).
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Chapter 5
Conclusions and Perspectives

In this thesis we developed two novel frameworks which we expect to play a notable rôle in the analysis
of stochastic partial differential equations (SPDEs). In what follows, we present an overview of the main
results obtained in Chapters 3 and 4 and we outline a few future perspectives.

Besov wavefront set. In Chapter 3, we introduced the novel notion of Besov wavefront set [DRS22],
which is a refinement of its smooth counterpart. More precisely, it characterizes the directions in Fourier
space along which an underlying distribution lies or not in a suitable Besov space Bα,loc∞,∞(Rd). A key result
of Chapter 3 is the characterization of the Besov wavefront set in terms of pseudodifferential operators
- see Theorem 3.2.1. As a matter of fact, this characterization has been heavily exploited in Section 3.3
to prove several structural properties of the Besov wavefront set. In the following, we give a succinct
overview of the main results of Section 3.3.

In Subsection 3.3.2, given an embedding f : Ω1 → Ω2 between two open sets Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 , we
established a sufficient condition for the well-posedness of the pullback along f of an underlying distribu-
tion with prescribed Besov wavefront set - see Theorem 3.3.5. As a byproduct, we proved that the Besov
wavefront set is invariant under the action of diffeomorphisms - see Theorem 3.3.7. This result is crucial
for the extension of the notion of Besov wavefront set to distributions supported on a smooth manifold.

In Subsection 3.3.3, we established a sufficient criterion for the well-posedness of the product between
two distributions with prescribed Besov wavefront sets - see Theorem 3.3.10. This criterion is a general-
ization of the one formulated by Hörmander in the framework of the smooth wavefront set. In addition,
if the product exists, we proved an estimate of the associated Besov wavefront set. This result can be
read as a microlocal formulation of Young’s product theorem, which is often applied to establishing the
well-posedness of nonlinear SPDEs.

In Subsection 3.3.4, we established an estimate for the Besov wavefront set of Ku, where K : D(Ω2) →
D′(Ω1) is a linear map while Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 are two open sets - see Theorem 3.3.14. In addition,
the notion of Besov wavefront set has allowed us to formulate a sufficient condition for the well-posedness
of the extension of K to the whole space of compactly supported distributions - see Theorem 3.3.15.
This result entails a microlocal version of the renown Schauder estimates, which are of relevance in the
estimate of the regularity of a solution to a suitable class of SPDEs - see Corollary 3.3.16.

In Subsection 3.3.19, we proved a propagation of singularities theorem for a specific class of hyper-
bolic partial differential equations within the context of the Besov wavefront set - see Theorem 3.3.19.
This result aims at characterizing the Besov wavefront set of a solution to a suitable hyperbolic partial
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differential equation in terms of the principal symbol of the corresponding differential operator.
Lastly, in Section 3.4, we have presented an application of the previous results in the context of co-

herent germs of distributions. More precisely, given a coherent germ defined as the tensor product of two
distributions u ∈ Bα1

∞,∞(Rd) and v ∈ Bα2
∞,∞(Rd) with α1+α2 > 0, we have proved that its reconstruction

amounts to the product between u and v, which in turn coincides with the pullback of the germ along
the diagonal. This led us to conjecture that, in general, the reconstruction of a γ-coherent germ with
γ > 0 is the pullback of the germ along the diagonal - see Conjecture 3.4.3. We postpone to future works
the investigation of this proposal.

Since the random forcing term of an SPDE is tipically a distribution lying in a suitable Bα∞,∞(Rd),
we expect that the Besov wavefront set shall play a prominent rôle in estimating the singular behavior of
a solution to such an equation. For instance, in [DDRZ21], a novel approach has been developed for the
study of a large class of nonlinear SPDEs at a perturbative level resorting to microlocal techniques. More
precisely, microlocal analysis, in particular the notion of smooth wavefront set, has been used to construct
solutions of a suitable class of SPDEs by means of a recursive scheme. However, this approach is not able
to establish a convergence of the perturbative series with respect to a suitable Bα∞,∞(Rd) norm. This
lack of any control of convergence can be mainly ascribed to the fact that the smooth wavefront set is not
well-suited to characterize the singular behavior of elements lying in a suitable Besov space Bα∞,∞(Rd).
We expect that the notion of Besov wavefront set is the right tool to overcome this drawback. This shall
be subject of investigation for future works.

Furthermore, a future goal shall be the formulation of a notion of wavefront set for any class of Besov
spaces Bαp,q(Rd) with 1 ≤ p, q ≤ ∞. This shall entail even more refined estimates of the singular behavior
of an underlying distribution.

Reconstruction theorem on smooth manifolds. In Chapter 4, we extended the reconstruction
theorem, one of the cornerstones of the theory of regularity structures, to the smooth manifold setting -
see [RS21]. This generalization has been obtained by relying on the framework of germs of distributions
[CZ20], which turned out to be well-suited for our purposes. In the following, we summarize the main
results of this chapter.

In Section 4.1, we generalized the notion of coherent germ of distributions to the smooth manifold
setting. In addition, we proved that this notion is independent of the choice of an atlas - see Proposition
4.1.14.

In Section 4.2, we proved the reconstruction theorem for γ-coherent germs of distributions on a smooth
manifold. In particular, if γ > 0, we proved that the reconstruction is independent of the choice of atlas
- see Theorem 4.2.2. Otherwise if γ ≤ 0, the reconstruction is non-unique since it depends on the choice
of an underlying atlas and of the partition of unity subordinated to it - see Theorem 4.2.4.

Our formulation of the reconstruction theorem can be read as a first step for the extension of the
theory of regularity structures to smooth manifolds, which shall be a topic of investigation in future
works.
Furthermore, we shall study the interplay between Besov wavefront sets and the reconstruction of a
coherent germ of distributions on a smooth manifold. As a matter of fact, similarly to the Euclidean
case, if the coherence exponent is strictly positive, we conjectured that the reconstruction coincides with
the pullback of the germ along the diagonal - see Remark 4.2.3.



Appendix A
Theory of distributions

In this appendix, we outline the main concepts concerning the theory of distributions. We shall mainly
refer to [FJ99] and to [Hör03].

A.1 Test functions

In this section, we introduce the space of test functions, which plays a leading rôle in the theory of
distributions. First we recall the definition of support of a function. Let Ω ⊂ Rd be an open set. Given
a function φ : Ω → C, the support of ϕ, denoted by supp(ϕ), is defined as

supp(ϕ) := {x ∈ Ω : ϕ(x) ̸= 0}.

Note that supp(ϕ) is a closed subset of Ω. Moreover, given m ∈ N0, we denote by Cm(Ω) the space
of m-times continuously differentiable complex-valued functions in Ω, that is to say, ϕ : Ω → C lies in
Cm(Ω) if and only if all partial derivatives

∂

∂xi1
· · · ∂ϕ

∂xij

of order j ≤ m exist and are continuous. In order to lighten the notation, we shall write them as

∂ℓ11 · · · ∂ℓdd ϕ = ∂ℓϕ

where ∂j = ∂/∂xj and ℓ = (ℓ1, . . . , ℓd) is a multi-index, that is, a d-tuple of non-negative integers. The

order of differentiation is given by |ℓ| :=
∑d
j=1 ℓj . Furthermore, we set

C∞(Ω) =

∞⋂
k=0

Cm(Ω).

The set C∞(Ω) identifies the space of smooth functions.

Definition A.1.1: Let Ω ⊂ Rd be an open set. The space D(Ω) is the set of all ϕ ∈ C∞(Ω) with
compact support in Ω. The elements of D(Ω) are called test functions. Furthermore, given m ∈ N0,
we denote by Cmc (Ω) the set of all ϕ ∈ Cm(Ω) such that supp(ϕ) is a compact subset of Ω.

89



90 APPENDIX A. THEORY OF DISTRIBUTIONS

We shall sometimes denote the space of test functions by C∞
c (Ω). In the following, we endow D(Ω) with

a notion of convergence.

Definition A.1.2: Let Ω ⊂ Rd be an open set. We say that a sequence (ϕj)j∈N ⊂ D(Ω) converges in
D(Ω) to ϕ ∈ D(Ω) if there exists a compact set K ⊂ Ω such that supp(ϕj) ⊂ K for all j ∈ N and

lim
j→∞

sup
x∈K

|∂ℓϕj(x)− ∂ℓϕ(x)| = 0. (A.1.1)

for any multi-index ℓ ∈ Nd0. We denote it by ϕj
D→ ϕ.

Remark A.1.3: We can also give a notion of convergence in Cmc (Ω). In this case, it suffices to require
uniform convergence of all partial derivatives up to the m-th order.

Fixed a compact set K ⊂ Ω, we recall that D(K) is a Fréchet space with the topology endowed by the
family of semi-norms {

ϕ 7→ ∥ϕ∥N :=
∑
|ℓ|≤N

sup
x∈K

|∂ℓϕ(x)| : N ∈ N0

}
. (A.1.2)

For further comments on the topology of D(Ω), refer to [FJ99, Appendix].
We conclude by giving a notion of convergence in C∞(Ω).

Definition A.1.4: A sequence (ϕj)j∈N ⊂ C∞(Ω) is said to converge in C∞(Ω) to ϕ ∈ C∞(Ω) if, for
each multi-index ℓ ∈ Nd0,

lim
j→∞

sup
x∈K

|∂ℓϕj(x)− ∂ℓϕ(x)| = 0

for every compact set K ⊂ Ω. We write ϕj
C∞

→ ϕ.

We recall that C∞(Ω) is a Fréchet space with respect to the semi-norms

ϕ 7→ ∥ϕ∥N,K :=
∑
|ℓ|≤N

sup
x∈K

|∂ℓϕ(x)|

where N ∈ N0 and K ranges over the compact subsets of Ω - see [FJ99, Appendix].
For the sake of completeness, given m ∈ N0, we define the Cm-norm as follows

ϕ 7→ ∥ϕ∥Cm(Ω) :=
∑

|ℓ|≤m

sup
x∈Ω

|∂ℓϕ(x)|. (A.1.3)

Smooth functions on a manifold We recall the notion of smooth function on a smooth manifold.

Definition A.1.5: Let (M,A) be a d-dimensional smooth manifold, where A is a smooth atlas thereon.
We say that a function ϕ : M → C is smooth at p ∈ M if there exists a local chart (U, h) ∈ A such
that p ∈ U and ϕ ◦ h−1 : h(U) → C is smooth at h(p). In addition, ϕ : M → C is said to be a smooth
function on M if it is smooth at any point p ∈ M . We denote the space of smooth functions on M by
C∞(M).

Remark A.1.6: The smoothness of a function supported on a smooth manifold is independent of the
choice of local charts.

In the following, we define the space of test functions on a smooth manifold. As usual, given a smooth
manifold M , we denote the support of a function ϕ : M → C by

supp(ϕ) := {p ∈M : ϕ(p) ̸= 0}.
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Definition A.1.7: Let (M,A) be a d-dimensional smooth manifold. The space D(M) is the set of all
ϕ ∈ C∞(M) such that supp(ϕ) is compact in M . The elements of D(M) are called test functions on
M .

A.2 Distributions

This section shall be devoted to defining and to characterizing distributions - see [Hör03, Sect. 2.1],
[FJ99, Sect. 1.3].

Definition A.2.1: Let Ω ⊂ Rd be an open set. A linear map u : D(Ω) → C is a distribution in Ω if,
for every compact set K ⊂ Ω, there exists a constant CK > 0 and a nonnegative integer NK such that

|⟨u, ϕ⟩| = |u(ϕ)| ≤ CK∥ϕ∥CNK (Ω), ∀ϕ ∈ D(K), (A.2.1)

where ∥ · ∥CNK has been defined in Equation (A.1.3). The set of all distributions in Ω is denoted by
D′(Ω).

Remark A.2.2: Let ϕ ∈ Cm(Ω), where Ω ⊂ Rd is an open set. If ϕλx : Ω → R is the scaled version of ϕ
as per Equation 2.1.15, then we can estimate its Cm-norm as follows:

∥ϕλx∥Cm(Ω) ≤ λ−d−m∥ϕ∥Cm(Ω). (A.2.2)

Let u ∈ D′(Ω). On account of Equation (A.2.2), given a compact set K ⊂ Rd, it descends that there exist
a constant CK > 0 and a nonnegative integer NK such that

|u(ϕλx)| ≤ CK∥ϕ∥CNK (Ω)λ
−NK−d, ∀x ∈ K,∀λ ∈ (0, 1],∀ϕ ∈ D(K).

The set D′(Ω) is a vector space, whose structure is completely fixed by

(u+ v)(ϕ) = u(ϕ) + v(ϕ), (au)(ϕ) = au(ϕ), ∀u, v ∈ D′(Ω),∀ϕ ∈ D(Ω),∀a ∈ R.

Note that the bound in Equation (A.2.1) encodes a continuity property for the functional u with respect
to the semi-norms on D(K). Moreover, we recall that there is an equivalent characterization of Equation
(A.2.1) in terms of sequential continuity. The following theorem codifies this fact.

Theorem A.2.3: A linear map u on D(Ω) is a distribution according to Definition A.2.1 if and only if

limj→∞ u(ϕj) = 0 for every sequence (ϕj)j∈N0
⊂ D(Ω) such that ϕj

D→ 0.

Next we introduce a notion of a convergent sequence of distributions.

Definition A.2.4: Let Ω ⊂ Rd be an open set. A sequence of distributions (uj)j∈N0
⊂ D′(Ω) is said to

converge in D′(Ω) to u ∈ D′(Ω) if

lim
j→∞

uj(ϕ) = u(ϕ), ∀ϕ ∈ D(Ω).

We write uj
D′

→ u.

To conclude this section, we recall the definition of distributions of finite order.

Definition A.2.5: Let u ∈ D′(Ω). If there existsN ∈ N0 such that the bound in Equation (A.2.1) is valid
for every compact set K ⊂ Ω, then u is said to be of order ≤ N . The vector space of such distributions is
denoted by D′N (Ω). In addition, their union D′

F (Ω) =
⋃
N D′N (Ω) is the space of distributions of finite

order.
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A.3 Localization

Let Ω̃ ⊂ Ω ⊂ Rd and let u ∈ D′(Ω). Since D(Ω̃) ⊂ D(Ω), one can restrict u to a distribution u|Ω̃ ∈ D′(Ω̃)
by setting

u|Ω̃(ϕ) := u(ϕ) ∀ϕ ∈ D(Ω̃). (A.3.1)

The distribution u|Ω̃ is the restriction or localization of u to Ω̃. Such a notion allows to define the support
of a distribution.

Definition A.3.1: Let Ω ⊂ Rd be an open set and let u ∈ D′(Ω). The support of u is the complement
of the set

{x ∈ Ω : ∃Ux ⊂ Ω a neighborhood of x s.t. u|Ux
= 0}.

The support is denoted by supp(u).

Observe that supp(u) is a closed subset of Ω as the support of a function. In addition, we give the
definition of singular support of a distribution.

Definition A.3.2: Let Ω ⊂ Rd be an open subset and let u ∈ D′(Ω). The singular support of u,
denoted by singsupp(u), is the complement of the set

{x ∈ Ω : ∃Ux ⊂ Ω a neighborhood of x s.t. u|Ux
∈ C∞(Ux)}.

Note that the singular support is a closed set in Ω. Generally speaking, a distribution in Ω can be
defined starting from its localizations. As a matter of fact, the following theorem holds true - see [FJ99,
Th. 1.4.3].

Theorem A.3.3: Let (Ωi)i∈I , where I is an index set, be a family of open subsets of Rd such that
Ω =

⋃
i∈I Ωi. Moreover, for any i ∈ I, let ui ∈ D′(Ωi) be such that the overlapping condition,

ui = uj on Ωi ∩ Ωj ,

holds true for all i, j ∈ I. Then there exists a unique u ∈ D′(Ω) such that u|Ωi
= ui for every i ∈ I.

A.4 Distributions with compact support

The aim of this section is to discuss the space of compactly supported distributions.

Definition A.4.1: Let Ω ⊂ Rd be an open set. A linear map u : C∞(Ω) → C is called continuous if
there exist a compact set K ⊂ Ω, a constant C > 0 and N ∈ N0 such that

|u(ϕ)| ≤ C
∑
|ℓ|≤N

sup
x∈K

|∂ℓϕ(x)|, ∀ϕ ∈ C∞(Ω). (A.4.1)

The space of all continuous linear maps on C∞(Ω) is denoted by E′(Ω).

Similarly to D′(Ω), the continuity property in Equation (A.4.1) can be equivalently characterized in terms
of sequential continuity.

Theorem A.4.2: Let Ω ⊂ Rd be an open set. Then u lies in E′(Ω) if and only if u(ϕj) → u(ϕ) for any

sequence (ϕj)j∈N ⊂ C∞(Ω) such that ϕj
C∞

→ ϕ.

The following theorem states that E′(Ω) can be identified with the space of distributions with compact
support.
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Theorem A.4.3: Let u ∈ D′(Ω) be with compact support. Then there exists a unique element v ∈ E′(Ω)
such that its restriction to D(Ω) coincides with u.

We conclude by stating a corollary which is a direct consequence of Definition A.4.1.

Corollary A.4.4: Let u ∈ E′(Rd). Then u is of finite order, as per Definition A.2.5.

A.5 Differentiation and multiplication

We shall outline two basic operations on distributions: differentiation and multiplication by smooth
functions. We start by introducing the concept of distributional derivative.

Definition A.5.1: Let Ω ⊂ Rd be an open set and let m ∈ N0. For u ∈ D′(Ω), its distributional
derivative ∂ℓu of order m is defined by

(∂ℓu)(ϕ) := (−1)|ℓ|u(∂ℓϕ) ∀ϕ ∈ D(Ω), (A.5.1)

where ℓ is a multi-index such that |ℓ| = m.

As the space D(Ω) is stable under differentiation and u lies in D′(Ω), Equation (A.5.1) implies that ∂ℓu
is, in turn, a distribution.

Next we extend to distributions the multiplication by smooth functions.

Definition A.5.2: Let Ω ⊂ Rd be an open set. If f ∈ C∞(Ω) and u ∈ D′(Ω), then the product fu is
the distribution defined by

(fu)(ϕ) := u(fϕ), ∀ϕ ∈ D(Ω). (A.5.2)

Furthermore, we stress that the Leibniz rule holds true:

∂j(fu) = (∂jf)u+ f(∂ju),

for any f ∈ C∞(Ω) and u ∈ D′(Ω). At the same time, it is noteworthy to point out that the product
among two distributions is, in general, ill-defined. The following theorem gives a sufficient condition on
singular supports whereby the multiplication of distributions is well-defined - see [Hör03, Sect. 3.1].

Theorem A.5.3: Let Ω ⊂ Rd be an open set and u, v ∈ D′(Ω). If

singsupp(u) ∩ singsupp(v) = ∅,

then the product uv is well-defined.

A.6 Tensor product

This section shall be devoted to defining the tensor product of distributions. For this part, we mainly
refer to [Hör03, Sect. 5.1].

Definition A.6.1: For i = 1, 2, let Ωi ⊂ Rdi be an open set and let fi ∈ C0(Ωi). We call tensor
product of f1 and f2 the function f1 ⊗ f2 in Ω1 × Ω2 ⊂ Rd1+d2 defined by

(f1 ⊗ f2)(x1, x2) = f1(x1)f2(x2), ∀(x1, x2) ∈ Ω1 × Ω2.

The previous definition can be extended to distributions. As a matter of fact, since fi ∈ C0(Ωi) for
i = 1, 2, the tensor product f1 ⊗ f2 lies in C0(Ω1 ×Ω2) and hence it extends to a distribution in Ω1 ×Ω2

such that

(f1 ⊗ f2)(ϕ) =

∫
Rd1

∫
Rd2

f1(x1)f2(x2)ϕ(x1, x2)dx1dx2, ∀ϕ ∈ D(Ω1 × Ω2).
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In particular, if ϕ = ϕ1 ⊗ ϕ2 with ϕi ∈ D(Ωi), then

(f1 ⊗ f2)(ϕ1 ⊗ ϕ2) =

∫
Rd1

f1(x1)ϕ1(x1)dx1

∫
Rd2

f2(x2)ϕ2(x2)dx2 = f1(ϕ1)f2(ϕ2).

Theorem A.6.2: For i = 1, 2, let Ωi ⊂ Rdi be an open set and let ui ∈ D′(Ωi). Then there exists a
unique distribution u1 ⊗ u2 ∈ D′(Ω1 × Ω2) such that

(u1 ⊗ u2)(ϕ1 ⊗ ϕ2) = u1(ϕ1)u2(ϕ2), ∀ϕ1 ∈ D(Ω1), ∀ϕ2 ∈ D(Ω2).

The distribution u1 ⊗ u2 is called the tensor product of u1 and u2.

To conclude this section, we list a few notable properties of the tensor product.

Theorem A.6.3: The following statements hold true:

(i) The tensor product u1 ⊗ u2 can be continuously extended on D(Ω1 × Ω2). Furthermore we have

(u1 ⊗ u2)(ϕ) = u1(u2(ϕ(x1, x2))) = u2(u1(ϕ(x1, x2))), ∀ϕ ∈ D(Ω1 × Ω2),

where ui acts on ϕ as a function of xi only, that is

u1(ϕ(·, x2)), u2(ϕ(x1, ·)).

(ii) The support of u1 ⊗ u2 is supp(u1)× supp(u2).

(iii) Let ℓ1, ℓ2 be two multi-indexes. Then

∂ℓ1x1
∂ℓ2x2

(u1 ⊗ u2) = (∂ℓ1x1
u1)⊗ (∂ℓ2x2

u2).

A.7 Convolution

In this section, we shall see how to define the convolution between two distributions, see [FJ99, Chap.
5]. To this end, we start by recalling the definition when considering two integrable functions. If f, g ∈
L1(Rd), the convolution of f and g, f ∗ g on Rd, is defined by

(f ∗ g)(x) :=
∫
Rd

f(y)g(x− y)dy =

∫
Rd

f(x− y)g(y)dy, x ∈ Rd.

Then f ∗ g is well defined and, in particular, it lies in L1(Rd). Therefore, f ∗ g can be extended to a
distribution in Rd such that

(f ∗ g)(ϕ) =
∫
Rd

∫
Rd

f(x)g(y)ϕ(x+ y)dxdy, ∀ϕ ∈ D(Rd).

Bearing in mind this example, we define the convolution of two distributions.

Definition A.7.1: Let u ∈ E′(Rd) and v ∈ D′(Rd). Then their convolution u∗v is the distribution lying
in D′(Rd) defined by

(u ∗ v)(ϕ) = ⟨u(x)⊗ v(y), ϕ(x+ y)⟩, ∀ϕ ∈ D(Rd). (A.7.1)

Remark A.7.2: In general, if u, v ∈ D′(Rd), the right hand side of Equation (A.7.1) may not exist
because (x, y) 7→ ϕ(x+ y) does not have compact support. Therefore, it is crucial to assume that one of
the two distributions in Equation (A.7.1) lies in E′(Rd).
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Remark A.7.3: We remark that u and v can be switched in Definition A.7.1. This implies that the
convolution is commutative.

In the following, we recall some properties of the convolution. We begin with two upper bounds for
the support and for the singular support respectively.

Theorem A.7.4: Let u ∈ E′(Rd) and v ∈ D′(Rd). Then

supp(u ∗ v) ⊂ supp(u) + supp(v), singsupp(u ∗ v) ⊂ singsupp(u) + singsupp(v).

Let h ∈ Rd. Given a function ϕ, we define the translation map τh by

(τhϕ)(x) = ϕ(x− h), x ∈ Rd.

By duality, the action of the map τh can be extended to distributions.

Definition A.7.5: Let u ∈ D′(Rd) and h ∈ Rd. Then τhu is the distribution defined by

(τhu)(ϕ) = u(τ−hϕ), ∀ϕ ∈ D(Rd).

Theorem A.7.6: Let u ∈ E′(Rd) and v ∈ D′(Rd). Then the following statements hold true:

• ∂ℓ(u ∗ v) = u ∗ (∂ℓv) = (∂ℓu) ∗ v, for any multi-index ℓ ∈ Nd0.

• τh(u ∗ v) = (τhu) ∗ v = u ∗ (τhv), for any h ∈ Rd.

• δ ∗ v = v, where δ is the Dirac delta centered at the origin.

Next we recall that the convolution with a compactly supported smooth function yields an element
of C∞(Rd).
Theorem A.7.7: Let u ∈ D′(Rd) and ρ ∈ D(Rd). Then ρ ∗ u lies in C∞(Rd) and

(ρ ∗ u)(x) = u(ρ(x− ·)), x ∈ Rd.

Definition A.7.8: Let u ∈ D′(Rd) and ρ ∈ D(Rd). We say that ρ ∗ u is a regularization of u.

On account of Theorem A.7.7, one can prove the following density result.

Theorem A.7.9: Let Ω ⊆ Rd, then D(Ω) is dense in D′(Ω).

At last, we prove a result of distribution theory which shall play a leading rôle in the proof of Theorem
4.2.1 - see [RS21, Lemma 24]. The proof of this result is based on the following lemma.

Lemma A.7.10: Let ρ ∈ D(Rd) be such that
∫
Rd ρ(x)dx = 1. For any ϕ ∈ D(Rd), then ϕ ∗ ρλ D→ ϕ as

per Definition A.1.2, where we set ρλ(·) := λ−dρ(λ−1·).
Lemma A.7.11: Let Ω ⊂ Rd be an open set and let u ∈ D′(Ω) be such that, for any compact set K ⊂ Ω
and any ρ ∈ D(K) such that

∫
ρ(x)dx = 1, supx∈K|u(ρλx)| → 0 as λ → 0+. Then, u(ϕ) = 0 for any

ϕ ∈ D(Ω).

Proof. Let K ⊂ Ω be a compact set and let ρ ∈ D(K) such that
∫
Rd ρ(x)dx = 1. Given ϕ ∈ D(K), on

account of Lemma A.7.10, it descends that ϕ ∗ ρλ D→ ϕ as λ → 0+. By sequential continuity of u as per
Definition A.2.4, we infer that u(ϕ ∗ ρλ) → u(ϕ) as λ→ 0+. Moreover, it descends that

|u(ϕ ∗ ρλ)| =
∣∣∣∣ ∫

Rd

ϕ(x)u(ρλx)dx

∣∣∣∣ ≤ Ld(supp(ϕ))∥ϕ∥L∞(Ω) sup
x∈K

|u(ρλx)|,

where Ld(supp(ϕ)) denotes the d-dimensional volume of supp(ϕ). Since supx∈K|u(ρλx)| → 0 as λ → 0+

per hypotesis, it descends that u(ϕ) = 0. Since this argument holds true for any compact set K ⊂ Ω, we
infer that u(ϕ) = 0 for any ϕ ∈ D(Ω).
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A.8 The Schwartz kernel theorem

In this section, we recall the Schwartz kernel theorem. For this topic, we refer to [Hör03, Sect. 5.2].
Given two open sets Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 , we begin by observing that any function K ∈ C0(Ω1 ×Ω2)
defines an integral operator K : D(Ω2) → C0(Ω1) given by

(Kϕ)(x1) =

∫
Ω2

K(x1, x2)ϕ(x2)dx2, ∀ϕ ∈ D(Ω2), ∀x1 ∈ Ω1.

The kernel theorem states that the definition of K can be extended to K ∈ D′(Ω1 ×Ω2). As a matter of
fact, we remark that, if K ∈ C0(Ω1 × Ω2), then

(Kϕ)(ψ) = K(ψ ⊗ ϕ), ∀ψ ∈ D(Ω1), ∀ϕ ∈ D(Ω2). (A.8.1)

Theorem A.8.1: Let Ω1 ⊂ Rd1 ,Ω2 ⊂ Rd2 be two open sets. A linear map K : D(Ω2) → D′(Ω1) is
sequentially continuous if and only if there exists a unique distribution K ∈ D′(Ω1 × Ω2) such that
Equation (A.8.1) is valid. The distribution K is called the kernel of K.

Remark A.8.2: Let Ω ⊂ Rd be an open set and let u ∈ D′(Ω). In this manuscript, with a slight abuse
of notation, we sometimes shall denote u by means of a formal integral kernel u(x), namely

u(ϕ) =

∫
Ω

u(x)ϕ(x)dx, ∀ϕ ∈ D(Ω). (A.8.2)

A.9 Pullback of a distribution along a smooth function

This section shall be devoted to defining the composition of distributions with smooth functions. Let
Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be two open sets and let f : Ω1 → Ω2 be a smooth function. If u ∈ C0(Ω2), then
u can always be pulled back along f . As a matter of fact, the pullback of u along f is the composition
u ◦ f ∈ C0(Ω1). At the same time, this operation can be extended to all distributions if the differential
of f , written as df , is surjective. In this respect we state the following theorem of which we sketch the
proof - see [Hör03, Th. 6.1.2].

Definition A.9.1: Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be two open sets where d1 ≥ d2. A smooth map
f : Ω1 → Ω2 is said to be a submersion if df(x) is surjective for every x ∈ Ω1.

Theorem A.9.2: Let Ω1 ⊂ Rd1 and Ω2 ⊂ Rd2 be two open sets where d1 ≥ d2 and let f : Ω1 → Ω2

be a submersion. Then there exists a unique continuous linear map f∗ : D′(Ω2) → D′(Ω1) such that
f∗u = u ◦ f for any u ∈ C0(Ω2). We call f∗u the pullback of u along f .

Proof. Uniqueness follows immediately from Theorem A.7.9. At the same time, existence is more involved.
Given x0 ∈ Ω1, choose a function g : Ω1 → Rd1−d2 such that the pair (f, g), defined by

Ω1 ∈x 7→ (f(x), g(x)) ∈ Rd1 = Rd2 ⊕ Rd1−d2 ,

has a bijective differential at x0. On account of the inverse function theorem, there exist an open
neighborhood Ω′

1 ⊂ Ω1 of x0 and an open neighborhood Ω′
2 of (f(x0), g(x0)) such that

f ⊕ g|Ω′
1
: Ω′

1 → Ω′
2.

is a diffeomorphism. Let then h be the local inverse of f ⊕ g|Ω′
1
. If u ∈ C0(Ω2) and ϕ ∈ D(Ω′

1), then∫
Ω′

1

(f∗u)(x)ϕ(x)dx =

∫
Ω′

1

u(f(x))ϕ(x)dx =

∫
Rd2

∫
Rd1−d2

u(y′)ϕ(h(y′, y′′))|det dh(y′, y′′)|dy′dy′′,
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where we applied the change of variable f(x) 7→ y′ with (y′, y′′) ∈ Rd2 × Rd1−d2 in the second equality.
Therefore we have

(f∗u)(ϕ) = (u⊗ 1)(Φ), Φ(y) = ϕ(h(y))|det dh(y′, y′′)|, (A.9.1)

where 1 is the constant function 1 in Rd1−d2 . To conclude, by Theorem A.7.9, Equation (A.9.1) can
be extended to u ∈ D′(Ω2). Moreover, Equation (A.9.1) is a localization of f∗u and it entails its
continuity.

Remark A.9.3: Note that if d1 = d2 and the map f : Ω1 → Ω2 is a diffeomorphism, then the pullback
f∗u is given by

(f∗u)(ϕ) = ⟨u(y), (f−1)∗ϕ(y)|det df−1(y)|⟩, ϕ ∈ D(Ω1).

Since f∗u has been defined by a continuous extension of the composition for functions, then the
following rules still hold true:

∂jf
∗u =

d2∑
i=1

∂jfif
∗∂iu, u ∈ D′(Ω2) (chain rule),

f∗(ψu) = (f∗ψ)(f∗u), ψ ∈ C∞(Ω2), u ∈ D′(Ω2),

where we set f = (f1, . . . , fd2).

A.10 Distributions on Smooth Manifolds

This section is devoted to recalling the basic notions and results concerning distribution theory on smooth
manifolds. The following notions play a key rôle in Chapter 4. For further details concerning this topic,
the reader may refer to [Hör03, Sect. 6.3]. We start by giving the definition of distribution supported on
an arbitrary smooth manifold M .

Definition A.10.1: Let M be a d-dimensional smooth manifold. For any local chart (U, h) on M , let
uh(U) ∈ D′(h(U)) be such that the overlapping condition,

uh′(U ′) = (h ◦ h′−1)∗uh(U) on h′(U ∩ U ′), (A.10.1)

holds true for any pair of local charts (U, h), (U ′, h′) onM , where (h◦h′−1)∗ is the pullback along h◦h′−1

as per Remark A.9.3. We call the family {uh(U)}(U,h) a distribution u on M . We denote the set of all
distributions on M by D′(M).

The following theorem provides a rather useful characterization of the concept of distribution on a smooth
manifold. As a matter of fact, it asserts that Equation (A.10.1) can be checked only on one atlas in order
to construct an element lying in D′(M) instead of considering all possible local charts on M - see [Hör03,
Th. 6.3.4].

Theorem A.10.2: Let M be a d-dimensional smooth manifold and let A = {(Ui, hi)}i∈I be a smooth
atlas thereon. Assume that for any local chart (U, h) ∈ A there exists a distribution uh(U) ∈ D′(h(U))
such that Equation (A.10.1) holds true for any pair of local charts (U, h), (U ′, h′) ∈ A . Then there exists
a unique u ∈ D′(M) such that (h−1)∗u = uh(U) for any (U, h) ∈ A, where (h−1)∗ is the pullback along
h−1 as per Remark A.9.3.
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A.11 Tempered distributions and Fourier transforms

In this section, we shall mainly introduce the space of tempered distributions and the theory of the Fourier
transform. For further information on the following concepts, refer to [FJ99, Chap. 8] and to [Hör03,
Chap. VII]. We start by introducing the space of rapidly decreasing functions. Henceforth, we shall use
the differential operators

Dj := −i∂j , j = 1, . . . , d,

where i2 = −1. Moreover, if ℓ = (ℓ1, . . . , ℓd) ∈ Nd0 is a multi-index and x = (x1, . . . , xd) ∈ Rd, we set

xℓ = xℓ11 · · ·xℓdd .

Definition A.11.1: A smooth function ϕ : Rd → C is called rapidly decreasing if

∥ϕ∥ℓ,k := sup
x∈Rd

|xℓDkϕ(x)| <∞, (A.11.1)

for every multi-indexes ℓ, k ∈ Nd0. We denote the space of rapidly decreasing functions by S(Rd). Moreover,
we say that a sequence (ϕj)j∈N0 ⊂ S(Rd) converges in S(Rd) to ϕ if ∥ϕj − ϕ∥ℓ,k → 0 as j → ∞ for all

ℓ, k ∈ Nd0. In this case, we write ϕj
S→ ϕ.

The space S(Rd) is a Fréchet space with the topology induced by the semi-norms in the left-hand side
of Equation (A.11.1). Subsequently, we list a few remarkable consequences of Definition A.11.1 in the
following theorem.

Theorem A.11.2: The following statements hold true:

a) The space S(Rd) is stable under differentiation and multiplication, that is DjS(Rd) ⊂ S(Rd) and
xjS(Rd) ⊂ S(Rd) for all j = 1, . . . , d.

b) D(Rd) is dense in S(Rd).

c) S(Rd) ↪→ Lp(Rd) for any 1 ≤ p ≤ ∞.

Given f ∈ L1(Rd), we define the Fourier transform of f by

Fu(ξ) = f̂(ξ) :=

∫
Rd

f(x)e−ix·ξdx, ∀ξ ∈ Rd, (A.11.2)

where x · ξ =
∑d
i=1 xiξi is the Euclidean inner product on Rd.

Lemma A.11.3: The Fourier transform F : S(Rd) → S(Rd) is a continuous map, such that

D̂jϕ = ξj ϕ̂, x̂jϕ = −Dj ϕ̂

for every ϕ ∈ S(Rd).
Theorem A.11.4: The Fourier transform F : S(Rd) → S(Rd) is a continuous isomorphism with inverse
given by Fourier’s inversion formula:

F−1ϕ(x) = ϕ̌(x) = (2π)−d
∫
Rd

ϕ(ξ)eix·ξdξ, ∀ϕ ∈ S(Rd). (A.11.3)

Remark A.11.5: Observe that we can write Equation (A.11.3) as

ϕ̌(·) = (2π)−dϕ̂(−·)
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Next we list some basic properties of the Fourier transform on S(Rd).
Theorem A.11.6: Let ϕ, ψ ∈ S(Rd). Then∫

Rd

ϕ̂(ξ)ψ(ξ)dξ =

∫
Rd

ϕ(x)ψ̂(x)dx, (A.11.4)

∫
Rd

ϕ(x)ψ(x)dx = (2π)−d
∫
Rd

ϕ̂(ξ)ψ̂(ξ)dξ (Parseval’s formula), (A.11.5)

ϕ̂ ∗ ψ = ϕ̂ψ̂, (A.11.6)

ϕ̂ψ = (2π)−dϕ̂ ∗ ψ̂. (A.11.7)

The topological dual of S(Rd) is the space of tempered distributions.

Definition A.11.7: A linear map u : S(Rd) → C is a tempered distribution if there exist a constant
C > 0 and a nonnegative integer N such that

|u(ϕ)| ≤ C
∑

|ℓ|,|k|≤N

sup
x∈Rd

|xℓDkϕ(x)|, ∀ϕ ∈ S(Rd). (A.11.8)

The space of tempered distribution is denoted by S′(Rd).
The continuity property in Equation (A.11.8) can be equivalently characterized in terms of sequential

continuity, that is, if ϕj
S→ ϕ then u(ϕj) → u(ϕ) as j → ∞.

On account of statement b) of Theorem A.11.2, the restriction of a tempered distribution to D(Rd)
individuates an element in D′(Rd). Therefore, the following set of inclusions holds true:

E′(Rd) ↪→ S′(Rd) ↪→ D′(Rd).

By duality, we define the Fourier transform on S′(Rd).
Definition A.11.8: Let u ∈ S′(Rd). The Fourier transform û is the tempered distribution defined by

û(ϕ) = u(ϕ̂), ∀ϕ ∈ S(Rd). (A.11.9)

Theorem A.11.9: The Fourier transform F : S′(Rd) → S′(Rd), u 7→ û, is an isomorphism. Moreover,
the Fourier’s inversion formula,

u(ϕ(−·)) = (2π)−dû(ϕ̂) ϕ ∈ S′(Rd),

is valid for every u ∈ S′(Rd).
For the sake of completeness, we recall the Plancherel’s theorem. Taking into account that L2(Rd) ↪→

S′(Rd), such a result states that the Fourier transform also extends to an isomorphism on L2(Rd).
Theorem A.11.10: If u ∈ L2(Rd), then its Fourier transform û also lies in L2(Rd). In addition, it holds
true the Parseval’s identity:

∥û∥2L2(Rd) = (2π)d∥u∥2L2(Rd).

Again by duality, we can obtain the following identities:

D̂ℓu = ξℓû, (A.11.10)

x̂ℓu = (−1)|ℓ|Dℓû, (A.11.11)
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τ̂hu(ξ) = û(ξ)e−iξ·h, h ∈ Rd, (A.11.12)

ûeix·h = τhû, h ∈ Rd. (A.11.13)

The following theorem states that the Fourier transform of a compactly supported distribution is a
smooth function.

Theorem A.11.11: Let u ∈ E′(Rd). Then û lies in C∞(Rd) and

û(ξ) = ⟨u(x), e−ix·ξ⟩ ∀ξ ∈ Rd.

In particular, there exists a constant C > 0 such that

|û(ξ)| ≤ C⟨ξ⟩ord(u), ∀ξ ∈ Rd,

where ⟨ξ⟩ := (1 + |ξ|2) 1
2 and ord(u) is the order of u, as per Definition A.2.5.

In the following, we state an extension of Equation (A.11.6).

Theorem A.11.12: Let u ∈ S′(Rd) and v ∈ E′(Rd). Then u ∗ v ∈ S′(Rd) and û ∗ v = ûv̂.

At last, we recall a result concerning the behaviour of the Fourier transform of a homogeneous distri-
bution.

Definition A.11.13: Let α ∈ R. We say that u ∈ D′(Rd) is homogeneous of degree α if

u(ϕλ) = λαu(ϕ), ∀ϕ ∈ D(Rd), ∀λ ∈ (0, 1],

where ϕλ(·) := λ−dϕ(λ−1·).
Proposition A.11.14: Let α ∈ R and let u ∈ S′(Rd). If u is homogeneous of degree α, then its Fourier
transform û is a homogeneous distribution of degree −α− d.



Appendix B
Coherence on an open set

In this Appendix, we shall give a local formulation of concepts and results discussed in Subsection 2.4.1.
More precisely, we introduce the notions of coherence and of enhanced coherence on an open set Ω ⊂ Rd.
Lastly, we shall prove that the notion of coherence is stable with respect to restrictions - see Proposition
B.0.8. The following concepts and results shall be play a leading rôle in Chapter 4, where we generalize
the theory of germs of distributions on smooth manifolds. We shall mainly refer to [RS21, Appendix
B]. Throughout this Subsection, we denote by ≲ an inequality holding true up to a multiplicative finite
constant. Given a compact set K ⊂ Rd and R > 0, its R-enlargement of K, denoted by KR, is defined
as per Equation (2.4.1). We denote by B(0, R) the open ball centered at the origin of radius R. Given
an open set Ω ⊂ Rd, its boundary is denoted by ∂Ω. Moreover, given a function f : Ω → R and a point
x ∈ U , we recall that fλx : Ω → Rd denotes the rescaled version of f , defined as

fλx (y) := λ−df(λ−1(y − x)), y ∈ Ω,

for λ ∈ (0, 1].
We start by introducing the notion of coherence on an open set Ω ⊂ Rd.

Definition B.0.1: Let Ω ⊂ Rd be an open set. A family F = (Fx)x∈Ω of distributions, Fx ∈ D′(Ω) for
any x ∈ Ω, is said to be a germ on Ω if, for any ψ ∈ D(Ω), the map x 7→ Fx(ψ) is measurable.

Definition B.0.2: Let Ω ⊂ Rd be an open set. Let γ ∈ R and let F = (Fx)x∈Ω be a germ as per
Definition B.0.1. F is called γ-coherent on Ω if there exists κ ∈ D(Ω) with κ̌(0) ̸= 0 such that for any
compact set K ⊂ Ω there exists ζK ≤ min{0, γ} such that

|(Fy − Fx)(κ
λ
x)| ≲ λζK(|x− y|+ λ)γ−ζK , (B.0.1)

uniformly for x, y ∈ K and for λ ∈ (0, DK/4], where we set DK := dist(∂Ω,K). We say that F is (ζ, γ)-
coherent where ζ = (ζK)K is the family of exponents in Equation (2.4.3). In particular, if ζK = ζ for any
compact set K, F is said to be (ζ, γ)-coherent.

Remark B.0.3: Let Ω ⊂ Rd and let K ⊂ Ω be a compact set. Since ∂Ω is a closed set and ∂Ω ∩ K = ∅,
then DK > 0.

Remark B.0.4: As mentioned in Remark 2.4.5, we could replace the constraint λ ∈ (0, DK/4] by
λ ∈ (0, ϵ], for any fixed ϵ > 0. As a matter of fact, the bound in Equation (B.0.1) is established up to a
multiplicative constant. The choice of DK

4 as a supremum among all possibile values of λ shall be clear
by what follows.

101



102 APPENDIX B. COHERENCE ON AN OPEN SET

Analogously to Subsection 2.4.1, we introduce the notion of enhanced coherence. In the same spirit of
Subsection 2.4.1, the main idea is to remove the dependence on the test function κ from the notion of
coherence as per Definition B.0.2. This can be achieved by promoting the coherence condition in Equation
(B.0.1) to a uniform condition on arbitrary test functions, provided that the exponents ζK are suitably
adjusted. First of all, we state the following proposition, which is an adaptation to our setting of [CZ20,
Prop. 12.6].

Proposition B.0.5: Let Ω ⊂ Rd be an open set and let u ∈ D′(Ω). Suppose that there exist a compact
set K ⊂ Ω and a test function κ ∈ D(Ω) with κ̌(0) ̸= 0 such that, for any x ∈ KD

2
and for any ε ∈ {2−n}n∈N

|u(κεx)| ≤ εζg(ε, x), (B.0.2)

where ζ ≤ 0, g : (0, D4 ]× KD
2
→ (0,∞] is an arbitrary function while we set D := dist(K, ∂Ω). Then, for

any integer r > −ζ, it holds true that

∀x ∈ K, ∀ϕ ∈ D(B(0, 1)) |u(ϕλx)| ≲ ∥ϕ∥Cr(Rd)λ
ζ g̃(λ, x), ∀λ ∈

(
0,
D

4

]
, (B.0.3)

where g̃ : (0, D4 ]× K → [0,∞) is defined as

g̃(λ, x) := sup
λ′∈(0,λ],

x′∈B(x,2λ)

g(λ′, x′) (B.0.4)

while ∥ · ∥Cr(Rd) has been defined in Equation (A.1.3).

Proof. We omit the proof since it is similar to that of [CZ20, Prop. 12.6]. For this reason, we stress
only the main difference. Since this result is the localization on an open set Ω of [CZ20, Prop. 12.6], we
consider the D

2 -enlargement of K to make sure that supp(ϕλx) is contained in Ω for any ϕ ∈ D(B(0, 1))

and for any λ ∈ (0, D4 ].

Enhanced coherence is a consequence of the previous proposition.

Proposition B.0.6: Let Ω ⊂ Rd be an open set and let F = (Fx)x∈Ω be a γ-coherent germ on Ω as
per Definition B.0.2, i.e. there exist κ ∈ D(Ω) with κ̌(0) ̸= 0 and a family ζ = (ζK)K such that Equation
(B.0.1) holds true. We set ζ̃K := ζKDK

2

where DK = dist(K, ∂Ω). Then, for any compact set K ⊂ Ω and

any integer r > −ζ̃K, it holds true that

|(Fx − Fy)(ϕ
λ
y )| ≲ ∥ϕ∥Cr(Rd)λ

ζ̃K(|x− y|+ λ)γ−ζ̃K , (B.0.5)

uniformly for ϕ ∈ D(B(0, 1)), λ ∈ (0, DK

4 ] and x, y ∈ K.

Proof. The proof of this result is similar to that of [CZ20, Prop. 13.1]. For this reason, we omit it. In the
following, we stress only the main difference. Being this result the local formulation of [CZ20, Prop. 13.1]
and on account of the definition of DK, we need to make sure that the DK

2 -enlargement of K is contained
in Ω. In addition, Definition B.0.2 and Proposition B.0.5 entail the coherence bound in Equation B.0.5
with exponents ζKDK

2

.

On account of Proposition B.0.6, we give the following equivalent definition of coherence on an open set
Ω ⊂ Rd.
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Definition B.0.7: Let Ω ⊂ Rd be an open set and let γ ∈ R. A germ of distributions F = (Fx)x∈Ω is
said to be γ-coherent on Ω if for any compact set K ⊂ Ω there exists ζK ≤ min{0, γ} such that, for any
integer r > −ζK,

|(Fx − Fy)(ϕ
λ
x)| ≲ ∥ϕ∥Cr(Rd)λ

ζK(|x− y|+ λ)γ−ζK , (B.0.6)

uniformly for ϕ ∈ D(B(0, 1)), x, y ∈ K and λ ∈ (0, DK

4 ], where we set DK := dist(∂Ω,K).

At last, we prove that the notion of coherence on an open set is stable with respect to restrictions - see
[RS21, Prop 32].

Proposition B.0.8: Let Ω ⊂ Rd be an open set and let Ω′ ⊂ Ω be an open subset. In addition, let
F = (Fx)x∈Ω be a (ζ, γ)-coherent germ on Ω with γ ∈ R and ζ = (ζK)K as per Definition B.0.7. Then it
is also (ζ, γ)-coherent on Ω′.

Proof. Let K ⊂ Ω′ be a compact set. In addition, we set DΩ′

K := dist(∂Ω′,K) and DΩ
K := dist(∂Ω,K).

Being K ⊂ Ω and on account of coherence on Ω as per Definition 2.4.4, there exists ζK ≤ min{0, γ} such
that, for any integer r > −ζK,

|(Fx − Fy)(ϕ
λ
y )| ≲ ∥ϕ∥Cr(Rd)λ

ζK(|x− y|+ λ)γ−ζK , (B.0.7)

uniformly for x, y ∈ K, λ ∈ (0,
DΩ

K

4 ] and ϕ ∈ D(B(0, 1)). Since DΩ′

K ≤ DΩ
K , the bound in Equation (B.0.7)

holds true uniformly for λ ∈ (0,
DΩ′

K

4 ]. Therefore, F is γ-coherent on Ω′ with exponents ζ = (ζK)K.
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[Hör03] L. Hörmander, The Analysis of Linear Partial Differential Operators I, (2003) Springer, 440p.

[JS02] W. Junker and E. Schrohe, “Adiabatic vacuum states on general space-time manifolds: Definition,
construction, and physical properties,” Ann. Henri Poinc. 3 (2002), 1113.

[KPZ86] M. Kardar, G. Parisi and T.-C. Zhang, “Dynamic scaling of growing interfaces,” Phys. Rev.
Lett. 56 (1986), 889.
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