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Abstract 

The main goal of this thesis is to thoroughly understand the structural and dynamic 

properties of key biomolecular components of SARS-CoV-2 with the aim of developing pan-

coronavirus methods. For this reason, the thesis divided into two parts: a protein-oriented 

exploration and a genetic-material-focused analysis. 

The protein-oriented approach delves deep into the immunoreactive, dynamic, and 

structural characteristics of SARS-CoV-2 Spike protein and its variants. By investigating 

these intricate details, we aim to unravel pivotal insights that transcend individual variants, 

ultimately leading us to identify fundamental patterns applicable to a broader range of viral 

agents. This understanding serves as a basis to devising adaptable strategies capable of 

addressing both present and future pandemics. 

On the other hand, the genetic approach deepens the possibility of targeting secondary 

structures of the virus RNA other than the classical ones, the G-quadruplexes (G4). 

Through the synergy of these two distinct yet interlinked approaches, this thesis aims to 

construct a comprehensive framework for addressing the challenges posed by viral 

mechanisms. By combining knowledge from the world of proteins and genetics, we aspire 

to build a general computational strategy for the study of the fine mechanisms regulating 

viral-host interactions and viral life regulation. 

Preface: A Computational Evolutionary Journey together 
with SARS-CoV-2 

The outbreak of the novel coronavirus disease (COVID-19) caused by the severe acute 

respiratory syndrome coronavirus 2 (SARS-CoV-2) has ushered in an unprecedented global 

health crisis. Since its emergence, the virus has undergone continuous genetic changes, 

leading to the emergence of numerous variants with distinct biological characteristics, the 

so-called Variants of Concern (VOCs).  

This thesis adopts a multi-faceted approach to investigate SARS-CoV-2:  it leverages both 

protein-based and genetic methodologies to unravel the complex behavior of the virus to 

design new and innovative therapeutic strategies.  
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For this reason, the organization of the thesis will be reminiscent of this division, there will 

be a first part focused on the virus proteins (the Protein approach) and a second part 

concerning the RNA (the Genetic approach). 

Among the proteins of the virus, the Spike protein (S protein) plays a pivotal role in viral 

entry and host immune recognition. Understanding the dynamics of the Spike protein and 

the effects of its mutations is essential for comprehending the virus's interaction with the 

host immune system and its impact on disease severity and transmission.  

This thesis focuses on an in-depth analysis of the SARS-CoV-2 Spike protein and its 

mutations, aiming to shed light on their multifaceted roles in viral pathogenesis. Specifically, 

the research explores the effect of Spike protein mutations on the immune response, 

particularly the efficacy of monoclonal antibodies against different variants. Additionally, it 

investigates the influence of these mutations on the stability of the viral variants and their 

implications for virulence. Furthermore, this work delves into the presence of the fatty acid 

binding pocket within the Spike protein and examines its conservation across various SARS-

CoV-2 variants. By addressing these critical aspects, this thesis aims to contribute to our 

understanding of SARS-CoV-2 evolution and host-virus interactions, with potential 

implications for the development of therapeutic interventions and public health strategies. 

Additionally, this protein approach examines conserved protein-protein interactions between 

different coronavirus, shedding light on essential molecular mechanisms governing virus-

host interactions. 

The urgent need to combat SARS-CoV-2 has boosted the search for new targets and 

innovative compounds, strengthening the arsenal of antiviral drugs. From a genetic 

perspective, a notable challenge is to target noncoding RNAs with small molecules, which 

requires a shift from conventional drug discovery methods.  

Noncoding RNAs have gained considerable importance in drug discovery because of their 

central role in biological processes. Dysregulation of the functions of noncoding RNAs is 

directly associated with several diseases. Recognizing their potential as therapeutic targets 

represents an exciting frontier that could greatly expand drug development, particularly in 

the context of RNA viruses such as SARS-CoV-2. Targeting the RNA genome of SARS-

CoV-2 with small molecule drugs extends its promise beyond the current pandemic. Despite 

the challenges posed by the complexity of these hybrid compounds, their clinical application 

and the identification of intricate RNA-based targets represent the future of medicinal 

chemistry. 
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In addition, G-quadruplexes (G4), non-canonical secondary structures formed by guanine-

rich sequences, have emerged as highly conserved targets in viral genomes. Targeting 

these structures has potential for antiviral therapies. The goal was to delve deeper into the 

(un)folding mechanisms of G4s to develop precise tools that interact with them, thereby 

contributing to a comprehensive understanding and potential advancement of antiviral 

strategies.  

1.1 Aim 

The primary objective of the ongoing protein-focused research is to conduct an in-depth 

investigation into the SARS-CoV-2 Spike protein. This multifaceted approach involves 

distinct yet interconnected key objectives, each aiming to provide critical insights into the 

nature and behavior of this essential viral protein. 

The first objective involves predicting immune recognition regions within the Spike protein. 

A straightforward yet robust structure-dynamics-energy based strategy has been developed 

for this purpose. This strategy is designed to comprehensively predict regions of the Spike 

protein that are likely involved in immune recognition. This insight holds immense potential 

in guiding the development of novel molecules for both vaccine and diagnostic purposes. 

Remarkably, this approach has successfully identified potentially reactive regions within the 

S protein stalk. These identified regions are currently undergoing experimental synthesis 

and testing, highlighting the translational impact of this research. 

The second objective revolves around assessing immune response variability, specifically 

in response to mutations in the Spike protein. Understanding how these mutations affect the 

immune response is vital, especially in evaluating the efficacy of monoclonal antibodies 

against various SARS-CoV-2 variants. This research seeks to uncover the extent to which 

these mutations influence the immune system's ability to neutralize the virus, a critical 

aspect in the ongoing fight against the pandemic. 

Additionally, investigating the stability of SARS-CoV-2 variants with Spike protein 

mutations constitutes another vital objective. This research seeks to delve into how these 

mutations impact the stability of the virus, its ability to persist, transmit, and potentially cause 

severe disease. By providing insights into the dynamic nature of viral evolution, this research 

strives to contribute valuable knowledge to the field of virology and aid in the development 

of informed public health strategies. 
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Lastly, this research involves exploring the presence and conservation of the fatty acid 

binding pocket within the Spike protein across various SARS-CoV-2 variants. This analysis 

aims to identify potential druggable targets for therapeutic interventions and assess their 

relevance in the context of viral evolution. Understanding the presence and variability of 

such pockets is crucial for identifying potential targets for drug development, an essential 

step towards effective therapeutic strategies. 

In summary, this comprehensive protein-focused research endeavors to unravel critical 

aspects of the SARS-CoV-2 Spike protein, offering insights that can shape the development 

of diagnostics, therapeutics, and public health measures in the ongoing battle against the 

COVID-19 pandemic. 

On the other end, the primary objective of genetic approach research is to develop a 

computational tool that can comprehensively characterize the intricate G-quadruplex (G4) 

folding landscape. These structures are not only present in the human genome but have 

been found also in the genomes of both DNA and RNA viruses, including human 

immunodeficiency virus-1 (HIV-1), Zika virus (ZIKV), hepatitis C virus (HCV), rhinovirus, 

Ebola virus (EBOV), etc. 

Understanding their biological roles is crucial, as these structures play pivotal roles in gene 

regulation, DNA replication, transcriptional regulation, alternative splicing, and translational 

regulation, depending on the sequence and on the topology.  

However, experimental study of the folding and unfolding mechanisms of G4 structures 

presents a significant challenge due to the complexity of the process. Unlike a simple funnel 

mechanism, the mechanism of G4 folding/unfolding follows a kinetic partition (KP) model, it 

contains deep competing free-energy minima (alternative folds, competing conformational 

basins or ensembles) separated by large free-energy barriers. Considering this, 

experimental identification of multiple competing folds populated during the folding process 

but vanishing at the thermodynamic equilibrium is difficult, since they may mutually overlap 

in the measurable signals during the folding, making them unresolvable. 

By developing an advanced computational tool, this research aims to navigate through 

this intricate KP mechanism and shed light on the dynamic G4 folding landscape. Through 

computational simulations and analysis, it seeks to decipher the nuances of G4 folding, 

offering insights into how these structures modulate gene expression and regulation. This 

understanding will deepen our knowledge of biological processes in the human body but will 

also provide critical insights into the behavior of G4 structures within viral genomes. 
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Ultimately, the research endeavors to pave the way for potential therapeutic interventions 

and novel drug discovery strategies that target G4s, both in human and viral contexts, and 

further contributing to advancements in the field of genetic research. 

At the end, by addressing these research objectives, this thesis aims to contribute to our 

understanding of SARS-CoV-2 biology and its interactions with the host immune system, 

ultimately offering valuable insights into the development of effective strategies to combat 

the ongoing COVID-19 pandemic. 
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Introduction  

1.2 Early stages of the COVID-19 pandemic: emergence and spread  

In the late 2019 (around mid-December) a cluster of patients in China’s Hubei Province, 

in the city of Wuhan began displaying symptoms of an unusual pneumonia-like illness that 

did not respond well to standard treatments. Among the first 27 documented hospitalized 

patients, most cases shared direct exposure to the Huanan Seafood Wholesale Market1, a 

wet market located in downtown Wuhan, which sells not only seafood but also live animals, 

including poultry and wildlife.  

Further investigations revealed that the first patients could be traced back to early 

December 2019.2 

On December 31, the Wuhan Municipal Health Commission informed the World Health 

Organization (WHO) about an outbreak of pneumonia with an unknown cause (Summary of 

the events in Table 1). 

 

Table 1. Summary of the events of the COVID-19 Pandemic. 

 

December2019 January 2020

x

February 2020 March 2020 Mid 2023

>

8 December First 
recorded case in 
Wuhan, China
31 December 27 
cases of 
pneumonia with 
unknown cause in 
Wuhan

9 January China 
announced the 
identification of a 
novel coronavirus 
as the causative 
agent of the 
pneumonia 
outbreak
13 January Patient 
from Wuhan 
confirmed in 
Thailand 
20 January Human-
to-human 
transmissions was 
confirmed
23 January Wuhan 
city was locked 
down
29 January The 
coronavirus spread 
to all the provinces 
across China
30 January WHO 
declared (public 
health emergency 
of international 
concern) PHEIC
alert

11 February ICTV 
named virus SARS-
CoV-2 and WHO 
named disease 
COVID-19
28 February WHO 
risk assessment 
increase to very 
high on the global 
level 

11 March WHO 
defined COVID-19 
as a pandemic 

> 605.202.174 cases
> 6.486.277 deaths
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Subsequently, independent teams of Chinese scientists conducted RNA sequencing and 

virus isolation from samples taken from affected patients. Their research led them to identify 

the causative agent of this emerging disease as a previously unseen beta-coronavirus.3-5 

The results of this etiological identification were publicly announced on January 9, 2020. On 

January 10, the first genome sequence of the new coronavirus was published on the 

Virological website, followed by the release of other nearly complete genome sequences 

determined by various research institutions through the GISAID database on January 12.6 

This new coronavirus pneumonia quickly spread to other cities in Hubei Province, 

eventually reached different parts of China and within a month, it spread massively to all 34 

provinces of the country. The number of confirmed cases suddenly increased, with 

thousands of new cases diagnosed every day by the end of January. On January 30, WHO 

declared the outbreak of the new coronavirus a public health emergency of international 

concern.7 

Subsequently, on February 11, the International Committee on Virus Taxonomy named the 

new coronavirus "SARS-CoV-2" while the disease caused by it was named "COVID-19" by 

the WHO.8 

The international spread of COVID-19 has accelerated since late February. The highly 

efficient transmission of SARS-CoV-2, coupled with extensive international travel, facilitated 

the rapid global spread of COVID-19. On March 11, 2020, WHO officially designated the 

global epidemic of COVID-19 as a pandemic (https://www.who.int/docs/default-

source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10). 

In Italy, the first two cases of the pandemic were confirmed on January 30, 2020, when 

two tourists from China tested positive for SARS-CoV-2 in Rome. An outbreak of COVID-19 

infections was subsequently detected on February 21, 2020, from 16 confirmed cases in 

Codogno (LO), Lombardy, increased to 60 the following day. 

Although the genetic evidence suggests that SARS-CoV-2 is a naturally occurring virus 

that probably originated in animals, there is still no conclusion as to when and where the 

virus first entered humans. In fact, some of the early cases reported in Wuhan had no 

epidemiological link to the seafood market and it has been suggested that the market may 

not be the initial source of human infection with SARS-CoV-2.9 However, this remains a 

highly debated issue that falls beyond the scope of our discussion. 
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1.3 SARS-CoV-2 Virus 

SARS-CoV-2 is a member of the Coronaviruses, a heterogeneous group of viruses that 

infect various animals and can lead to respiratory infections in humans, ranging from mild to 

severe. These viruses, according to differences in the genome sequence and serological 

reactions, are classified into four genera: Alphacoronavirus, Betacoronavirus, 

Gammacoronavirus and Deltacoronavirus. SARS-CoV-2 is classified as a Betacoronavirus 

(β-CoV) as other two other β-CoVs which have caused outbreaks: the severe acute 

respiratory syndrome coronavirus (SARS-CoV) in 2002 and the Middle East respiratory 

syndrome coronavirus (MERS-CoV) in 2012. These viruses originated in humans and 

caused severe respiratory illnesses, prompting concerns about the emergence of new 

coronaviruses as a significant public health concern in the 21st century. This family of 

viruses has a unique structural feature which resembles a solar crown due to the presence 

of Spike proteins on the virion surface.  

One of the main characteristics of coronaviruses is the high rate of genetic recombination 

and mutation, which means that there are many different types of these viruses and that 

they can adapt to different hosts. Many of these can attack humans but usually (as in the 

case of these seven viruses: Human coronaviruses 229E, OC43, NL63 and HKU1) these 

are responsible for 10–30% of upper respiratory tract infections annually, characterized by 

mild respiratory illnesses, such as the common cold. Instead, SARS and MERS-CoV were 

able to cause severe human respiratory diseases, potentially resulting in high mortality. (In 

2002–2003, SARS-CoV resulted in 8,096 reported cases and 774 deaths (case- fatality rate 

of ~10%). By the end of January 2020, 2,500 cases of Middle East respiratory syndrome 

and more than 800 associated deaths (case-fatality rate ~34%) were reported worldwide 

(https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-mers#tab=tab_1) 

.10 

SARS-CoV-2 exhibits a genome sequence similarity of 79% with SARS-CoV and 50% 

with MERS-CoV. The genetic arrangement is consistent among all β-CoVs: the genome is 

approximately 30 kb in size and consists of 14 open reading frames (ORFs), which encode 

29 viral proteins. The 5' end of the SARS-CoV-2 genome comprises about two-thirds of its 

length and encodes two overlapping polyproteins: pp1a and pp1ab. These polyproteins are 

cleaved by viral proteases, resulting in the production of 16 non-structural proteins (NSPs). 

The NSPs play a critical role in viral replication and transcription. 
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At the 3' terminus of the viral genome, four ORFs encode a standard set of structural 

proteins: Nucleocapsid (N) protein, Spike (S) protein, Membrane (M) protein, and Envelope 

(E) protein. These proteins are responsible for the assembly of viral particles and play a role 

in evading the host immune response. Between these structural genes, there are additional 

accessory genes that encode accessory proteins, including ORF3a, ORF3b, ORF6, ORF7a, 

ORF7b, ORF8b, ORF9b, and ORF14. These accessory proteins participate in the regulation 

of viral infection, although they may not be incorporated into the virion, except for ORF3a 

and ORF7a, which are considered structural proteins. Nevertheless, the molecular functions 

of many accessory proteins remain largely unknown owing to the lack of homologies to 

accessory proteins of other coronaviruses or to other known proteins.11 

The four structural proteins share 90% similarity with the corresponding SARS-CoV’s 

proteins except the Spike which diverges (with only around 80% sequence identity due to 

longer protein length in the 2019-nCoV compared with both SARS and MERS-CoV). The 

non-structural proteins instead have greater than 85% amino acid sequence identity with 

SARS-CoV.12  

 

Figure 1. A. Architecture of the SARS-CoV-2 genome and proteome, including nsps derived from 

polyproteins or pp1a and pp1ab (shades of blue), virion structural proteins (turquoise), and open 

reading frame proteins (Orfs, shades of green). Polyprotein cleavage sites are indicated by inverted 
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triangles for Papain-like Proteinase (PLPro, black) and the Main Protease (nsp5, blue). The double-

stranded RNA substrate-product complex of the RNA-dependent RNA polymerase (shown as the 

nsp7-nsp82-nsp12 heterotetramer and separately with only nsp12) is color coded (yellow: product 

strand, red: template strand). Transmembrane portions of the Spike S-protein are shown in cartoon 

form (light blue). The source of the structural models used for analyses for all study proteins are 

indicated. B. Sequence of the SARS-CoV-2 genome. Although these two previous betacoronavirus 

epidemics raised awareness of the need for clinically available therapeutic or preventive 

interventions, no treatments were ready to be used at the beginning of the pandemic. The 

development of effective intervention strategies relies on the knowledge of molecular and cellular 

mechanisms of coronavirus infections, which highlights the significance of studying virus–host 

interactions at the molecular level to identify targets for antiviral intervention and to elucidate critical 

viral and host determinants that are decisive for the development of severe disease. 

 

Briefly, the SARS-CoV-2 life cycle13 may be described as follows (see also the Figure 2): 

in the first step the S protein on the outer surface of the virion binds the host receptor for 

attachment to the cell membrane, which is followed by viral and host cellular membrane 

fusion and the release of viral genomic RNA into the cells. Subsequently, host ribosomes 

are hijacked to produce the two viral replicase polyproteins, which can further be processed 

into 16 mature NSPs through two virus-encoding proteases: main protease (Mpro) and 

papain-like protease (PLpro). These NSPs can assemble into the replication and transcription 

complex (RTC) to initiate viral RNA replication and transcription. The genomic RNA and 

structural proteins then assemble into mature progeny virions, which are subsequently 

released through exocytosis to initiate another round of infection. Viral proteins can 

individually perform important physiological roles, constitute the viral protein machinery for 

specific essential events in the viral life cycle or extensively interplay with the cellular factors 
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in the host immune response and pathogenesis. In the following, I will briefly describe the 

structures and biological roles of the key viral proteins.  

Figure 2. A. The life cycle of SARS-CoV-2, including viral entry, replication and transcription, 

assembly and release. SARS-CoV-2 enters host cells through an endocytosis pathway mediated by 

S protein–angiotensin-converting enzyme 2 (ACE2) interactions. Viral RNA enters the cytoplasm 

after the entry step, and then ORF1a or ORF1ab is translated by the host ribosome. The viral 

polyproteins are cleaved into NSPs and assemble themselves into the replication and transcription 

complexes. Subgenomic viral mRNAs (after capping) act as templates for viral protein translation. 

Progeny virions are assembled in the endoplasmic reticulum and Golgi body. Afterwards, the virions 

are exocytosed to complete the life cycle. ERGIC, endoplasmic reticulum–Golgi intermediate 

compartment; ExoN, exonuclease; HEL, helicase; Mac1, macrodomain 1; NendoU, uridine-specific 

endoribonuclease; NiRAN, nidovirus RNA-dependent RNA polymerase-associated 

nucleotidyltransferase; NMT, guanine-N7-methyltransferase; OMT, 2′-O-methyltransferase; PL2, 

papain-like protease 2; RBD, receptor-binding domain; RdRp, RNA-dependent RNA polymerase; 

SUD, SARS-unique domain; +ss, positive-sense single-stranded; TM, transmembrane; Ubl1, 

ubiquitin-like domain 1; UTR, untranslated region.  

1.3.1 Spike (S) protein  

The Spike (S) protein14 plays a crucial role in the life cycle of the virus, making it a 

significant target for various therapies, diagnostics, therapeutics, and vaccines. The S 

protein is a type I membrane protein, formed as a trimer composed of three identical 

monomers anchored to the viral membrane by its transmembrane segment. To initiate 
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infection, the S protein binds to the angiotensin-converting enzyme 2 (ACE2) receptor, 

undergoing structural rearrangements that promote fusion between the virus and the host 

cell. This protein is fully glycosylated with 22 N-linked glycosylation sites per protomer. 

The full-length S protein in the original is synthesized as a single 1273 amino acid 

polypeptide chain and can be cleaved by a furin-like protease into two functional subunits, 

S1 and S2, which are responsible for mediating attachment to host cells and membrane 

fusion, respectively.  

S1 contains the N-terminal domain (NTD), receptor-binding domain (RBD), and C-terminal 

domains (CTD1 and CTD2), while S2 includes the fusion peptide (FP), fusion-peptide 

proximal region (FPPR), heptad repeat 1 (HR1), central helix (CH), connector domain (CD), 

heptad repeat 2 (HR2), transmembrane segment (TM), and the cytoplasmic tail (CT), 

depicted in Figure 3. 

In its native state, the S1 fragment forms a ‘V’ shaped architecture with the NTD at one 

arm and the RBD, CTD1 and CTD2 at the other, wrap around the central helical bundle 

formed by the prefusion S2 fragment, projecting the N-terminal end of HR1 toward the viral 

membrane.  

In this configuration, the RBD can sample two distinct conformations: the open ‘up’ 

representing a receptor-accessible state and closed ‘down’ a receptor-inaccessible state 

(Figure 4). In the ‘down’ state, RBD angles are close to the central cavity of the trimer to 

shield the receptor-binding regions, while in the ‘up’ state, the RBD undergoes hinge-like 

conformational movement, exposing its determinant regions to recognize the human 

angiotensin-converting enzyme 2 (hACE2) receptor on the host cellular membrane, the state 

of which is considered to be less stable than in the ‘down’ state. 

The three NTDs are located at the periphery of the trimer, each making contacts with the 

RBD from the adjacent protomer. The CTD1 and CTD2 pack underneath the RBD against 

S2 and between the two neighboring NTDs, indicating they could modulate these domains 

and play important roles in the structural rearrangements required for membrane fusion. 

In the postfusion conformation (Figure 3, E.), S1 dissociates as a monomer and S2 adopts 

a rigid, baseball-bat-like shape (~220 Å long), with HR1 flips over forming a continuous long 

helix together with the CH. The connector domain (CD) and other segments contribute to 

the formation of helix bundles, ultimately facilitating membrane fusion. 

The process of membrane fusion is triggered when the S1 subunit binds to hACE2 and 

leading to structural changes and shedding of S1: the interaction involves specific residues 

in both the RBD and hACE2, resulting in the activation of the HR1 and HR2 helices, which 



 13 

form a stable six-helix bundle. This conformational change brings the viral and host cell 

membranes into proximity, facilitating membrane fusion and subsequent infection. 

Figure 3. Distinct conformational states of the SARS-CoV-2 spike protein. A. Schematic 

representation of the SARS-CoV-2 spike protein organization. Segments of S1 and S2 include: NTD, 

N-terminal domain; RBD, receptor-binding domain; CTD1, C-terminal domain 1; CTD2, C-terminal 

domain 2; S1/S2, S1/S2 cleavage site; S20, S20 cleavage site; FP, fusion peptide; FPPR, fusion 

peptide proximal region; HR1, heptad repeat 1; CH, central helix region; CD, connector domain; 

HR2, heptad repeat 2; TM, transmembrane anchor; CT, cytoplasmic tail; and tree-like symbols for 

glycans. B. Viral SARS-CoV-2 S trimer in the prefusion conformation (PDB 6XR8). C. Cryo-EM 

structure of the full-length S trimer in the RBD-down conformation (PDB 6XR8). D. Stabilized S trimer 

with one RBD-up (PDB 6VSB). E. Cryo-EM structure of the full-length S2 trimer in the postfusion 

conformation (PDB 6XRA). 
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Figure 4. A. Superimposition of the full-length Spike protein in its conformations with one RBD in 

the DOWN configuration (in blue) and with the UP configuration (in green). B. Zoom on the RBD in 

DOWN (blue) and UP (green) configurations. 

1.3.1.1 N-terminal domain (NTD)  

The NTD (14-685 residues) is situated at the outer edge of the spike protein and extends 

away from the threefold axis. It can be subdivided into three regions: the top, core, and 

bottom regions. The core structure exhibits a galectin-like antiparallel 𝛽-sandwich fold, 

composed of one six-stranded 𝛽-sheet and another with seven strands. The top region 

consists of two antiparallel 𝛽 strands connected by a short loop, while the bottom region is 

primarily composed of two short 𝛽 sheets and a helix. The NTD is adorned with eight N-

linked glycans, similar to those found in MERS.15 Though the exact function of the NTD in 

SARS-CoV-2 S is not fully understood, other coronaviruses have shown that NTD may be 

involved in recognizing sugars during initial attachment or specific protein receptors, or it 

might play a role in the prefusion-to-postfusion transition. The presence of NTD-targeted 

neutralizing antibodies (nAbs) isolated from SARS-CoV-2 infected patients,16 with potent 

effects at the nM level, suggests the domain's crucial functional role. 
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1.3.1.2 Receptor binding domain (RBD) 

The RBD (319-541 residues) contains two subdomains: a five-stranded antiparallel 𝛽-

sheet connected by short helices and loops, and an extended loop, named receptor binding 

motif (RBM). The overall structure of the SARS-CoV-2 RBD closely resembles that of the 

SARS-CoV RBD (with a RMSD of 1.2 Å for 174 aligned C𝛼 atoms). The RBM, which has 

more sequence variation, retains structural similarity (RMSD of 1.3 Å) with only a minor 

conformational change at its distal end. The binding mode of the SARS-CoV-2 RBD to ACE2 

is almost identical to that observed in the previously determined structure of the SARS-CoV 

RBD-ACE2 complex.15 

The extended RBM's gently concave outer surface interacts with the N-terminal helix of 

the peptidase domain (PD) of ACE2. The interaction involves hydrogen bonds and salt 

bridges between specific polar residues of the RBD and ACE2, contributing to receptor 

engagement. Mutations of key residues, such as N501Y, K417N, and E484K, found in fast-

spreading variants, lead to enhanced affinity for ACE2 and immune evasion. 

Obviously, the RBD is a dominant target of nAbs elicited by either natural infection or 

vaccination, confirming its pivotal role during infection, see Chapter 3.4.2. 

1.3.1.3 C-terminal domains (CTDs) 

The CTDs mainly consist of 𝛽-structures from segments of S1 and the N-terminal segment 

of S2 adjacent to the furin cleavage site (see Figure 3). CTD1 contains two antiparallel 𝛽-

sheets with two strands and four strands, respectively. CTD2 also has two 𝛽-sheets: a four-

stranded one and another four-stranded one that includes a strand from the S2 subunit.15  

In the RBD-down conformation of the S trimer, a structural element in the CTD2, named 

the ‘630 loop’, becomes well-ordered in the G614 variant while disordered in the Wuhan-

Hu-1 strain. The structured 630 loop inserts into a gap between the NTD and CTD1 of the 

same protomer, stabilizing the CTD2 structure. This loop It is also located near the S1/S2 

boundary and the fusion peptide proximal region (FPPR) of a neighboring protomer. The 

FPPR and the 630 loop help retain the RBDs in the down conformation but move out of their 

positions when the adjacent RBD flips up. Thus, the CTDs, along with the FPPR and the 

630 loop, play critical roles in modulating the fusogenic structural rearrangements of the S 

protein.17-19  
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1.3.1.4 S2 domain 

In the prefusion conformation, three S2 subunits form a tight packing around a central 

three-stranded coiled-coil of approximately 140 Å long, formed by CH. Part of the HR1 and 

a segment of S2 (residues 758-784) adopt an 𝛼-helical conformation and assemble into a 

nine helix-bundle with the central coiled-coil, creating the most rigid part of the entire S 

trimer.  

The CD region links CH and the C-terminal HR2 through a linker region. The FP forms a 

short helix and fits into a pocket between two neighboring S protomers. The structured FPPR 

clamps the prefusion S trimer in the closed, RBD-down conformation. The remaining HR2, 

TM and CT segments are disordered in the most S trimer structures but show low-resolution 

density in the cryo-ET reconstructions tilting away from the trimer's threefold axis at various 

angles (17° to 60°). 

In the postfusion conformation, the HR1 and CH form a continuous 𝛼-helix with three 

copies of them assembling into a long central three-stranded coiled-coil. Part of the HR2 

folds into	𝛼-helix and packs against the groove between two HR1-CH helices to form a six-

helix bundle structure, resembling the postfusion organization of other viral fusion proteins. 

The CD remains unchanged from the prefusion conformation, as a three-stranded 𝛽-sheet 

covering the C-terminal end of HR1-CH helices.  

Comparison of the prefusion and postfusion conformations of S suggests that HR1 

undergoes significant rearrangements to form a coiled-coil, translocating its N-terminal 

closer to the target cell membrane to project the FP. Additionally, HR2 and the TM at its C-

terminal end fold back to pack along the groove of the HR1-CH coiled-coil, forming the 

postfusion six-helical bundle. These refolding events bring the viral and target cell 

membranes into proximity, ultimately leading to membrane fusion. Notably, the postfusion 

S2 surface is decorated with five N-linked glycans arranged in a regular spacing, possibly 

serving to protect S2 from host immune responses.15  
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1.3.1.5 Roles of Glycans   

Another key structural feature of the Spike protein is its extensive glycosylation as shown 

in Figure 5. 

 

Figure 5. Glycan shield of the SARS-CoV-2 S protein. A. Glycosylated full-length model of the S 

protein in the open state. Protein is depicted with gray cartoons, where the N-/O-glycans are shown 

in sticks representation. B. Molecular representation. Glycans at several frames (namely, 500 

frames, one every 10 ns from one replica) are represented with blue lines, whereas the protein is 

shown with cartoons and highlighted with a cyan transparent surface.  

 

Glycan is a biomolecule present in numerous proteins and lipids, serving as a functional 

component.  Usually, protein glycosylation plays a crucial role in viral pathogenesis, for 

example in the HIV-1 envelope spike (Env) protein where the surface is almost entirely 

covered in N-glycans (they account for more than half of the protein’s molecular weight).20-

26  

The biological roles of the N-glycans present on the surface are very diverse and related 

to the glycoprotein’s function.20 They are crucial for facilitating viral entry through membrane 

fusion. During viral entry, envelope glycoproteins initiate the process through molecular 

recognition events with cell surface receptors. These interactions are often mediated by 
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specific N-glycan epitopes, further emphasizing the significant role of N-glycans in viral 

infection and entry mechanisms.20, 27-29  

In addition to their diverse biological roles, the N-glycans on viral envelope glycoproteins 

serve as an effective shield against the host immune system.20, 23, 24, 30 These complex 

carbohydrates which are non-immunogenic or weakly form a highly dense coating, making 

it difficult for the host immune system to recognize and neutralize the virus.  

However, there are differences between various viruses in the effectiveness of this glycan 

shield. For instance, in HIV-1, the glycan shield has been proven to be highly effective, 

enabling the virus to evade the immune system effectively.20, 21 On the other hand, in the 

case of SARS and MERS, the glycan shield is not as efficient in evading the immune 

response, making these viruses more susceptible to immune recognition and attack.21 

Furthermore, the glycosylation pattern in SARS and SARS-CoV-2 is different from HIV-1. 

These coronaviruses have a large presence of complex N-glycans, specifically the 

oligomannose type and specifically 22 predicted N-glycosylation sites per protomer, of which 

at least 17 have been found to be occupied plus at least two predicted O-glycosylation 

sites.31 These differences in glycosylation may contribute to the varying levels of immune 

evasion and recognition observed among different.  

Beyond their shielding role, the N-glycans attached to N165 and N234 play a crucial 

structural role in regulating the conformational transitions of the receptor-binding domain 

(RBD) on the SARS-CoV-2 spike (S) protein. Through simulations, was observed that the 

deletion of these glycans destabilizes the RBD's ‘up’ conformation. These findings were 

validated by biolayer interferometry experiments, which showed a reduction in ACE2-

binding and an increase in the RBD's "down" conformation. Furthermore, simulations 

revealed that the glycans act as camouflage for the SARS-CoV-2 S protein, enabling it to 

evade the host immune response effectively. Analyzing the glycan shield in detail, has been 

found that the stalk region is largely invulnerable, particularly to larger molecules, whereas 

the head region presents a more viable target for immune recognition. In addition, the 

receptor-binding motif (RBM) accessibility showed a significant difference in glycan 

shielding between the ‘up’ and ‘down’ RBD conformations.32 

Overall, the glycans on the viral envelope glycoproteins serve a dual role, being of 

paramount importance both as immune evasion mechanisms and as essential structural 

elements for virus infectivity. 
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Understanding the various roles of glycans in SARS-CoV-2 is crucial for developing 

effective strategies for therapeutics, vaccines, and treatments aimed at targeting the virus 

and mitigating the impact of COVID-19. 

1.3.2 Membrane (M) protein 

The membrane (M) protein is 221 amino acids long and has little similarity with the M 

proteins of other coronaviruses.33 Its crucial role lies in the assembly of virions within the 

cell, taking place between the endoplasmic reticulum (ER) and the Golgi body. The M protein 

consists of three structural components: the N-terminal portion of the virion that protrudes 

from the membrane, which is sensitive to protease, binds to the surface of the virus, the 

transmembrane domains and there are two domains in the C-terminal. Adjacent to the 

transmembrane region in the third domain, an amphipathic domain is succeeded by a small 

hydrophilic region. This segment links to the host's viral or cytoplasmic membrane, 

facilitating virus assembly and maturation.34 Over time, the cellular membrane protein 

transforms into a site where fresh viral particles are generated within the host cell. 

Furthermore, the M protein plays a vital role in fostering aggregation by interacting with the 

viral ribonucleoprotein and S glycoprotein during the budding process. Notably, this protein 

in SARS-CoV has also a protective glycosylated region that may be critical for host-virus 

interaction and this can be used to inhibit some important inflammatory proteins.31  

A noteworthy attribute of the M protein is its ability to bind with all structural proteins35: for 

instance, the interaction of the M protein with the nucleocapsid (N) protein contributes to the 

stability of the N protein.36 On the other hand, when the S protein and the M protein bind to 

each other, changes occur that may affect how the virus interacts with the host cell and 

enters the cell.31 

1.3.3 Nucleocapsid (N) protein 

The N protein of SARS-CoV-2 consists of an N-terminal RNA-binding domain (NTD) and 

a C-terminal dimerization domain (CTD) and shares ~90% sequence identity with N protein 

of SARS-CoV. The regions located between the N-terminus and NTD, between NTD and 

CTD, and between CTD and the C-terminus of the N protein of SARS-CoV-2 (thereafter 

referred to as N protein) are predicted to be intrinsically disordered. At neutral pH, the N 

protein is positively charged (+24 e), consistent with its strong binding affinity with negatively 

charged RNA. The gel filtration and dynamic light scattering results further suggested the 



 20 

oligomerization of N protein. Altogether, the sequence and structure features of N protein 

are similar to those of other proteins that have been reported to undergo liquid–liquid phase 

separation (LLPS) with nucleic acids. Thus, it is probable that the N protein may also 

undergo LLPS with viral genome RNA and potentially facilitate viral assembly. 

The N protein serves as a multifunctional component crucial for transcription and 

replication processes.37, 38 This protein is required for the creation of ribonucleoproteins that 

regulate the replication and synthesis of the viral RNA genome.38 The main function of the 

N protein is to bind to the RNA genome of the viral infection and package it into a long 

nucleocapsid, which is also known as ribonucleoprotein.39 Most studies have shown that 

this protein affects host-pathogen interactions, including actin reactivation and host-cell 

cycle progression.40 This protein is highly immunogenic and is present in large quantities 

during infection.41 Inside the virus, the N protein protects and stabilizes the viral RNA.42 

Throughout the virus assembly process, it collaborates with viral membrane proteins and 

interfaces with the M protein.43 Furthermore, it exerts influence on RNA folding, translation, 

and the progression of the cell cycle.40 The N protein establishes associations with 

transcription and replication complexes within infected cells.44 

Evidence implies that this molecule might contribute to the pathophysiology of central 

nervous system (CNS) infections. One hypothesis proposes that the N protein could trigger 

the activation of toll-like receptors (TLR)3, TLR7, or TLR8, consequently initiating signaling 

pathways that enhance the activation of NF-κB and NLRP3. This sequence of events could 

lead to a cytokine storm and subsequent inflammatory responses.45 Consequently, these 

mechanisms could play a role in the development of various conditions such as cancer, 

coagulation disorders, neurodegenerative ailments, and cardiovascular diseases.46 Notably, 

the N protein’s potential involvement in the assembly of the SARS-CoV-2 virus offers 

valuable insights for the formulation of intervention strategies aimed at curbing the COVID-

19 pandemic.47  

1.3.4 Envelope (E) protein 

The envelope (E) protein consists of a chain of 10 to 74 amino acids, organized into three 

domains: a short hydrophilic N-terminal domain (NTD), a hydrophobic transmembrane 

domain (TMD), and a long hydrophilic C-terminal domain (CTD). It exists each in monomeric 

and pentameric forms. Alignment of the E protein in MERS-CoV, SARS-CoV, and SARS-

CoV-2 revealed a tendency to accumulate a net positive charge balance in the CTD. This 

indicates a heightened stability within the topology from MERS-CoV to SARS-CoV-2, 
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probably contributing to the extended pathogenicity and heightened resistance to control 

determined in SARS-CoV-2.48 

Within viral cloth, this protein is typically found in about 20 copies.49 Prior investigations 

have discovered that mutagenesis has an outstanding effect on the progression and 

dissemination of viral infections.50 Specifically, viruses poor on this protein cannot infect the 

host cell and have a very low viral titer in the host cell.51 Positioned along the secretory 

pathways connecting the endoplasmic reticulum (ER) and the Golgi equipment of the host 

cellular,52 the E protein’s C-terminal location is structurally enclosed in the virus’s envelope. 

Consequently, it is closed to the envelope itself, in the end becoming encapsulated within 

it.53 This phenomenon can restrict the host cell’s capacity to replicate and disseminate the 

virus across the body. Despite its unique characteristic closing enigmatic, this small protein 

has the capacity to result in the formation of lipid droplets inside the virus. It accompanied 

by the M and N proteins is very important for the development and propagation of virus 

particles in SARS-CoV-2. Moreover, E protein interacts with host cell proteins and acts as 

an ion channel51 and because of the latter can act as a determinant for coronaviruses 

virulence and play an important role in its pathogenic process.54 So, SARS-CoV-2 E protein 

plays an important role in virial pathogenesis, making it an excellent target for drug therapy. 
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1.4 The emergence of SARS-CoV-2 Variants 

 
Figure 6. SARS-CoV-2 Variants of Concern (VOCs) 

 

A crucial aspect to take into consideration when devising strategies against SARS-CoV-2 

variants is their inherent nature as β-CoVs, which belong to the category of RNA viruses. 

These viruses store their genetic instructions in the form of single-stranded RNA, a 

knowingly delicate molecule prone to errors during the replication process. Consequently, 

these replication errors can trigger mutations within the viral genome. Indeed, an intrinsic 

feature of RNA viruses, including SARS-CoV-2, is their remarkable replication rate. This 

rapid replication leads to the swift generation of a multitude of viral particles within a short 

timeframe, heightening the likelihood of genetic errors during the copying of the genome. 

Together, unlike DNA viruses, many RNA viruses lack a robust proofreading mechanism 

during replication. Unlike the specialized enzymes present in DNA viruses that rectify 

replication mistakes, RNA viruses are deficient in this error-correction process, rendering 

them susceptible to accumulating mutations. 

Furthermore, the host's immune system endeavors to combat the virus by detecting and 

targeting specific components. Here, mutations within the viral genome can sometimes 

confer a shield against the immune response, creating selective pressure that favors 

mutations facilitating evasion from the host's immune system. Along with this aspect, the 

environmental factors, such as changes in the host population, transmission dynamics, 

environmental conditions and vaccines should also be considered to the selection and 

spread of specific viral variants. 

These mutations can also cause alterations in the virus's properties, affecting its ability to 

bind to host cells, replicate more efficiently, or achieve greater spread. Some mutations may 
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grant the virus a competitive advantage in survival or replication, thus potentially increasing 

their prevalence in the viral population over time. 

It is crucial to acknowledge that not all mutations yield significant or substantial alterations 

in the virus's behavior. Many mutations have little to no impact on the virus's properties or 

its ability to cause disease. However, some mutations can lead to variations that affect 

factors like transmissibility, severity of illness, or vaccine effectiveness.  

Combining all these factors (High Replication Rate, lack of Proofreading Mechanism, 

Immune Pressure, Evolutionary Advantage, Genetic Diversity and Environmental Factors) 

has led to the SARS-CoV-2 Variants.55-57  These changes, which can be mutations, 

insertions, or deletions of the amino acid sequence, affect the entire genome of the virus. 

But of particular concern is the fact that these mutations could affect the antigenicity of the 

S protein, which, given its function, is the main target of neutralizing antibodies against 

infection.  

For almost a year the only noteworthy mutation in the S protein was D614G (Asp614 → 

Gly) which immediately became the dominant strain throughout the world.58 However, over 

time, this strain has further evolved, giving rise to several variants of concern (VOCs). This 

single-residue substitution correlates with elevated viral loads in infected patients and 

heightened infectivity of pseudotyped viruses. However, it does not exhibit a corresponding 

association with disease severity. The G614 virus demonstrates comparable susceptibility 

to neutralization by both convalescent human sera and sera from vaccinated hamsters.17 

This suggests that vaccines containing the original D614 variant remain effective against 

the G614 virus. 

Structural analyses reveal that the G614 virus possesses a more stable S trimer 

configuration compared to the original strain. This stability is attributed to the insertion of a 

loop (630 loop) into a wider gap in the G614 trimer, which is less accommodated in the D614 

trimer due to its narrower gap. This loop stabilizes key domains and prevents premature S1 

dissociation, contributing to the G614 variant's enhanced stability. The increased stability of 

the G614 variant influences its infectivity. The transition from a closed state to an RBD-up(s) 

conformation in a G614 trimer involves an order-disorder shift in the 630 loops, leading to 

slower transitions compared to the D614 trimer. This deceleration in transition rates, coupled 

with the stabilization of RBDs, explains the higher prevalence of the RBD-up conformation 

in the G614 variant. These insights elucidate the mechanisms underlying the enhanced 

infectivity of the G614 virus and its impact on viral behavior and vaccine efficacy. 
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Following the emergence of D614G, an amino acid substitution within the receptor-binding 

motif (RBM), N439K, was noted as increasing in frequency in Scotland in March 2020. This 

point mutation was followed by others, like Y453F, N501Y (substitution associated with 

greater transmissibility and a greater affinity for ACE2), E484K (increase the spike affinity to 

ACE2 and bring resistance to antibody neutralization targeting the original epitope) etc. and 

some deletion such as the deletion in the NTD, the Δ69–70 which became dominant and 

part of other changes in the genome.  

In fact, after these first point mutations, in the fall of 2020 multiple SARS-CoV-2 variants 

began to circulate globally. The most notable are in the United Kingdom (UK), a new variant 

(the 20I/501Y.V1, or B.1.1.7), labelled as the Alpha Variant by the WHO, emerged this time 

with a high number of mutations. These mutations seemed to be associated with an 

increased risk of death compared with other variants.  

In South Africa, the variant B.1.351 (known as 20H/501Y.V2, Beta), emerged 

independently of B.1.1.7 but shared some mutations with it.  

In Brazil, the P.1 (20J/501Y.V3, Gamma) was first identified in four travelers from the 

Brazil (tested in Japan) and had 17 unique mutations including three in the receptor binding 

domain of the Spike protein, two shared with B.1.351, E484K and N501Y, the latter also 

shared with the strain of B.1.1.7, and a different mutation K417T which was K417N in the 

B1.351 strain.   

All of them were labelled as Variants of Concern (VOC) because were associated with 

increased transmissibility or detrimental change in COVID-19 epidemiology, increased 

virulence, or different clinical disease presentation and decrease sensitivity to available 

vaccines or therapeutics.  

After, the B.1.617.2 variant (AY, Delta) was first detected in India in late 2020 and in June 

2021 became the dominant variant globally.   

Of course, the assignment of these VOCs was disseminated with the presence of 

thousands of Variants of Interests (VOIs), such as the Epsilon (B.1.427 and B.1.429), Eta 

(B.1.525), Iota (B.1.526) Kappa (B.1.617.1) and Mu (B.1.621, B.1.621.1), etc.  

Finally, the SARS-CoV-2 Omicron (B.1.1.529, BA.1) variant was first identified on 

November 24th, 2021, in South Africa and immediately declared VOC replacing the Delta 

variant. The omicron variant has a very large number of mutations, around 30-point 

mutations only in the Spike protein, combined with deletions and insertions of amino acids.  

In the Table 1 below there is the summary of all the VOCs characteristics in term of 

transmissibility, severity and lethality and escape to immune response compared to the WT. 
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Table 1 
SARS-
CoV-2 
strain 

Declaration 
of VOC 

Extension Transmissibility Severity and 
lethality  

Escape to 
immune 
response 

Mutations found in 
the S protein gene 

WT Wuhan 
(China) 
07/01/2020 

Worldwide R0 = 2.5. 
Incubation period: 2–14 
days, median 5.1 days. 
SAR: 0.7–75%. 

81% mild. 14% 
severe. 
5% critical. 
2.3% death. 

PVE 95% for 
symptomatic 
infection. 

 

Alpha United 
Kingdom  
29/12/2020 

Europe, 
Oceania 
and North 
America 

↑Transmissibility 
(50% higher). 
SAR: 25.1%, 1.43–1.82 
times higher. 

↑Severity 
and lethality. 
1.55–1.73 
times more 
lethality. 

↑Immune 
escape. 
PVE 89% for 
symptomatic 
infection, and 
95% for 
hospitalization 
or death. 

Del69-70, del144, 
N501Y, A570D, 
D614G, P681H, 
T716I, S982A, 
D1118H. 

Beta South 
Africa 
29/12/2020 

Africa ↑Transmissibility  
(50% higher, 2.5 times 
higher). 
SAR higher. 

↑Severity 
and lethality. 

↑Immune 
escape. 
PVE 84% for 
symptomatic 
infection, and 
95% for 
hospitalization 
or death. 

L18F, D80A, 
D215G, R246I, 
K417N, E484K, 
N501Y, D614G, 
A701V. 

Gamma Brazil 
29/12/2020 

Latin 
America 

↑Transmissibility  
(1.7–2.4 times higher). 
R0 = 3.4. 
SAR higher. 

↑Severity 
and lethality. 

↑Immune 
escape. 
PVE 84% for 
symptomatic 
infection, and 
95% for 
hospitalization 
or death. 

L18F, T20N, P26S, 
D138Y, R190S, 
K417T, E484K, 
N501Y, D614G, 
H655Y, T1027I, 
V1176F. 

Delta India 
11/05/2021 

Worldwide ↑↑Transmissibility  
(1.97 times higher). 
R0=7. 
Intradomiciliary delta 
SAR (10.3–21%) 1.70 
times higher than 
intradomiciliary alpha 
SAR. Shorter incubation 
period (median 4.5 
days). 
Higher viral load, 2.5 
times more in 
nasopharyngeal exudate 
and 15 times more in 
saliva. 

↑↑Severity 
and lethality. 
2.20 times 
more 
hospitalization. 
3.87 times 
more ICU 
admission. 2.37 
times more 
lethality. 

↑↑Immune 
escape. 
PVE 87% for 
symptomatic 
infection, and 
93% for 
hospitalization 
or death. 

T19R, G142D, 
del156-157, 
R158G, K417N 
(delta plus), 
L452R, T478K, 
D614G, P681R.  

Omicron South 
Africa and 
Botswana 
26/11/2021 

Worldwide ↑↑↑↑Transmissibility 
(36.5% higher than 
delta). 
R0=10. 
Intradomiciliary omicron 
SAR 15.8%-31% versus 
delta SAR 10.3–21%. 
Extradomiciliary omicron 
SAR 8.7% versus delta 
SAR 3.0%. 
70-fold higher respiratory 
viral load at 24 hours in 
omicron than in original 
and delta strains. 
Shorter incubation period 
(median 3 days). 

↓Severity 
and lethality. 
0.71 times less 
(29% less) 
hospitalization. 
10-fold lower 
viral load in 
lung tissue at 
24 hours in 
omicron than in 
original strain. 

↑↑↑↑Immune 
escape. 
PVE 10% for 
symptomatic 
infection, 49% if 
third dose. 

PVE 70% for 
hospitalization. 
2.4–5.4 times 
higher risk of 
reinfection. 

A67V, del69-70, 
T95I, G142D, 
del143-145, 
Y145D, del211, 
L212I, ins214EPE, 
G339D, S371L, 
S373P, S375F, 
K417N, N440K, 
G446S, S477N, 
T478K, E484A, 
Q493R, G496S, 
Q498R, N501Y, 
Y505H, T547K, 
D614G, H655Y, 
N679K, P681H, 
N764K, D796Y, 
N856K, Q954H, 
N969K, L981F. 
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Table 1. Characteristics of the emerged Variants of Concern (VOCs). R0: basic reproductive 

number: average number of new cases generated (by contagion) from a single case. SAR: 

secondary attack rate: number of new cases of a disease among the total number of exposed 

susceptible people within a specific group (i.e., household or close contacts), that is, the proportion 

of contacts of a primary case who become ill. PVE: preventive vaccine effectiveness, in all cases 

after two doses with Comirnaty vaccine (based on messenger RNA technology). 

1.5 Therapies: small molecules, vaccines and monoclonal antibodies 

1.5.1 Small molecules  

Since the outburst of the pandemic, researchers have explored various drugs as potential 

treatments for SARS-CoV-2. The first rapid approach was the repurposing of drugs already 

approved or advanced in clinical trials. Among these are remdesivir, a viral RNA polymerase 

inhibitor initially designed for Hepatitis C, chloroquine and hydroxychloroquine, recognized 

for malaria treatment, tocilizumab, a monoclonal antibody deployed in rheumatoid arthritis 

therapy, favipiravir, an anti-influenza medication, Kaletra, utilized in HIV treatment and more 

recently, masitinib, a kinase inhibitor applied in addressing mast cell tumors in animals.59 

Although these targeted repurposing strategies provide potentially rapid trajectories 

toward an approved treatment, in the meantime additional therapies for SARS-CoV-2 

infection are needed to improve clinical efficacy, expand global drug supplies, and address 

the potential emergence of viral resistance. 

Moreover, in more recent developments, the European Union has granted emergency use 

authorization for two additional treatments: Lagevrio (also referred to as molnupiravir, 

developed by Merck) and Paxlovid (developed by Pfizer). These medications are approved 

for treating adults with COVID-19 who are at an elevated risk of developing severe illness 

and do not require supplemental oxygen. 

1.5.2 Vaccines and monoclonal antibodies (mAbs) 

However, during this period, research has persistently advanced, leading to the creation 

of alternative treatments, notably including vaccines and the utilization of monoclonal 

antibodies. For the majority of widely used vaccines, the initial premise centered on targeting 

the vulnerability of SARS-CoV-2 viral transmission, specifically the interaction between the 

RBD of the spike protein and human angiotensin-converting enzyme 2 (ACE2). The strategy 

aimed to elicit robust levels of neutralizing antibodies (nAbs) against epitopes within this 
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interface for effective immune response. Consequently, a diverse array of methodologies 

was employed to express the spike protein, either in stabilized or non-stabilized forms, to 

facilitate immune recognition.  

Notably, the mRNA-based platforms (Pfizer, Moderna) and adenovirus-based platforms 

(AstraZeneca, Gamaleya, Johnson & Johnson), which have taken a prominent role in clinical 

development, have undergone rigorous experimental trials spanning various geographic 

and disease contexts over the course of decades.  

Obviously, given the worldwide emergency, the vaccine against this virus has been fast-

tracked. Traditional vaccine development is a lengthy process and has a development time 

of around 15 years (the process is summarized in the Figure 7). The SARS-CoV-2 

pandemic has required rapid action and the development of vaccines in an unprecedented 

timeframe (Figure 7, B.). Knowledge of vaccine development from previous work on vaccine 

candidates for SARS- and MERS-CoV proved invaluable, allowing the initial exploratory 

vaccine design phase for SARS-CoV-2 to be significantly streamlined, resulting in 

substantial time savings. Consequently, the first clinical trial for a SARS-CoV-2 vaccine 

candidate commenced in March 2020 (NCT04283461). 

The trial strategies were carefully orchestrated, with overlapping clinical phases and 

staggered trial initiation. Notably, several manufacturers have already embarked on 

commercial vaccine production, taking on potential risks, even before phase III trial results 

are available.  
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Figure 7. Vaccine development: A. Traditional vs B. for SARS-CoV-2. A. Traditional vaccine 
development typically take over 15 years, starting with an extensive discovery phase dedicated to 

vaccine design and preliminary preclinical investigations. Subsequently, a phase characterized by 

more formal preclinical experiments, toxicology assessments, and the development of production 

methods ensues. This intricate process involves the submission of an investigational new drug (IND) 

application, followed by the vaccine candidate progressing through phase I, II, and III trials. Upon 

successful completion of phase III trials and the fulfillment of predetermined endpoints, a biologics 

license application (BLA) is submitted for regulatory agency review, culminating in the vaccine's 

licensure. Large-scale production initiates thereafter. 

B. The development of vaccines for SARS-CoV-2 has undergone a rapid acceleration. Drawing 

from the knowledge acquired during the development of vaccines for SARS- and MERS-CoV, the 

initial discovery phase was bypassed. Instead, existing processes were adopted, and phase I/II trials 

were promptly launched. Phase III trials were initiated following an interim analysis of phase I/II 

results, with multiple clinical trial stages conducted concurrently. Simultaneously, vaccine 

manufacturers embarked on large-scale production of several vaccine candidates, despite the 

associated risks. 

 

However, several platforms (the type of technology used to develop the vaccine) have 

been exploited for vaccine development: ‘traditional’ platform (inactivated or live-virus 

vaccines), or more ‘innovative’ as based on recombinant protein vaccines and vectored 

vaccines or RNA/DNA vaccines.60  Currently, eight vaccines are approved for use in Europe: 

Bimervax (previously COVID-19 Vaccine HIPRA), Comirnaty, COVID-19 Vaccine 

(inactivated, adjuvanted) Valneva, Jcovden (previously COVID-19 Vaccine Janssen), 

Nuvaxovid, Spikevax (previously COVID-19 Vaccine Moderna), Vaxzevria (previously 

COVID-19 Vaccine AstraZeneca) and VidPrevtyn Beta (https://www.ema.europa.eu/en/human-

regulatory/overview/public-health-threats/coronavirus-disease-covid-19/covid-19-

medicines#authorised-covid-19-vaccines-section).  

Among these, Comirnaty and Spikevax represent mRNA vaccines. These vaccines 

incorporate messenger RNA (mRNA) encoding the S protein, which is encapsulated within 

lipid nanoparticles. Once within the cell, a portion of this mRNA is broken down by RNAase 

enzymes, a defense mechanism against foreign RNA, while the remainder is translated to 

facilitate protein expression. Notably, the recognition of mRNA by sensors within the innate 

immune system leads to the generation of inflammatory mediators. It's essential to highlight 

that both mRNA translation and degradation occur within the cell's cytoplasm, preventing 

integration into the host genome, an occurrence that might arise with DNA adenovirus vector 

vaccines. 
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On the other hand, the adenoviral vector platform, utilized by vaccines such as Jcovden 

and Vaxzevria, involves a non-replicating viral vector bearing double-stranded DNA 

encoding the S protein. Upon cellular entry, the vector makes its way into the nucleus, where 

mRNA synthesis takes place. Once the mRNA exits the nucleus, protein synthesis proceeds 

as previously explained. The adenovirus functions both as a transporter and a protective 

barrier for the genetic material. Additionally, it targets cells of the innate immune system, 

thereby triggering both inflammatory and antigenic responses. 

Lastly, Nuvaxovid, VidPrevtyn Beta, and Bimervax are recombinant protein vaccines. 

These vaccines contain the full-length prefusion recombinant S protein combined with an 

adjuvant called Matrix-M, which induces robust B-cell and T-cell responses. 

While clinical studies have demonstrated the efficacy of vaccines in stimulating the 

production of antibodies, the duration of protection against SARS-CoV-2 is constrained, 

necessitating vaccine administration approximately every 4 to 6 months. Moreover, the 

effectiveness of vaccines is notably influenced by the specific variant of the virus that is 

currently in circulation. In fact, there are a lot of studies monitoring the efficacy of vaccines 

against different variants and the mRNA vaccines there are available adapted vaccines 

based of other strains.57, 61, 62  

In addition to vaccines but still based on the achilles heel of the virus, the spike protein, 

research has been based on monoclonal antibodies (mAbs).63 Four mAb products targeting 

SARS-CoV-2 (bamlanivimab plus etesevimab, casirivimab plus imdevimab, sotrovimab, and 

bebtelovimab) have been granted Emergency Use Authorizations (EUA) by the Food and 

Drug Administration (FDA) for treating mild to moderate COVID-19 in outpatients.  
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Figure 8. A. Different groups of neutralizing antibodies (nAbs) that target the S protein. 

Representative nAbs targeting the S1 N-terminal domain (NTD), S1 receptor-binding domain (RBD), 

and S2 stem helix (SH) and S2 fusion peptide (FP) regions. B. RBD-directed nAbs can be divided 

into four main classes depending on the epitopes they target in the RBD of the S protein. For each 

class, one representative nAb bound to the RBD monomer is shown: class 1, CB6; class 2, LY-

CoV555; class 3, S309; class 4, CR3022. CD, connector domain; CH, central helix; CT, cytoplasmic 

tail; HR, heptad repeat; SD, subdomain; TM, transmembrane domain. 

 

The mAbs differ from the polyclonal antibodies in that they selectively bind selectively a 

specific epitope of the antigen. Early research focused on the mAbs known to bind SARS- 

and MERS-CoV. Among the mAbs tested, only two gave promising results: CR3022 and 

S309. Many other mAbs failed to target the S protein, due to sequence and structural 

differences among the three coronaviruses. And interestingly, none of the two active mAbs 

bind to the ACE2 binding site.  After, have been developed mAbs that can selectively bind 

to different areas of the spike, including the RBD, the NTD, in the S1 the SH region and the 

FPs.  

The antibody 4A8 was among the earliest neutralizing antibodies (nAbs) discovered to 

target the N-terminal domain (NTD). The NTD's structural elements include five loops (N1–

N5), where interactions with 4A8 primarily involve loops N3 and N5. Likewise, additional 

NTD-targeting mAbs like COV2-2676 and COV2-2489 can recognize the epitope 

formedloops N1, N3, and N5. Notably, most NTD-targeting antibodies do not hinder the 

action of antibodies targeting different sections of the S protein, such as the receptor-binding 
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domain (RBD). Therefore, an effective strategy to counter COVID-19 could involve 

combining NTD-targeting antibodies with those binding non-NTD regions of the S protein. 

The majority of antibodies discovered against SARS-CoV-2 are directed at the RBD and 

can be categorized based on their specific targeted epitopes. Various classification systems 

have been proposed, with the most widely recognized being introduced by Barnes et al.64 

This system divides RBD-targeting antibodies into four distinct classes according to their 

binding interactions with the S protein.65  

Class 1 antibodies, block the ACE2 receptor and attach to the 'up' conformation of RBDs. 

The epitope on the RBD coincides with the receptor-binding motif (RBM). These antibodies, 

predominantly encoded by VH3-53 and VH3-66 germ lines, exclusively identify the RBD in 

its 'up' conformation. The primary mechanism of action for class 1 antibodies involves 

hindering the interaction between ACE2 and the S protein, thus resulting in significant 

neutralization effects. Other antibodies are part of this class such as S2E12 (one of the few 

class 1 mAbs that retains broad-spectrum neutralizing activity for all current VOCs),66 CB6, 

REGN10933, B38 etc.67  

The mAbs in class 2 are similar to those in class 1 on the basis of their binding to the 

RBM domain but they can bind both ‘up’ and ‘down’ conformations of the S protein. For 

example, LY-CoV555, which was isolated from a patient recovering from COVID-19, binds 

and neutralizes SARS-CoV-2 and displays protective efficacy against SARS-CoV-2 in 

clinical trials.68 

These two categories of monoclonal antibodies do not exhibit an exceptional capacity for 

wide-ranging inhibition against both SARS-CoV and other SARS-like coronaviruses. This is 

primarily due to the limited amino acid identity between SARS-CoV and SARS-CoV-2, with 

only a 59% overlap in the RBM region. 

On the other hand, antibodies classified as class 3 exhibit a distinct binding pattern, 

targeting regions outside the ACE2-binding site. Notably, these antibodies are capable of 

binding to the RBDs regardless of whether they are in the 'up' or 'down' conformation. Class 

3 antibodies, exemplified by REGN10987, COV2-2130, 2-7, 1-57, A19-61.1, P2G3, S309, 

and LY-CoV1404, showcase robust neutralizing capabilities against various SARS-CoV-2 

variants.67, 69-76 Among these antibodies, S309 recognizes epitopes comprised of residues 

that are remarkably conserved in both SARS-CoV and SARS-CoV-2 RBDs. This unique 

feature confers S309 with a broad cross-reactivity, enabling it to effectively target a wide 

range of variants across both viruses.73 
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Class 4 antibodies, on the other hand, recognize an epitope within the RBD that displays 

a high degree of conservation. These antibodies are capable of binding to the RBD; 

however, they do not directly hinder the binding of ACE2 to the RBD. The epitope of these 

mAbs is located into a cryptic region, a resemblance that aligns with the cryptic epitope 

acknowledged by the CR3022 antibody, derived from a patient who had recuperated from 

SARS-CoV infection. The epitope targeted by class 4 antibodies exhibits a remarkable 

degree of conservation, sharing up to 86% similarity between SARS-CoV and SARS-CoV-

2. This conservation allows CR3022 to effectively bind to both coronaviruses. Notably, due 

to the presence of a glycosylation site on N370 within the epitope on SARS-CoV, CR3022 

binds more avidly to SARS-CoV than to SARS-CoV-2. It's worth mentioning that CR3022's 

binding to SARS-CoV-2 is contingent upon the 'up' conformation of at least two RBDs.  

To summarize, antibodies targeting the RBD and belonging to class 1 and class 2 are 

likely to lose their effectiveness in neutralizing major variants of SARS-CoV-2 that carry new 

mutations in the RBM. On the contrary, antibodies falling within class 3 and class 4, which 

bind to highly conserved epitopes, show promise as potential candidates for neutralizing a 

variety of SARS-CoV-2 variants and other SARS-like coronaviruses. This observation 

implies that selecting such conserved epitopes for the design of vaccines has the potential 

to stimulate the production of robust, broad-spectrum antibodies. These antibodies could 

play a crucial role in tackling the ongoing COVID-19 pandemic and any potential future 

outbreaks.  

An additional approach to achieving broad-spectrum protection against both SARS-CoV-

2 and other human coronaviruses (HCoVs) involves targeting epitopes found in different 

regions of the S protein, such as the S2 domain where the epitopes seem to be more 

conserved that in the S1.77 An illustrative example of this strategy is the antibody S2P6, 

which was derived from a COVID-19 patient in recovery. S2P6 demonstrates the ability to 

broadly neutralize all β-CoVs by specifically targeting the S2 subunit.78 Upon further 

investigation, it was revealed that the epitope recognized by the S2P6 antibody is located 

within the S2 subunit's SH (stalk helix) region, spanning 14 amino acid residues from 1146 

to 1159. Importantly, this epitope exhibits conservation across various β-CoVs. This 

innovative approach of targeting conserved regions within the S2 domain presents a 

potential avenue for developing neutralizing antibodies that can offer wide-ranging 

protection against SARS-CoV-2 and other related coronaviruses.  

In addition to the previously mentioned SH region, the S2 fusion peptide (FP) region also 

exhibits significant conservation across all genera of coronaviruses. This suggests that the 
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FP epitope could be a promising target for the development of broad-spectrum antibodies. 

Recent discoveries have identified antibodies that exhibit potent broadly neutralizing activity 

against Alpha-CoVs, Beta but also Gamma and Delta.79, 80 For instance, antibodies COV44-

62 and COV44-79, both isolated from individuals recovering from COVID-19, can bind to 

the S2 FP region.79 Interestingly, these antibodies do not compete with S2P6, the previously 

mentioned antibody targeting the S2 SH region, for binding to the SARS-CoV-2 S protein. 

This intriguing observation suggests the potential for developing a bispecific antibody that 

combines the recognition of both the S2 SH and S2 FP regions. Such a bispecific antibody 

could offer enhanced neutralizing capabilities, targeting multiple conserved epitopes and 

thereby providing a more comprehensive defense against a broader range of coronaviruses. 

Such understanding can be exploited to design and engineer improved antigens based on 

S, for instance by identifying antigenic domains that can be expressed in isolation or short 

sequences (epitopes) that can be mimicked by synthetic peptides: this would be a crucial 

first step in the selection and optimization of candidate vaccines and therapeutic antibodies 

(on top of those already in development), as well as in the development of additional 

serologic diagnostic tools. And this is what we have done in the first paper (see Chapter 

5.1).  
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 Materials and methods  

1.7 Molecular dynamics (MD) 

The fundamental idea underlying a molecular dynamics (MD) simulation is simple: atoms 

and molecules interact and exhibit real-life movements, which MD simulations replicate. This 

notion entails that by inputting the spatial coordinates of all atoms within a biomolecular 

system (like a protein enveloped by water and potentially a lipid bilayer), it becomes feasible 

to calculate the impact or force exerted on each atom, resulting from interactions with all the 

surrounding atoms. 

Computational simulations are meant to be a link connecting the minuscule dimensions 

and time frames of the microscopic realm to the broader, observable domain of the 

laboratory. Statistical mechanics, a fundamental branch of the physical sciences, equips us 

with the mathematical and theoretical apparatus necessary for establishing a seamless 

connection between the intricacies of the microscale and the substantial measurements of 

the macroscopic world.  

In the context of a system comprising N particles, its characterization involves a set of 

atomic positions denoted as %𝑅	'''⃗ = *𝑅!	'''''⃗ , … , 𝑅"	''''''⃗ -	.	and corresponding relative momenta 

designated as %𝑃	'''⃗ = *𝑃!	'''''⃗ , … , 𝑃"	'''''⃗ -	.. Together, these parameters define the microscopic state 

of the system. This state can be visualized and represented as a singular point within a 

multidimensional space of 6N dimensions, referred to as the phase space (Γ). Consequently, 

a solitary point in this phase space corresponds to a specific microscopic configuration of 

the system, while an aggregation of points in Γ constitutes an ensemble. 

MD simulations serve as a practical technique that generates a sequence of points within 

the phase space over time. In essence, MD simulations provide a sequence of diverse 

positions and momenta for the system, all belonging to the same ensemble. For any given 

microscopic state of the system within the phase space, it becomes feasible to estimate the 

value of an observable property A as a function of Γ, denoted as A(Γ). This estimation is 

performed through either the ensemble average or the thermodynamic average calculation: 

𝐴#$% =	 〈𝐴〉&'% =	4𝐴(Γ)𝜌(Γ)𝑑Γ 
( 0.1) 

where 𝜌(Γ) is the probability distribution function of collection of points Γ, and 𝑑Γ =

𝑑𝑅!''''⃗ … 	𝑑𝑅"'''''⃗ 	𝑑𝑃"''''⃗ … 	𝑑𝑃"''''⃗ . The probability distribution function depends on macroscopic 
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parameters that delineate the thermodynamic state of a system, such as the particle count 

(N), volume (V), temperature (T), and pressure (P). For instance, within the canonical 

ensemble (NVT), wherein N, V, and T remain constant, the probability distribution function 

adopts the structure of the Boltzmann distribution function: 

𝜌"() =	
𝑒
*+(-)
/!)

𝑍 	 

(0.2) 

where H(Γ) is the classical Hamiltonian of the system defined as: 

𝐻(Γ) = 	𝐻%*𝑅!	'''''⃗ -, *𝑃!	'''''⃗ -	. = 	<
𝑃!	'''''⃗ 0

2𝑀1
+ 𝑈%*𝑅!	'''''⃗ -.

"

12!

 

(0.3) 

Where 𝑅!	'''''⃗ , 𝑃!	'''''⃗  and 𝑀1 are the position, momentum and mass of the particle I, U is the 

potential energy, 𝐾3 	is the Boltzmann constant and Z is the canonical partition function. 

MD simulations offer a method to approximate ensemble averages by directly integrating 

Newton's equations of motion. This entails evolving the system over time, commencing from 

its microstate at time 0 and progressing to its microstate at time 𝜏. Consequently, a sequence 

of microstates for the system, forming a trajectory of points in the phase space Γ(𝑡) , is 

generated. From this trajectory, the time-averaged value of an observable (〈𝐴〉4)	can be 

computed, and it is connected to the ensemble average (denoted as 〈𝐴〉#$%) according to 

the “ergodic hypothesis”. In essence, this hypothesis posits that if the system evolves over 

an infinitely extended duration, it should be capable of visit all feasible states, thereby 

causing its behavior averaged across both time and the phase space to converge: 

lim
4⟶6

〈𝐴(Γ)〉4 =	 lim4⟶6

1
𝜏 4𝐴

[Γ(𝑡)]𝑑𝑡
4

7

=	 〈𝐴(Γ)〉-	 

(0.4) 

The more extended the simulation time, the more accurately this equality is upheld. 

Consequently, employing MD simulations in the context of molecular biological systems 

provides a direct and practical approach to anticipate their average conduct and appraise 

macroscopic observables.  

The progression of the system over time is determined by numerically integrating the 

second set of Newton's equations of motion, wherein atoms are modeled as point particles: 

𝐹8''⃗ = 𝑀9𝑎8'''⃗  
(0.5) 
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where 𝐹8''⃗ 	is the force acting on particle 𝑖, 𝑀9 is the mass of the particle 𝑖 and 𝑎8'''⃗ 	the second 

derivative of the particle’s position with respect to time 𝑡, i.e. its acceleration. 

The atoms will move under the influence of the internal forces acting on them, which are 

derived from the potential energy of the system M𝑈%𝑅'⃗ .N: 

𝐹8''⃗ = 	−
𝜕𝑈%𝑅'⃗ .
𝜕𝑅8'''⃗

 

(0.6) 

Newton's equations serve as a comprehensive framework, definitively outlining the 

complete array of positions and velocities as functions of time. This intricate interplay 

precisely delineates the classical state of the system at any given time,	 𝑡. An analytical 

solution to the equations of motion, as expressed in equation is acquired through a 

predetermined set of initial conditions dictating the positions and velocities of the particles. 

The formers are often derived from PDB crystal structures, NMR data, cryo-electron 

microscopy (cryo-EM), or homology modeling coordinates. On the other hand, the latter are 

typically generated in a random manner, adhering to the Maxwell-Boltzmann probability 

distribution at a designated temperature, T. 

To facilitate this computational process, discretized numerical algorithms are enlisted to 

iteratively update the particles' positions and velocities at each discrete time step, denoted 

as ∆𝑡. This value is established at the beginning of the simulation and typically falls within 

the range of 1 to 2 femtoseconds (fs). This choice ensures the stable and precise integration 

of even the swiftest motions present within the system. The three open MD algorithms that 

are most widely used in molecular dynamics studies are the Verlet, leap-frog and Beeman 

algorithms.  

The velocity-Verlet algorithm1, 2 exploits a truncated Taylor expansion, limited beyond the 

quadratic term, for the coordinates: 

𝑅'⃗ (𝑡 +	∆𝑡) ≈ 	𝑅'⃗ (𝑡) +	𝑣(𝑡)∆𝑡 +	
�⃗�(𝑡)
2𝑚 ∆𝑡0 

(0.7) 

And the velocities 𝑣	'''⃗  considering the relation 𝑃'⃗ = 𝑚�⃗�:  

𝑣(𝑡)∆𝑡	 ≈ 	 �⃗� +		
�⃗�(𝑡) + �⃗�(𝑡 + ∆𝑡)

2𝑚 ∆𝑡 
(0.8) 
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The Leap-Frog algorithm3 uses velocities at half-integer time steps to determine new 

particles’ positions: 

�⃗� U𝑡 +
∆𝑡
2 V = 𝑣 U𝑡 −

∆𝑡
2 V +

�⃗�(𝑡)
𝑚 ∆𝑡 + 𝑂(∆𝑡:) 

(0.9) 

 

𝑅'⃗ (𝑡 + ∆𝑡) = 𝑅'⃗ (𝑡) + �⃗� U𝑡 +
∆𝑡
2 V ∆𝑡 + 𝑂

(∆𝑡:)		 
(0.20) 

This algorithm calculates positions and forces at interleaved time points. Therefore, kinetic 

and potential energy are also not defined at the same time. 

The Beeman algorithm looks very different, more complicated and requires more storage 

than the other two equivalent algorithms there is no reason to use it. 

1.7.1 Force field 

In force-field based MD, which is the classical MD, the force field constitutes a 

mathematical formulation that delineates how a system's energy hinges upon the 

coordinates of its constituent particles. It encompasses an analytical representation of the 

interatomic potential energy, denoted as 𝑈(𝑟!, … , 𝑟"), along with an ensemble of parameters 

incorporated into this functional form. Typically, these parameters are ascertained through 

ab initio or semi-empirical quantum mechanical calculations, or alternatively by fitting to 

experimental data encompassing techniques such as neutron scattering, X-ray and electron 

diffraction, NMR, infrared, Raman, and neutron spectroscopy, among others. 

Molecules are essentially characterized as assemblies of atoms held together by simple 

elastic (harmonic) forces. A force field takes the place of the authentic potential energy with 

a streamlined model that holds validity within the specific simulated region. Ideally, a force 

field should possess the dual attributes of computational efficiency, allowing rapid 

evaluation, and sufficient intricacy to accurately reproduce the pertinent properties of the 

system under scrutiny. 

Numerous force fields are documented in the scientific literature, differing in their levels of 

complexity and tailored to address various types of systems, for biomolecular applications 

such as AMBER,4 GROMOS,5 CHARMM6 etc.  

However, a prototypical expression for a force field might be structured as follows: 
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(0.31) 

where the first four terms refer to intramolecular or local contributions to the total energy 

(bond stretching, angle bending, and dihedral and improper torsions), and the last two terms 

serve to describe the non-bonded interactions corresponding to the repulsive and Van der 

Waals (vdW) interactions and the Coulomb potential for the electrostatic interactions.  

In practical molecular dynamics (MD) simulations, finite systems are employed, 

necessitating a specialized approach to address potential issues arising from particles 

located at the system boundaries, which could coincide with the vacuum. This configuration 

can give rise to artifacts stemming from finite-size effects. To circumvent this challenge, 

periodic boundary conditions (PBC) are frequently adopted. Within PBC, the central system, 

the sole focus of explicit treatment, is surrounded by an infinite array of identical replicas of 

itself. This arrangement aims to replicate an infinite solution encompassing the system. 

When the system is infinitely replicated using PBC, long-range interactions, such as 

electrostatic interactions, pose a computational challenge due to their spatial extent 

potentially extending beyond the boundaries of the central image. Thus, an approach is 

needed that maintains both speed and accuracy. Fortunately, numerous algorithms have 

been devised and integrated to tackle this dilemma. Notably, the Ewald summation87 and 

the particle mesh Ewald method (PME)88 have gained widespread usage. These techniques 

effectively address long-range interactions of the form 1/𝑟', where 𝑛	 ≤ 3, encompassing 

Coulombic interactions. 

The fundamental principle underlying these methods involves partitioning the relevant 

potential into a short-range segment, typically addressed through a cutoff, and a long-range 

component. The latter entails Fourier transformation to handle the remaining interactions. In 

essence, these techniques successfully manage both the computational complexity and 

accuracy associated with long-range interactions, enabling the simulation of systems with 

periodic boundary conditions. 
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1.7.2 Force field for RNA and DNA simulations 

A precise molecular mechanics force field is fundamental for conducting Molecular 

Dynamics simulations to achieve an accurate understanding of the structure and dynamics 

of biomolecules like DNA. While DNA force fields have seen periodic updates to enhance 

their alignment with available experimental data, they still retain parameters introduced over 

two decades ago. The recent surge in simulation durations has posed challenges for existing 

force fields in accurately describing biomolecules, including DNA. Consequently, extensive 

efforts have been initiated to enhance these DNA force fields, particularly focusing on 

modifying and refining dihedral angle parameters. However, other components of the force 

field, such as bond, angle, and nonbonded parameters, have not undergone significant 

adaptations. For example, in the case of current Amber DNA force fields (bsc0, bsc1, and 

OL15), nonbonded interactions still rely on Lennard-Jones parameters and partial charges 

introduced approximately 25 years ago by Cornell et al. This reliance raises concerns, such 

as the overestimation of binding affinity in protein-DNA complexes due to the limited 

accuracy of DNA's electrostatics. 

In 2021 the group of Professor Zacharias introduced a novel DNA force field named 

Tumuc1, developed through parameterization based on cutting-edge quantum mechanical 

(QM) calculations and geometry optimization at the RI-MP2/def2-TZVP level. The force 

field's parameters have been determined by fitting the electrostatic potential derived from 

QM calculations on model-systems smaller than a single nucleotide. Additionally, QM 

frequency calculations were performed, and the modified Seminario method was applied 

consistently to ensure robust parameterization for bond- and angle terms. The dihedral 

angles within the Tumuc1 DNA force field have been parameterized by thoroughly scanning 

the QM potential energy landscapes. Subsequently, the dihedral angle parameters were 

fitted in a manner consistent with the derived bond, angle, and charge parameters. It's 

noteworthy that Tumuc1 utilizes the standard Lennard-Jones parameters for its treatment of 

nonbonded interactions. As demonstrated, the Tumuc1 DNA force field accurately replicates 

both the structural and dynamic behaviors of double-stranded B-DNA, showcasing 

remarkable alignment with experimental data. It exhibits significant enhancements in 

capturing the intricate structural details of DNA when compared to current force fields. 

Additionally, Tumuc1 effectively models the hybridization of single strands, accurately 

predicts hairpin folding, and offers a reliable description of protein−DNA complexes that 

closely matches experimental structures. 
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For a better understating we refer to the original paper: “Tumuc1: A New Accurate DNA 

Force Field Consistent with High-Level Quantum Chemistry”.9  

For the RNA, instead, we used the recommended χOL3 RNA force field.10 

1.7.3 Temperature and Pressure Coupling Schemes 

One ensemble that can be effectively explored through MD simulations is the 

microcanonical ensemble, characterized by the preservation of the number of particles (N), 

volume (V), and total energy (E). Unfortunately, the microcanonical ensemble that comes 

out of a standard MD simulation does not correspond to the conditions under which most 

experiments are carried out. 

However, for MD simulations to yield more meaningful insights that can be related to 

experimental observations, they are often combined with thermostats or barostats. These 

coupling methods play a crucial role in controlling temperature and pressure conditions 

within the simulated system. 

In the case of a thermostat, two primary ensembles are commonly employed: Canonical 

Ensemble (NVT) and Isobaric-Isothermal Ensemble (NPT). In the NVT scheme, the volume 

(V) and temperature (T) are maintained as constants. This ensures that the system evolves 

while keeping its volume fixed and experiencing temperature fluctuations, simulating the 

behavior observed in many experimental settings. In NPT ensemble, the volume is allowed 

to change, while simultaneously maintaining a constant pressure (P) and temperature (T). 

This approach captures the behavior of systems that may experience volume fluctuations, 

such as in liquids and gases, while also keeping temperature conditions consistent. 

To achieve these controlled temperature and pressure conditions, various thermostat and 

barostat algorithms have been developed and are commonly utilized in MD simulations. For 

a precise analysis on this topic refer to this review,11 I would just like to present here the 

most important and well-known ones. 

Langevin Thermostat:12, 13 this approach introduces a friction term, 𝛾9, in the equations 

of motion, simulating the interaction between the system and a heat bath, thereby controlling 

temperature fluctuations along with a stochastic random force acting on all particles. This is 

described by the following set of differential equations: 

𝑑𝑅8'''⃗
𝑑𝑡 =

𝑃8''⃗
𝑀9
	 

(0.42) 
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𝑑𝑃8''⃗
𝑑𝑡 = 𝐹8''⃗ − 𝛾9𝑃8''⃗ + 𝜎

𝑅8'''⃗

√𝑑𝑡
	 

(0.53) 

Where 𝐹8''⃗  represents the force stemming from the interaction potential, and the final term, 

denoted as 𝑅8'''⃗ , corresponds to the contribution of the random force and 𝑃8''⃗ , is the particle 

momentum. The parameter  𝜎 represents the standard deviation of the random force and is 

linked to the frictional coefficient 𝛾9,  through equation: 

𝜎 = 	m2𝛾9𝑀9𝐾3𝑇	 
(0.64) 

Here, 𝐾3is the Boltzmann's constant, 𝑀9represents the mass of particle i, and T denotes the 

temperature. The random force is stochastically generated from a Gaussian distribution, 

infusing kinetic energy into the particles, and thus counterbalancing the dampening effect of 

negative frictional contributions. The Langevin thermostat is categorized as a stochastic 

ergodic thermostat, a classification denoting its capacity to regulate the system's 

temperature while ensuring its stochastic behavior encompasses the full phase space. 

Nose-Hoover Thermostat:14, 15 using a chain of virtual particles, this method maintains 

temperature while better preserving the canonical distribution of particle velocities. The 

Langevin thermostat operates as a deterministic algorithm, wherein its ultimate formulation 

alters the equations of motion by incorporating a frictional force proportionate to the 

thermodynamic friction parameter 𝜉𝑃8''⃗ , and 𝜉 represents the thermodynamic friction 

parameter and 𝑃8''⃗  the momentum of each particle. The parameter 𝜉 is a dynamic entity with 

its own momentum 𝑃G''''⃗   and is governed by its own equation of motion. The complete set of 

equations of motion, encompassing the equation for the heat bath parameter 𝜉, can be 

expressed as follows: 

𝑅8'''⃗ =
𝑃8''⃗
𝑀9	

 
(0.75) 

𝑃8''⃗ = 	𝐹8''⃗ − 	𝜉𝑃8''⃗ 	 
(0.86) 

𝜉 =
1
𝑄 q<

𝑃80''''⃗

𝑀99

	− 𝑔𝑘3𝑇s =
1
𝑄 (𝑇

(𝑡) − 𝑇7) 

(0.97) 
 

where (𝑇(𝑡) − 𝑇7) is the difference between the actual temperature of the system and the 

reference one.  𝑄 is the thermal inertia parameter, also referred as the “mass” of the 
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oscillator 𝜉, which determines the rate of the heat transfer, i.e. the strength of the bath 

coupling: 

𝑄 =	
𝜏0𝑇7
4𝜋0  

(0.108) 

where 𝜏 is the period of the oscillations of kinetic energy between the system and the 

reservoir.  

For pressure control in NPT, barostats such as the Berendsen barostat and the Parrinello-

Rahman barostat are frequently employed. These methods facilitate accurate control over 

pressure conditions within the simulation, allowing for the exploration of systems under 

diverse thermodynamic conditions. 

Berendsen barostat:16 Berendsen and colleagues have introduced first-order coupling 

barostats, which work in tandem with temperature control methods. This coupling ensures 

that the pressure of the simulated system 𝑃(𝑡) is gradually adjusted towards the reference 

pressure 𝑃7 using a time constant denoted as 𝜏H: 

𝑑𝑃(𝑡)
𝑑𝑡 =

1
𝜏H
[𝑃7 − 𝑃(𝑡)] 

(0.19) 

The coordinates 𝑥'&I and the volume of the box, 𝑉'&I, are rescaled by a scaling factor 𝜇 

at every step, such that: 

𝑥'&I = 𝜇𝑥#C; 	 
(0.20) 

𝑉'&I = 𝜇𝑉#C; 
(0.211) 

 

𝜇 = 	 w1 −
𝛽𝛿𝑡
𝜏?

(𝑃7 − 𝑃(𝑡))
"

	 

(0.23) 
 

Where 𝛽 is the compressibility of the system. The Berendsen barostat is categorized as a 

weak coupling scheme, which renders it better suited for pressure equilibration purposes 

rather than for the actual MD production run. This is due to the potential for the length scaling 

inherent in the method to induce pronounced oscillations in the pressure, potentially 

disrupting the stability of the simulation. 

Parinello-Rahman barostat:17, 18 The pressure control method pioneered by Parrinello 

and Rahman formulated in the 1980s, facilitates adaptive adjustments to the simulation 

box's shape. This is achieved by introducing nine new variables into the system, which 
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correspond to the components of the unit cell vectors. These vectors are represented 

collectively by the matrix 𝒉, where its columns consist of the three vectors a, b, and c, which 

collectively define the box's shape. Consequently, the volume of the cell can be expressed 

as follows: 

𝑉 = det 𝒉 = 	 �⃗� ∙ (𝑏'⃗ 	× 	𝑐) 
(0.24) 

The position 𝑅8'''⃗  of the particle i can be written in terms of 𝒉 and a column vector 

representing the scaled coordinates, 𝑆8'''⃗ = 	 [𝜉9𝜂9𝜁9], with 0 ≤ [𝜉9𝜂9𝜁9] ≤ 1	 

𝑅8'''⃗ = 	𝒉𝑆8'''⃗ = 	 𝜉9�⃗� + 𝜂9𝑏'⃗ + 𝜁9𝑐 
(0.25) 

The squared distance between particles 𝑖 and 𝑗 can be therefore rewritten as: 

𝑅9D0 = 𝑆90𝑮𝑆D 
(0.26) 

where 𝑮 is the symmetric matrix, defined as the metric tensor: 

	𝑮 = 	𝒉)𝒉 
(0.27) 

With the introduction of the scaled coordinates 𝑆8'''⃗  for each atom 𝑖, the original Lagrangian of 

3N variables becomes now an extended Lagrangian of (3N + 9) variables, written as: 

𝐿HJ =
1
2<𝑀9�̇�9)𝑮�̇�9 −

9

<𝑈(𝑅9D) +
1
2𝑊𝑇𝑟(�̇�

)�̇�) −
9KD

𝑝7𝑉 

(0.28) 

where 𝑈(𝑅9D)	is the pair potential, 𝑝7 is the reference external applied pressure, 𝑉 is the unit 

cell volume,  𝑊	is constant of proportionality (with mass dimensionality) of the kinetic term 

associated with the time variation of 𝒉. The corresponding equations of motion are then 

derived for 𝑆8'''⃗  and 𝒉. 

1.8 Enhanced sampling techniques for Accelerated Molecular Dynamics 

Molecular dynamics (MD) simulations have been extensively utilized over recent decades, 

finding applications in various domains such as materials science, chemistry, biology, 

geology, and more. These simulations offer a direct understanding of the temporal 

progression of molecular systems with a complete atomistic resolution. Particularly, with the 

widespread availability of parallel computing resources, researchers can now handle 

significantly large system sizes (simulating entire systems, viruses for example). However, 
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despite the availability of massively parallel resources, MD encounters a persistent 

timescale challenge that hinders its progress. 

MD is confined to integration timesteps of a few femtoseconds, a limitation that can be 

somewhat alleviated through the implementation of multiple timestep algorithms. Yet, 

reaching the millisecond regime and beyond for any system with more than a few thousand 

atoms remains a considerable challenge. Unlike spatial dimensions, time operates 

sequentially, making the timescale problem less amenable to straightforward parallelization. 

The root cause and potential solutions to the timescale problem stem from the observation 

that many intriguing systems possess an energy landscape characterized by numerous 

metastable states separated by substantial kinetic barriers. Transgressing these barriers to 

explore new states becomes a rare event compared to the obligatory few femtosecond 

integration timestep of MD. Consequently, a multitude of enhanced sampling approaches 

have been proposed over the past two decades to accelerate system dynamics, enabling 

access to significantly extended timescales. 

1.8.1 Rare Events, Separation of Timescales and Markovianity 

Considering a system consisting of N atoms residing in a 2dN-dimensional phase space, 

where the dimensionality ranges from d = 1 to 3, and N can vary from 1 to a few million. The 

MD simulation initiates from a given configuration, involving the numerical integration of 

Newton's laws of motion within a classical force-field or interatomic potential, all under a 

temperature T (or equivalently inverse temperature 𝛽 = 	 !
L!)

	). A thermostat is employed to 

enforce the desired temperature. The simulation conditions can include constant 

temperature (within fluctuations), constant volume (V), or constant pressure (P), referred to 

as the NVT and NPT ensembles, respectively.  

The processes of interest in our study typically occur on timescales significantly longer 

than the vibration period of individual atoms, which is usually in the order of a few 

femtoseconds. However, the rates at which these processes occur often extend to much 

slower timescales, ranging from microseconds to milliseconds. Although each degree of 

freedom within the system undergoes constant fluctuations with an average thermal energy 

of !
0
𝑘3𝑇, these fluctuations rarely align with the specific modes required for the desired event 

to occur. Hence, an event that might be readily observed and studied in a laboratory setting 

becomes a rare event in practice for the molecular dynamics. 
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Closely related to the concept of rare events are the notions of timescale separation and 

Markovianity. Timescale separation refers to the presence of a spectrum of timescales that 

can be clearly distinguished into distinct non-overlapping regimes. Essentially, the system 

traverses a landscape characterized by deep basins, and the decorrelation of dynamical 

variables within each basin occurs much faster compared to the typical basin escape times.  

On the other hand, Markovianity signifies that before the system departs a stable basin, it 

has forgotten the specifics of how it entered the basin initially. This is reasonable because 

systems comprised of many interacting particles are highly sensitive to initial conditions. 

Consequently, even minute alterations in initial conditions before and shortly after entering 

the basin, often due to numerical noise in thermostatting, rapidly lead to diverging 

trajectories within the basin. This renders the system's precise state effectively random 

within the basin after the molecular relaxation time has passed. Therefore, when mapping 

the system's trajectory into a list of states it visits, it becomes sensible to discuss a unique 

state-to-state timescale, characterized solely by two inputs: the identities of the state being 

exited, and the state being entered. 

Figure 1. A schematic 1-d energy landscape where the x-axis denotes some reaction coordinate 

and y-axis is the energy. R, TS, and P stand for reactant, transition state, and product, respectively. 

Here the depth of either basin is much larger than kBT or the typical fluctuation in the energy 

associated with the coordinate x. As such, moving from basin R to P becomes a rare event, and only 

very occasionally the system visits the TS region. 

E

xx=0

TS
R P
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1.8.2 Potential and Free Energy Surfaces 

In the preceding subsection, we introduced the concept of a landscape or surface 

characterized by deep basins. To formalize this notion, one approach involves utilizing 

coordinates R from the entire 3N-dimensional configuration space (i.e., all atomic 

coordinates) and examining the total potential energy 𝑈(𝑅) of the system. A constant energy 

surface in this space is termed a potential energy surface (PES). PES has been extensively 

and effectively utilized for relatively small systems, especially at lower temperatures.19 At 

sufficiently low temperatures and with small system sizes, accelerating molecular dynamics 

becomes closely associated with identifying relevant saddle points on the PES, which the 

system must traverse while moving from one basin to another.  

However, working with small system sizes is not always feasible, and characterizing or 

working with the PES computationally becomes prohibitively expensive. In high-dimensional 

systems, the PES contains an excessive number of saddle points, many of which are 

irrelevant to the dynamics of interest.20 Additionally, it might be more appropriate and 

effective to describe the large number of visited states through an entropic description, 

especially at higher simulation temperatures, rather than exhaustively enumerating states 

as a PES description would require. Although one can still work with the PES, it necessitates 

separate approximations to calculate the appropriate entropic corrections. 

As an alternative to focusing on the PES, one strategy (though not the only one) is to 

examine a low-dimensional free energy surface (FES), defined as a function of a small 

number of collective variables (CVs) denoted as 𝑠 = 	 {𝑠!, … , 𝑠L}, where 𝑘 ≪ 𝑁. These 

collective variables represent "interesting" degrees of freedom or "reaction coordinates." 

They can be more than simple linear projections and may constitute complex nonlinear 

functions of all atomic coordinates. In terms of the potential energy 𝑈(𝑅), the free energy 

𝐹(𝑠) is defined as follows: 

𝐹(𝑠) = 	−	𝛽*! ln4𝑑𝑅𝛿%𝑠	 − 𝑠	(𝑅).𝑒*MN(O) 
(0.29) 

This definition differs from the conventional Helmholtz free energy solely by the term 

𝛿%𝑠	 − 𝑠	(𝑅). which selects the region of phase space associated with a specific value of 𝑠, 

representing the collective variable. Excluding this term in the integration would yield the 

total Helmholtz free energy of the system. 

In analogy with the PES description, one now examines basins in the FES, which is low-

dimensional by design and hence easier to handle. Additionally, since the free energy 
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according to the provided definition incorporates temperature, one can explicitly address 

entropic effects. Of course, the methods based on the calculations of this FES are not the 

solution of all the problems because the reduction in dimensionality when transitioning from 

PES to FES is closely tied to a well-considered selection of a small number of effective 

collective variables. It often requires a priori knowledge of all possible existing and relevant 

deep stable basins in the system. It's important to note that knowledge of stable basins is 

generally a weaker requirement than knowledge of escape pathways. There are a lot of 

different Free Energy Surface Based Methods (Umbrella Sampling, Replica Exchange, etc.) 

but see in detail the theory and and how all these methods work comes out of the scope of 

this thesis, we focus on the Metadynamics that the method chosen to study the unfolding of 

our systems. 

1.8.3 Metadynamics 

Metadynamics (MetaD) is a widely recognized method utilized to explore intricate Free 

Energy Surfaces (FESs) by constructing a time-dependent bias potential. Initially, a small 

set of relevant Collective Variables (CVs) is identified. To intensify sampling in regions of 

CV space that are seldom visited, a memory-dependent bias potential is progressively 

developed during the simulation as a function of these CVs. This bias typically takes the 

form of repulsive Gaussians added wherever the system visits in the CV space. 

Consequently, the system gradually avoids revisiting these areas, leading to an increase in 

fluctuations in the CVs. This discourages the system from becoming trapped in low free 

energy basins. At the conclusion of a MetaD run, the probability distribution of any 

observable—whether biased directly or not—can be computed using a reweighting 

procedure.21 This convenient reweighting capability is one of the many attributes of MetaD 

that has propelled its widespread adoption for calculating FESs. 

So, the idea of MetaD is based on the systematically 'filling' the free energy minima of the 

metastable states in a controlled manner, allowing the system to explore all states. This 

entails initially selecting a low-dimensional Collective Variable based on chemical or 

physical intuition—a function of coordinates that assumes distinct values in all relevant 

metastable states. By using this CV, the probability distribution	𝑃(𝑥) can be transformed into 

a function of the CV: 

𝑃(𝑠) = 	4𝑑𝑥𝑃(𝑥)%𝑠	 − 𝑆(𝑥). 
(0.30) 
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In this context, we assume 𝑃(𝑥) follows the canonical distribution associated with a 

potential energy function 𝑉(𝑥): 𝑃(𝑥) ∝ 𝑒P*
#(%)
' Q  where T is the temperature (using units where 

the Boltzmann constant is one). A well-chosen CV manifests the metastable states as 

distinct, well-defined peaks in 𝑃(𝑠). The free energy as a function of 𝑠	is:  

𝐹(𝑠) = 	−𝑇	log	(𝑃(𝑠)) 
(0.312) 

showcases at least two clearly defined minima for a system with metastable states. 

In an ideal scenario, for the molecular system under study, both a suitable CV and an 

approximation 𝐵(𝑠) of the negative free energy are known. Under such circumstances, the 

metastability problem can be regarded as resolved.  

However, in the real world there are some issues: 

- The structure of the free energy is unknown before the simulation, making the choice of 

a good 𝐵(𝑠) challenging. 

- Identifying a good CV can be nontrivial, even if an intuitive CV distinguishing metastable 

states is constructed, it might not be suitable for describing transitions. 

- In some cases, the relevant metastable states are themselves unknown, posing a 

significant challenge, particularly in studying conformational transitions in complex 

biomolecules. 

MetaD is an algorithm that effectively addresses the first problem by iteratively constructing 

𝐵(𝑠) during the simulation. While it doesn't provide a CV directly, it verifies the quality of a 

CV and can improve it for subsequent simulations. Additionally, MetaD allows for the 

simultaneous use of multiple CVs, providing more flexibility in their selection and even 

enabling the exploration of unknown metastable states in specific cases. 

The fundamental concept of MetaD involves the systematically 'filling' the free energy 

minima with a Gaussian function with a width 𝜎	and height 𝑤 is employed. Initially, the 

Gaussians are concentrated in the first free-energy minimum. These Gaussians induce 

significant fluctuations in the CV. Over time, the Gaussians progressively fill the first free-

energy minimum until the system transitions to the second minimum. The CV starts diffusing 

freely between these minima once this transition occurs. The sum of these Gaussians 

compensates nearly precisely for the free energy, enabling an estimation of 	 𝐹(𝑠). The 

parameters 𝑤 and 𝜎	can be adjusted to control the rate at which the free-energy landscape 

is filled and flattened. 
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Choosing larger Gaussians causes the bias to increase rapidly, but the system deviates 

significantly from equilibrium. Conversely, utilizing smaller Gaussians results in MetaD 

resembling a quasi-equilibrium process.  

 

Figure 2. The working principles of metadynamics (MetaD). A-C. The sum of the free energy and of 

the MetaD bias potential (blue lines) at three different times marked by arrows in panel D., along 

with the free energy (black lines). D. The CV s as a function of time in a MetaD simulation. 

 

There are numerous additional aspects related to MetaD that could be discussed, 

including the various collective variables and the methods for their selection. Additionally, 

understanding how to calculate free energy and associated errors, along with an exploration 

of diverse methods linked to MetaD, could be covered. However, delving into these details 

is beyond the scope of this thesis. There are comprehensive reviews available that provide 

a detailed explanation of these parameters for those interested in a deeper understanding.22 

 

 

 

 

 

 

A. B. C.

D.



 54 

1.9 Epitope Prediction Method 

Epitopes are sections of a protein that can be recognized by binding partners. Their 

sequences are often adaptable to mutations, indicating that they aren't crucial for stabilizing 

the protein's antigenic structure. Instead, they've evolved to continuously avoid detection by 

the host's immune system, while still maintaining the native structure necessary for the 

pathogen's function. Epitopes can exhibit flexibility and conformational changes. In essence, 

they aren't strongly involved in major stabilizing interactions within the protein. From a 

structural perspective, epitopes are exposed regions on the protein's surface, easily 

accessible for antibody binding. In the case of non-continuous epitopes, high-resolution X-

ray structures of antigen-antibody complexes reveal that they consist of residues with spatial 

relationships defining a sizable region on the antigen's surface. 

This approach combines an analysis of protein energetics from molecular dynamics (MD) 

simulations with topological data from contact matrices obtained from representative 

trajectory structures. The goal is to locate contiguous regions in the antigen's 3D 

conformation that have minimal interactions with the rest of the protein. These regions are 

likely candidates for dynamic modulation, important for recognition events.  

The energy decomposition method underpins the energetics analysis, enabling the 

identification of significant residue-residue interactions for fold stability. The approach 

simplifies the noisy energy matrix through eigenvalue decomposition. We concentrate on 

the eigenvector's lowest eigenvalue components, revealing strong interaction centers. 

Applying this to the most populated structural cluster yields similar results to trajectory 

averaging. We validate this approach against experimental data, connecting protein stability 

with its energetic and topological traits.23-27 

The pair energy-coupling map, filtered using topological insights, aids in recognizing local 

couplings with minimal energy interactions. Since low-energy couplings between distant 

residues are a product of distance-dependent energy functions, local low-energy couplings 

highlight sites where interaction networks aren't energetically optimized. These regions tend 

to interact with binding partners or tolerate mutations that preserve antigen structure. These 

areas often cluster on the protein's accessible surface. This concept is reminiscent of local 

frustration, seen near interaction sites on protein surfaces where high frustration is common. 

This method has been optimized and extended to cover glycoproteins. 
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1.9.1 Energy Decomposition (ED) 

The energy decomposition method is based on the calculation of the interaction matrix 

𝑀9D, which is determined by evaluating average, interresidue, nonbonded (van der Waals 

and electrostatics) interaction energies between residue pairs, calculated over the structures 

visited during an MD trajectory (The symmetric interaction matrix 𝑀9D obtained from separate 

MM/GBSA calculations). For a protein of N residues, this calculation yields an 𝑁 × 𝑁 matrix. 

As stated above, the same results can be obtained by calculating the interaction matrix 𝑀9D 

from the representative conformation of the most populated cluster, in the absence of major 

conformational changes. 

The aim of the method is to obtain a simplified picture of the most relevant residue-residue 

interactions in a certain fold. The matrix 𝑀9D  is thus diagonalized and re-expressed in terms 

of eigenvalues and eigenvectors, in the form: 

𝑀9D = <𝜆R𝑣9R𝑣DR
"

R2!

 

(0.32) 

where 𝜆R is the a-th eigenvalue and 𝑣9R is the ith component of the corresponding 

eigenvector. 

It was previously shown in a number of cases that eigenvector (𝑣9<), also called first 

eigenvector, associated with the lowest eigenvalue 𝜆! allows to identify most of the crucial 

aminoacids necessary for the stabilization of a protein fold, and consequently those 

aminoacids that are minimally coupled to such core. The latter were shown to correspond 

to potential interaction regions.  

In the case of multidomain proteins such as S, the first eigenvector is not sufficient, and 

more eigenvectors are needed to capture the essential interactions for folding/stability and 

binding. The interaction matrix 𝑀9D is thus decomposed instead via the alternative approach 

developed by Genoni et al.23 In this scenario, the aim is to select the smallest set of 𝑁& 

eigenvectors that cover the largest part of residues (i.e., components) with the minimum 

redundancy under the assumption that: (a) for each domain there should exist only one 

associated eigenvector recapitulating its most significant interactions; (b) each “domain 

eigenvector” has a block structure whereby its significant components correspond to the 

residues belonging to the identified domain; (c) combination of all significant blocks covers 

all residues in the protein. Matrix 𝑀9D can thus be reformulated as a simplified matrix 𝑀�9D: 
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𝑀�9D = <𝜆R𝑣9R𝑣DR
"&

R2!

 

(0.33) 

(where this time the sum occurs over 𝑁& essential eigenvectors instead of 𝑁 residues). As 

detailed by Genoni et al.,23 the essential folding matrix 𝑀�9D is subsequently further filtered 

through a symbolization process to emphasize the significant non-bonded interaction, 

yielding 𝑀�9DJ𝑀�9DJ  and finally subjected to a proper clustering procedure leading to domain 

identification. 

The final simplified matrix 𝑀�9DJ  resulting from domain decomposition thus only reports those 

residue pairs in the protomer that exhibit the strongest and weakest energetic interactions. 

1.9.2 Matrix of Local Coupling Energies method (MLCE) 

Final epitope predictions are made using the Matrix of Local Coupling Energies method 

(MLCE), in which analysis of a given protein’s energetic properties is combined with that of 

its structural determinants. This approach allows to identify nonoptimized, contiguous 

regions on the protein surface that are deemed to have minimal coupling energies with the 

rest of the structure, and that have a greater propensity for recognition by Abs or other 

binding partners. 

The MLCE procedure entails cross-comparison of the simplified pairwise residue-residue 

energy interaction matrix 𝑀�9D resulting from domain decomposition (vide supra) with a 

pairwise residue-residue contact matrix 𝐶9D. The latter matrix namely considers a pair of 

residues to be spatially contiguous (i.e., ‘in contact’) if they are closer than an arbitrary 6.0 

Å-threshold; contact distances are measured between Cβ atoms in the case of non-glycine 

aminoacid residues, H atoms in the case of glycine residues, and between C1 atoms in the 

case of glycan residues. 

The Hadamard product of the two matrices yields the matrix of the local pairwise coupling 

energies 𝑀𝐿𝐶𝐸9D: 

𝑀𝐿𝐶𝐸9D = 𝑀�9D ∙ 𝐶9D 
(0.34) 

Deriving the MLCE matrix allows to rank spatially contiguous residue pairs with respect to 

the strength of their energetic interactions (weakest to strongest). Selection of proximal pairs 

showing the weakest coupling with the rest of the protein ultimately defines putative 

epitopes; two distinct selections are carried out on the basis of two possible weakness 
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(softness) cutoffs (5% or 15%), corresponding to the top 5% or 15% spatially contiguous 

residue pairs with the lowest energetic interactions. 

STRUCTURE SELECTION FROM MOLECULAR DYNAMICS (Clustering of MD 
Simulations) 

Coordinates of the fully glycosylated SARS-CoV-2 S protein’s are found using Clustering 

calculations conducted using the hierarchical agglomerative algorithm,28 considering every 

20th metatrajectory frame (i.e., every 50 ps), based on the root-mean-square deviation of 

backbone heavy atoms of aminoacid residues composing the NTD and the RBD in all three 

protomers. Values of ε are chosen so that they provide the best compromise between 

maximizing cluster homogeneity, based on silhouette score, and ensuring at least 60-80% 

of the metatrajectory is covered by the three most populated clusters.  

MINIMIZATION 

A 200-step minimization of each structure is carried out using the default procedure (i.e., 

steepest descent for 10 steps; then conjugate gradient) implemented in the MD engine 

sander in the AMBER software package (version 18).29, 30 Protomers are minimized using 

the generalized Born (GB) implicit solvent model as parametrized by Onufriev et al.31, with 

a universal 12.0 Å cutoff applied in the calculation of Lennard-Jones and Coulomb 

interactions (neither of which are calculated beyond this limit). For this stage, concentration 

of (implicit) mobile counterions in the GB model is set to 0.1 M, and the solvent-accessible 

surface area (SASA) is computed according to the LCPO method (linear combinations of 

pairwise overlaps).32  

MM/GBSA CALCULATIONS 

MM/GBSA calculations33 are performed on each of the three minimized ‘RBD up’ 

protomers using the dedicated mm_pbsa.pl utility in AmberTools (version 17). The purpose 

of these calculations is to obtain a breakdown of nonbonded energy interactions (i.e., 

electrostatic, van der Waals, implicit solvation contributions and, in this case, 1-4 

interactions) between every possible pair of residues in the protomer (aminoacids and 

monosaccharides alike): for a protomer composed of N residues, this leads to a symmetric 

𝑁 × 𝑁	interaction matrix 𝑀9D.34 

The implicit GB solvation model used in these calculations is identical to the one used in the 

preceding minimization step (vide supra), except that the implicit ion concentration is set to 
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0.0 M, and SASA is computed with the ICOSA method (based on icosahedra around each 

atom that are progressively refined to spheres).  
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1.10 Docking  

In the pursuit of discovering novel therapeutic targets for drug development, the evolution 

of high-throughput methodologies, such as protein purification, crystallography, and nuclear 

magnetic resonance spectroscopy, has significantly enriched our understanding of protein 

structures and their interactions with ligands. These advancements have effectively paved 

the way for computational strategies to infiltrate every facet of contemporary drug discovery. 

These strategies encompass a wide array of techniques, among them being virtual 

screening (VS), which serves as a potent tool for identifying promising lead compounds, and 

methods tailored for the optimization of these leads. Notably, different from conventional 

experimental high-throughput screening (HTS), the VS approach offers a more streamlined 

and rational pathway to drug discovery. Its advantages, including cost-effectiveness and 

heightened efficiency, underscore its significance in the field. 

VS strategies can be categorized into two main types: ligand-based and structure-based 

methods. Ligand-based methods, such as pharmacophore modeling and quantitative 

structure-activity relationship (QSAR) analysis, come into play when a set of active ligands 

is available and little structural information is known about the targets. On the other hand, 

for structure-based drug design, molecular docking stands out as the predominant approach 

and has been extensively utilized since the early 1980s.35 Molecular docking studies have 

become an increasingly significant tool in pharmaceutical research, with various programs 

utilizing different algorithms developed to carry out these studies.  

Molecular docking enables the modeling of atomic-level interactions between small 

molecules and proteins. This allows for a detailed understanding of small molecule behavior 

within the binding site of target proteins, as well as the elucidation of fundamental 

biochemical processes. The docking process entails two fundamental steps: the prediction 

of the ligand's conformation, position, and orientation within the binding site (referred to as 

the “pose"), and the evaluation of the binding affinity. These steps are intricately connected 

to sampling methods and scoring schemes.  

Efficient docking processes benefit significantly from prior knowledge of the binding site's 

location. Often, this information is available before ligand docking, either from previous 

studies or through comparisons with functionally similar proteins or those co-crystallized with 

ligands. Alternatively, when binding site knowledge is lacking, cavity detection programs or 

online servers can be employed to predict potential active sites, a practice referred to as 

blind docking. 
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Early elucidation of ligand-receptor binding mechanisms centered around Fischer's lock-

and-key theory,36 where the ligand fits into the receptor like a lock and key. Initial docking 

methods were built upon this concept, treating both ligand and receptor as rigid entities. The 

subsequent "induced-fit" theory by Koshland37 expanded on this, suggesting that protein 

active sites continually adapt as ligands interact with the protein, necessitating flexible 

treatment during docking for a more accurate depiction of binding events. 

1.10.1 Theory of docking  

Essentially, molecular docking tries to predict the structure of a ligand-receptor complex. 

This process involves two interconnected steps: first, sampling various conformations of the 

ligand within the protein's active site, and second, evaluating these conformations using a 

scoring function. The ideal outcome is that sampling algorithms accurately replicate the 

experimentally observed binding configuration, while the scoring function appropriately 

ranks it as the most favorable among all generated conformations. To provide a foundational 

understanding, let's briefly outline the fundamental principles of docking theory from these 

two perspectives. 

1.10.2 Search Algorithms 

Due to the vast number of potential binding modes resulting from six translational, 

rotational, and conformational degrees of freedom for both ligand and protein, exhaustive 

sampling is infeasible. Various search algorithms have been developed and are integral to 

molecular docking software. Generally, these algorithms could be divided in three main 

classes: Systematic search methods, Random or Stochastic methods and Simulation 

methods. 

The Systematic search algorithms try to explore all the degrees of freedom in a molecule 

which is dictated by the rotations of the bonds and angles and size of increments. For 

example, Exhaustive search algorithms systematically explore ligand conformations by 

iteratively rotating all possible rotatable bonds within defined intervals. However, the 

extensive conformational space often makes exhaustive searches impractical. To address 

this challenge, advanced algorithms like GLIDE employ heuristics to prioritize regions of 

conformational space likely to yield favorable ligand poses. GLIDE utilizes precomputed grid 

representations of the target's shape and properties, alongside an initial set of low-energy 

ligand conformations based on torsion angles. The process begins with approximate 
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positioning and scoring to identify promising initial ligand poses, narrowing down the 

conformational space for a high-resolution docking search. This refined search involves 

ligand minimization through molecular mechanics energy calculations, followed by a Monte 

Carlo procedure to explore nearby torsional minima. 

The Stochastic Methods randomly modify ligand conformations. Monte Carlo (MC) 

methods use energy-based criteria to accept or reject conformations based on 

transformations. Genetic algorithms (GA) encode ligand degrees of freedom as binary 

strings, subjecting them to genetic operators like mutation and crossover. 

Molecular Dynamics (MD) MD simulations offer robust flexibility simulation, representing 

both ligand and protein movements effectively. However, MD's small progression steps may 

hinder sampling over high-energy barriers. MD is often used in combination with random 

search strategies to optimize local conformations. 

In summary, molecular docking employs various sampling algorithms to explore ligand-

receptor interactions, enabling the prediction of complex structures and aiding drug 

discovery efforts. 

1.10.3 Scoring functions 

Scoring functions play a crucial role in molecular docking by distinguishing favorable 

ligand-receptor binding poses from unfavorable ones within a reasonable computational 

time. These functions estimate the binding affinity between a protein and ligand, introducing 

various assumptions and simplifications. They can be categorized into force-field-based, 

empirical, and knowledge-based scoring functions. 

Force-Field-Based Scoring Functions. Classical force-field-based scoring functions 

evaluate binding energy by summing non-bonded interactions, including electrostatic and 

van der Waals forces, as we see before. 
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This is Extended force-field-based scoring function from AutoDock: For two atoms i, j, the 

pair-wise atomic energy is evaluated by the sum of van der Waals, hydrogen bond, coulomb 

energy and desolvation. 𝑊S;I	,𝑊&C&F ,𝑊%#CS  are weight factor to calibrate the empirical free 

energy.38  

Empirical Scoring Functions. Empirical scoring functions decompose binding energy 

into components like hydrogen bonds, ionic interactions, hydrophobic effects, and binding 

entropy. Each component is assigned a coefficient, and the sum of these components yields 

a final score. Coefficients are determined through regression analysis using a test set of 

ligand-protein complexes with known affinities. While relatively simple, empirical scoring 

functions may lack generalization beyond their training set. 
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Empirical scoring function from FlexX. 𝐺 is the estimated free energy of binding; 𝐺7is the 

regression constant; 𝐺@#A , 𝐺T$ , 𝐺9#, 𝐺<@# and 𝐺C9?# are regression coefficients for each 

corresponding free energy term; 𝑓(Δ𝑅, Δ𝛼)	is scaling function penalizing deviations from the 

ideal geometry; 𝑁@#A is the number of free rotate bonds that are immobilized in the 

complex.39  

Knowledge-Based Scoring Functions. These functions use statistical analysis of crystal 

structures to derive interatomic contact frequencies and distances between ligand and 

protein atoms. The assumption is that more favorable interactions occur more frequently. 

These distributions are converted into pairwise atom-type potentials, favoring preferred 

contacts and penalizing repulsive interactions. Knowledge-based functions are 

computationally efficient and can model uncommon interactions but may suffer from 

underrepresented interactions in training sets. 
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Knowledge-based scoring functions PMF. 𝑘3 is the Boltzmann constant; T is the absolute 

temperature; 𝑟 is the atom pair distance. 𝑓S#CC	F#@@
D (𝑟) is the ligand volume correction factor; 
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Z123
() (@)

Z4,56
()   designates the radial distribution function of a protein atom of type 𝑖	and a ligand 

atom of type 𝑗.40  

In summary, scoring functions are pivotal in molecular docking, guiding the selection of 

promising ligand-receptor interactions. Different types of scoring functions each have their 

strengths and limitations, reflecting the complex interplay between computational efficiency 

and accuracy in predicting binding affinities. 

1.10.4 Glide: grid-based ligand docking with energetics41  

Glide is a docking software designed to perform an accurate search of the positional, 

orientational and conformational space available to the ligand using hierarchical filters. It 

produces a set of initial ligand conformations, which correspond to minima in the torsion-

angle space of the ligand, and it screens them over the entire phase space available to the 

ligand. Once the most promising poses are located inside the receptor, the ligand is 

minimized using a MM energy function which incorporates a distance-dependent dielectric 

model. Then, the lowest-energy poses undergo Monte Carlo procedure and then poses are 

evaluated with a scoring function. 

 

Figure 3. Schematic representation of the steps involved in Glide. 

Glide can employ two different scoring functions: GlideScore 2.5 Standard-Precision (SP) 

is a more forgiving scoring function, which aims to identifying ligands that have a reasonable 

possibility to bind and is used mainly in screening libraries. On the other hand, GlideScore 

2.5 Extra-Precision (XP) applies severe penalties on poses that violate physical chemistry 
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principles; its main application consists in lead optimization. The scoring functions used by 

Glide consider many types of interaction: lipophilic, hydrogen-bonding (both for two charged 

groups and for a charged group with a neutral one), metal-ligand, electrostatic and van der 

Waals interactions: furthermore, it introduces a solvation model, using explicit waters into 

the binding site (rather than using a continuum solvation model). 
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Proteins 

The primary purpose of the protein approach research is to comprehensively investigate 

the SARS-CoV-2 Spike protein, with a multifaceted approach encompassing the following 

key objectives:  

Predicting immune recognition regions. Develop a simple and straightforward 

structure-dynamics-energy based strategy to comprehensively investigate the SARS-CoV-

2 Spike protein to predict regions involved in immune recognition. This insight has the 

potential to guide the development of novel molecules for vaccine and diagnostic purposes. 

Notably, this approach has identified potentially reactive regions in the S protein stalk, 

currently undergoing experimental synthesis and testing. 

This early analysis was covered in the paper entitled: “The Answer Lies in the Energy: How 

Simple Atomistic Molecular Dynamics Simulations May Hold the Key to Epitope Prediction 

on the Fully Glycosylated SARS-CoV-2 Spike Protein” (Serapian S. A. et al. J Phys Chem 

Lett. 2020 Oct 1;11(19):8084-8093). 

Assessing Immune Response Variability. Analyze how mutations in the Spike protein 

impact the immune response, specifically by evaluating the efficacy of monoclonal 

antibodies against different SARS-CoV-2 variants. This research seeks to understand the 

extent to which these mutations affect the ability of the immune system to neutralize the 

virus. 

This research was conducted in the paper with the title: “SARS-CoV-2 Spike Protein 

Mutations and Escape from Antibodies: a Computational Model of Epitope Loss in Variants 

of Concern” (Triveri A. et al. J Chem Inf Model. 2021 Sep 27;61(9):4687-4700). 

Studying the Stability of Viral Variants. Investigate the stability of SARS-CoV-2 variants 

with Spike protein mutations and explore how these mutations influence the virus's ability to 

Protein Approach
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persist, transmit, and potentially cause severe disease. This research aims to provide 

insights into the dynamic nature of viral evolution. 

This work has been published in the paper: “The Conformational Behaviour of SARS-Cov-

2 Spike Protein Variants: Evolutionary Jumps In Sequence Reverberate In Structural 

Dynamic Differences” (Triveri A. et al. J Chem Theory Comput. 2023 Apr 11;19(7):2120-

2134).   

Exploring the Fatty Acid Binding Pocket. Examine the presence and conservation of 

the fatty acid binding pocket within the Spike protein across various SARS-CoV-2 variants. 

This analysis aims to identify potential druggable targets for therapeutic interventions and 

assess their relevance in the context of viral evolution. The manuscript of this latter research 

is in preparation.  
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1.12  Immunoreactivity of the WT SARS-CoV-2 spike protein 

“The answer lies in the energy: how simple atomistic molecular dynamics 
simulations may hold the key to epitope prediction on the fully glycosylated SARS-

CoV-2 spike protein” 

 

 

1.12.1 Abstract 

Herein, we use the original energy-decomposition approach outlined in the Method section 

to identify antigenic domains and antibody binding sites on the fully glycosylated S protein. 

Notably, our method relies solely on unbiased atomistic molecular dynamics simulations, 

eliminating the need for any prior knowledge of binding properties or arbitrary combinations 

of parameters extracted from simulations. 

Our approach involves analyzing energy interactions among all intra-protomer amino acid 

and monosaccharide residue pairs, cross-comparing these interactions with structural data 

(i.e., residue-residue proximity). Through this analysis, we identify groups of spatially 

contiguous residues with weak energetic coupling to the rest of the protein, indicating 

potential immunogenic regions. 

Validation of our results was achieved through comparison with experimentally confirmed 

structures of the S protein complexed with anti- or nanobodies. This validation process 
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enabled us to identify several subdomains with poor coupling, likely to accommodate 

multiple epitopes and possibly play a role in significant functional conformational changes. 

Furthermore, we observed two distinct behaviors of the glycan shield. Glycans with 

stronger energetic coupling were found to be structurally relevant, providing protection to 

underlying peptidic epitopes. Conversely, glycans with weaker coupling might themselves 

be susceptible to antibody recognition. These predictions of immunoreactive regions offer a 

pathway to develop optimized antigens, such as recombinant subdomains and synthetic 

(glyco)peptidomimetics, with potential therapeutic applications. Additionally, employing 

similar predictive approaches could significantly enhance preparedness for future pandemic 

outbreaks. 

1.12.2 Introduction 

The knowledge acquired about recognition mechanisms and the determination of the 

detailed dynamic and structural characteristics of SARS-CoV-2 could help to be better 

prepared to tackle similar pandemics in the future by contrasting them more efficiently 

through the application of the same efficient and well-tested methods to new protein 

variants. More specifically, upon emergence of a new pathogen, generally portable 

computational methods could be advantageously exploited to rapidly identify and synthesize 

recombinant antigen or peptide-based vaccines.1-12 

For instance, the detailed dynamic and structural knowledge set the stage for 

understanding the molecular bases of S protein recognition by the host’s immune system, 

providing information on which physico-chemical determinants are required to elicit 

functional antibodies.12-14 Such understanding could then be exploited to design and 

engineer improved antigens based on S, for instance by identifying antigenic domains that 

can be expressed in isolation or short sequences (epitopes) that can be mimicked by 

synthetic peptides15-20: this would be a crucial first step in the selection and optimization of 

candidate vaccines and therapeutic antibodies (on top of those already in development), as 

well as in the development of additional serologic diagnostic tools.  
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Figure 1. 3D structure, glycosylation and location of antigenic domains and epitopes on 
SARS-CoV-2 fully glycosylated Spike protein. A. The starting, fully glycosylated Spike protein 

trimer. The coating oligosaccharides are colored in dark blue. The predicted antigenic domains are 

colored on the structure of one protomer. B. Isolated protomer with the most antigenic domains, 

detected via MLCE with the 15% cutoff, highlighted in colors: the antigenic part in the N-Domain is 

dark green; the part in the RBD is magenta; the part in the C-terminal domain is dark red. 

Oligosaccharides that define or are part of antigenic domains are also colored. Oligosaccharides 

that have a structural role and show strong energetic coupling to the protein are in white. C. The 

predicted antigenic sequences projected on the sequence of the protein. The bottom line reports the 

sequences defined as antigenic domains, with the same color code as in B. The top bar reports the 

location of peptidic epitopes identified with the most restrictive definition. D. Physical interaction 

between the boundaries of the predicted antigenic domain in the N-terminal region and the cleavage 

site of S. This subfigure also shows the physical proximity of the predicted C-terminal uncoupled 

region with the fusion peptide. E. Domain organization of the spike protein projected on the 

sequence. Numbering and domain definitions obtained from UNIPROT 

(https://www.uniprot.org/uniprot/P0DTC2). 

 

In this first work, we analyze representative 3D conformations of the full-length trimeric S 

protein in its fully glycosylated form (Figure 1), extracted from atomistic molecular dynamics 

(MD) simulations provided by the Woods group,13, 21 to predict immunogenic regions.  
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To this end, a simple ab initio epitope prediction method that we previously described for 

unmodified proteins is optimized and extended to cover glycoproteins.22- 24 The method is 

based on the idea that antibody-recognition sites (epitopes) may correspond to localized 

regions only exhibiting low-intensity energetic coupling with the rest of the structure. 

Otherwise, putative interacting patches are hypothesized to be characterized by non-

optimized intramolecular interactions with the remainder of the protein. Actual binding to an 

external partner such as an Ab is expected to occur if favorable intermolecular interactions 

determine a lower free energy for the bound than the unbound state.22, 24-25 Furthermore, 

minimal energetic coupling with the rest of the protein provides these subregions with 

greater conformational freedom to adapt to and be recognized by a binding partner, as well 

as improved tolerance to mutations at minimal energetic expense without affecting the 

protein’s native organization and stability in a way that could be detrimental for the pathogen: 

all these properties are indeed hallmarks of Ab-binding epitopes. 

This approach is indeed able to identify regions, also comprising carbohydrates, that 

recent structural immunology studies have shown to be effectively targeted by antibodies. 

On the same basis, our method predicts several additional potential immunogenic regions 

(currently still unexplored) that can then be used for generating optimized antigens, either 

in the form of recombinant isolated domains or as synthetic peptide epitopes. Finally, our 

results help shed light on the mechanistic bases of the large-conformational changes 

underpinning biologically relevant functions of the protein. 

This method is one of the first that permits to discover epitopes in the presence of 

glycosylation (an aspect that is often overlooked), starting only from the analysis of the 

physico-chemical properties of the isolated antigen in solution. Importantly, the method does 

not require any prior knowledge of antibody binding sites of related antigenic homologs and 

does not need to be trained/tuned with data sets or ad hoc combinations of information on 

sequences, structures, SASA or geometric descriptors. The procedure is thus immediately 

and fully portable to other antigens. 

1.12.3 Results and Discussion 

To reveal the regions of the S protein that could be involved in antibody (Ab) binding, we 

employ a combination of the Energy Decomposition (ED) and MLCE (Matrix of Low Coupling 

Energies) methods, which we previously introduced and validated22-24, 26-34 and discuss in 

full in the Methods section.  
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Starting from 6 combined 400 ns replicas of atomistic molecular dynamics simulations of 

the fully glycosylated S protein in solution13 (built from PDB ID: 6VSB 9), we isolate a 

representative frame from each of the three most populated clusters. ED and MLCE 

analyses of protein energetics assess the interactions that each amino acid and glycan 

residue in S protomers establishes with every other single residue in the same protomer. 

We compute the nonbonded part of the potential energy (van der Waals, electrostatic 

interactions, solvent effects) implicitly, via an MM/GBSA calculation (molecular 

mechanics/generalized Born and surface area continuum solvation35), obtaining, for a 

protomer composed of N residues (including monosaccharide residues on glycans), a 

symmetric 𝑁 × 𝑁 interaction matrix 𝑀9D. Eigenvalue decomposition of 𝑀9D highlights the 

regions of strongest and weakest coupling. The map of pairwise energy couplings can then 

be filtered with topological information (namely, the residue-residue contact map) to identify 

localized networks of low-intensity coupling (i.e., clusters of spatially close residue pairs 

whose energetic coupling to the rest of the structure is weak and not energetically optimized 

through evolution).  

In this model, when these fragments are located or near the surface, contiguous in space 

and weakly coupled to the protein’s ‘stability core’, they represent potential interaction 

regions (i.e., epitopes). Once interacting vicinal residue pairs (𝑖, 𝑗) are identified by cross-

comparison with the residue-residue contact map (vide supra and Methods Section), 

identification of poorly coupled regions representing potential epitopes proceeds as follows. 

Residue pairs are firstly ranked in order of increasing interaction intensity (from weakest to 

strongest). Two distinct sets of energetically decoupled regions are then mapped by 

applying two distinct cutoffs (‘softness thresholds’) to the residue pair list: either from the 

first 15% or from the first 5% of the ranked pairs (i.e., the 5% or 15% of the residue pairs 

with the weakest energetic coupling). 

The less restrictive 15% cutoff subdivides the full-length, fully folded S protein into 

potentially immunoreactive domains (see Figure 1B.,C. and Methods).23, 25, 27 The goal is to 

uncover regions that may normally be hidden from recognition by Abs in the native protein 

structure, but that can be experimentally expressed as isolated domains. Highly reactive 

neutralizing epitopes may in fact be present only in specific but transient conformations that 

are not immediately evident in the static X-ray and EM models of the protein or are not 

accessible even to large scale MD simulations. Presenting these (cryptic) regions for Ab 

binding through their isolated parent domains may prove more advantageous in developing 

new immunogens.23, 27 
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The more stringent epitope definition (5% cutoff) narrows the focus on those (smaller) 

intra-domain regions that could be directly involved in forming the interface with Abs, and 

that can then be used to guide the engineering of optimized antigens in the form of synthetic 

epitope peptidomimetics. In this context, to be defined as epitopes, the energetically 

uncoupled regions must be at least 6-residue long. 

Upon using the larger cutoff value, a large cluster of energetically unoptimized residue 

pairs localize at the Receptor Binding Domain, correctly identifying it as the most antigenic 

unit in the S protein’s ‘RBD up’ protomer (Figure 1B., C. magenta colored domain). 

Interestingly, when the lowest energy-coupled residue pairs are mapped onto the ‘up’ RBD 

of all three 3D structures isolated from MD, there is a large overlap with regions recognized 

by Abs and nanobodies (revealed by recent X-ray and cryo-EM structures). Importantly, for 

example, our calculation correctly identifies the binding region of mAb CR302236 (PDB ID 

6W41), known to target a cryptic epitope that is exposed only upon significant structural 

rearrangement of the protein12 (Figure 2 and Figure 4). 

 

 
Figure 2. Antigenic domains and location of binding antibodies (in two different orientations 
of the same conformation of the protein). The clusters of residues defining antigenic domains 

(dark green in the N-domain, magenta in the RBD, red in the C-terminal region) and the positions of 

the various antibodies whose structures and interactions in complexes with the full-length protein 

have been described. The inset indicates the identification of the cryptic immunoreactive region 

binding CR3022. 
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A second domain that is found to host a large network of non-optimized interactions 

corresponds to the N-terminal domain (Figure 1B., C., D.). The latter has been shown to 

bind the antibody 4A8 (PDB ID 7C2L). 

A third region predicted to be highly antigenic coincides with the central/C-terminal part of 

the S1A domain. In a recent cryo-EM study of polyclonal antibodies binding to the S protein, 

this substructure was shown to be in the vicinity of the density for COV57 Fab(s), a novel 

Ab whose neutralizing activity showed no correlation with that of RBD-targeting Abs38 

(Figure 1B., D.). We note here that MERS Ab 7D10 also binds in this region.39 

Furthermore, MLCE identifies a potentially highly reactive region in the S2 domain of the 

protein, in the CD region. This domain contains the epitope recently found to engage with 

1A9,40 an antibody recently shown to cross-react with S proteins of human, civet, and bat 

coronaviruses. This analysis also recognizes a potential antigenic region in a carbohydrate 

cluster located in the S2 domain of the protein: intriguingly, has been found that an 

oligosaccharide-containing epitope centered around this predicted region is targeted by the 

glycan-dependent antibody HIV-1 bnAb 2G1241 (Figure 1, 2). 

Identification of energetically uncoupled domains also has mechanistic implications. 

Regions that are not involved in major intramolecular stabilization can be displaced from the 

biomolecule at minimal energetic costs, sustaining large-scale conformational changes that 

typically underpin its biological function. The boundary of the (uncoupled) N-terminal region 

(Figure 1, dark green domain) lies in physical proximity to the furin-targeted motif RRAR, 

which is essential for pre-activation of SARS-CoV-2 Spike through proteolysis. Thus, the 

large uncoupled region of the N-domain can synergize with (and favor, through domain 

displacement) cleavage of this motif, ultimately favoring detachment of S1-domain and 

release of the S2 fusion machinery.9-11, 42 Furthermore, the beta-sheet at the initial boundary 

of the C-terminal domain in S2 (Red domain in Figure 1) is in close physical proximity to the 

fusion peptide (Figure 1D., E.). Here, it would be reasonable to expect that exposure or 

conformational rearrangement of the C-terminal domain are favored by its non-optimized 

interactions with the core of the S protein stalk and would in turn optimally expose the fusion 

peptide favoring its integration with the host membrane.42  

Overall, these findings support the validity of our approach in identifying protein domains 

that can be aptly used as highly reactive immunogens, as they are most likely to be targeted 

by a humoral immune response. Our analysis predicts that regions other than the S protein 

RBD may represent alternative targets for neutralization or functional perturbation of SARS-

CoV-2. On the one hand, this may be important considering the fact that RBD can also be 
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the target on non-neutralizing antibodies, e.g. 302236. Indeed, using cocktails of antibodies 

to target different regions of S has been proposed as a viable therapeutic option.37  

Turning to our more stringent definition of epitope, based exclusively on the top 5% of the 

most weakly coupled residue pairs (5% cutoff), we next focus on those regions of the S 

antigen that can be involved in forming contacts with antibodies.  

Importantly, one predicted conformational epitope with sequence (348)A-(352)A-(375)S-

(434)IAWNS(438)-(442)DSKVGG(447)-(449)YNYL(452)-(459)S-(465)E-(491)PLQS(494)-

(496)Q-(507)PYR(509) encompasses regions of the S protein in contact with antibodies 

C105 (6xcn.pdb)38, S309(6wpt.pdb; 6wps.pdb),43 AB23 (7byr.pdb)44; with nanobody H11-
D4 (6z43.pdb); and with a reported synthetic nanobody (7c8v.pbd) (Figure 3). 

 

Figure 3. Peptidic epitopes predicted on the surface of the RBD using the restrictive definition of 

antigenic region and comparison with known Ab-complexes. The X-ray structures of the complexes 

between the various antibodies reported in the figure (C105, S309, AB23, and nanobody H11-D4) 

and the full-length Spike protein are superimposed to the structure of the protomer used here for 

prediction. The green surfaces indicate the location of MLCE epitope predictions. The Fabs of the 

antibodies or of the nanobody are depicted as accessible surfaces in shades of blue.  

 

Interestingly, an additional predicted patch comprising a set of decorating carbohydrates 

is correctly predicted to be part of the interface with antibody S309 (6wpt.pdb; 6wps.pdb)43, 

with aminoacidic sequence (332)ITNLC(336)-(361)C and with the (N334-linked) fucosylated 
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N-glycan chitobiose core (Manβ1-4GlcNAcβ1-4[Fucα1-6]GlcNAcβ-Asn)45. This predicted 

region sits notably close to the RBD interaction surface with ACE2.  

Antibody EY6A (6zdh.pdb) binds the RBD in the region of the cryptic epitope described by 

Wilson and collaborators36 (Figure 4).  

 

 

Figure 4. Antibody EY6A – Spike complex. The figure shows how Antibody EY6A (7byr.pdb) binds 

the RBD in the region of a cryptic epitope. The MLCE-predicted epitope region is shown in light 

green (lime) in two different orientations, indicating substantial contact formation with the antibody.  

 

Importantly, our predicted patch (365)YSVLYN(370)-(384)PTKLN(388) covers a 

significant part of the epitope. Once again, it is worth remarking that identification of this 

potentially immunoreactive patch is simply and exclusively obtained from structural and 

energetic interaction data generated for a protomer of the glycosylated, isolated S protein, 

after unbiased MD simulation (see Methods section).  

With the more restrictive epitope prediction cutoff we clearly identify a reactive area in the 

N-terminal domain of the Spike protein. The predicted patch (184)GN(185)-(242)LAL(244)-

(246)R-(248)Y-(258)WTAGA(262) contains residues R246 and W258 which were described 

as central determinants for contact between the N-terminal domain and antibody 4A8 

(7c2l.pdb)37 (Figure 5).  

 

EY6A



 78 

 

Figure 5. Antibody 4A8 – Spike complex. The figure shows how Antibody 4A8 binds the N-domain 

of Spike, supporting correct prediction of the epitope. The MLCE-predicted epitope region is shown 

in green in three different orientations, indicating substantial contact formation with the antibody. The 

Fab of the antibody is depicted as accessible surface in shades of blue. Finally, the restrictive 

prediction identifies the sequence spanning residues 1076-1146, which includes amino acids 1111-

1130, experimentally identified as the epitope for the monoclonal mAb 1A940. Specifically our 

identified reactive sequence is the following: (1076)TTAPAICH(1083)-(1087)A-(1092)REG(1094)-

(1096)FVSNGHWFVTQRN(1108)-(1112)P-(1114)I-(1116)T-(1118)DN(1119)-(1126)C-(1129)V-

(1132)IVNNTVYDPLQELD(1146). 

 

In general, our approach is able to identify potential immunoreactive domains and epitopes 

of the Spike protein based only on structural and energetic information. Sequences 

predicted to be reactive using the restrictive epitope definition (5% cutoff) can be used for 

generating optimized antigens in the form of synthetic peptide epitopes. Engineering such 

epitopes would entail the synthesis of conformationally preorganized peptidomimetics of the 

‘natural’ reactive regions, with intra- and extracellular stability enhanced through, e.g, a 

combination of natural and non-natural aminoacids, which could reproduce the main 

structural and energetic conditions required to elicit a humoral immune response, as well as 

constituting candidates for vaccine development. Furthermore, reactive peptides thus 

identified may be suitable for use as baits in serologic diagnostic applications (e.g., in ELISA 

assays and in microarrays), to capture and detect to capture and detect not only circulating 

antibodies that are expressed in response to SARS-CoV-2 infections but also those that are 

endowed with neutralization activity and thus potentially predicting the infection outcome. 

As a further application, these peptide-based baits can represent a useful tool for isolating 

new mAbs and the screening of small molecules for drug development. 
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One the most significant aspect of this approach is that the S protein’s entire glycan shield 

is explicitly accounted for in the prediction of the immunoreactive regions. Indeed, the 

various oligosaccharide chains appear to behave differently (see differential coloring of 

oligosaccharide chains in Figure 1). In light of their stronger energetic coupling to other 

areas of the protein, some of the glycans are not recognized as epitopes, and thus form an 

integral part of the stabilizing intramolecular interaction network of S (white chains in Figure 
1B.); on the other hand, MLCE also identifies a second subset of poorly coupled 

oligosaccharides as potentially reactive epitopes (or part thereof) (colored oligosaccharide 

chains in Figure 1B; carbohydrate cluster in S2 targeted by the glycan-dependent antibody 

HIV-1 bnAb 2G12, see Figure 1B., 2), highlighting potential vulnerable spots in the glycan 

shield that could be exploited to design novel immunoreagents and vaccine candidates. 

The portion of the glycan shield falling within the former category thus mainly serves to 

protect the protein from recognition by antibodies and consequently enhances viral 

infectiousness, as well as providing extra structural support. Two such glycans are further 

exemplified in Figure 6.  

Figure 6. Glycans with different roles on Spike. A. The glycan chain attached to N234, which is 

predicted to be part of the networks of stabilizing interactions within the protein. B. The glycan chain 

attached to N165 is predicted to play a double role, a stabilizing one (yellow units) and an 

immunoreactive one (orange units). 

 

The first is the entire oligosaccharide fragment bound to N234 (Figure 6A.), which is 

recognized by Amaro and coworkers as being crucial in ‘propping up’ the RBD.12 

Experimental deletion of N-glycans at this position by way of a mutation to Ala significantly 

modifies the conformational landscape of the protein’s RBD.46 The second is the portion of 
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the N165-linked glycan whose subunits are rendered in yellow (Figure 6B.): consistent with 

experimental studies indicating N165-linked oligosaccharides as structural modulators, 46 

we also find that the portion in question is not identified as a potential epitope, being 

consequently involved in diverting antibodies from targeting the region around N165 and 

thus preserving control of the S protein’s structural dynamics. 

Reflecting the multifaceted roles of the glycan shield, the remaining part of the N165-linked 

glycan (Figure 6B; orange) appears instead to belong to the category of glycans that are 

potentially able to act as epitopes, since, unlike the part in yellow, we do detect it to be 

decoupled from the rest of the protomer. 

lt is particularly significant to underline that MLCE, whose physical basis is to identify non-

optimized interaction networks, detects peptidic epitopes even when they are in proximity of 

(optimized, non-immunogenic) shielding carbohydrates. In light of this, it is reasonable to 

suggest that the protective effect of these particular carbohydrates may be circumvented 

and neutralized by exposing the underlying peptidic substructures. Furthermore, information 

on oligosaccharides identified as epitope constituents can be exploited to design 

glycomimics or glycosylated peptides as synthetic epitopes.  

The latter aspect is indeed particularly relevant: small synthetic molecules that mimic 

antigenic determinants (and effectively act as their minimal surrogates) offer enticing 

opportunities to develop immunoreagents with superior characteristics in terms of ease of 

handling, reproducibility of batch-to-batch production, ease of purification, sustainable cost, 

and better stability under a variety of conditions. Furthermore, production of these molecules 

greatly reduces the risk of cross-reactivity with any copurified antigens, which is instead rife 

when dealing with recombinant proteins. In contrast to smaller peptides or sugar-decorated 

peptidomimetics, a full-length recombinant antigenic protein (or any protein-based detection 

device) would typically require more stringent conditions (e.g., in terms of temperature and 

humidity) for storage, transport, and management in order to preserve the protein in its 

properly folded active form. The same would be true for other vaccinal solutions such as 

deactivated pathogens. 

Overall, this work confirms how simple and transparent structural and physico-chemical 

understanding of the molecule that is the key player in SARS-CoV-2 viral infection can be 

harnessed to guide the prediction of (in some cases experimentally confirmed) regions, that 

are involved in immune recognition and to understand its molecular bases. Agreement with 

experiment confirms that knowledge generated in the process has the potential of being 

translated into new molecules for vaccine and diagnostic development. In this context, we 
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have also identified potentially reactive regions in the S protein stalk that are currently under 

experimental synthesis and testing.  

Furthermore, potential functional implications offered by the approach are illustrated by 

the fact that domains/regions relevant for the protein’s biological activation are naturally 

identified. This renders the approach well-suited to identify subtle functional variations in 

mutants of the S proteins. Finally, the possibility of accurately partitioning such a complex 

system in functional subunits could aptly be exploited in the parameterization of coarse-

grained models to simulate the system at longer timescales. 

This kind of structure-based computational approach can clearly expand the scope of 

simple structural analysis and molecular simulations. In applicative terms, generation of 

synthetic libraries based on predicted/identified epitopes (with possible addition of sugars) 

would boost selection and screening of antigens for vaccine development. 

1.12.4 Methods  

Structure Selection from Molecular Dynamics (RBD Clustering) 

Coordinates of the fully glycosylated SARS-CoV-2 S protein’s ‘RBD up’ protomer featured 

in this work originate from molecular dynamics (MD) simulations by Woods and coworkers,13 

based on PDB ID: 6VSB. Throughout this work, we retain exactly the same forcefield 

parameters used by Woods et al. in their MD simulations: all residues except glycosylated 

asparagines are treated using the ff14SB forcefield,47 whereas glycans and glycosylated 

asparagines are modeled using the GLYCAM_06j forcefield45.  

Clustering is based on root-mean-squared deviation of 𝐶R atoms of the RBD domain in the 

‘RBD up’ protomer and performed with the cpptraj utility in AmberTools (version 17)48 after 

concatenating all six independent MD replicas and aligning them with the ‘autoimage’ 

command. The chosen method is the Hierarchical Agglomerative Algorithm49, with an 

epsilon value of 0.5. From each of the three most populated clusters, we isolate one 

representative frame, from which we retain the ‘RBD up’ protomer and its glycans, whilst 

again using cpptraj to discard all solvent molecules, ions, and the two ‘RBD down’ 

protomers. All subsequent calculations on these three ‘RBD up’ protomer models (Follows 
the step of MINIMIZATION, MM/GBSA CALCULATIONS, ENERGY DECOMPOSITION 
and MLCE calculations) are listed chronologically in the subsections in the Methods 

section). 
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1.13  Immunoreactivity of the VOCs SARS-CoV-2 spike protein 

“SARS-CoV-2 Spike Protein Mutations and Escape from Antibodies: 

a Computational Model of Epitope Loss in Variants of Concern” 

1.13.1 Abstract 

The SARS-CoV-2 spike (S) protein is prominently displayed on the viral surface, serving 

as the initial point of interaction between the virus and the host. Consequently, it is the 

primary target for COVID-19 vaccines. Over recent years, various versions of this protein 

have emerged as variants. These variants, with their ability to diminish or evade recognition 

by antibodies targeting the S protein, present a notable challenge to immunological 

treatments, raising serious concerns about their potential impact on vaccine effectiveness. 

To develop a model able to predict the potential impact of S-protein mutations on antibody 

binding sites, we performed unbiased multi-microsecond molecular dynamics of several 

glycosylated S-protein variants and applied a straightforward structure-dynamics-energy 

based strategy to predict potential alterations in immunogenic regions for each variant. 

Remarkably, we successfully identified known epitopes on the reference D614G sequence. 

By comparing our results, derived from isolated S-proteins in solution, with existing data 

on antibody binding and reactivity in the latest S variants, we demonstrated a consistent 

pattern: modifications in the S-protein correlated with the loss of potentially immunoreactive 
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regions. This finding directly aligns with the experimentally observed decreased ability of 

certain antibodies elicited against the dominant S-sequence to recognize these variants. 

While our study centered on analyzing SARS-CoV-2 Spike variants, the computational 

epitope-prediction strategy we employed is transferable. It can be extended to study 

immunoreactivity in mutants of other proteins with characterized structures. This approach 

can significantly contribute to the development/selection of vaccines and antibodies adept 

at addressing emerging variants, ensuring a proactive response to evolving viral threats. 

1.13.2 Introduction  

In the general introduction has been mentioned that protein sequences evolve as a result 

of selective pressure to optimize function, create improved phenotypes, and introduce new 

advantageous traits. In pathogens like bacteria and viruses, sequences evolve via 

modifications such as point mutations, recombination and deletions/insertions to induce 

higher infectivity, more efficient replication, and ultimately escape from the host immune 

systems1-7 and SARS-CoV-2 is no exception to these general rules. The spread of the virus 

to more than 200 million people worldwide, combined with the pressure determined by the 

reactions of immunocompetent populations, led to the emergence of “variants of concern”. 

In this context, attention has been focused on the SARS-CoV-2 spike protein (S), the large, 

heavily glycosylated class I trimeric fusion protein which mediates host cell recognition, 

binding and entry. Because it represents the first point of contact with the host, and given 

its crucial role in viral pathogenesis, the S protein has been the basis for the design of 

currently used vaccines effective at reducing viral spread, hospitalization and mortality 

rates.11-16  

While for almost one year the only notable mutation in S has been the D614G 

(Asp614→Gly), which increases affinity for the cell receptor ACE2 and has immediately 

become dominant, novel S protein variants reported of late posed new potential challenges 

for efficacy of vaccination, antibody-based therapies and viral diffusion control. Three 

notable examples of such evolved S proteins are B.1.1.7 (the so-called UK or Alpha variant), 

501Y.V2/B.1.351 (the South African or Beta variant), and B.1.1.28 (P.1, the Brazilian or 

Gamma variant). All such sequences contain various mutations due to nonsynonymous 

nucleotide changes in the RBD domain, including E484K, N501Y, and/or K417N.10 In 

B.1.1.7 and B.1.351, deletions are also present in the N-terminal Domains (Figure 1). 
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Figure 1. Overview of simulated variants (definitions in main text). A. The full-length, fully 

glycosylated trimeric structure corresponding to pdb code 6VSB. Protomer A (RBD “up”): secondary 

structure in green; protomers B and C (RBD “down”): grey and sand, respectively. Glycans’ C, N, 

and O atoms rendered as teal sticks. B. Positions and nature of mutations highlighted on protomer 

A of different variants. Mutant residues’ heavy atoms are rendered as spheres; a different color is 

assigned to each variant, as indicated in the legend. Mutations common to more than one variant 

are rendered and/or labeled in black, with colored asterisks denoting variants carrying the mutation. 

The insertion in the PT188-EM variant (cyan) is denoted by “In(248-249)”. Protomers B and C are 

also shown with their respective mutations but rendered with increased transparency for clarity; 

glycans are omitted; C. Synopsis of mutations on the different variants simulated in this work, 

including the 11-residue insertion in the PT188-EM variant.  
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Several studies showed how some of these circulating variants have reduced sensitivity 

to neutralizing antibodies targeting the RBD or to the NTD.10, 17-19 In this context, polyclonal 

antibodies contained in Convalescent Plasma (CP) from individuals infected with the 

D614G-containing SARS-CoV-2, showed reduced potency in neutralizing 501Y.V2/B.1.351 

virus isolates.20, 21 Furthermore, antibodies elicited after vaccine treatment showed reduced 

neutralization of pseudoviruses bearing the mutations of the P.1 and 501Y.V2/B.1.351 

variants.22 The same was observed for pseudoviruses with variations in S mimicking those 

of the B.1.1.7 lineage.22, 23 Yet, fortunately, it was shown that vaccine-generated antibody 

titers were sufficient to neutralize B.1.1.7 in sera from 40 BNT162b2-vaccinated 

individuals.24  

A crucial question for understanding the impact of S-protein evolution on the development 

of monoclonal antibody (mAb)-based and vaccine-based therapies, is whether we can 

develop a simple model to rationalize, and eventually predict, the effect of variations on the 

structural properties of S that ultimately underpin antibody recognition. Fundamentally, 

comparison across S-proteins mutants can help us understand the molecular basis of the 

protein’s evolvability, furthering our grasp of the relationships between sequence, structure 

and (immuno)recognition. From the practical point of view, this knowledge could in principle 

be harnessed to design and engineer improved S-based antigens or multicomponent 

domain/peptide combinations, focusing for instance on those antibody binding regions, 

known as epitopes, that are predicted to be conserved in multiple variants. 

Here, we apply the straightforward structure-dynamics-energy strategy to predict 

potentially immunogenic regions in representative 3D conformations of several variants of 

the full-length glycosylated trimeric S protein (Figure 1). 

The selected S proteins represent some of the major variants of concern circulating at the 

time of setting up simulation. In this respect, the African variant we simulate, which is named 

501Y.V2.noΔ, corresponds to the S lineage originally discovered in South Africa in late 

November 2020 by Tegally et al.29. This S variant features the additional mutations L18F (in 

common with P.1) and R246I but does not feature the Δ241-243 deletion, whose existence 

was still debated when the authors released their study in January 2021.29 This variant has 

subsequently been referred to in several papers as B.1.351. The list of studied proteins is 

further enriched by a laboratory-evolved escape S-variant, obtained by Rappuoli and 

coworkers by co-incubating the SARS-CoV-2 virus with a highly neutralizing plasma from a 

COVID-19 convalescent patient. Interestingly, after several passages this strategy 
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generated a variant completely resistant to plasma neutralization. This “artificial” variant is 

labeled here as the PT188-EM variant.21, 22 

Conformations are extracted from independent atomistic molecular dynamics (MD) 

simulations totaling 4 µs for each mutant. Our approach to the detection of epitopes on S, 

i.e., its antibody-binding protein regions, is based on the same concept as before: such sites 

should continuously evolve to escape immune recognition by the host without impairing the 

native protein structure required for viral function and survival. We previously showed (and 

experimentally confirmed) that these regions coincide with substructures that are not 

involved in major stabilizing intramolecular interactions with core protein residues that are 

important for its folding into a functional 3D structure.30 In other words, Ab-interacting 

regions show minimal energetic coupling with the rest of the protein, which in turn should 

favor accumulation of escape mutations while preserving the antigen’s 3D structure. 

Furthermore, minimal intramolecular coupling provides epitopes with greater conformational 

freedom to adapt to and be recognized by a binding partner. Actual binding to an external 

partner such as an Ab is expected to occur if favorable intermolecular interactions determine 

a lower free energy for the bound state than for the unbound state.30-33  

These concepts are analyzable by the MLCE approach (see Methods and the paper 

before). Starting from the characterization of the energy of pairwise interactions between all 

aminoacids and monosaccharides and filtering the resulting interaction map with structural 

information extracted from the same protein’s inter-residue contact map, MLCE identifies 

groups of spatially contiguous residues with poor energetic coupling to the rest of the protein 

as potential immunogenic regions. At the same time, groups of residues with high energetic 

coupling are identified as stabilization centers. 

Upon comparing our results to recently reported characterization of Ab binding and 

reactivity, the analysis we report consistently shows that mutations, deletions, and/or 

insertions in S variants determine a reorganization of internal interactions leading to the loss 

of potentially immunoreactive regions on the surface. Encouragingly, these findings can be 

qualitatively reconnected to the decreased ability of some of the Abs elicited against the 

dominant S-sequence to recognize variants.  
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1.13.3 Results  

To characterize the effects of mutations, deletions, and insertions on the definition of 

potential Ab-binding substructures in S variants, we apply, as before, a combination of the 

Energy Decomposition (ED) and MLCE (Matrix of Low Coupling Energies) methods to 

representative structures extracted from long timescale MD simulations of the S protein 

variants reported in Figure 1.  

Briefly, we first run 4 independent 1 µs long all-atom MD simulations of each variant of the 

full-length fully glycosylated S protein in solution (Figure 1) (each built from PDB ID: 

6VSB11). Next, for each variant, we concatenate individual trajectories into one a single 4 

µs metatrajectory. Cluster analysis on each variant’s metatrajectory is then conducted to 

identify the 3 most representative conformations. These are then used to compute 

nonbonded pairwise potential energy terms (van der Waals, electrostatic interactions, 

solvent effects) obtaining, for a given variant with N aminoacid and monosaccharide 

residues, a symmetric N × N inter-residue interaction matrix. The three matrices extracted 

from a variant’s trajectory are then weighted and averaged to yield an average nonbonded 

interaction matrix, Mij. Upon eigenvalue decomposition of Mij, eigenvectors associated with 

the most negative eigenvalues can help build a simplified version of Mij that only highlights 

series of residues with high- and low-intensity couplings. The former represent residues 

acting as folding hotspots and responsible stabilizing the protein’s 3D structure; the latter 

represent residue pairs with weak energetic coupling to the rest of the protein, whose 

mutation is expected not to impact S’ structure and thus function. In this framework, once 

information contained in the simplified energy map is combined with information contained 

in the protein’s residue-residue contact map, it permits to ‘filter out’ clusters of residues 

whose energetic coupling to the rest of the structure is weak and that are spatially 

contiguous. Such localized networks of low-intensity couplings, located in proximity of the 

protein surface represent potential interaction Ab-interaction regions, or epitopes.  

The reference S structure we use here is the dominant D614G variant. We analyze the 

results of epitope predictions we obtain on isolated S variants by comparing them against 

selected Spike-antibody complexes. To this end, we collected publicly available X-ray or 

Cryo-EM structural data of complexes between S and various Abs, reported in Table 1 and 
Table S1. Epitopes in experimental structures are defined as the sets of S protein residues 

within 5Å of any Ab residue. The experimental epitopes thus derived are used as the 

reference against which to compare epitopes predicted in silico. 
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Antibody PDB ID D614G B.1.1.7 501Y.V2.noΔ P.1 N439K N501Y PT188-EM 

REGN10987 6XDG 10.1126/science.abd

0827 

https://doi.org/10.

1101/2021.02.18.431

897 

https://doi.org/10.11
01/2021.02.18.431897 
 

501Y.V2.Δ 

https://doi.org/10.11

01/2021.03.01.433466  

https://doi.org/10.10

16/j.cell.2021.01.037  

https://doi.org/10.

1002/1873-

3468.14076 

 

REGN10933 6XDG 10.1126/science.abd

0827 

https://doi.org/10.

1101/2021.02.18.431

897 

https://doi.org/10.11

01/2021.02.18.431897 
 

501Y.V2.Δ 

https://doi.org/10.11

01/2021.03.01.433466  

https://doi.org/10.10

16/j.cell.2021.01.037  

https://doi.org/10.

1002/1873-

3468.14076 

 

LY-CoV555 7L3N 10.1101/2020.09.30.

318972 

https://doi.org/10.

1038/s41586-021-

03398-2 

https://doi.org/10.10

38/s41586-021-03398-2 
 

501Y.V2.Δ 
 https://doi.org/10.10

16/j.cell.2021.01.037  

https://doi.org/10.

1002/1873-

3468.14076 

 

S309 7JX3/6WPT 10.1038/s41586-

020-2349-y 

https://doi.org/10.

1038/s41586-021-

03398-2 

https://doi.org/10.10

38/s41586-021-03398-2 
 

501Y.V2.Δ 

https://doi.org/10.11

01/2021.03.01.433466  

https://doi.org/10.10

16/j.cell.2021.01.037  

https://doi.org/10.

1002/1873-

3468.14076 

 

C135 7K8Z 10.1038/s41586-

020-2852-1 

https://doi.org/10.

1038/s41586-021-

03398-2 

https://doi.org/10.10

38/s41586-021-03398-2 
 

501Y.V2.Δ 
 https://doi.org/10.11

01/2020.07.21.214759  

  

C144 7K90  10.1038/s41586-

020-2852-1 

 
https://doi.org/10.11

01/2021.01.27.428478   
 

501Y.V2.Δ 

https://doi.org/10.75

54/eLife.61312  

https://doi.org/10.11

01/2020.07.21.214759  

  

C121 7K90  10.1038/s41586-
020-2852-1 

 
https://doi.org/10.11

01/2021.01.27.428478  
 

501Y.V2.Δ 

https://doi.org/10.11
01/2021.03.01.433466  

https://doi.org/10.11
01/2020.07.21.214759  

  

4A8 7C2L 10.1126/science.abc

6952 

https://doi.org/10.

1038/s41586-021-

03398-2 

https://doi.org/10.10

38/s41586-021-03398-2 
 

501Y.V2.Δ 

https://doi.org/10.10

16/j.immuni.2021.06.003  

  https://doi.or

g/10.1101/2020.1

0.07.328302  

DH1041 7LAA 10.1101/2020.12.31.

424729 

10.1101/2020.12.

31.424729 

https://doi.org/10.11

01/2021.03.11.435037 
https://doi.org/10.101

6/j.chom.2021.03.002 

   

DH1043 7LJR 10.1101/2020.12.31.
424729 

10.1101/2020.12.
31.424729 

https://doi.org/10.11
01/2021.03.11.435037 

https://doi.org/10.101

6/j.chom.2021.03.002 

   

DH1047 7LD1 10.1101/2020.12.31.

424729 

10.1101/2020.12.

31.424729 

https://doi.org/10.11

01/2021.03.11.435037 
https://doi.org/10.101

6/j.chom.2021.03.002 

   

DH1050.1 7LCN 10.1101/2020.12.31.

424729 

10.1101/2020.12.

31.424729 

https://doi.org/10.11

01/2021.03.11.435037 
https://doi.org/10.101

6/j.chom.2021.03.002 

   

S2M11 7K43 10.1126/science.abe

3354 

 

https://www.citiid.ca

m.ac.uk/wp-

content/uploads/2021/02/

POST-

SUBMISSION_vaccine-

DCv2-2.pdf 

https://www.citiid.ca

m.ac.uk/wp-

content/uploads/2021/02/

POST-

SUBMISSION_vaccine-

DCv2-2.pdf 

https://www.citiid.ca

m.ac.uk/wp-

content/uploads/2021/02/

POST-

SUBMISSION_vaccine-

DCv2-2.pdf  

  

COVA1-16 7JMX 10.1101/2020.08.02.

233536 

https://doi.org/10.

1038/s41586-021-

03398-2 

https://doi.org/10.10

38/s41586-021-03398-2 
 

501Y.V2.Δ 

https://doi.org/10.11

01/2021.05.26.21257441 

 https://doi.org/10.

1038/s41586-021-

03398-2 

 

B38 7BZ5 10.1126/science.abc

2241 

 10.1016/j.chom.2

021.03.002 

   https://doi.org/10.

1002/1873-

3468.14076 

 

C002 7K8T 10.1038/s41586-
020-2852-1 

      



 92 

CB6 7C01 10.1038/s41586-
020-2381-y 

https://doi.org/10.

1038/s41586-021-
03398-2 

https://doi.org/10.10

16/j.xcrm.2021.100255  
 

501Y.V2.Δ 

https://doi.org/10.11
01/2021.03.01.433466  

 https://doi.org/10.

1002/1873-
3468.14076 

 

 

Table 1. PDB IDs of the S-Ab complexes used to compare epitope predictions. For each Ab 

considered in this work (leftmost column), we report: PDB IDs of S-Ab Cryo-EM complexes used as 

experimental reference for our MLCE epitope predictions; and, where available, experimental 

studies reporting either that Ab’s gain (yellow) or loss/absence of activity (blue) towards a particular 

variant. White cells indicate that experimental data is unavailable. * denotes experimental studies 

carried out on the 501Y.V2.noΔ S variant but with the Δ241-243 deletion. 
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Figure 2. Mapping epitopes on each variant. Epitope mapping on S protomer A for the 2 NTD-

targeting antibodies (two top left panels; cf. numbering on y-axis) and the 15 RBD-targeting 

antibodies (bottom three rows) considered in this study. In each panel, using a distinct color for each 

antibody (right palette), the experimentally (Cryo-EM or X-ray) detected residues that belong to an 

epitope (labeled “Experimental” on each panel’s x-axis) are compared to epitopes predicted in silico 

on each of the seven variants considered. Predicted immunogenic residues are colored according 
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to the Ab they would be targeted by. Non-immunogenic residues are shown in gray; gaps/insertions 

in white. The figure shows how the extent of the epitopes for the different antibodies varies in the 

distinct mutants. 

 

In the remaining variants of concern, a diverse landscape of epitopes emerges. Several 

residues/regions that are predicted immunogenic in the reference S-protein disappear in the 

variants. Overall, this is observed for all the Abs considered.  In this framework, after running 

an epitope prediction on each variant we monitor epitope conservation across variants 

through a conservation ratio: the number of residues in each predicted epitope for a given 

variant is divided by the number of residues in the corresponding experimental epitope in 

the reference S structure, which is defined based on the 5 Å threshold from its respective 

Ab, as discussed above. We define epitope loss when the conservation ratio is lower than 

0.5; otherwise, the epitope is considered to be conserved. In Table 2 and Figure 3 we report 

such conservation ratios for each D614G S epitope on each simulated variant and confront 

them with available experimental data (at the time of writing) on the variant’s reactivity 

towards the Ab that would be expected to bind to that particular epitope. Each cell in the 

table is color-coded according to the experimentally measured activity of the corresponding 

Ab on one of the given variants. If the Ab remains active, the cell is yellow. If the Ab has lost 

activity against that variant, the cell is blue. If experimental data is unavailable for a particular 

Ab on a particular variant, the cell is white. 
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Table 2. Epitope predictions on each variant and epitope conservation ratio. Each cell reports 

an epitope conservation ratio for each S variant-Ab combination, relating in silico predictions to 

experimental epitopes from experimental Cryo-EM and/or crystal structures. Conservation ratios 

lower than 0.5 indicate epitope loss; otherwise, an epitope is considered to be conserved. Each cell 

in the table is color-coded according to the experimentally measured activity of the corresponding 

Ab on the respective variant. If the Ab remains active, the cell is yellow. If the Ab has lost activity 

against that variant, the cell is blue. If experimental data is unavailable for a particular Ab on a 

particular variant, the cell is white. Disagreement between predictions and experiment (i.e., blue and 

conservation ratio >0.5 or yellow and conservation ratio <0.5) is indicated by thick borders and 

dotted-line diagonal. 

 

Analysis of Table 2 clearly shows that the vast majority of blue cells, indicative of a loss 

of Ab reactivity, contain ratios lower than 0.5. This is an important validation of our prediction: 

whenever a variant’s predicted epitope residues- i.e., according to MLCE, contiguous 

residues uncoupled from the S protein core- shrink in number compared to D614G S, it is 

very likely that experimental data will also confirm that that variant evades Abs binding to 

the shrunk or lost epitopes. On the other hand, most cases for which Abs retain activity 

against a variant (yellow cells) are also confirmed by our prediction to retain their respective 

epitopes (conservation ratio > 0.5) with respect to D614G S. Disagreement between our 
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predictions and experiment only occurs in a minority of cases: corresponding cells are 

marked by thicker borders. 

Analysis of Alpha and 501Y.V2.noΔ (South Africa; late November 2020) immediately 

shows that a large portion of predicted epitopes in the RBD are conserved compared to the 

reference D614G. Interestingly, however, we also observe a dramatic drop in the number of 

NTD residues predicted as epitopes for the 501Y.V2.noΔ. Epitope loss in the NTD, which 

was deemed to host a super-antigenic hotspot  can help explain the ability for immune 

evasiveness observed for these two variants. In Alpha, the NTD epitope is largely conserved 

consistent with the conservation of activity of Abs targeting this region against the variant 

(Table 2, Figure 2 and 3).  

 

Figure 3. Mutations modify epitope identity. Central images in panels A and B depict the Cryo-

EM structure of the antigen-binding fragments of two representative Abs bound to protomer A: 4A8 

(panel A; Ab in green; experimental epitope in light blue); and S309 (panel B; Ab in yellow; 

experimental epitopes in light pink). Insets in each panel contrast the extent of the experimental 

epitope with epitopic residues predicted by the MLCE method (see main text) for five (panel A) or 

six (panel B) of the variants considered in this work: these residues are rendered using the same 

color code used for variants in Figure 1; residues in the experimental epitope not predicted by MLCE 

are rendered as in the central image (panel A: light blue; panel B: light pink). Other residues on the 
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S protein (not comprised in the experimental epitope) are rendered in gray. Glycans are omitted for 

clarity; positions of protomers B and C are shown for reference. 

 

Importantly, conservation of a dominant part of the epitopes in the RBD still endows the 

two variants with reactivity against Abs directed to this domain, which may help explain the 

observed effectiveness of some convalescent plasma treatments and vaccines.13, 45 

Calculations on the Brazilian variant correctly indicate loss of immunoreactivity of several 

Abs as well as conserved reactivity of Abs 4A8 and S2M11. This variant is the only one for 

which our predictions of epitopes binding Abs of the DH family generally disagree with 

experimental data.  

Finally, it is important to note that the “artificial” PT188-EM variant, evolved in the lab under 

the pressure of convalescent serum to evade Ab-effects, appears to have lost a very large 

number of protein epitopes (see Table 2, Figure 2 and 3). In particular, the insertion at 

residues 248 modifies the conformational properties of the region otherwise recognized by 

Ab 4A8. Therefore, the epitope to this antibody disappears from the predictions on the 

PT188-EM variant.21 Interestingly, in this case, the carbohydrate motifs coating the protein 

appear to host most of the uncoupled regions (117 carbohydrate moieties in the PT188-EM 

variant vs. 90 in the reference S-protein), pointing to a role of the glycan shield in protecting 

the protein from immune recognition, besides playing a key part in modulating interactions 

for ACE2 recognition and cell-entry.46-52 (see Figure 4). 
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Figure 4. Structural representations of epitopes on different variants. The various structures 

depicted show the 3D structure of protomer A in gray. Residues rendered in the color assigned to 

their respective variant in Figure 2 mark the locations of all predicted epitopes; areas in gray 

represent non-immunogenic regions. Glycan heavy atoms are rendered as sticks. 

 

Importantly, mutants N439K, is correctly predicted as an escape variant from all Abs for 

which experimental data proved lower efficacy. 

1.13.4 Discussion 

In this work, we analyzed full-length models of 7 trimeric glycosylated SARS-CoV-2 S 

protein variants, derived from the prefusion conformation of the cryo-EM structure 6VSB, in 

which the Receptor Binding Domain of chain A (RBD-A) is in an “up” conformation, exposed 

to interaction with host cell receptors and potential targeting by Abs. The data from our 

energetic analyses can be aptly integrated in the characterization of the properties of S and 

other SARS-CoV-2 proteins from long scale simulations, such as those recently presented 

by Zimmerman et al.53, Casalino et al.50, Spinello et al.54, 55, Oliveira et al. 56, Shoemark et 

al. 57, Wang et al. 58, and Fallon59.  
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Our MLCE analysis of the full-length trimers correctly identifies a number of epitopes in 

the RBD that have been previously experimentally characterized. RBD is in fact targeted by 

the largest fraction of neutralizing antibodies. MLCE also identifies regions in the N-terminal 

domain (NTD), which are known to be targeted by different Abs, some of which potently 

neutralize SARS-CoV-2 19 and highlights putative immunoreactive substructures at the end 

of the S2 domain, where sugar-engaging Abs have recently been characterized (see Table 
S2, Figure 4).  

As a caveat, it is worth pointing out the fact that antibodies can bind to conformations of 

the Spike protein that are different from the ones sampled here (as summarized in the 

General Introduction in the Chapter 3.4.2). Indeed, work by Casalino et al. 50, Zimmerman 

et al. 53, and by Fallon et al. 59 show that the protein can undergo dramatic structural 

changes. In our simulations, despite running 4 microseconds of all-atom MD simulation for 

each system, we could not observe such changes, if not in their initial stages. To be 

consistent in our comparative among the different species, we in fact decided to use the 

same protocol on every system and benchmarked the data obtained against available 

experiments. This may indeed partly limit the exploration of the conformational space 

available to this flexible protein, in turn somewhat limiting the prediction of immunogenic 

regions. We hypothesize that this is the reason behind the limited success we have with the 

Brazilian variant. The mutations, insertions, deletions in this sequence can expectedly favor 

the exploration of structures that are different from the ones we are considering here. We 

notice, however, that a significant number of experimental immunoreactivity data are 

correctly captured by our approach even on the Brazilian variant, supporting the validity of 

MLCE in this context. 

Energy-based epitope prediction through the MLCE approach reveals a common theme 

across variants: the number and surface exposure of potentially immunoreactive regions 

decrease in S protein mutants compared to the reference D641G. In particular, the number 

of residues defining the epitope located in the long RBD loop (residues 417-503, recognized 

by many protective Abs) is much lower in mutants 501Y.V2.noΔ, B1.1.28, and N439K (see 

Figures 2, 3, Table S2). Interestingly, in the case of B.1.1.7, which shows limited evasion, 

the loop is largely active in terms of immunoreactivity. In contrast, in the evading variant 

PT188-EM the entire loop disappears from the list of potential Ab-targets. 

Potentially important contributions to the perturbation of epitopes’ physico-chemical 

properties may be related to charge variations. Two striking examples are the loss or 

reduction of epitopes determined by the N439K and E484K mutations. Both cases involve 



 100 

residues that are part of epitopes of a large number of antibodies and after these mutations 

the antibodies completely or partially loss their efficacies. In the case of the mutation N439K, 

it has been reported 60 that this variant maintains fitness while evading antibodies immunity. 

In fact, N439K RBD forms a new interaction with the human ACE2 receptor (hACE2) and 

has enhanced affinity for hACE2. The salt bridge at the RBD-hACE2 interface (RBD 

N439K:hACE2 E329) plausibly adds a strong interaction at the binding interface during viral 

cell entry. On the other hand, the N to K mutation determines stronger intra-Spike protein 

interactions which dramatically decrease the decoupling of this region from the core, making 

it substantially less prone to interaction with Abs.  

The E484K mutation is of particular concern due to its location within nAb epitopes, and it 

has been shown to reduce or eliminate binding to many potent RBD-directed nAbs 61.  

Experimental characterization of Abs targeting the NTD revealed a site recognized by 

most Abs, located between the N3 and N5 loops of the domain. This epitope was correctly 

predicted in our previous work43. Specifically, Lys147 and Arg246, known to be important in 

stabilizing interactions with the complementarity-determining regions of different Abs are 

correctly predicted as epitope elements.  

On the other hand, sequence mutations in SARS-CoV-2 variants lead to the N3 and N5 

NTD loops disappearing from the ensemble of Ab-binding substructures. This is observed 

computationally and is corroborated by recent experimental data by Veesler and 

coworkers62. Interestingly, these epitopes largely coincide with the regions where Alanine 

substitutions reduced affinity for antibodies 4A8, CM17, and CM25 (see 62) The impact of 

epitope loss in these regions is also confirmed by the observation that an engineered N3-

N5 double mutant and native beta variant 29 both evade neutralization by mAbs CM25 and 

4A8.  

Interestingly, our approach correctly captures the epitopes for Abs, such as C121 and 

C144, that are known to engage different RBDs 63. Antibody C121, for instance, can bind to 

an RBD in the down conformation and to an adjacent RBD in the up conformation 63. In the 

structural paper, the epitope is reported to entail only residues in protomer A with the RBD 

in the up conformation. Contacts with the nearby RBD in the down conformation are made 

by Ab residues that are outside the complementary determining region. In this respect, our 

approach can correctly predict potential immunoreactive sequences even for Abs that would 

end up binding across different domains. MLCE in fact only aims to predict substructures on 

the antigen that can potentially be complexed by one or more Fabs. Focusing only on the 
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antigen, MLCE would not be able to predict whether different epitopes are targeted by the 

same or distinct Abs at the same time. 

Finally, our strategy correctly predicts the loss of most epitopes in the lab-evolved escape 

variant described by Andreano et al. 21 (see Figure 4, Table S2).  

We propose a model for the study of Ab-reactivity of SARS-CoV-2 S protein variants that 

integrates sequence and structural information and incorporates dynamics and energetics 

into the analysis of the variation/loss of epitopes. Mutations in S variants determine the loss 

of epitopes and as a consequence can confer escape from antibodies. Upon sequence 

variation, the protein shifts to states characterized by different intramolecular interactions 

compared to the initial D614G structure; this transition decreases the number of 

energetically uncoupled substructures available for engaging interactors such as Abs. 

Unique to this model is the observation that mutations, insertions, and deletions exhibiting 

different immunoreactivity experimentally are consistently captured by the energy based 

decomposition of structures extracted from unbiased classical MD simulations of the 

glycosylated S protein isolated in solution, without any input of prior information on Ab-

binding propensities. Although qualitative in nature and focused on the study of S variants 

of concern, our approach is general and immediately portable to other targets to provide 

physico-chemical information on the determinants of Abs recognition.  

Since one of the fundamental goals of structural vaccinology is the identification and 

design of structures with optimized properties for immunoreactivity, development and 

validation of computational methods that help identify conserved vs. non-conserved epitope 

regions in different variants independently of whether structures of related protein-antibody 

complexes are available may hold great potential. In the case we have presented here, one 

may consider designing chimeras or multicomponent systems (peptide- or domain-based) 

presenting all (or most of) the conserved sequences that are predicted to be potentially Ab-

reactive.  

Furthermore, our results suggest that approaches like the one we presented here may be 

used prospectively as an aid in the analysis and characterization of emerging variants.  

Though targeted experiments and design of mutants with tailored reactivities based on 

MLCE analysis are required to further validate these ideas and precisely define their 

progression to real-world applicability, our findings provide a new basis to understand how 

mutations could directly result in escape from immunorecognition.  
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1.13.5 Materials and Methods 

Preparation of Spike Protein Variants 

Fully glycosylated S protein variants simulated in this work were variously derived from 

simulations described by Grant et al. 47 based on the Cryo-EM structure of the WT S protein 

at PDB entry 6VSB 11, wherein one RBD is in the “up” conformation and the other two are 

“down”. All mutations, including the “reference” D614G, are introduced using the “mutations 

wizard” in the PyMOL molecular modeling package (Schrodinger LLC): rotamers of non-

glycine side chains are chosen from the first suggested option for S protomer A, and then, 

where possible, we have sought to adopt the same rotamers for protomers B and C. 

Histidine tautomers and disulfide bridges are retained as in our reference simulations. In 

B.1.1.7 variant S protomers, mutant histidines 681 and 1118 are introduced with protonation 

at Nε2, and mutant aspartate 570 side chains are left unprotonated. Mutant lysine 484 

sidechains (B.1.1.28 variant; E484K variant) are left protonated. 

Consistent with our reference simulations, 43, 47 all three protomers are modeled without 

gaps, from Ala27 in the NTD to Asp1146 just downstream of heptapeptide repeat 1 (HR1); 

–NH3+ and –COO– caps are added, respectively, at N- and C- termini of each protomer.  

In the case of the B.1.1.7 variant, gaps left by deletions in all three protomers are replaced 

with artificially long C–N bonds; systems are then allowed to relax with a 400-step 

preminimization cycle in vacuo (200 steepest-descent + 200 conjugate gradient), using the 

AMBER platform’s sander utility (version 18) 64, in which harmonic positional restraints (k = 

5.0 kcal mol–1 Å–2) are applied to all atoms except those in the five residues on either side 

of the gap. Distortions and clashes introduced with the glycosylated Ser13–Pro26 fragment 

are resolved using a similar approach. 

The artificial PT188-EM was modeled following the methods described in 21.  

MD Simulation Details 

After preparation, glycosylated S protein structures are solvated in a cuboidal box of TIP3P 

water molecules using AMBER’s tleap tool; where necessary, Na+ or Cl– ions are added 

accordingly to neutralize the charge. N-glycosylated asparagines and oligosaccharides are 

treated using the GLYCAM-06j forcefield65, whereas ions are modeled with parameters by 

Joung and Cheatham66. To all other (protein) atoms, we apply the ff14SB forcefield 67. 

Starting structures and topologies for all simulated variants are electronically provided. 

On each glycosylated S protein variant, we conduct 4 independently replicated atomistic 

molecular dynamics simulations (MD), using the AMBER package (version 18): each replica 
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consists of two 300-step rounds of minimization, 2.069 ns preproduction, and 1 µs 

production. The sander MD engine64 is used into the earlier stages of preproduction; 

thereafter, we switch to the GPU-accelerated pmemd.cuda 64. 

Details on MD production 

The 1 µs production stage is carried out in the NpT ensemble (T = 300 K; p = 1 atm) using 

a 2 fs time step; a cutoff of 8.0 Å is applied for the calculation of Lennard-Jones and Coulomb 

interactions alike. Coulomb interactions beyond this limit are computed using the Particle 

Mesh Ewald method 68. All bonds containing hydrogen are restrained using the SHAKE 

algorithm 69. Constant pressure is enforced via Berendsen’s barostat 70 with a 1 ps relaxation 

time, whereas temperature is stabilized by Langevin’s thermostat71 with a 5 ps–1 collision 

frequency. 

Details on MD preproduction 

Prior to the production stage, every independent MD replica for every S variant goes 

through a series of preproduction steps, namely: minimization, solvent equilibration, system 

heating, and equilibration. The first two are conducted using the sander utility, after which 

the GPU-accelerated pmemd.cuda is invoked instead.   

Minimization takes place in two 300-step rounds, the first 10 of which use the steepest-

descent algorithm and the last 290 conjugate gradient. In the first round, we only minimize 

backbone Hα and H1 hydrogens on aminoacids and monosaccharides, respectively, 

restraining all other atoms harmonically (k = 5.0 kcal mol–1 Å–2). Thereafter, all atoms are 

released, including solvent and ions. 

Solvent equilibration occurs over 9 ps with a time step of 1 fs; the ensemble is NVT, with 

temperatures in this case enforced by the Berendsen thermostat 70.  Positions of non-solvent 

atoms are harmonically restrained (k = 10 kcal mol–1 Å–2). Solvent molecules are assigned 

initial random velocities to match a temperature of 25 K. Fast heating to 400 K (coupling: 

0.2 ps) is performed over the first 3 ps; the solvent is then retained at 400 K for another 3 

ps; and cooled back down to 25 K over the last 3 ps, more slowly (coupling: 2.0). The cutoff 

for determining Lennard-Jones and Coulomb interactions remains at 8.0 Å for this and all 

subsequent stages, as does the Particle Mesh Ewald method68 to determine Coulomb 

interactions beyond this cutoff. SHAKE constraints 69 are not applied at this stage, but are 

always present thereafter. 

For system heating, the time step is increased to 2 fs and, whilst continuing in the NVT 

ensemble, temperatures are now enforced by the Langevin thermostat71 (which remains in 
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place for all subsequent stages). With an initial collision frequency of 0.75 ps–1, the system 

is heated from 25 to 300 K over 20 ps: all atoms are free to move except aminoacids’ Cα 

atoms, which are positionally restrained with k = 5 kcal mol–1 Å–2. 

For equilibration, the ensemble is switched to NpT (p = 1 atm; Berendsen 

barostatcoupling: 1 ps), and the system is simulated for a further 2040 ps. The thermostat’s 

collision frequency is kept lower than in the production stage (1 ps–1). Restraints on Cα 

atoms are lifted gradually: k = 3.75 kcal mol–1 Å–2 for the first 20 ps; 1.75 kcal mol–1 Å–2 for 

the following 20 ps; none thereafter.  

Clustering of MD Simulations 

Following MD, each variant’s 4 replicas are concatenated into a single 4 µs 

‘metatrajectory’, desolvated, stripped of any ions, and aligned on backbone heavy atoms of 

all aminoacid residues, in all three protomers, that belong to neither the NTD nor the RBD 

according to domain definitions by Huang et al. 72 Clustering calculations are  then 

conducted using the hierarchical agglomerative algorithm73, considering every 20th 

metatrajectory frame (i.e., every 50 ps), based on the root-mean-square deviation of 

backbone heavy atoms of aminoacid residues composing the NTD and the RBD in all three 

protomers. Values of ε are chosen so that they provide the best compromise between 

maximizing cluster homogeneity, based on silhouette score, and ensuring at least 60-80% 

of the metatrajectory is covered by the three most populated clusters: this usually means 

ε=9-12. 

All the steps discussed in the previous paragraph are conducted using AMBER’s 

postprocessing utility cpptraj.  

MLCE method 

Potential epitopes on each S variant are predicted using the Matrix of Low Coupling 

Energies (MLCE) method (of which we also provide a more detailed account in our previous 

work) 43. The procedure is automatically carried out by our own in-house code 

(https://github.com/colombolab/MLCE) which we have now rewritten to rely on the 

computationally more efficient MMPBSA.py utility 74 instead of mm_pbsa.pl. 

The method is explained in detail in the Method section. 
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Immunoreactivity of the Spike Protein: Conclusion 

In conclusion, in this first section (Immunoreactivity of the Spike Protein), we utilized a 

novel energy-decomposition approach detailed in the Method section to comprehensively 

identify antigenic domains and antibody binding sites within the fully glycosylated SARS-

CoV-2 Spike protein. A key advantage of our method is its reliance solely on unbiased 

atomistic molecular dynamics simulations, eliminating the need for prior knowledge of 

binding properties or ad hoc combinations of simulation-derived parameters. Our approach 

involved a meticulous analysis of energy interactions among all intra-protomer amino acid 

and monosaccharide residue pairs, cross-referenced with structural data, particularly 

residue-residue proximity. This method enabled the identification of spatially contiguous 

residues displaying weak energetic coupling within the protein, pinpointing potential 

immunogenic regions. Validation of our findings was conducted through a comparison with 

experimentally confirmed structures of the S protein complexed with anti- or nanobodies. 

This validation procedure facilitated the identification of subdomains with poor energetic 

coupling, likely accommodating multiple epitopes and potentially contributing to significant 

functional conformational changes. 

Furthermore, our investigation unveiled distinct behaviors of the glycan shield associated 

with the Spike protein. Glycans with stronger energetic coupling were found to be structurally 

significant, providing protection to underlying peptidic epitopes. Conversely, glycans with 

weaker coupling could be susceptible to antibody recognition.  

These predictions of immunoreactive regions pave the way for the development of 

optimized antigens, including recombinant subdomains and synthetic 

(glyco)peptidomimetics, holding promise for therapeutic applications. Additionally, similar 

predictive approaches can bolster preparedness for future pandemic outbreaks. 

As the SARS-CoV-2 spike protein stands as a primary target for COVID-19 vaccines, the 

emergence of variants capable of evading antibody recognition raises critical concerns 

about the effectiveness of immunological treatments. So, this computational model can be 

used to predict the impact of S protein mutations on antibody binding sites. Thereby, it has 

successfully identified known epitopes from the reference structure and correlated mutations 

with loss of potential immunoreactive regions. Moreover, the versatility of our computational 

epitope prediction strategy extends its applicability to the study of immunoreactivity in 

mutants of other characterized proteins, promisingly contributing to the development and 
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proactive selection of vaccines and antibodies that can address emerging variants and 

ensure effective responses to evolving viral threats. 

In the pursuit of understanding virus immunoreactivity, a remarkable aspect that has come 

to light is the astonishing lack of rigor in the proliferation of variants. Over the initial three 

years of the pandemic, SARS-CoV-2 underwent rapid evolution. What stood out was the 

initial evolution of the virus, which appeared to advance through substantial sequence 

changes rather than the gradual accumulation of point mutations on existing variants.  

Having assessed the impact of these mutations on antibody recognition, we now delve 

into whether this non-linear mutational trajectory is reflected in variations in the 

conformational dynamics of the SARS-CoV-2 Spike protein. Our objective is to 

comprehensively grasp the intricate interplay between the evolving mutational landscape 

and the functional dynamics of the Spike protein, crucial for advancing our knowledge and 

strategies in combating the evolving virus. 
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1.14  Structural dynamic differences of the VOCs SARS-CoV-2 spike 
protein 

“The Conformational Behaviour of SARS-Cov-2 Spike Protein Variants: 
Evolutionary Jumps In Sequence Reverberate In Structural Dynamic Differences” 

1.14.1 Abstract 

To understand how this non-linear mutational process reverberates in variations of the 

conformational dynamics of the SARS-CoV-2 Spike protein, we run extensive microsecond-

scale MD simulations of seven distinct variants of the protein in their fully glycosylated state 

and set out to elucidate possible links between the mutational spectrum of the S-protein and 

the structural dynamics of the respective variant, at the global and local levels. The results 

reveal that mutation-dependent structural and dynamic modulations mostly consist of 

increased coordinated motions in variants that acquire stability and in an increased internal 

flexibility in variants that are less stable. Importantly, a limited number of functionally 

important substructures (the Receptor Binding Domain, RBD, in particular) share the same 

time of movements in all variants, indicating efficient preorganization for functional regions 

dedicated to host-interactions.  

Our results support a model in which the internal dynamics of the S-proteins from different 

strains varies in a way that reflects the observed random and non-stepwise jumps in 
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sequence evolution, while conserving the functionally oriented traits of conformational 

dynamics necessary to support productive interactions with host receptors. 

1.14.2 Introduction  

Viruses are known to evolve, and we said that SARS-CoV-2 is no exception. While it was 

initially expected that new mutants would descend from existing ones through a stepwise 

process in which new mutations are implanted on successful sequences, sequencing data 

showed that the newer and more efficient variants (e.g. Omicron and alike) harbor a notably 

large number of mutations.24, 26  

This represents a key peculiarity of SARS-CoV-2: as noted by Bloom and colleagues (The 

New York Times “We Study Virus Evolution. Here’s Where We Think the Coronavirus Is 

Going.” March 28, 2022. 

https://www.nytimes.com/interactive/2022/03/28/opinion/coronavirus-mutation-future.html), 

the virus seemed to defy common knowledge with its variants emerging through big 

evolutionary jumps, at least in the initial steps of diffusion. In this context, it is important to 

note that there is a great sequence difference between one of the earlier most infective 

variants, namely Delta, and the later ones, i.e. Omicron.  

The salient features of the evolution of viral variants of concern can effectively be traced 

to the evolution of the sequence of the Spike protein. In this context, the history of VOC 

development has already been elucidated. In early March 2020 the first point mutation 

appeared, a single amino acid change caused by an A-to-G nucleotide mutation at position 

23,403 in the Wuhan reference strain. This mutation gave rise to the emergence of the 

dominant D614G Spike variant, which rapidly spread from Europe to North America, 

Oceania, and Asia.32-35 After this first one, an increased level of surveillance and sequencing 

contributed to reveal novel variants.  

Among the ones that have been brought to attention in the last couple of years, the one 

labelled 20I/501Y.V1 or B.1.1.7, commonly named Alpha variant, was initially found in the 

UK and was associated with an increased risk of infection and death.36 In South Africa, 

variant B.1.351 (known as 20H/501Y.V2, Beta) emerged independently from B.1.1.7 but 

shared some mutations with it.37 Next, The P.1 variant (20J/501Y.V3, Gamma) was first 

identified in travelers from Brazil and featured 17 unique mutations including three in the 

receptor binding domain of the Spike protein, two shared with B.1.351, E484K and N501Y, 

the latter also shared with the strain of B.1.1.7, and a different mutation K417T which was 

K417N in the B1.351, Beta strain.38 The B.1.617.2 variant (AY, Delta) was first detected in 
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India in late 2020, where it was responsible for a huge surge in the number of cases, and in 

June 2021 it became the dominant variant globally.39 The SARS-CoV-2 Omicron (B.1.1.529, 

BA.1) variant was first identified on November 24th, 2021, in South Africa and immediately 

declared VOC replacing the Delta variant. The Omicron variant has a very large number of 

mutations, around 30-point mutations in the Spike protein alone, combined with deletions 

and insertions of amino acids.15  

The Spike protein perturbations associated to the different variants described are 

summarized Figure 1 (list of the ones studied in this paper). Further variants have emerged 

and continue to emerge due to the pressure exerted by the virus to adapt and to survive in 

an increasingly immunized population, such as the Epsilon (B.1.427 and B.1.429), Eta 

(B.1.525), Iota (B.1.526) Kappa (B.1.617.1) and Mu (B.1.621, B.1.621.1), etc 

(https://www.who.int/activities/tracking-SARS-CoV-2-variants). 

The differences between the above-mentioned variants have been studied diffusely. 

Veesler et al. linked the conformational properties to plasma neutralizing activities.40 

A paper by the Amaro and Freeman groups showed that Omicron specifically modified its 

positive surface charge to improve interactions with heparan sulfates and ACE2.41 This 

effect was related to enhanced binding rates to charged glycocalyx molecules. Other studies 

have shown that specific mutations in the RBD can also be correlated to increased affinity 

for ACE2.42-45 

The importance of long-range modulation of S-dynamics was demonstrated to be 

fundamental in response to the binding of endogenous molecules, such as fatty acids, that 

were proven to preorganize the RBD for attachment to the receptor.46-50 

Here, we ask whether the significant sequence differences observed for the various strains 

reverberate in changes in the traits of long-range structural dynamics of the Spike protein 

by comparing seven different mutant sequences. Specifically, we analyze how the dynamics 

is modulated by mutations (compared to the initial Wuhan variant, the Wild Type (WT) in our 

model) both at the level of global and local motions, specifically focusing on substructures 

that are important for Spike functions (i.e. recognition of the human receptor angiotensin-

converting enzyme 2 (ACE2) and conformational reorganization of the architecture to favor 

host-virus membrane fusion).  

To progress along this avenue, we address various aspects of this problem by analyzing 

and comparing atomistic simulations of S-protein mutants reported in Figure 1, in their fully 

glycosylated form. Starting from the atomistic resolution investigation of internal fluctuations 

and analysis of the coordination in the motion of different domains, we demonstrate that 
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different mutants show distinctive dynamic traits, which can be qualitatively correlated to 

their relative stability properties.  

Our results also indicate that the structural dynamics of S-proteins from different strains 

varies in a way that appears to reflect the jumps in sequence evolution observed at the initial 

stages of diffusion of the virus.  

The Structural organization of the SARS-CoV-2 Spike protein and localization of the 

mutations are represent in Figure 1.  

 

Figure 1. Sequence mutations and structural organization of the Spike protein variants 
studied. A. Colored-block representation of the sequence of the full-length SARS-CoV-2 Spike 

protein (from PDB ID 6VSB), and its subdivision in the various domains of the S1 and S2 regions: 

N-terminal domain (NTD, 14-306), receptor binding domain (RBD, 319-528), C-terminal domain 1 

(CTD1, 529-591), C-terminal domain 2 (CTD2, 592-686), loop 630 (loop630, 620-640) furin cleavage 

site (S1/S2), fusion peptide (FP, 788-834), fusion peptide proximal region (FPPR, 828-853), heptad 

repeat 1 (HR1, 910-984), central helix (CH, 985–1034), connecting domain (CD, 1035-1068). 

Representative icons (in orange and blue) for glycans in their positions. B. Positions of all mutations, 

deletions (Δ) and insertion (ins) from the amino-acid sequence of Wuhan in the relative domain of 
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the virus’ variants studied. The color code of the VOC is: D614G in orange, Alpha (B.1.1.7) in blue, 

Beta (B.1.351) in green, Delta (B.1.617.1.1) in pink, Gamma (P.1) in light blue, Omicron (BA.1) in 

black. C. The full-length, fully glycosylated trimeric structure corresponding to pdb code 6VSB. 

Protomer A (RBD “up”): secondary structures are colored by domain as reported above in point (a); 

protomers B and C (RBD “down”) are in transparency. Glycans’ C, N, and O atoms rendered as teal 

sticks. In the figure the loop630 is shown in light green and FPPR in blue.  

1.14.3 Results 

Mutations Modulate the Global Internal Dynamics of the Spike Protein Variants.  

First, we notice that mutations have been shown to impact on S-protein stability. 

Comparative experimental characterization of SARS-CoV-2 VOCs identifies two sets of 

variants: stable proteins (shown to elute as a single peak in SDS–polyacrylamide gel 

electrophoresis) which comprise the D614G, Beta and Delta variants;17, 18, 122 and unstable 

proteins (shown to elute as two or more peaks, some of which corresponding to aggregated 

species due to unfolding/misfolding), which entail the WT, Alpha, Gamma, and Omicron.122 

Interestingly, Omicron represents one of the most unstable species.19 

To explore whether dynamic signatures exist that can be related to the observed trends in 

stability, we set out to characterize residue-pair Distance Fluctuations (DFs) among all 

aminoacid-pairs in the various proteins.123-127 This calculation, which reports the mean-

square fluctuation of the inter-residue distance between any two residues in the protein, 

informs on the effect of sequence variations on the internal dynamics of the protein. In 

particular, an increase of global internal flexibility (overall decreased pair coordination) can 

be related to an enhanced tendency to support transitions to states alternative to the native 

one. In this framework, sequence alterations reverberate in a differential capacity of the 

protein to populate the native basin. 

Given the complexity of the system under exam and the expectedly wide structural 

variations involved, our aim is not to sample large conformational changes (or even 

unfolding pathways and mechanisms), but to provide a simple dynamic-based 

approximation of global stability. Furthermore, DF analysis can potentially highlight 

substructures and (ensembles of) residues that respond differently to sequence variations.  

We first comparatively analyzed the WT vs. the D614G variant.  

The overall DF matrices shows the block character typically observed for multidomain 

proteins, reflecting the alternation of regions of small and large inter-residue distance 

fluctuations. It is immediately evident that the D614G mutant displays patterns of residue-
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pair coordination that are significantly more diffuse than in the case of the WT protein (the 

Wuhan sequence). Indeed, in D614G higher coordination appears to extend to the whole 

3D structure of the protein (Figure 2, Figure 3). The pervasive enhancement of pair-

coordination can contribute to stabilize the protein in the 3D structure of the native state. 

Breaking-up the extensive networks of low fluctuating residue-pairs in D614G can 

expectedly require a higher energy contribution than in the case of the native sequence.  

Extension of the analysis to the Delta variant confirms the trend for more stable proteins to 

be characterized by more diffuse networks of highly-coordinated residue-pairs. The same 

trends hold for the final stabilized variant studied herein, namely the Beta variant, B.1.351 

(Figure 2).  
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Figure 2. Characterization of the internal dynamics and flexibility of the various Spike mutants 
in terms of residue-pair fluctuations. A. Matrix of residue-pair distance fluctuations (DFs) among 

all aminoacid-pairs in all the variants. The VOCs are represented on the timeline according to the 

appearance and colored in their color-code described in Figure 1. The x- and y-axes show the 

sequences colored per domain as in Figure 1. Residue pairs with fluctuations between 0 and 2 Å 

are white, between 2 and 8 Å blue, and larger than 8 Å black. B. represent a zoom in on the submatrix 

of monomer A (with the RBD up): this shows pair fluctuations within monomer A and with the other 

two monomers (RBD down), specifically for of the Delta variant. The colors (from white to black) 

represent the intensity of the fluctuation: the clearer the matrix pixel, the more intense the 

coordination between the aminoacid-pairs and ultimately more rigid the (region of the) protein; the 

darker the color, the higher the distance fluctuation indicative of lower coordination. The inset also 

reports a zoom in on the domain partitioning of single Spike protomers. 

 

Analysis of the finer details of the matrices can aptly highlight detailed sequence-dependent 

modulations of the S-proteins. In this context, of particular interest is the finding that in 

D614G, Beta and Delta, an increasing coordination with the rest of the protein is observed 

for the RBD in the “up” conformation, the one required for interaction with human cell.128 In 

this model, mutations induce an overall change in the S-dynamic states that significantly 

preorganized the protein for recognition of its receptors.  

Strikingly, the analysis of DF distributions in the Alpha, Gamma and Omicron, together with 

WT, shows a trend pointing to increased internal flexibility: larger pair-fluctuations are indeed 

generally observed. Importantly, the Omicron variant, which experimentally was shown to 

be one of the least stable and most infective mutants, turned out to be the protein with the 

larger internal flexibility. Here, the residues of monomer A, in particular, become completely 

uncoordinated with the rest of the protein.  

Interestingly, in all these cases, the RBD in the “up” conformation is seen to maintain 

similar coordination patterns with the rest of the protein as those observed above for the 

stabilized mutants.  

These data suggest a pattern whereby increased flexibility can be viewed as a double-

edged sword. While determining a degree of structural instability, flexibility in general 

supports the exploration of dynamic states that facilitate conformational conversions. The 

ability to sample different states eventually increases the probability for displaying the RBDs 

in the proper orientation for interaction with host-receptor, while at the same time supporting 

the large conformational rearrangements in the stem region that are required for subsequent 

membrane fusion.  
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To provide a more direct structural picture of how global internal dynamics is modulated 

upon mutation, we set out to calculate the variation in flexibility in the various mutants, using 

the Wuhan WT protein as a reference. In this context, we carried out a point-by-point 

subtraction of the DF matrix of each mutant from the matrix of the WT. The resulting 

difference matrix is further manipulated by calculating the sum of all values in each column: 

as each column corresponds to one residue, the calculation returns a compact description 

of the increase or decrease of flexibility for each residue in the mutant with respect to the 

WT. The data are then projected on the structure as reported in Figure 3: a pervasive 

increase of coordination is clearly observed for Delta, while in contrast a marked increase 

of flexibility is noticed for Omicron.  
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Figure 3. Structural projection of flexibility differences with respect to the WT Wuhan mutant. 
Point-by-point subtraction of the DF matrix of the WT from the matrix of each variant. The larger the 

fluctuation value for each residue is for the variant with respect to the WT, the more the domain is 

colored red. Conversely, the lower the value is in the variant, the more the protein is colored blue: 

thus blue-colored domains represent areas that are stiffer overall, i.e. where coordination is greater, 

and this is clearly seen in the more stable variants (D614G, Beta, Delta). Conversely, the appearance 



 121 

of red areas report on the lower co-ordination and therefore the greater the flexibility of the variants 

(see Alpha, Gamma and Omicron).  

 

Summarizing, the sequence-dependent modulation of Spike’s internal dynamics, 

characterized in terms of the degree of coordination in residue pairs, can be related to the 

tendency for the structure to sample alternative dynamic states, while maintaining the RBD 

preorganized to interact with its host receptors. On the one hand, stabilization of the native 

structure would be expected to maximize the display of RBD for interaction (a case 

exemplified by the Delta variant); on the other hand, increased flexibility of the native state, 

which would aptly lead to destabilization of the structure, could favor the exploration of states 

that organize the RBD for ACE2-recognition and subsequent structural transitions in the 

stem region (a case exemplified by the Omicron variant). Finally, our analysis points into the 

direction of a dynamic behavior of the different variants that appears to follow a (random) 

stepwise pattern of differentiation similar to that observed for the evolution and selection of 

mutations.   

Machine Learning Classification of Variant Dynamics-Stability Relationships.  

The results described above identify distinct internal dynamic profiles of the S-protein as 

a function of sequence and define a possible link between the degree of coordination and 

emerging (in)stability in VOCs. However, these results are still qualitative and rely on an 

attentive critical investigation of the features of the DF matrices. To put the analysis of 

dynamics, and the possibility to relate them to specific features, on a more quantitative 

ground, we set out to develop a Machine Learning (ML) approach capable to classify the 

variants as “STABLE” or “UNSTABLE” simply based on the input of information on internal 

dynamics. To this end, we resorted to image recognition methods: in this context, the above 

reported DF matrices are considered as images to classify. The advantage of using the 

whole DF matrix as an input image is that it compactly reports on the internal dynamics-

state of the protein as a whole. It is important to notice that in this framework, small 

modifications in the sequence that may reverberate in large scale coordination modifications 

can potentially be efficiently identified.123 

We use a Convolutional Neural Networks (CNN) approach. Specifically, we start from the 

VGG19 model, extensively tested in classification problems and easy to import into in-house 

Python scripts from the Tensorflow (TF) library.129 Moreover, VGG19 shows one of the best 

compromises between computational cost and accuracy, especially with GPU compiled 

TF.129 We introduced modifications to the VGG19 model to increase the dimensions of the 
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layers consistent with the pixel number of the input images. The layout of the model is 

reported in Figure 4A. 

 

 

Figure 4. Machine learning approach. (A) The architecture of modified VGG19 model. The pixel 

image of DF-matrix is transformed in mathematical values which are submitted through convolutional 

and max pooling layers to reduce the computational cost and overfitting during the model training. 

Flatten fully-connected layer is used to converge all the data towards the dense output layer where 

the sigmoid function acts in order to provide the binary output. (B) Performance evaluation during 

training and validation of the model. Accuracy achieves values close to 1.0 during both training and 

validation steps, while in both the two cases the loss function decreases towards 0. The combination 

of these two information assures that the model is well trained and suitable for next evaluation on 

test dataset. 

 

In our approach, the images depicting the DFs were prepared with a typical resolution of 

300x300 pixels and used as input for the multiple layers of the model where they are 

processed by alternating convolutions and max-pooling operations, until achieving the last 

flattened and fully-connected layers which provide the final output.  

To train the model, DF images from the last equilibrated 200ns of each of the four replicas 

were used as data sets. Variants were firstly divided in two sets according with the known 

stability: D614G, Beta, Delta were initially considered as STABLE; WT, Alpha, Gamma and 

Omicron were labeled UNSTABLE. The final goal of the model is in fact to classify a certain 

protein as STABLE or UNSTABLE, based only on the image of one (or more) respective DF 

matrices.  

 To prepare the datasets we extracted a DF image each 10ns and considering the number 

of replicas for each variant, we end up with a total of 672 images. Staring from this dataset 
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we operated a manual random separation between test (20%), train (64%) and validation 

(16%) sets (see Materials and Methods for more details). 

Our dataset was thus composed as follows:  

• Training set: 430 DF matrix images (215 STABLE and 215 UNSTABLE) 

• Validation set: 108 DF matrix images (54 STABLE and 54 UNSTABLE) 

• Test set: 134 DF matrix images (67 STABLE and 67 UNSTABLE) 

The performance evaluation of our method on training and validation sets are shown in 

the following Figure 4B. In both the cases we can highlight a mutual fit and convergence 

between validation and training accuracies as well as losses. By evaluating our trained 

model with the test set, we got 100% of accuracy, taking only 3s to scan all the 134 DF test 

images. This result is corroborated by the confusion matrix which showed that amongst 134 

total images, 67 test entries were correctly classified as STABLE while the other 67 as 

UNSTABLE. We also calculated the Cohen's kappa coefficient obtaining a 𝜅 value equal to 

1.  

Next, we moved on to feed the model and predictor with new (and completely unseen and 

unrelated) sets of data. The new set included DF matrices that were calculated on parts of 

the trajectories that were not used for either the training or testing reported above. In 

particular, we selected matrices calculated even on the less equilibrated parts of the 

trajectories, specifically the ones at the beginning of the production. The new set was thus 

composed by 20 DF matrix images of which 10 came from STABLE variants, while another 

10 from UNSTABLE variants. Interestingly, the model was able to predict all the cases with 

100% of accuracy in both STABLE and UNSTABLE entries.  

The model thus proves able to provide a direct labeling of DF matrices establishing a link 

between internal dynamics and the property used for classification (stability in this case): 

from the physical point of view, the model associates a more diffuse and pervasive pattern 

of internal coordination to the increased stability of the relative protein, speeding up MD 

analysis and removing human bias in the classification of distinct variants of human proteins.  

The Dynamics of RBD and Functional Substructures in Different Mutants. 

The above reported analyses indicate that the common trait in the dynamics of all the 

different variants entails the preorganized presentation of the RBD. Indeed, such motions 

underlie binding to the human ACE2 and are thus key for viral entry. Here, we focus on the 

characterization of the dynamics of the RBDs in the different variants. 
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To this end, we monitored the distributions of two variables that recapitulate the main 

motions of the RBDs with respect to the rest of the protein: the first is the distance between 

the centers of mass (COMs) of the spike core and of the RBD (see Materials and Methods); 

the second is the 3D angle between these two parts of the spike protein (see Figure 5 and 

its different subpanels). 

 

Figure 5. The Dynamics of RBD. In green hues the UNSTABLE variants and in grey hues the 

STABLE variants. A. Distance between the centers of mass (COMs) of the spike core and of the 

RBD of the UNSTABLE variants (WT, Alpha, Gamma and Omicron) represented in histograms. In 

magenta the fluctuation of monomer A with the RBD in the UP position, in green the monomer B 

(RBD down) and in blue the monomer C (RBD down). B. Distance between the centers of mass 

(COMs) of the spike core and of the RBD of the STABLE variants (D614G, Beta and Delta). The 

graphs report on the x-axis the distances (Å) and on the y-axis the frequencies. C. In this panel, we 

reported the comparisons among the distances in the most representative variants (WT, D614G, 

Delta and Omicron). D. Structural representation reporting a simplified cartoon representation of the 

variables mentioned.  

 

The COMs distance analysis (Figure 5A., B.) shows that there is a tendency for the variant 

that determine a jump in infectivity, specifically Delta (and to some extent Gamma and 

Omicron) VOC which then became dominant on the background of existing variants, to have 
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the RBD in the “up” conformation populating a more restricted part of the conformational 

landscape. 

This tendency can clearly be seen on moving from WT to D614 to the Delta variant (Figure 

5B.). Strikingly, Delta shows the RBD “up” populating a restricted portion of available 

configurations, sticking out of the protein in the direction of possible interaction partners. 

Albeit to a more limited extent, this is observed also for the Omicron variant. In general, and 

consistent with the results presented above, the dynamics of the very infectious Omicron 

variant seem to combine the increase in global conformational flexibility that favors 

functional conformational transitions with an almost optimal ability to present the RBD for 

targeting human cell receptors. Both aspects are clearly advantageous for the virus.  

Similar trends are observed also for the angle-distributions described above (Figure 5C., 
D.).  

We next moved on to analyze the dynamic behavior of the Fusion Peptide (FP) and of the 

region proximal to it, namely Fusion Peptide Proximal Region (FPPR). This site is important 

for the step following attachment to the cell receptor and to prompt the large conformational 

changes that eventually lead to the Spike-driven membrane fusion.14, 130 We used a 

simplified representation of internal dynamics and coordination patterns, in which the 

average value of the coordination of all residues within a certain domain with all other 

substructures is considered. The coordination matrix is thus represented as a simplified 

block matrix, in which single blocks report on the overall coordination between structurally-

defined subdomains. Interestingly, both FP and FPPR turn out to increase their dynamic 

coordination with the rest of the protein upon moving from the WT to all different variants 

(Figure 6A, B.). Importantly, coordination of these regions is particularly diffuse in the Delta 

and Omicron variants, indicating that the substructure may be particularly efficient in sensing 

variations (such as binding to the receptor) at other regions of the protein.  

Similar considerations can be applied to loop630, a substructure important for the 

stabilization of the S-protein in the RBD “up” conformation. This substructure was identified 

in cryo-EM to fold to an ordered structure on passing from the WT to D614G.131 

In the variants associated with higher stability, we notice a diffuse coordination for loop 

630 in monomers B and C with respect to the variants with lower stability. It is interesting to 

observe here that the starting structure for this loop is disordered for all variants. 

Interestingly, Omicron shows a peculiar behavior, in agreement with experimental data19: 

while the protein is overall more flexible (see above), loop630 is seen to coordinate with the 
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NTD and CTD1 domains within the same protomer. This also reverberates in the larger 

amount of ordered secondary structure for loop630 observed for Omicron (Figure 6B). 

 
Figure 6. Coordinated motions in terms distance fluctuations of structural sub-blocks. A. the 

simplified block matrix of the coordination matrix in which single blocks report on the overall 

coordination between structurally-defined subdomains. We report here only the DF in blocks for 

monomer A (RBD up) of WT, D614G, Delta and Omicron. The matrix is divided considering all the 

domains of the Spike protein (reported in Figure 1). Specifically, NTD, RBD, FP, loop630 and FPPR 

are highlighted using the color-code of Figure 1. 

B. Loop630 on the Omicron Spike protein: loop630 is a segment which seems to be important for 

the stabilization of the S-protein in the RBD UP conformation. This substructure was identified in 

cryo-EM to fold to an ordered structure on passing from the WT to D614G. The figure reports the 

point-by-point subtraction of the DF matrix of Omicron variant from the matrix of the WT, as defined 

in Figure 3. Considering almost all of it blue, it can be noted that the loop is certainly much more 
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coordinated in this variant than in original strand, supporting the importance of this loop for the 

stability of the configuration with one RBD in the UP position (configuration that can be related to 

infectivity).  

1.14.4 Discussion 

In this paper, we carried out an extensive analysis of different mutants of the SARS-CoV-

2 Spike protein. Our aim here is not to thoroughly sample large-scale conformational 

changes through MD simulations (which given the number and complexity of the systems 

under exam is out of reach) but to shed light on the traits of microscopic dynamics, 

determined by sequence changes, that can be related to the modulation of motions and 

differences the native state dynamics of the mutants. Importantly, the aforementioned 

modulations can be revealed even in the absence of major conformational changes. In this 

context, we note that nanosecond/microsecond timescale residue fluctuations and 

modulation of protein flexibility have been linked in other cases to the regulation of protein 

stabilities and activities.132-136 

Based on our results, we developed a model relating S-proteins’ internal dynamic traits to 

the sequence modification paths followed by distinct VOCs during their evolution in the first 

couple of years of diffusion of the virus. 

Interestingly, we notice that at the global level (whole protein), the dynamics of the different 

variants appear to change following the path of somewhat random evolution that 

characterizes the underlying sequences. In other words, following the time-line of 

emergence of the various VOCs, one would expect a stepwise modulation of the structural 

dynamics of their respective S-proteins. However, as noted by Bloom and colleagues (The 

New York Times “We Study Virus Evolution. Here’s Where We Think the Coronavirus Is 

Going.” March 28, 2022. 

https://www.nytimes.com/interactive/2022/03/28/opinion/coronavirus-mutation-future.html), 

at least initially (2.5 years on the evolutionary scale of a virus can conceivably be considered 

an early stage) viral evolution selected advantageous sequences through big jumps. 

Consistent with sequences, the structural dynamics of the S-protein appear to follow this 

trend.  

In terms of advantage to spread and survive the challenges of an increasingly trained 

human immune system, which aims to get rid of the SARS-CoV-2 virus, these random 

changes could help the virus better escape acquired immunity, while maintaining (or 

increasing) its ability to interact with host cell receptors. Such mechanisms can also provide 
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the virus with an efficient way to scan for sequences with convenient functionally-oriented 

motions. Indeed, a linear, steady-state evolution would be less efficient at exploring the 

sequence landscape, potentially limiting the capacity to overcome extensive vaccination.  

Our dynamics-based results show that the internal coordination of the S-protein can be 

reconnected to its degree of stability or instability: analyzing pair-distance fluctuations we 

found specific patterns of extensive residue-pair coordination, particularly pervasive of the 

whole protein in the variants (D614G, Beta and Delta) that are experimentally shown to be 

more stable (this variants elute as single peaks in SDS-page gel electrophoresis).18, 19, 122, 

131  

In the case of Omicron, Beta and Gamma, as well as in the WT, a more globally 

uncoordinated and generally flexible dynamics is observed, which may be considered as a 

factor favoring structural instability. In terms of viral evolution and diffusion, both of these 

two aspects can be advantageous: increased coordination/stability guarantees persistence 

of the protein in the active structure in the environment; flexibility, one the other hand, would 

support a more efficient scan of conformations among which the ones able to recognize and 

bind ACE2 (and/or other human receptors) can be selected. Extensive flexibility and 

increased instability could also facilitate the large structural rearrangements of the S-protein 

required to drive the fusion of the membranes of the host and virus. 

In this framework, it is also important to underline that specific functional substructures 

share the same dynamic traits throughout all variants: these include the motions of the 

Receptor Binding Domain (RBD), the Fusion Peptide (FP) and the region preceding it 

(FPPR), as well as loop630, whose motions stabilize the display of the RBD in the active 

conformation.14, 130, 131 

On the basis of our internal dynamics analyses, we also developed a Machine Learning 

classification method that allows us to label variants based on a visual representation of 

their dynamics, automatically reconnecting sequences with biophysical properties.  

Overall, we propose a model whereby the jumps in sequence evolution that have 

characterized the first years of SARS-CoV-2 diffusion are reflected in the variations of the 

microscopic native dynamics of the encoded S-proteins. In this model, the events of Spike 

dynamics modification are not sequential and deterministic. A critical feature of our model is 

that, while we observe a direct coupling between the motions of the RBD, the FP and FPPR 

(hinting to a conserved conformational preorganization of these functionally fundamental 

substructures), the global dynamics of the rest of the protein appears to rearrange to provide 

increased stability or increased flexibility.  
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These two factors can be considered alternative mechanisms to favor S-protein/ACE2 

interactions, being at the same time convenient and advantageous.  

Our approach may represent a means to characterizing the dynamic properties of different 

forms of S-protein form distinct VOCs: dynamics are modulated by sequence modifications 

but retain the traits necessary for the selection of conformational states that favor receptor 

recognition and binding. The ML model can conveniently intervene in the classification of 

potentially emerging new variants as STABLE or UNSTABLE, linking this property to the 

ability of the protein to guide viral-host recognition and infection. Together with other 

approaches based on sequence analysis, evolutionary investigations, and the application of 

different studies of structure-function relationships, this could enrich our knowledge of the 

physico-chemical determinants of evolution of certain protein forms, relating them to their 

functions in the context of viral diffusion. While based on the case of SARS-CoV-2 Spike 

protein, our models and considerations are fully general, and readily transferable to other 

targets and contexts.  

1.14.5 Materials and Methods 

Preparation of Spike Protein Variants 

Fully glycosylated S protein variants simulated in this work were variously derived from 

simulations described by Grant et al.137 based on the Cryo-EM structure of the WT S protein 

at PDB entry 6VSB128, wherein one RBD is in the “up” conformation and the other two are 

“down”. All the variants’ mutations are introduced as discussed before using the “mutations 

wizard” in the PyMOL molecular modeling package (Schrodinger LLC).  

The same method for deletions was used to model deletions of Delta (del157-158) and 

Omicron (del69-70, del143-145, del212). 

In the case of Omicron there is also an insertion of three new amino acids (214EPE). This 

was modelled again using Pymol by inserting the three amino acids into the sequence and 

then relaxing the system with a 400-step preminimization cycle in vacuo (200 steepest-

descent + 200 conjugate gradient), using the AMBER platform’s sander utility (version 

18)110, in which harmonic positional restraints (k = 5.0 kcal mol–1 Å–2) are applied to all atoms 

except those in the five residues on either side of the insertion.  

MD Simulation Details 

After preparation, glycosylated S protein structures are solvated in a cuboidal box of TIP3P 

water molecules using AMBER’s tleap tool; where necessary, Na+ or Cl– ions are added 
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accordingly to neutralize the charge. N-glycosylated asparagines and oligosaccharides are 

treated using the GLYCAM-06j forcefield138, whereas ions are modeled with parameters by 

Joung and Cheatham.139 To all other (protein) atoms, we apply the ff14SB forcefield140. 

Starting structures and topologies for all simulated variants are electronically provided. 

On each glycosylated S protein variant, we conduct 4 independently replicated atomistic 

molecular dynamics simulations (MD), using the AMBER package (version 18): each replica 

consists of two 300-step rounds of minimization, 2.069 ns preproduction, and 1 µs 

production. The sander MD engine110 is used into the earlier stages of preproduction; 

thereafter, we switch to the GPU-accelerated pmemd.cuda.110 

Details on MD preproduction 

Prior to the production stage, every independent MD replica for every S variant goes 

through a series of preproduction steps, namely: minimization, solvent equilibration, system 

heating, and equilibration. The first two are conducted using the sander utility, after which 

the GPU-accelerated pmemd.cuda is invoked instead.  

Minimization takes place in two 300-step rounds, the first 10 of which use the steepest-

descent algorithm and the last 290 conjugate gradient. In the first round, we only minimize 

backbone Hα and H1 hydrogens on aminoacids and monosaccharides, respectively, 

restraining all other atoms harmonically (k = 5.0 kcal mol–1 Å–2). Thereafter, all atoms are 

released, including solvent and ions. 

Solvent equilibration occurs over 9 ps with a time step of 1 fs; the ensemble is NVT, with 

temperatures in this case enforced by the Berendsen thermostat141.  Positions of non-

solvent atoms are harmonically restrained (k = 10 kcal mol–1 Å–2). Solvent molecules are 

assigned initial random velocities to match a temperature of 25 K. Fast heating to 400 K 

(coupling: 0.2 ps) is performed over the first 3 ps; the solvent is then retained at 400 K for 

another 3 ps; and cooled back down to 25 K over the last 3 ps, more slowly (coupling: 2.0). 

The cutoff for determining Lennard-Jones and Coulomb interactions remains at 8.0 Å for 

this and all subsequent stages, as does the Particle Mesh Ewald method88 to determine 

Coulomb interactions beyond this cutoff. SHAKE constraints70 are not applied at this stage 

but are always present thereafter. 

For system heating, the time step is increased to 2 fs and, whilst continuing in the NVT 

ensemble, temperatures are now enforced by the Langevin thermostat71 (which remains in 

place for all subsequent stages). With an initial collision frequency of 0.75 ps–1, the system 
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is heated from 25 to 300 K over 20 ps: all atoms are free to move except aminoacids’ Cα 

atoms, which are positionally restrained with k = 5 kcal mol–1 Å–2. 

For equilibration, the ensemble is switched to NpT (p = 1 atm; Berendsen 

barostatcoupling: 1 ps), and the system is simulated for a further 2040 ps. The thermostat’s 

collision frequency is kept lower than in the production stage (1 ps–1). Restraints on Cα 

atoms are lifted gradually: k = 3.75 kcal mol–1 Å–2 for the first 20 ps; 1.75 kcal mol–1 Å–2 for 

the following 20 ps; none thereafter.  

Details on MD production 

The 1 µs production stage is carried out in the NpT ensemble (T = 300 K; p = 1 atm) using 

a 2 fs time step; a cutoff of 8.0 Å is applied for the calculation of Lennard-Jones and Coulomb 

interactions alike. Coulomb interactions beyond this limit are computed using the Particle 

Mesh Ewald method68. All bonds containing hydrogen are restrained using the SHAKE 

algorithm142. Constant pressure is enforced via Berendsen’s barostat96 with a 1 ps relaxation 

time, whereas temperature is stabilized by Langevin’s thermostat141 with a 5 ps–1 collision 

frequency. 

Residue-pair distance fluctuations (DFs) 

To understand the impact mutations on the internal dynamics of SARS-CoV-2 we 

conducted the distance fluctuation analysis.  

To compute the matrix of distance fluctuations, we used the 4 μs metatrajectory available 

for each studied system, obtained by concatenating the MD replicas of each specific protein: 

in this framework, each element of the matrix corresponds to the DF parameters:  

𝑫𝑭𝒊𝒋	 =	 〈(𝒅𝒊𝒋	 −	〈𝒅𝒊𝒋〉)𝟐〉 

Where dij is the time-depended distance of the C𝜶 atoms of amino acids i and j and the 

brackets indicate the time-average over the trajectory. The advance of this parameter is its 

invariant nature under translations and rotations of the molecules and, different from the 

covariance matrix, does not depend on the choice of a particular protein reference structure.  

DF was calculated for every pair of residues during the trajectory. This parameter 

characterizes residues that move in a coordinated fashion, and it is actually able to reflect 

the presence of specific coordination patterns and quasi-rigid domains motion in the protein 

of interest. In particular, pairs of amino acids belonging to the same quasi-rigid domain or 

highly coordinated at a distance are associated with small distance fluctuations and vice 

versa. 
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Distance fluctuations (DFs) in BLOCKS 

To further analyze the coordination patterns among distinct subdomains of the protein, we 

first subdivided the structure into domains, also called blocks in our definition, according to 

the annotation reported in Figure 6A. Here we evaluate the degree of interdomain 

coordination among different blocks and the contribution of each single block to the overall 

internal dynamics of the protein. DF for each domain (block) is calculated from the full DF 

matrices reported above. The latter is in fact simplified by combining the contributions of 

residues assigned to a certain domain (block) based on the sequence definition from Figure 
6A. The cumulative DF value associated with each block is then obtained by averaging all 

the terms for each residue grouped in the block.  

Difference between Distance fluctuations matrices 

To further compare fluctuation matrices, we calculated the different matrix, obtainable by 

subtracting the matrix for one particular protein from the DF matrix of Wuhan (WT) molecule, 

used as a reference for all such calculations. To account for sequence differences due to 

deletions and insertions, we simply considered the DF matrices of all the common structures 

among the proteins, to obtain matrices of the same dimensions. The values of the various 

difference matrices, reporting on how the internal dynamics of a variant changes with 

respect to the WT, are then summed by column: the obtained parameter reports on the 

increased or decreased global coordination of the residue corresponding to that column, 

with respect to the WT. The parameter is then projected with using the color code reported 

in Figure 3 on the 3D structure.  

RBD fluctuations 

To follow the fluctuations of the RBD during the simulation, we focused sampling along a 

two-dimensional progress coordinate: 1) the difference in the center of mass of the spike 

core to the RBD (distances parameter) and 2) the angle defined by these two regions of the 

Spike protein (angles). 

Distances 

We used the CPPTRAJ and the command distances 

(https://amberhub.chpc.utah.edu/distance/) to calculate the distances between the center of 

mass of atoms in “mask1” to atoms in “mask2”. The atoms in “mask1” are the atoms of the 

RBD and the “mask2” includes residues of the core of the Spike (849-881, 945-1045 of each 

protomer of the protein). 
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Angles  

To construct the angle between these two masks we used first the vector command of 

CPPTRAJ (https://amberhub.chpc.utah.edu/vector/) to keep track of a vector value (and its 

origin) of each mask over the trajectory and after we perform the vector product 

(https://amberhub.chpc.utah.edu/vectormath/) to get the angles between the two previously 

calculated vectors (using the option “dotangle” to calculate angle from dot-product between 

the two vectors; vectors will be normalized). 

CNN-ML  

Preparing DF-images: The trajectories from the MD-simulations were directly submitted to 

the DF-matrix calculation using the above reported procedure. Specifically, we extracted the 

DF each 10ns starting from the very first not equilibrated ones, till the last of the dynamics. 

We ended up with a total number of 2816 DF-matrices. We then used an in-house developed 

Gnuplot script to prepare the images with a dimension of 300X300 pixels using a white-blue-

black color palette. Colors tending towards white indicates DF of ~0 Å2, while black ones 

indicate DF of ~10 Å2. The halfway point (i.e., DF of ~5 Å2) is represented with blue nuances.  

Preparing the CNN-model: Image recognition through Convolutional Neural Networks 

(CNN) was elaborated using a modified version of the readily available VGG19 model, since 

it demonstrated to be one of the best compromises between computational cost and 

accuracy and can be directly imported in Python using Tensorflow (TF).129 

The architecture of VGG19 model was maintained unaltered, while we modified the 

dimensions of layers in order to accommodate the 300x300 pixels of the input DF-image. 

Furthermore, the imported images were again rescaled to the dimension of the VGG19 

layers and normalized according to the standard pixel values which can range from 0 to 255. 

This step aims to exclude possible scaling errors introduced during the Gnuplot image 

preparation from the numerical matrix.  

We set the classification mode to ‘binary’ (class_mode) and the number of samples 

propagated through the network was set to 32 (batch_size). To provide a measure for 

goodness of the method we used ImageNet (For ImageNet see: https://image-

net.org/about.php) weights as widely recognized to be a standard for images classification 

problems. 

The last layer of our VGG19 modified model provides the prediction output using a single 

layer on which the ‘sigmoid’ activation function 𝜎(𝑧) acts: 
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𝜎(𝑧) =
1

1 + 𝑒` 

We selected this function since it is the standard for binary classifications: given its 

existence only between 0 and 1, it constitutes the natural choice for binary problems. We 

compiled the model by using a ‘binary cross-entropy’ loss function and using the ‘Adam’ 

algorithm for the stochastic optimization.143 Lastly, in order to avoid model overfitting, we 

introduced an early stopping monitor which stops training the model if the validation loss 

starts increasing during five consecutive epochs. However, we never experienced strong 

increases in propagation of loss function to justify the intervention of the monitor. Moreover, 

the specific placement of the five max pooling layers reduces the computation time and 

memory usage, by limitating also the probability to get into overfitting issues.  

Training of the model and test with internal data: To train the model, we selected the DF-

images coming from the last equilibrated 200ns of each replica, for a total number of 672 

images, which were manually divided between test (20%), train (64%) and validation (16%) 

sets. Within these sets we operated a manual classification in order to define the two main 

classes of interest in our model: STABLE variants (Beta, D614G, Delta, and Delta+) and 

UNSTABLE variants (WT, Omicron, Alpha, Gamma). We trained our model for 20 epochs 

using the datasets and we obtained complete training and validation in 53 seconds, with an 

average of 153 ms/step. This result is extremely promising and is mainly due to the TF 

parallelization of using GPU.  

We next tested the just trained model with data arriving from the same equilibrated portion 

of dynamics, but not used during the train and validation steps. We got 100% of accuracy, 

taking only 3s to scan all the 134 DF test images. This result was also checked through 

classification report and confusion matrix analysis, in order to validate the goodness of the 

predictions.  

Test of model with external data: We submitted to the trained model a new dataset 

prepared by taking 20 unseen DF matrix images from molecular dynamics replicas of the 

variants involved in this study and never used for the previous training of the model. We 

selected 10 images coming from the STABLE variants and 10 from the UNSTABLE ones. 

The manual choice we operated was specifically directed in order to choose within the first 

non-equilibrated parts of each trajectory. The aim was to prove that – once the model is 

trained – our method can be extended to other new variants without the need to use long 

MD simulations. Those images were firstly submitted to the same scaling and normalization 

steps as performed for the other sets of data (see above). The only difference we introduced 
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was on the number of samples propagated through the network, which was set to 1 

(batch_size) since we need to predict each submitted image. Moreover, according with the 

just printed classification report, we were able to assign the UNSTABLE class if the 

prediction assumes values above 0.5, while if below the STABLE class was inferred.  

Again, the test on external data was extremely fast and only took 3s to complete all the 20 

classifications, with a final accuracy of 100% for each of them.  
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Drug design on the Spike protein 

Indeed, the fascination with the Spike protein extends well beyond its role in understanding 

and developing vaccines or monoclonal therapies. It has emerged as a pivotal focal point in 

drug design, signifying a key objective in the pursuit of drug development therapies. 

The S prominence as the initial point of contact between the virus and host cells makes it 

a prime target for therapeutic interventions. Efforts to design molecules that can interact with 

the spike protein aim to disrupt its function, prevent viral entry into host cells, inhibit its 

structural changes, or neutralize its ability to evade the immune system. The ultimate goal 

is to develop potent antiviral drugs that can be used in the treatment of COVID-19 and 

potentially future coronavirus outbreaks. 

A captivating illustration of this pan-coronavirus approach lies in the discovery of a free 

fatty acid binding pocket (FFBP) embedded within the SARS-CoV-2 Spike protein. Within 

each protomer, this pocket resides at the interface between two adjacent Receptor Binding 

Domains (RBDs), presenting an intriguing avenue for potential therapeutic intervention 

because this pocket could regulate the conformational changes of the Spike protein forcing 

the DOWN configuration of the RBD which is the inactive one. The revelation of this pocket 

emerged during the early stages of the pandemic through cryo-electron microscopy (cryo-

EM) analysis of the SARS-CoV-2 Spike protein's structure. Subsequent experimental 

validation confirmed the presence of a fatty acid akin in weight to linoleic acid (LA) within 

this cryptic pocket. 

It's worth noting that the cryptic nature of this pocket implies its visibility only within specific 

conformational ensembles. These ensembles, transient in nature, might not be readily 

evident from a static 3D protein structure. The FFBP thus emerges as a potential target for 

drug development, emphasizing the importance of exploring diverse avenues in the ongoing 

quest for effective therapeutics against evolving viral threats. 

Additionally, it's worth highlighting this binding pocket is conserved not only in SARS-CoV-

2 but also in its predecessors, SARS-CoV and MERS-CoV. This points to a potentially 

fundamental and conserved structural feature across various coronaviruses, underlining its 

significance and potential as a therapeutic target. But, from our computational simulations 

we have also suggested the persistence of this pocket across all the Variants of Concern. 

The pocket's consistent presence in these variants, which have garnered significant 

attention due to their impact on transmissibility and immune evasion, emphasizes its 

potential as a stable and druggable site. 
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This remarkable conservation across different coronaviruses and variants reinforces the 

promising prospect of targeting the FFBP for therapeutic purposes, providing a potential 

avenue for the development of broad-spectrum antiviral drugs effective against multiple 

coronaviruses. It underscores the significance of advancing research in this direction to 

explore and harness the therapeutic potential offered by this intriguing structural feature. 
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1.15  Binding pocket conserved in the VOCs SARS-CoV-2 spike protein 

“Drug Design for a conserved cryptic pocket in SARS-CoV-2 Spike protein 
variants” 

1.15.1 Abstract 

Our study assessed the druggability of the free fatty acid binding pocket as a potential 

target for antiviral drugs against SARS-CoV-2. Using molecular dynamics, we devised a 

minimization protocol enabling simulation of the opening of the free fatty acid binding pocket 

in the context of the D614G variant's molecular dynamics, creating space for ligand re-

docking. Screening across three compound libraries identified promising compounds. 

Fragments strategically placed within the pocket are undergoing evaluation for drug design. 

Notably, some compounds maintained stability even with certain mutations. Preliminary 

results demonstrated successful binding of fragments and enhanced activity when 

combined.  

Also, molecular dynamics revealed specific frames in variants (Alpha, Beta, Gamma) 

satisfying prerequisites for ligand binding, suggesting their potential as drug targets. Despite 

challenges, our findings support further exploration of this promising binding site. 

1.15.2 Introduction 

In the past few years, a great deal of effort has been put into developing therapies to 

counteract the virus. In the general introductory section (Chapter 3.4.1), we highlighted a 

range of therapies that have been developed and approved for treating SARS-CoV-2 
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infection. These therapies encompass various approaches, among these there is the use of 

small molecules including Antiviral Drugs such as Paxlovid (nirmatrelvir and ritonavir), 

Lagevrio (molnupiravir), and Veklury (containing remdesivir, an inhibitor of viral RNA 

polymerase). These drugs target specific components like the RNA-dependent RNA 

polymerase, pivotal for generating new viral RNA copies, and viral cysteine proteases, 

namely 3CLpro or Mpro, and papain-like cysteine protease (PLpro). These proteases play 

a crucial role in breaking down polyproteins translated from the viral genome into essential 

non-structural proteins needed for packaging the nascent virion and supporting viral 

replication. By inhibiting these proteases, viral replication is hindered. Notably, these 

proteases are less prone to mutation, rendering the development of antiviral treatments an 

appealing strategy against COVID-19.  

Another category of molecules consists of Immune Modulators, drugs designed to 

activate, enhance, or suppress immune functions. Particularly in COVID-19 cases, immune 

hyperactivity can exacerbate the disease, and these modulators serve to mitigate this 

hyperinflammatory response. FDA-approved Immune Modulators include Kineret (anakinra, 

an Interleukin-1 receptor antagonist), Olumiant (baricitinib), Actemra (tocilizumab), and 

Gohibic (vilobelimab). (https://www.fda.gov/drugs/emergency-preparedness-

drugs/coronavirus-covid-19-drugs).  

It's important to note that the focus of drug development isn't limited to these targets, and 

extensive efforts have been dedicated to creating compounds that interact with diverse 

targets.  

A fascinating example is the identification of a free fatty acid binding pocket (FFBP) found 

within the Spike protein.1 Each protomer features one of these pockets at the interface 

between two adjacent RBDs. The existence of this pocket was initially observed during the 

early stages of the pandemic through the cryo-EM structure of the SARS-CoV-2 Spike 

protein. Subsequent experiments involving liquid chromatography coupled with mass 

spectrometry (LC-MS) confirmed the presence of a fatty acid similar in weight to linoleic acid 

(LA) within this pocket.1 
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Figure 1. A. and B. side view C. top view of the experimental cryo-EM Spike protein bound to three 

linoleic acid molecules (represented with spheres). D. Free fatty acid binding pocket (FFBP): the 

residues from the RBDs involved in the interactions with the linoleic acid (LA) (shown in spheres) 

are highlighted and represented with balls and sticks representation, in light green the residue from 

the RBD in which the LA is located and in pink from the adjacent monomer.  

 

This pocket has been described as "cryptic" meaning that it's discernible only within 

specific conformational ensembles. Such ensembles, though transiently formed, might not 

be immediately apparent from the static 3D protein structure. Specifically, to accommodate 

linoleic acid (LA), four essential features must coexist. The pocket primarily comprises 

hydrophobic residues (like Phe, Val, and Leu) enabling LA accommodation but to stabilize 

LA's negatively charged carboxylic acid head, charged residues are crucial. Through the 

cryo-EM structure (PDB: 6ZB5), it's evident that adjacent protomer residues Arg408 and 

Gln409 interact with LA's charged component, serving as "anchor residues".1  

Notably, these anchor residues are initially positioned 10 Å away from the binding pocket 

in the apo structure. Consequently, for Arg408 and Gln409 to effectively secure LA within 

the pocket, the receptor-binding domain must draw nearer to the binding pocket.  
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Figure 2. A. Free fatty acid binding pocket (FFBP): the residues from the RBDs involved in the 

interactions with the linoleic acid (LA) (shown in spheres) are highlighted and represented with sticks 

representation (in blue the “anchor residues”). B. LA interactions with amino acids in the binding 

pocket. The acidic LA headgroup is in the vicinity of an arginine (Arg408) and a glutamine (Gln409). 

Hydrophobic LA binding pocket in a sticks representation in green. 

 

Additionally, comparing the LA-bound structure with previous SARS-CoV-2 apo S 

structures in the closed conformation unveils a gating helix situated at the pocket entrance. 

This helix, spanning Tyr365 to Tyr369, shifts by approximately 6 Å upon LA binding, causing 

the pocket to open. This structural shift leads to the compaction of the trimer architecture 

within the region formed by the three RBDs, resulting in a locked S structure. 

A pivotal observation is that, in the presence of linoleic acid, about 70% of the cryo-EM 

revealed Spike proteins are in the closed conformation. This contrasts with the prior state 

where approximately 60 to 75% of S trimers were open. This shift could be attributed to 

linoleic acid stabilizing the closed conformation, possibly leading to reduced binding to the 

ACE2 receptor. Interest in this pocket stems from the stabilizing influence of LA on the 

closed state.1  

Docking experiments explored whether natural compounds, such as vitamins and 

retinoids, could interact beneficially within the pocket.2 Docking scores indicate that some of 

these molecules might potentially bind to the fatty acid pocket, behaving similarly to LA in 

stabilizing the closed state. A research group conducted molecular dynamics simulations 

involving S protein complexed with LA, cholesterol (known to bind the spike protein), and 

dexamethasone (a corticosteroid anti-inflammatory). In the closed state simulations, all 

three molecules remained bound as expected. In the open conformation, differing outcomes 
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were observed at distinct binding sites. While cholesterol and dexamethasone displayed 

less stability than linoleic acid, the overall results suggest the potential druggability of the 

free fatty acid pocket and theoretically, molecules binding to this pocket could stabilize the 

closed state, preventing RBD-ACE2 receptor interactions.2 

Importantly, this pocket is conserved in other human coronaviruses (HCoVs) like SARS-

CoV and MERS-CoV. In MERS-CoV, while the conserved charged residues R408/Q409 are 

absent, N501 and K502 could potentially serve as alternative anchor points.3, 4 

Also, in a recent study, this pocket has been studied employed dynamical-nonequilibrium 

molecular dynamics (D-NEMD) simulations5-8. This investigation demonstrated the allosteric 

connection of the FA site with key functional elements involved in membrane fusion or 

antigenic epitopes.4, 9 These simulations elucidated that the absence of linoleic acid (LA) at 

the fatty acid (FA) sites triggers substantial structural changes at a distance, affecting the 

receptor-binding motif (RBM), N-terminal domain (NTD), furin cleavage site, and the regions 

surrounding the fusion peptide (FP). Furthermore, the D-NEMD simulations shed light on 

distinct allosteric and dynamic behaviors observed in the WT compared to the D614G. Later, 

they employ the same D-NEMD simulations to investigate and analyze the response of four 

spike variants (Alpha (B.1.1.7), Delta (B.1.617.2), Delta Plus (B1.617.2-AY1) and Omicron 

BA.1 (B.1.1.529) variants respect to the original spike to the removal of LA. This research 

reveals substantial variations in the allosteric response to fatty acid binding among SARS-

CoV-2 variants. These distinctions hold notable functional implications concerning the 

regulation of viral infectivity via LA. Additionally, these findings may impact endeavors aimed 

at targeting the FA site using natural compounds, repurposed drugs, or ligands specifically 

designed for this purpose. 

So, here we ask if this FFBP, even if it is transient, can be observed in long-time scale 

simulations of the fully glycosylated D614G Spike protein without the ligand and in all the 

other Variants of Concern (VOCs). Additionally, we aim to determine whether this observed 

pocket meets the specific requirements for binding with fatty acids.  

To accomplish this, first we identify suitable pockets within the Spike protein than resemble 

the essential features and then we formulate an efficient selection protocol. The primary 

goal here is to replicate the experimental positioning of linoleic acid as seen in the reference 

structure (PDB 6ZB5) and this involves understanding the precise binding pose and 

interactions between LA and the pocket. 

Then, we use the stereochemical information derived from the pocket to guide high 

throughput virtual screening (HTVS) (https://www.schrodinger.com/htvs-hit-finding-and-
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evaluation-course-page) of small molecule and fragment libraries. This step aims to identify 

potential compounds or fragments that can interact favorably with the identified pocket, 

possibly mimicking the stabilizing effects of linoleic acid on the Spike protein's closed 

conformation. 

Our primary objective in this study is to identify molecules that can establish favorable 

interactions resembling those formed by linoleic acid within the Spike protein. To achieve 

this, we developed a protocol that was applied to both the D614G variant and a variant with 

the additional K417 mutation, which is particularly noteworthy within the FFBP among 

variants of concern. Furthermore, we extended our investigation to different SARS-CoV-2 

variants, including the Wild type, Alpha (B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta 

(B.1617.2), Delta+ (B.1.617.2.1), Mu (B.1.621), and Omicron (B.1.1.529). We explored the 

existence of the free fatty acid binding pocket using a combination of molecular dynamics 

simulations and structural representatives from the most populated conformational clusters 

for each variant mentioned. 

Our protocol facilitated the docking of a substantial number of molecules into the linoleic 

acid pocket in the D614G variant. From these docking studies, we identified certain small 

molecules or fragments that ranked highly in terms of their potential to interact with the 

binding pocket. Moreover, we are currently conducting experimental testing to determine if 

these selected fragments are indeed capable of binding to the Spike protein inside the 

binding pocket. 

Additionally, we successfully located the Free Fatty Acid Binding Pocket in some of the 

SARS-CoV-2 variants. Given the expected conservation of this pocket across different 

variants, further investigation into this potential target holds promise for future research. 

In summary, this section aims to develop a computational approach to identify cryptic 

pocket from MD simulations and use this understanding to design molecules or fragments 

that can mimic linoleic acid's interactions within the Spike protein, offering potential avenues 

for drug development or therapeutic intervention against various SARS-CoV-2 variants. 
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1.15.3 Results 

Pocket investigation in the D614G variant 

In the pursuit to evaluate the feasibility of targeting the Spike protein and to investigate the 

potential value of the linoleic acid (LA) pocket defined in the previously described crystal 

structure (PDB 6ZB5),1 we initiated an analysis of extensive molecular dynamics (MD) 

simulations. This MD simulations were performed without the ligand in the pocket to prove 

the effective presence of the pocket, even if only transient. 

Initially, our approach involved identifying snapshots within the MD simulation of the 

D614G SARS-CoV-2 fully glycosylated Spike protein that closely resembled the reference 

structure (PDB 6ZB5). To achieve this, we employed a straightforward metric, the root-

mean-square distance (RMSD), which quantifies the average spatial disparity between 

atoms or residues when comparing two superimposed protein structures. First, the trajectory 

has been aligned trajectories following the procedure described in the clustering 

methodology in the Materials and Methods section and subsequently, our focus centered 

on the side chains of Arg408 and Gln409, for which we computed the RMSD values. 

From the MD simulation, approximately 120 frames exhibited an RMSD value less than 2 

Å. Among these, we pinpointed the frame displaying the lowest RMSD, measuring at 1.4553 

Å. This frame was identified as the closest match to the crystallized Spike protein structure 

containing LA. This meticulous selection process enables us to establish a basis for further 

investigations and analyses, laying the groundwork for assessing the potential druggability 

of the Spike protein and the viability of targeting the LA pocket for therapeutic interventions. 

Then, to create a complex between LA and the selected MD simulation frame, we employed 

a stepwise approach. First, we aligned the chosen MD simulation frame with the reference 

Spike protein-LA complex using PyMol10. Then, we added the LA molecule into the frame 

manually superimposing the structures. Notably, within our frame, the LA molecule was 

positioned in close proximity to the alpha-helix of the pocket, causing some steric clashes 

and several hydrophobic residues were oriented toward the LA molecule, which led to a 

reduction in the accessible volume inside the pocket (See Image 3). 

So, to optimize the binding of the ligand within the pocket and to mimic the displacement of 

the gating helix to accommodate the LA molecule, we devised a minimization protocol. The 

protocol is detailed in Material and Method section in the docking subsection. After the 

minimization, the steric clashes between the LA molecule and the side chains of the amino 

acids within the pocket were visibly reduced. The LA molecule was positioned to facilitate 
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both hydrogen bonding and electrostatic interactions with key residues, including Arg408, 

Gln409, and Lys417.  

Following this initial minimization, a second minimization step was performed. However, 

in this step, a constraint was applied to the ligand, keeping it fixed while allowing the alpha 

helix to move. Two additional minimization steps were performed under these conditions to 

obtain the final LA-S protein complex. 

 

Figure 3. Minimization protocol. A. Superimposition of the fatty acid binding pocket from the crystal 

structure (PDB 6ZB5) in pink and in violet our frame extracted from the simulation (from the D614G 

variant). In red the linoleic acid from the crystal structure. B. Superimposition after the minimization: 

in violet the original structure of the frame from the MD, in pink from the crystal structure and in light 

blue the MD-frame after the minimization (see the movement of the 𝛼-helix).  

 

To assess the accuracy of our computational approach in replicating the experimental 

cryo-EM structure, we conducted a docking experiment using Glide (from Schrodinger 

Suite14) with the minimized LA-S protein complex. From this, we obtained a considerable 

number of poses where the linoleic acid molecule interacted either electrostatically or 

through hydrogen bonds with the charged residues Arg408, Gln409, and Lys417 with a 

RMSD, compared to the experimental structure, comprised between 2.5 and 3 Å. 
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Figure 4. Docking results of the linoleic acid molecule. A. and B. Two views of the same docking 

pose of the linoleic acid inside the minimized binding pocket. Highlighted in purple and yellow the 

electrostatic and hydrogen bonding interactions, respectively, with the «anchor residues» Arg408 

and Gln409 from the adjacent monomer.  

These results provide an assessment of the computational model's ability to generate a 

ligand binding pose comparable to the experimental cryo-EM structure, shedding light on 

the potential binding interactions within the LA-Spike protein complex. 

Docking of small and drug-like molecules 

Once the starting structure of the protein with the “open” pocket is obtained, we moved on 

identifying candidates that could mimic the LA interactions inside the pocket and possibly its 

behavior. This docking process involved small molecules with drug-like properties screening 

two different libraries of approximately 1,000 compounds each (we used two libraries 

composed of small, drug-like molecules, for a total of 2000 compounds, for details see 

Materials and Methods). HTVS was used to generate one pose per ligand. Following this 

initial screening, we conducted further refinement of the results by filtering ligands based on 

their ability to establish hydrogen bonds with the charged residues Arg1678, Gln1679, and 

Lys417 within the binding pocket. 

For each library, we identified 22 ligands that achieved high docking scores and exhibited 

favorable ligand efficiency. Below, you will find descriptions of some poses from highly 

ranked ligands, as well as lists of the selected ligands for each library (Figures 5).  
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Figure 5. Docking results with small and drug-like molecules. A. structure of the best ligand 

from library 360 and pose in the fatty acid binding pocket. B. Structure of the best ligand from the 

library 400 and pose.  

 

These results represent a crucial step in identifying potential drug candidates or small 

molecules that could interact effectively with the Spike protein's binding pocket, offering 

promising avenues for further exploration and development. 

Docking of fragments  

In the final phase of our study, we focused on docking small fragments from a library 

containing approximately 4,300 compounds. Given the nature of these small fragments, it 

was unlikely that any single molecule could establish both polar/electrostatic interactions 

with the anchor residues and hydrophobic interactions with the rest of the pocket 

simultaneously. 

To manage this complexity, we employed a two-tiered filtering approach after performing 

HTVS. The selection of fragments was based on two types of interactions: 

1. Type P (Polar Interactions): Fragments of this type were chosen primarily for their ability 

to form polar interactions, such as hydrogen bonds, with specific residues within the pocket, 

including Arg408, Gln409, and Lys417. 

2. Type H (Hydrophobic Interactions): able to do interactions with residues like Phe342 or 

Tyr365, two residues are located at the opposite end of the binding pocket and belong to 

the C protomer (as shown in Figure 6). 

This dual approach allowed us to identify fragments that could contribute to the overall 

binding affinity through polar or hydrophobic interactions within the binding pocket, 

considering the spatial distribution of key residues.  From the two distinct sets of fragments, 
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we carefully selected a total of 30 fragments from the former category and 11 from the latter 

(Figure 6).  

These fragments represent valuable candidates for further investigation and potential 

development as ligands for the Spike protein's binding pocket. 

 

Figure 6. Docking results with fragments. A. Residues selected for the selection of the two types 

of fragments. B. 3 Structure of the best ligand from Type P and 4 Type H. (Polar Interactions: 

fragments able to form polar interactions, such as hydrogen bonds, with Arg408, Gln409, and 

Lys417.) Type H (Hydrophobic Interactions): able to do interactions with residues like Phe342 or 

Tyr365.  

 

We also explored the potential synergistic interactions between fragments of type P (polar 

interactions with anchor residues) and type H (hydrophobic interactions with the 

hydrophobic region of the pocket). The goal was to identify combinations of these fragments 

that could work together to mimic the behavior of linoleic acid more effectively within the 

binding pocket (Figure 7). During this evaluation, an interesting observation emerged. In 

some pairs of fragments, we noticed that the aromatic ring of one fragment overlapped with 

the aromatic ring of the other fragment (Figure 7, B.). This observation suggested that it 

might be possible to synthesize a single molecule by combining these two fragments. Such 

a synthesized molecule could potentially retain both types of interactions-polar and 

hydrophobic-within the binding pocket. 
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Figure 7. Combination of fragments. A. Example of two fragments combined: the fragments are 

5 (red) and 6 (green). The picture also shows some residues inside the pocket involved in important 

interactions: R408, Q409 and K417 at the top; F342 and Y365 at the bottom. B. Example of two 

fragments that have aromatic rings superimposed: fragments are 7 (purple) and 8 (orange).  

 

This finding opens intriguing possibilities for designing novel compounds that could more 

closely mimic the behavior of linoleic acid and enhance their binding affinity to the Spike 

protein's pocket. It highlights the potential for innovative drug design strategies to target the 

Spike protein effectively. 

SARS-CoV-2 Variants: effects on the LA binding pocket 

Docking K417 mutant structures. 

Dealing with mutations in the Spike protein presents a significant challenge in the design 

of drugs and vaccines against SARS-CoV-2.11 Fortunately, among the variants we 

examined, only one mutation occurs within the free fatty acid binding pocket. Specifically, 

the Gamma variant carries the K417T mutation, while both the Alpha and Omicron variants 

have a mutation resulting in the substitution of the residue to N. This mutation involves the 

substitution of Lysine (a positively charged amino acid) with either Threonine or Asparagine, 

both of which are polar but neutral residues. The aim here was to assess how the docking 

results would change with the substitution of a positively charged residue with two polar 

neutral residues. As expected, the top-ranked ligands in these mutated structures 

predominantly formed hydrogen bonds with the anchor residues rather than electrostatic 

interactions, although some maintained limited electrostatic interactions with Arg408 and 

Gln409. Interestingly, the ligands selected for the K417 mutant structures still exhibited 

acceptable values of docking score and ligand efficiency, suggesting that some ligands 

might be effective against multiple variants. 
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These findings suggest that in theory, if a candidate drug can successfully bind to the free 

fatty acid binding pocket in the D614G variant, it might also exhibit binding affinity to other 

variants. This potential cross-reactivity is a promising avenue to explore.  

Pocket search in different variants. 

As previously mentioned, one of the primary challenges in developing drugs or vaccines 

for SARS-CoV-2 is their limited efficacy against various virus variants. Ideally, an effective 

drug should target a site that remains consistent across multiple variants. To address this, 

we investigated the free fatty acid binding pocket in eight different variants: Wild type, Alpha 

(B.1.1.7), Beta (B.1.351), Gamma (P.1), Delta (B.1.617.2), Delta+ (B.1.617.2.1), Mu 

(B.1.621), and Omicron (B.1.1.529). 

Our approach began by considering the most populated cluster for each variant, as it 

should provide the most representative data from the simulations. Initially, we explored 

pockets using the SiteMap tool13 within the entire protein structure and identified multiple 

pockets for each variant. Importantly, at least one of these pockets encompassed the region 

where the ligand LA binds. 

To develop a model suitable for all the variants, we started considering the WT. However, 

when we restricted the pocket search to the vicinity of the LA molecule in the WT, SiteMap 

did not identify that region as a pocket (Figure 8.). Instead, it identified a hydrophobic region 

behind the ligand, likely due to the orientation of hydrophobic and bulky residues within the 

pocket (such as some bulky residues such as Phe377 which clash sterically with the LA 

molecule). In these clusters, these residues pointed toward the ligand, causing steric 

clashes and preventing SiteMap from recognizing the region as a suitable pocket. 

Conversely, the region identified by SiteMap was formed by smaller and hydrophobic 

residues, potentially offering better accommodation for a small molecule.  

Nevertheless, after applying our minimization protocol (see Materials and Methods), steric 

clashes were reduced, and SiteMap identified the pocket around the ligand (Figure 8). This 

occurred because, after the minimization, the hydrophobic residues that initially pointed 

toward LA tended to reorient themselves away from the ligand, allowing the linoleic acid 

molecule to fit inside the pocket with fewer steric clashes. To assess if the minimization 

produced a volume comparable to experimental data, we used POVME for quantitative 

results.  
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Figure 8. SiteMap results for the Wild Type variant A.  before the minimization and B. after the 

minimization (the grey mesh represents the volume of the pocket). The protein structure is the most 

populated cluster from the MD simulation for the WT variant.  

 

It's important to note that our SiteMap analysis involved only a single step of our 

minimization protocol. Given that this single step cannot fully replicate a 6 Å displacement 

of the helix, it was expected that both volumes and surface areas for the clusters would be 

smaller compared to the reference structure. Indeed, the data confirmed this hypothesis.  

Then we apply the same protocol to all the variants and we found out that some variants 

(Alpha, Beta, and Omicron) exhibited relatively high volumes (> 220 Å3) and surface areas 

(>270 Å2) (Figure 9, Table 1). This could be due to the FFBP in the most populated cluster 

already having a wider volume compared to other variants that yielded less favorable results, 

such as the Wild Type. Alternatively, during the minimization step, the residues in these 

three variants might have moved farther away from the ligand compared to other variants. 

Table 1 
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Figure 9. SiteMap results for the variants after the minimization. 

Table 1. Quantitative results of the pocket volume calculated using POVME software for the 

reference structure (PDB 6ZB5) compared with all the other variants). 

 

Given that the target is a transient pocket, it is reasonable to assume that in the most 

populated cluster of an MD simulation of the Spike protein without the LA molecule, the 

residues inside the pocket are not oriented correctly to accommodate the ligand. To address 

this, we investigated MD simulations of fully glycosylated Spike proteins to gain a better 

understanding of the pocket's opening. We examined the trajectories of all the variants 

mentioned before. The analysis began with aligning the trajectories on the backbone atoms 

that are not part of the binding site. We then conducted an RMSD analysis to identify frames 

within the 80,000-frame MD simulation that met all the criteria for binding linoleic acid. These 

criteria encompassed both the orientation of charged residues (Arg408 and Gln409) and the 

displacement of the helix. We calculated the RMSD between the frames and the reference 

structure, considering six residues: two from the α-helix (Val367 and Leu368 from the 

adjacent protomer), two from the β-sheet (Phe377 and Ile434 from the adjacent protomer), 

and the two charged residues.  

Interestingly, we discovered frames in three variants (Alpha, Beta and Gamma) that 

resembled the experimental structure. In these frames, the charged residues pointed toward 

the charged head of LA, establishing positive interactions with it (Figure 10).  

 

Variant Volume (A ̊3) Surface (A ̊2) 

Reference 
(6ZB5)

355 318

Wild Type 165 254

D614G 190 286

Alpha 225 275

Beta 243 301

Gamma 174 231

Delta 201 257

Omicron 241 298
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Figure 10. A. Comparison between the reference structure (PDB 6ZB5) (green) and the frame 64833 

(RMSD: 2.3929 Å) from the MD simulation of the Alpha variant (purple). B. and the frame 57798 

(RMSD = 2.0577 Å) from the MD simulation of the Beta variant (orange). C. and the frame 57798 

(RMSD = 1.7447 Å) from the MD simulation of the Gamma variant (turquoise).  

 

Moreover, the bulky residue Phenylalanine (residue 377 in the WT, Beta, and Gamma 

variants and residue 374 in the Alpha variant), which typically resides in the center of the 

binding pocket, was not as closely positioned to the LA molecule as in the majority of frames. 

While the side chain of this residue still did not precisely match the reference structure, it 

was plausible that the movement of the benzene of the Phe was influenced by the presence 

of the LA molecule inside the binding site. 

Another notable feature of these frames was that the volume of the binding pocket 

appeared comparable to the experimental structure. Although the FFBP in these frames was 

not as wide as in the reference structure, it still provided sufficient space to accommodate a 

small molecule. This observation suggests that the pocket might indeed be a druggable site. 

It's crucial to recognize that these frames were only sparsely populated, which is expected 

for a cryptic pocket. Nonetheless, our results suggest that the presence of LA (or a similar 

ligand) might be necessary for the opening of the pocket in most variants. But in a few cases, 

such as Alpha, Beta and Gamma, we were able to identify the transient pocket, albeit 

infrequently. This underscores the importance of extensive and unbiased sampling of Spike 

protein conformations and the value of integrating multiple computational approaches to 

investigate complex biological problems. 
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1.15.4 Discussion 

Our research primarily focused on evaluating the potential druggability of the free fatty 

acid binding pocket, which presents an intriguing target for antiviral drug development. To 

achieve this, we devised a minimization protocol capable of simulating the opening of the 

free fatty acid binding pocket within the context of the D614G variant's molecular dynamics 

simulation. Although we were unable to precisely replicate the 6 Å displacement observed 

in experimental studies involving the unglycosylated Spike protein, we did observe 

significant helix movement, providing ample space for the ligand (LA) to re-dock within the 

structure. This enabled us to generate a complex similar to the one observed in the cryo-

electron microscopy (cryo-EM) structure. 

Our screening efforts, involving three different compound libraries, identified certain 

compounds that maintained critical interactions with charged residues, which are essential 

for proficiently locking the ligand inside the binding site. Furthermore, we selected 

combinations of fragments positioned in various regions of the pocket, which could serve as 

a foundation for fragment-based drug design. Currently, both individual fragments and 

combinations thereof are undergoing experimental evaluation to assess their ability to bind 

within the targeted pocket. But we can anticipate that it turns out that some fragments are 

able to bind the protein, and using the combined fragments increases its effectiveness. 

Notably, when we considered mutations of K417 (found in the Beta, Gamma and Omicron 

variants), the docking results for the three libraries remained relatively stable. This suggests 

that certain highly ranked ligands could potentially serve as effective drugs against multiple 

variants, regardless of the presence or absence of this mutation. By analyzing molecular 

dynamics simulations of different variants (Wild Type, Alpha, Beta, Gamma, Mu and 

Omicron), we identified specific frames in some VOCs where the stereochemical 

prerequisites for binding, as revealed by the cryo-EM structure, were satisfied. These 

prerequisites included the orientation of charged residues and the helix displacement. 

Although the number of frames meeting these criteria was limited, as expected for a 

transient pocket in the absence of a ligand, this finding is crucial. It indicates that in the 

Alpha, Beta and Gamma variants, the pocket can transiently open even without a ligand, 

suggesting that these variants, in particular, could potentially accommodate a ligand within 

the free fatty acid binding pocket, making them promising drug targets. 

In summary, our findings suggest that the free fatty acid binding pocket holds promise as 

a target for neutralizing various SARS-CoV-2 variants. However, it's important to 
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acknowledge that this binding site has limitations, mainly related to the specific conditions 

required for it to open. Nonetheless, our ability to identify structures in the molecular dynamic 

simulations of different variants with these key features reinforces the importance of further 

investigating this binding site. 

1.15.5 Materials and Methods 

Clustering 

Clustering was performed using the Cpptraj12 program in AMBER 20. The metatrajectories 

of the SARS-CoV-2 variants (Wild Type, D614G, Alpha, Beta, Gamma, Delta, Mu and 

Omicron) were built starting from 4 independent replicas, each one of 1 μs, for a total of 

80000 frames. The newly obtained trajectories were aligned on the backbone atoms of 

residues that do not belong to the RBD and the N-terminal. Then, clustering was performed 

on the remaining regions (RBD and N-terminal), using a hierarchical agglomerative 

algorithm. An ε value was chosen to obtain a number of clusters that covers majority of the 

trajectory, approximately 8-10 clusters. These types of clusters were used for the SiteMap13 

analysis. 

For the RMSD analysis of the variants we performed clustering in the same conditions but 

aligning the metatrajectories on the backbone atoms that do not belong to free fatty acid 

binding pocket.   

Analysis of MD simulations of multiple Variants of Concern 

MD simulations were analysed using AMBER 20: the cpptraj12 program was used to 

perform a root-mean-square deviation (RMSD) analysis of the simulation the fully 

glycosylated S protein of different SARS-CoV-2 VOCs (18) 

(https://amberhub.chpc.utah.edu/cpptraj/). The variants we investigated are: Wild type, 

B.1.1.7 (alpha), B.1.351 (beta), P.1 (gamma), B.1617.2 (delta), and B.1.1.529 (omicron). 

We calculated RMSD considering the backbone atoms of residues B:Arg408, B:Gln409, 

C:Val367, C:Leu368, C:Phe377 and C:Ile434 using the experimental structure (PDB: 6zb5) 

as a reference. 

Docking procedure 

A single frame was extracted from the MD simulation of the fully glycosylated Spike protein 

(D614G variant) and this structure was structurally aligned with the reference WT Spike 

containing the LA10 molecules (PDB: 6ZB5) using PyMol. After, the linoleic acid molecule in 

the reference PDB was transferred to the D614G Spike, glycans were removed and NLN 
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residues (which are Asparagine residues covalently bound to glycans) were converted in 

ASN: this step was necessary, as Maestro14 is not able to recognize the nomenclature used 

to define glycans according to the force field used in MD simulations. The complex was 

uploaded with Maestro14 and prepared using its Protein Preparation Wizard15: beside the 

default options, we selected “fill in missing side chains using Prime”, to add the missing 

hydrogens on the former NLN residues converted to ASN. After that, we performed four 

minimization steps using MacroModel16 with the default force field (OPLS3e). In the first 

minimization step we constructed a substructure of freely moving atoms, selecting the LA 

molecule as the center and expanding the selection to residues within 5 Å. Then, we 

constructed two more shells: the first one has a radius of 6 Å (starting from LA) and the 

residues are constrained with a force constant of 100 kJ/(mol Å2), whereas in the second 

shell (with a radius of 8 Å) residues are constrained with a force constant of 200 kJ/(mol Å2). 

The following minimization steps were performed with the addition of a constraint with a 

force constant of 100 kJ/(mol Å2) on the ligand; after initial evaluations, the substructure of 

freely moving residues was increased to 6, in order to include the helix inside of it. Therefore, 

the shell constrained with a force constant of 100 kJ/(mol Å2) was increased as well to 7 Å.  

Libraries used for high throughput virtual screening 

To perform high throughput virtual screening (HTVS) inside the LA pocket we used three 

different libraries. Two of them are composed of small, drug-like molecules, for a total of 

2000 compounds,  the two set we chose are named 

“drug_like_decoys_avg_360mw_1_epik” and “drug_like_decoys_avg_400mw_1_epik” and 

they were downloaded from the Schrödinger website  

(https://www.schrodinger.com/products/glide). They were prepared using the LigPrep tool17: 

the OLPS4 force field was used considering a pH interval between 6 and 8, using Epik15, 

pose for every ligand was generated. The third library is a custom-made proprietary library 

of small molecules and fragments covering a large chemical space. It was prepared using 

the LigPrep17 program in Maestro: using the FF OLPS3e, all the possible state were 

generated for the pH interval 6-8 and all the possible combinations were generated (at most 

32 per ligand).  

POVME 3.0  

POVME (POcket Volume MEasurer)18-20 is an algorithm developed to determine both the 

volume and surface area of a binding pocket using a MD simulation trajectory. To achieve 

that, an inclusion region must be defined: the region might be a sphere, a cylinder, or a box 
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of an appropriate size and at the right coordinates. Then, one can define an exclusion region 

as well, to refine the region and avoid overestimation in the results; furthermore, the 

algorithm automatically removes any points that are too close to the receptor. Alternatively, 

one could use the structure or trajectory of the ligand- receptor complex: once the ligand is 

specified, the program is able to calculate the volume and surface of the region where the 

ligand is placed. 

Characterization of the free fatty acid binding pocket on the minimized clusters.  

The PDB files of the most populated, minimized clusters for different variants underwent 

a POVME analysis to determine the volume of the binding pocket around the ligand. The 

default parameters in the input were used 

(https://github.com/POVME/POVME/blob/master/POVME/examples/ligand_example/samp

le_PO VME_input.ini) the ligand was defined as EIC and both volume and surface area were 

calculated. As a reference structure we used PDB 6ZB5 and performed the same analysis.  
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DNA and RNA 

In contemporary medicinal chemistry, one of the emerging major challenges is the attempt 

to target RNA (in particular noncoding sequences) with small-molecules.  

 
Figure 1. Schematic representation of the drug discovery process aimed at devising effective 

strategies against SARS-CoV-2. The initial step involves identifying novel targets, distinct from 

conventional ones. For instance, focusing on the RNA genome as a target allows for the subsequent 

development of specialized RNA binders. Targeting RNA using small molecules shows significant 

potential for substantial therapeutic advancements, particularly with emerging chemical approaches 

like ribonuclease targeting chimeras (RIBOTACs). 

 

This pursuit necessitates a fundamental shift in perspective compared to traditional drug 

discovery approaches. In this context, the recent work by Disney and colleagues,1 featured 

in ACS Central Science, takes center stage. Their groundbreaking research encompasses 

the identification of specific ligands tailored for targeting SARS-CoV-2 RNA, the 
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development of ribonuclease targeting chimeras (RIBOTAC), and an exhaustive exploration 

of intracellular mechanisms of action through the utilization of chemical biology tools. This 

study underscores the transformative potential of novel chemical modalities that could 

shape the landscape of future therapies. 

The inspiration for this research stems from the urgent need to fight SARS-CoV-2 and, 

while substantial efforts have been devoted to repurposing existing drugs, conducting large-

scale screenings, and expediting vaccine development, there is an evident demand for fresh 

targets and innovative bioactive compounds to reinforce the arsenal of antiviral drugs. 

Noncoding RNAs, once relegated as mere intermediaries in the gene expression process, 

have emerged as promising possible candidates for drug discovery. These RNA molecules 

play pivotal roles in essential biological processes, including transcription, translation, and 

gene expression regulation. Pertinently, dysregulations in noncoding RNA expression and 

functions have been directly linked to various pathologies, encompassing neurological 

disorders, cardiovascular diseases, and cancers. Remarkably, over 70% of the human 

genome is transcribed into noncoding RNAs, while only 1.5% codes for proteins. 

Recognizing that only a fraction of these proteins serves as the targets of currently available 

drugs, the inclusion of noncoding RNAs as potential therapeutic targets presents an exciting 

frontier that could substantially expand the field of drug development. 

The ongoing COVID-19 pandemic underscores the promise of RNA-targeted therapies for 

addressing infections caused by RNA viruses. Prior investigations have explored RNA-

targeted therapies within the context of HIV, HCV, and influenza viruses, setting the stage 

for the pursuit of RNA-targeted interventions as a potent strategy against viral infections. 

Over the years, significant progress has been achieved in the discovery of RNA-targeting 

drugs, beginning with the advent of RNA ligands such as aminoglycosides and tetracyclines 

in the 1940s, and more recently, oxazolidinones. This progress has been marked by a 

diverse array of innovative drug discovery strategies, including the introduction of Inforna, 

a lead identification approach for identifying highly specific RNA ligands. Inforna combines 

two-dimensional combinatorial screening (2-DCS) with structure-activity relationships 

through sequencing (StARTS), enabling the anticipation of affinity and selectivity within RNA 

libraries, thus streamlining the identification of compounds targeting specific RNA secondary 

structures. 

Furthermore, various screening technologies, such as microarrays and fluorescence-

based assays, have been employed in tandem with structure-based design principles to 

yield selective RNA ligands. These endeavors have contributed to the construction of 
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valuable databases, exemplified by R-BIND, which are poised to accelerate the drug 

discovery process in the realm of RNA targeting. 

To comprehensively understand the interactions between small molecules and RNA, 

researchers have leveraged tools from structural biology and chemical probing, including 

NMR and SHAPE technologies. Collectively, these efforts have yielded promising results, 

culminating in the market introduction of Risdiplam, a mRNA splicing modulator against 

spinal muscular atrophy (SMA). 

The adaptability of drug discovery tools enables their customization to tackle the intricate 

challenges posed by RNA targets. For a considerable period, there was a prevailing belief 

that RNA, due to its highly polar and solvent-exposed nature, was resistant to small molecule 

binding.2 The skepticism stemmed from the notion that compounds might lack sufficient 

binding energy to surmount the water barrier and effectively reach the surface of RNA. This 

adaptability can be harnessed in conjunction with the development of original drug 

modalities, such as precise genome editing, modified peptides, oligonucleotides, 

macrocycles, and various conjugates. These innovations open new avenues for target 

modulation. In the study by Disney and colleagues,1 these technologies were deployed for 

the identification of precise tools targeting specific RNAs and facilitating RNA degradation, 

in addition to elucidating the intracellular molecular mechanisms of action.3 

 
 

Figure 2. On the left: drug discovery tools encompassing screening, structure-based design, and 

molecular modeling. These methods aid in identifying potent and precise RNA ligands like Covidicil-

19, which targets SARS-CoV-2 FSE RNA. Following this, chemical biology approaches (center) are 
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employed to delve into the intracellular mechanism of action. Modified compounds are engineered 

to covalently bind the target, allowing for straightforward isolation and identification. Subsequently, 

on the right, novel chemical modalities are devised to extend functionality, such as target-specific 

degradation. 

 
The research conducted by Disney and collaborators started with a screening of an RNA-

focused small molecule collection housed in the Inforna database. This screening was 

directed towards the SARS-CoV-2 frameshifting element RNA, which contains a 1 × 1 

nucleotide UU internal loop critical for frameshifting element function. Subsequent 

investigations led to the discovery of Covidcil-19, an RNA binder with nanomolar affinity for 

the target RNA. Covidcil-19 exhibited the capacity to stabilize the folded state of the RNA 

hairpin and impede frameshifting within cells. 

To further probe the intracellular target, chemical cross-linking and isolation by pull-down 

(Chem-CLIP) were employed. Chem-CLIP, a proximity-based reaction, covalently links an 

RNA-binding small molecule to its target, enabling precise mapping of binding interactions. 

Using a conjugate known as Covidcil-CLIP, which covalently linked to the RNA target and 

facilitated immunoprecipitation, a 3-fold increase in targeted RNA in the pull-down fraction 

was observed, affirming the affinity and selectivity for the frameshifting element RNA. 

Finally, Covidcil-19 was modified to yield a RIBOTAC compound, a novel chemical 

modality reminiscent of PROTACs developed for protein targeting and degradation. 

RIBOTACs involve the covalent attachment of an RNA binder to a chemical compound 

capable of recruiting a cellular ribonuclease, thereby inducing cleavage and degradation of 

the targeted RNA. This innovative approach resulted in the creation of the Covidcil 

RIBOTAC, which demonstrated the ability to induce targeted cleavage and degradation of 

the entire SARS-CoV construct. Further optimization efforts enhanced the bioactivity of the 

RIBOTAC compound by at least tenfold, as corroborated by intracellular luciferase reporter 

assays. 

While the battle against SARS-CoV-2 entails the exploration of multiple strategies and 

therapeutic avenues, the study's focus on targeting the viral RNA genome with small-

molecule drugs is promising, with potential applications beyond the current pandemic. This 

research shows the feasibility of drugging the SARS-CoV-2 RNA genome and underscores 

the potential for RNA-targeted therapies in drug discovery. Recent successes with new RNA 

binders making their way to clinical trials underscore the growing potential of RNA targeting 

in the near future. However, the intricate nature of these hybrid compounds, featuring 
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diverse moieties designed to harness various intracellular mechanisms, presents challenges 

related to scale-up, formulation, stability, and toxicity. Although the clinical application of 

such complex chemical tools and the targeting of challenging RNA-based targets may 

appear daunting, the recent progress seen in clinical trials of PROTACs suggests that these 

novel drug modalities may indeed represent the future of medicinal chemistry. 

1.16 G4 Motifs as possible new drug targets 

Although the genomes of viruses undergo rapid mutations, the secondary structural 

elements are relatively conserved and therefore can be used as potential antiviral targets. 

In this regard, another type of novel and highly conserved target is represented by G-

quadruplexes (G4s), which are non-canonical secondary structures formed by guanine-rich 

sequences within nucleic acids. G4s have undergone extensive research within the human 

genome. Recently several studies have identified G4 structures within the genomes of both 

DNA and RNA viruses, including human immunodeficiency virus-1 (HIV-1), Zika virus 

(ZIKV), hepatitis C virus (HCV), rhinovirus, Ebola virus (EBOV), influenza virus, human 

papillomavirus (HPV), herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), and human 

cytomegalovirus (HCMV).4-6  

Viral G4s are known to play crucial roles in regulating genome replication, maintaining 

genome integrity, and controlling processes like transcription and translation. This makes 

them potential targets for antiviral therapies. 

In these years of pandemic, several studies have predicted many putative G4-forming 

sequences (PQSs) in the genome of SARS-CoV-2 and proposed as potential therapeutic 

targets.7-10 However, these results exhibit significant variations due to the diverse prediction 

software and algorithms employed. 

Cui et al.11 employed the quadruplex-forming G-rich sequences mapper (QGRS) to 

identify 14 PQSs in the positive RNA strand. These PQSs were characterized by G-rich 

sequences with patterns of G2NxG2NyG2NzG2 and loop sizes ranging from 0 to 12. Their 

findings suggested that SARS-CoV-2 harbors fewer PQSs compared to SARS-CoV, which 

could contribute to the faster replication rate of SARS-CoV-2. In another paper, Panera et 

al.8 utilized QGRS and identified 25 PQSs, with loop sizes ranging from 0 to 36. Ji et al.12 

corroborated these 25 PQSs and noted that PQSs at specific genome positions were well-

preserved across the coronavirus family.  
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Subsequent studies employed various bioinformatics prediction tools such as G4CatchAll, 

pqsfinder, G4Hunter Web, and G4screener to identify additional PQSs, including some in 

the negative strand.7, 13 G4-iM Grinder analysis of the SARS-CoV-2 genome unveiled a total 

of 323 PQSs: while most had low scores, seven PQSs exhibited scores exceeding 30, 

signifying a high probability of G4 formation and four of these PQSs were conserved in 

SARS-coronaviruses and Bat-CoV14 (Table 2). 

In a recent study, Josu ́e Carvalho et al. analyzed over 200,000 SARS-CoV-2 genome 

sequences from across five continents. They identified highly conserved PQSs at specific 

positions, emphasizing their potential significance.15 All these sequences are showed in 

Table 1 and 2.  

Table 1 
 

 G4 
position Gene Sequence 

QGRS 
mapper 
score 

G4Hunter 
score 

G4-iM 
grinder 
Score 

1 +236 5′- UTR GGUUUCGUCCGGGUGUGACCGAAAGGUAAGAUGG    
2 +353 Nsp1 GGCUUUGGAGACUCCGUGGAGGAGG 16 0.64  
3 +359 Nsp1 GGAGACUCCGUGGAGGAGG   30 
4 +370 Nsp1 GGAGGAGGUCUUAUCAGAGG   30 
5 +545 Nsp1 GGCAUUCAGUACGGUCGUAGUGGUGAGACACUUGG    
6 +644 Nsp1 GGUAAUAAAGGAGCUGGUGG 15 0.8 30 
7 +1463 Nsp2 GGUGGUCGCACUAUUGCCUUUGGAGG 6 0.423  
8 +1574 Nsp2 GGUGUUGUUGGAGAAGGUUCCGAAGG 18 0.615  
9 +2714 Nsp2 GGCGGUGCACCAACAAAGGUUACUUUUGG 10 0.31  
10 +3467 Nsp3 GGAGGAGGUGUUGCAGG 15 1 34 
11 +4162 Nsp3 GGUUAUACCUACUAAAAAGGCUGGUGG 6 0.37  
12 +4255 Nsp3 GGGUCAGGGUUUAAAUGGUUACACUGUAGAGGAGG   31 
13 +4261 Nsp3 GGGUUUAAAUGGUUACACUGUAGAGGAGG 10 0.933  
14 +4262 Nsp3 GGUUUAAAUGGUUACACUGUAGAGGAGG 10   
15 +5036 Nsp3 GGACAACAGUUUGGUCCAACUUAUUUGGAUGG    
16 +8687 Nsp4 GGAUACAAGGCUAUUGAUGGUGG 14 0.652  
17 +10,058 Nsp5 GGUUUUAGAAAAAUGGCAUUCCCAUCUGGUAAAGUUGAGG    
18 +10,255 Nsp5 GGUACAGGCUGGUAAUGUUCAACUCAGG    
19 +10,261 Nsp5 GGCUGGUAAUGUUCAACUCAGGGUUAUUGG 9 0.6  
20 +13,385 Nsp10 GGUAUGUGGAAAGGUUAUGG 19 1.048 31 
21 +14,947 Nsp12 GGUUUUCCAUUUAAUAAAUGGGGUAAGG 4 0.714  
22 +15,208 Nsp12 GGAACAAGCAAAUUCUAUGGUGGUUGG 6 0.678  
23 +15,448 Nsp12 GGCGGUUCACUAUAUGUUAAACCAGGUGG 3 0.345  
24 +18,296 Nsp14 GGAUUGGCUUCGAUGUCGAGGGG 9 1.043  
25 +20,869 Nsp16 GGUGCUGGUUCUGAUAAAGGAGUUGCACCAGG    
26 +22,316 S GGUGAUUCUUCUUCAGGUUGGACAGCUGG 10 0.448  
27 +24,215 S GGUUGGACCUUUGGUGCAGG 17 0.6  
28 +24,268 S GGCUUAUAGGUUUAAUGGUAUUGG 19 0.625  
29 +25,197 S GGCCAUGGUACAUUUGGCUAGG 17 0.455  
30 +25,951 ORF3a GGUGGUUAUACUGAAAAAUGGGAAUCUGG 8 0.69  
31 +26,746 M GGAUCACCGGUGGAAUUGCUAUCGCAAUGG 7 0.33  
32 +28,613 N GGAACUGGGCCAGAAGCUGGACUUCCCUAUGG    
33 +28,781 N GGCUUCUACGCAGAAGGGAGCAGAGGCGG 9 0.655  
34 +28,903 N GGCUGGCAAUGGCGG 18 0.867 34 
35 +29,123 N GGAAAUUUUGGGGACCAGG 14 1.053  
36 +29,234 N GGCAUGGAAGUCACACCUUCGGGAACGUGG 11 0.467  
37 +29,254 N GGGAACGUGGUUGACCUACACAGGUGCCAUCAAAUUGG    
38 -165  GGCCUCGGUGAAAAUGUGGUGG 13 0.591  
39 -1591  GGGGUGCAUUUCGCUGAUUUUGGGG  1.280  
40 -2987  GGUCUGGUCAGAAUAGUGCCAUGGAGUGG 9 0.483  
41 -6822  GGUUGGUAACCAACACCAUUAGUGGGUUGG 6 0.433  
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42 -11,440  GGCGGUGGUUUAGCACUAACUCUGG 7 0.48  
43 -13,136  GGUUAAGUGGUGGUCUAGG 16 0.842  
44 -13,963  GGAUCUGGGUAAGGAAGG  19 1.111  
45 -16,623  GGAUUUGGAUGAUCUAUGUGGCAACGG 14 0.556  
46 -19,856  GGUGAUAGAGGUUUGUGGUGG    
47 -19,865  GGUGAUAGAGGUUUGUGGUGGUUGG 19 0.92  
48 -19,874  GGUUUGUGGUGGUUGG    
49 -23,877  GGAUAUGGUUGGUUUGG 19 0.941  
50 -25,003  GGUGGAAUGUGGUAGG 17 1.063  
51 -27,432  GGGGCUUUUAGAGGCAUGAGUAGG 13 1.042  
52 -29,867  GGUUGGUUUGUUACCUGGGAAGG 13 0.783  

 
Table 2 
 

 G4 
position Gene Sequence Found in other members of the 

Coronaviridae family 

1 +353 Nsp1 GGCUUUGGAGACUCCGUGGAGGAGG SARS-CoV 
Bat-CoV 

2 +644 Nsp1 GGUAAUAAAGGAGCUGGUGG 

SARS-CoV 
Bat-CoV 
BtRl-BetaCoV 
BtRs-BetaCoV 
BtRf-BetaCoV 
Rhinolophus-affinis-coronavirus 

3 +644 Nsp2 GGCGGUGCACCAACAAAGGUUACUUUUGG Bat-CoV 
4 +644 Nsp3 GGAGGAGGUGUUGCAGG BtRt-BetaCoV 
5 +644 Nsp4 GGAUACAAGGCUAUUGAUGGUGG Bat-CoV 

6 +644 Nsp5 GGCUGGUAAUGUUCAACUCAGGGUUAUUGG 
Bat-CoV 
SARS-CoV 

7 +644 Nsp10 GGUAUGUGGAAAGGUUAUGG 
Bat-CoV 
Rhinolophus-affinis-coronavirus 
SARS-CoV 

8 +644 Nsp12 GGUUUUCCAUUUAAUAAAUGGGGUAAGG 

Bat-CoV 
BtRs-BetaCoV 
Rhinolophus-affinis-coronavirus 
SARS-CoV 

9 +644 Nsp12 GGCGGUUCACUAUAUGUUAAACCAGGUGG 

Bat-CoV 
BtRl-BetaCoV 
BtRs-BetaCoV 
Rhinolophus-affinis-coronavirus 
SARS-CoV 

10 +644 S GGUUGGACCUUUGGUGCAGG SARS-CoV 
Bat-CoV 

11 +644 S GGCUUAUAGGUUUAAUGGUAUUGG 

Bat-CoV 
BtRf-BetaCoV 
Rhinolophus-affinis-coronavirus 
SARS-CoV 

12 +644 S GGCCAUGGUACAUUUGGCUAGG 
SARS-CoV 
Bat-CoV 

13 +644 M GGAUCACCGGUGGAAUUGCUAUCGCAAUGG SARS-CoV 
Bat-CoV 

14 +644 N GGCUUCUACGCAGAAGGGAGCAGAGGCGG 
SARS-CoV 
Bat-CoV 
Rhinolophus-affinis-coronavirus 

15 +644 N GGCUGGCAAUGGCGG SARS-CoV 
Bat-CoV 

 
Table 1. PQSs that have been predicted or verified, all of which contain two G-quartets once folded.  

Table 2. Conserved PQSs among coronaviruses.  

Given discrepancies stemming from diverse prediction software and algorithms, these 

findings necessitate rigorous experimental validation. 
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The roles played by RNA G4s in the SARS-CoV-2 life cycle encompass various 

processes, as illustrated in Figure 3, including translation of Nsps and structural proteins, 

RNA transcription, RNA replication, and genome packaging. 

 

 

Figure 3. Potential roles of RNA G4s in the SARS-CoV-2 life cycle, detailing various stages of viral 

infection: release of the viral genome; Translation of Nsps; RNA transcription; RNA replication; 

Translation of structural proteins; Packaging of the genome; Formation of new virion; Release by 

exocytosis. RNA G4s within the virus may play a crucial role in modulating the efficiency of steps 2–

6 and could serve as a target for antiviral therapy. For example, the G4-specific ligand PDS has the 

potential to stabilize RG-1 (at genome position 28,903) and diminish the translation of the 

nucleocapsid (N) protein. 

 

Notably, the first computationally derived G4 structure of RG-1 at position 28,903 (a 

sequence in the coding region of the SARS-CoV-2 N protein) was recently reported, utilizing 

a multiscale approach combining quantum and classical molecular modeling16 and this is 

the structure that we used for our research. Recently, Zhao et al. conducted a 

comprehensive investigation using various experimental techniques, including fluorescence 

turn-on assays, circular dichroism (CD), nuclear magnetic resonance (NMR), and 

fluorescence resonance energy transfer (FRET), to demonstrate experimentally the 

formation of this G4 structure by RG-1 in vitro. Notably, this study marked the first 

confirmation of a PQS folding into a stable unimolecular G4 structure within live cells. 
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Subsequently, known molecules capable of stabilizing these structures were tested on 

these PQSs. For example, Pyridostatin (PDS), were shown to stabilize RG-1 and 

significantly reduce the expression levels of the N protein both in vitro and in vivo. Moreover, 

PDS was shown to promote the formation of the G4 structure and seems to inhibit N protein 

expression by targeting RG-1.  

Conventional molecular dynamics simulations (MD) supported experimental findings by 

confirming the folding of RG-1 into a parallel G4 conformation, comprising two rigid tetrads 

and a flexible peripheral loop.17 Additionally, docking complexes have been identified of PDS 

and CX-3543 (quarfloxin, a G4 ligand derived from fluoroquinolones) with RG-1. These 

ligands bind to the G-quartet through 𝜋 -	𝜋 stacking interactions and are primarily driven by 

dispersion and hydrophobic interactions. Both PDS and CX-3543 hold potential as valuable 

compounds for stabilizing G4 arrangements, particularly the parallel conformation of RG-1. 

Berberine, a planar molecule with an extended 𝜋 delocalized system, also exhibits the 

ability to interact with G-quartets of G4 structures through 𝜋 -	 𝜋 stacking interactions. 

Berberine, which has been used in traditional Chinese medicine for centuries and possesses 

antiviral, anti-allergic, and anti-inflammatory properties, was recently investigated for its 

binding properties to RG-1.18 Results indicated that berberine can interact with RG-1. 

Furthermore, it was observed that two berberine molecules bind to one RG-1 molecule. 

Additionally, RG-1 maintains a parallel conformation in both the ligand-free and ligand-

bound states. These findings suggest that SARS-CoV-2 G4s may serve as promising 

therapeutic targets in the fight against this virus.  

In addition to G4s in the SARS-CoV-2 genome, host G4s that regulate the expression of 

proteins crucial for virus entry can also be targeted for antiviral therapy. For example, there 

is a G-rich tract in the promoter of the human Tmprss2 gene which encode the 

transmembrane serine protease TMPRSS2, a crucial host factor for SARS-CoV-2 infection. 

This tract is capable of forming a G4 structure in the presence of K+, significantly affecting 

the transcription level of Tmprss2. PDS has been demonstrated to bind a G4 found in this 

region, PQS-675, and to attenuate the infection of SARS-CoV-2 pseudoviruses in human 

lung cells.19 These results indicated that Tmprss2 RNA G4 is a potential target for SARS-

CoV-2 inhibition.  

Apart from the G4 structure itself, interaction partners of G4 may also be targeted: G4-

interacting proteins of SARS-CoV-2 from both the virus and the host cell have been 

discussed as potential targets of interest. For example, the SUD (Nsp3), Nsp13 and N 

proteins of SARS-CoV-2 are the main G4 regulators encoded by the virus. In addition, host 
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proteins that have been confirmed to be members of the RNA interactome of SARS-CoV-2 

and have previously been shown to act as G4 regulators in other viruses, such as helicases, 

hnRNPs, nucleolin, and CNBP, are also presented because these proteins may serve as 

potential pharmacological targets to interfere with the normal functions of viral G4s. Since 

the structures of some G4-binding proteins are already known, it is possible to design 

inhibitors against these proteins to inhibit their interactions with G4s.20  

Finally, due to their high stability, convenient operation, and low cost, G4 structures could 

also be used to detect SARS-CoV-2.21 

1.17 Unraveling the G-Quadruplex Mystery: Exploring the (un)folding 
mechanism 

 

 

The above reported considerations suggest that G4s represent an intriguing target for the 

development of antiviral drugs. However, the discovery that DNA and RNA sequences can 

adopt secondary structures beyond the conventional alpha-helix dates to the early 1900s 

and the idea that G4s could serve as therapeutic targets was initially conceived in the 1960s 

and 1970s. Since then, considerable efforts have been made to unravel the complexity of 

these structures and exploit their therapeutic potential. 

However, G4s hold importance beyond therapeutic applications, as these structures are 

associated with DNA damage and genome instability. Consequently, considerable efforts 

have been devoted to understanding the role of G4s in cancer biology. This exploration has 

led to the evaluation of small-molecule ligands that target G4s: in fact, more than 1,000 

molecules have been developed with the capability to interact with G4 targets. 

Despite these extensive efforts, only a limit number of ligands have progressed to the 

clinical phase, and none are used as drugs. The primary obstacle lies in their modest ability 

to differentiate between individual G4 structures, often resulting in undesirable side effects.  

FOLDED G4 UNFOLDED (B-HELIX)

MetaD simulations
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A fundamental challenge, therefore, is to improve the selectivity of these molecules. For 

this reason, identifying specific conformations of the G4, which could be targeted by small 

molecules, may help designing new G4-ligands. 

To this end, we need to understand the determinants of folding and stability of the 

structures of G4s. DNA and RNA sequences rich in guanine bases possess the inherent 

capacity to self-assemble into coplanar, cyclic structures known as tetrads, visualized in 

Figure 4. These tetrads consist of four guanine bases held together by eight Hoogsteen 

hydrogen bonds and are referred to as G-tetrads or G-quartet. These G-tetrads can stack 

one atop the other forming G4s, as visualized in Figure 4. These stacked tetrads are 

stabilized by 𝜋 -	𝜋 stacking interactions (nonbonded attractive forces). 

The stability of the G4 structure is further enhanced by the presence of positively charged 

ions (e.g., K+ and Na+), which play a crucial role by coordinating two consecutive G-tetrads. 

This coordination helps shield the electrostatic repulsion between the carbonyl oxygens of 

guanine bases. 

 
 

Figure 4. G-quadruplex (G4) structure: A. Structure of the nucleobase guanine. B. Chemical 

structures of G-quartet. Structural arrangement of the G-quartet, highlighting the hydrogen bonding 

network between the Hoogsteen and Watson–Crick faces of the coplanar guanine bases with a 

centrally placed metal ion (M+).  C. G4 formed by the stacking of two G-quartets/tetrads.  

 
G4-DNA structures exhibit remarkable polymorphism. They can adopt a diverse range of 

topologies (Figure 5). These different topologies will be described in detail below. The 

structural variations of G4s are influenced by various factors: the number of DNA strands 

involved (ranging from one to four), the orientation of these strands (parallel, antiparallel, or 

hybrid), the glycosidic conformation of guanine bases (syn or anti), the length of intervening 

loops, and the stretches of guanine bases within the structure. 
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In contrast, G4-RNA structures are more constrained in their diversity, with a tendency 

toward predominantly parallel topologies. This limitation primarily arises from the anti-

conformation of the glycosidic bonds in RNA and the presence of an additional 2'-OH group, 

which leads to enhanced hydrogen bond networks within the structure. 

 

 

Figure 5. Schematic representation of the human telomeric G4-DNA folding topologies. A. Parallel 

or propeller type, as identified by X-ray in presence of K+. B. Antiparallel or basket-like, as detected 

in Na+ solution. C. Hybrid type 1 and D. hybrid type 2, both found in K+ solution. Syn and anti 

guanines glycosidic bond orientation are colored in blue and green, respectively. 

 
Intramolecular G4s (GQs) consist of loops, which are segments of nucleotides that 

connect the G-strands (also referred to as G-stretches or columns). These loops serve as 

integral components in defining the GQ structure and its characteristics. 

So-called propeller loops connect two neighboring G-strands that run in the same 

direction, which is known as the parallel orientation. They are aptly named "propeller loops" 

due to their role in maintaining this parallel alignment. 

Lateral loops, on the other hand, connect two neighboring G-strands that run in an 

antiparallel orientation. These loops facilitate interactions between antiparallel strands. 

Another topology is the diagonal and here the loops have the distinct feature of connecting 

two antiparallel G-strands that are positioned across from each other within the G4. 

The directionality of the G-strands is closely linked to the syn/anti conformation of the 

guanine bases' glycosidic torsional angles 𝜒. Specifically, if two guanines within a quartet 

are in mutually parallel strands, they will exhibit the same 𝜒 conformation. Conversely, if 

Parallel Antiparallel Hybrid-1 Hybrid-2

SYN- guanine
ANTI- guanine

A. B. C. D. 
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these guanines are situated in antiparallel strands, they will display opposite 𝜒 

conformations. 

The human telomeric sequence d-(GGGTTA)n is a prime example of such a highly 

polymorphic sequence, forming at least six known stable GQ conformations.22-29 

 

 
 

Figure 6. Insights into the various G4 topologies: A. Presents schematic representations of three-

quartet parallel and hybrid G4s. Bases in anti-conformation are shaded in blue, syn in green, and 

blue spheres represent metal cations (M+). B. Structural formulas of the top quartets of G4s from 

A., with hydrogen bonds indicated by dashed lines in red. C. Shows the anti and syn guanosine 

orientations. 

 
Thus, the goal here is to develop a computational method to explore the intricate 

processes of G4s structural organization, exploring their unfolding mechanisms to ultimately 

discover the fundamental principles that govern the intricate stabilization process of G4 

structures. The overall goal of this work is to gain a comprehensive understanding of these 

dynamic structures, and thereby enable future development of precise and selective tools 

that can interact with G4s. In fact, through meticulous examination and characterization of 

the unfolding mechanisms, we aim to shed light on the factors and conditions influencing 

the stability, dynamics, and structural polymorphism of G4s.  
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1.17.1 G4 Folding and Unfolding Mechanisms.  

Recent studies have analyzed the complexity of G4 folding, suggesting that it can be most 

accurately described as a process characterized by state model, also called “kinetic 

partitioning landscape”30.  

This process cannot be described by the original "folding funnel" mechanism that has 

occasionally been used in the context of intramolecular DNA G4s because a simple funnel 

may not accurately capture the folding dynamics of G4s. In a conventional funneled free-

energy landscape, molecules smoothly decrease in energy and configurational entropy as 

they progress towards the native state. This progression is marked by a continuous increase 

in the number of native contacts. In the idealized model, there are no significant kinetic traps, 

featuring local energy minima, substantially deeper than thermal fluctuations, along the way. 

Such a funneled landscape would lead to fast folding events and minimal frustration due to 

non-native interactions. 

In contrast, the folding landscape for G4 DNA sequences, as evidenced by numerous 

experiments, do not align with this funnel-like behavior. G4s can exhibit folding timescales 

spanning up to several days, indicating a more complex folding landscape. Supposedly, this 

landscape includes deep, competing free-energy minima, often representing alternative 

folds, or competing conformational ensembles separated by substantial free-energy 

barriers. Only a fraction of the molecules folds directly into the native basin of attraction 

(NBA), which is the most populated at thermodynamic equilibrium. The majority of molecules 

within the ensemble initially fold into competing (non-native) basins of attraction (CBA), 

where they become trapped. This interplay between native and non-native basins slows 

down the folding process significantly. 

Investigating such folding processes is inherently more challenging compared to fast, 

funnel-like folding. The same argument applies to protein folding, which in any case can 

neither be described as a direct transition from unfolded to folded. Instead, it is studded with 

intermediate states, which are separated by a notable energy barrier.  

The precise mechanisms governing transitions between different basins are system 

dependent and hardly ever fully understood at the atomistic level. Only the folding of very 

small so-called fast-folding proteins could be resolved in reasonable detail.31 It remains 

unclear to what extent misfolded molecules must unfold before transitioning to another 

basin. Additionally, it's essential to recognize that the classification of folded, misfolded, and 
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unfolded states or structures depends on the resolution and definitions of specific 

experimental methods. 

The folding of G4s has been divided into two distinct stages. The first is marked by the 

rapid folding of the initial G4 ensemble: during this phase, various G4 structures are formed, 

but they tend to be predominantly misfolded. These misfolded G4s may exhibit non-native 

syn/anti combinations of guanine bases or a reduced number of tetrads when compared to 

fully folded G4s.  

The second stage of the folding process involves the gradual refinement of the initial GQ 

population, leading to the eventual formation of the native GQ structures. This refinement 

process occurs slowly and is responsible for transitioning the initial, mostly misfolded GQs 

into the final native GQs. These structural transitions occur through the various other 

structural ensembles, as incomplete or perturbed GQs, G-triplexes, G-hairpins, and cross-

like species. 

It is important to note that the nature of these intermediate ensembles can vary depending 

on external factors. Factors such as temperature, ionic strength, the presence of cosolvents, 

the binding of ligands, and the specific types of cations in the environment all play a role in 

influencing the structural transitions and kinetics of GQ folding. 

1.17.2 Molecular Dynamics simulations of G4 folding and unfolding 

In this study, we use all-atom explicit-solvent enhanced-sampling molecular dynamics 

(MD) simulations to explore the unfolding dynamics of different topologies of G4s: parallel 

(both from DNA and RNA sequences), antiparallel and hybrid.  

Our research reveals several key findings. Our primary goal was to establish an enhanced 

sampling scheme to investigate the unfolding of G4. Given the long lifetime of the folded 

G4, it is basically impossible to sample the unfolding of G4 in conventional simulations. 

While there have been other attempts to use enhanced sampling to this end,32, 33 we wanted 

to establish a new method, which does not bias the unfolding towards specific pathways. 

Generally, MD simulations serve as valuable tools for the in-depth study of transient 

ensembles and dynamic processes, offering detailed spatial and temporal resolution. In the 

context of investigating various aspects of G4 folding, MD simulations have been employed 

multiple times.34-47 

Standard MD simulations are, however, constrained by limitations in affordable sampling. 

To overcome this limitation, researchers often turn to enhanced sampling methods. These 
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methods can broadly be categorized into two groups: those that modify the total energy of 

the system and those that operate on specific low-dimensional projections, known as 

collective variables (CV), on the free energy surface (FES). Examples of the former category 

include replica-exchange methods while metadynamics falls into the latter category. 

In our present research, we used MD simulations to investigate the unfolding of G4 

structures: to accelerate the sampling process, we employ metadynamics.48 Our simulations 

specifically target the unfolding of a complete G4 structure with different topologies (parallel, 

antiparallel and hybrid) to discover the respective unfolding pathways.  

The challenge lies in unraveling the intricate unfolding mechanism of G4sthese secondary 

structures because this process follows diverse and complex pathways, sometimes referred 

to as "kinetic partitioning". This term aptly allows the existence of multiple routes from the 

unfolded state to the folded state. Consequently, obtaining experimental proof of the precise 

folding mechanism remains elusive: isolating intermediate states proves exceedingly difficult 

due to their inherent instability and sensitivity to the specific experimental conditions 

employed. Nevertheless, various proposals for both folding and unfolding mechanisms have 

been made, using both experimental and computational methods. 

The folding process potentially includes a series of steps, commencing with the collapse 

of unfolded species into hairpin-like structures with G:G base pairs.49-52 These structures 

subsequently transform into antiparallel G4s,53, 54 transitioning progressively into triplex 

intermediates35, 55, 56 before adopting the proper G4 conformation53. This model follows a 

sequential pathway and does not account for side-reactions or 'branched' pathways, 

avoiding confusion with 'parallel' reactions in chemical kinetics when discussing 

mechanisms. 

Alternative models propose branched mechanisms where the unfolded species, 

intermediates (triplex or other), and the G4 are in equilibrium, either with or without 

intermediates.56-58 Based on MD simulations, Stadlbauer et al. suggest a complex branched 

mechanism for the folding of human telomeric sequences.40, 55 Previous studies have 

proposed various G4 folding pathways, including intermediates such as hairpins and 

triplexes. 

In 2016, Gabelica et al.59 proposed a generalized folding landscape based on 

experimentally obtained kinetic data, which unveil a complex mechanism with several 

branched reactions, resulting in multiple 'branches' within the folding landscape.  

However, Gabelica and coworkers were unable to definitively confirm or rule out the 

presence of a triplex structure. Additionally, molecular modeling indicated that both hairpins 
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and G-triplexes remain stable only when their constituent strands are in an antiparallel 

orientation. This suggests that these intermediates likely assume an antiparallel 

configuration during the folding process. 

The folding landscape of G4 differs from the traditional sequential folding pathway, 

demonstrating the influence of misfolded species on the overall folding kinetics. Nucleic 

acids, particularly G4 folding, display a distinctive folding energy landscape due to numerous 

hydrogen bonds and ionic interactions, creating significant barriers between ensembles. 

Consequently, misfolded structures persist on a second to minute timescale, impacting the 

overall folding dynamics, setting nucleic acids apart from proteins in terms of folding 

behavior. 

In a very recent paper, Stadlbauer and Šponer33 use a combination of the REST2 scheme 

coupled with well-tempered metadynamics simulations to provide evidence in the folding 

process of a parallel topology. They suggested the initial formation of a compacted, coil-like 

ensemble of G-strands as the starting point for the folding of a fully parallel three-quartet 

G4, specifically (GGGA)3GGG. From this ensemble, the G4 structure gradually emerges via 

multiple pathways, devoid of a distinct intermediate structure. The folding progresses 

through a sequence of incremental conformational alterations, involving cross-like 

structures, hairpins, slip-stranded arrangements, and two-quartet G4 ensembles. 

This coil-like ensemble is believed to coordinate at least one monovalent cation. The 

simulations also suggest that an essential early phase of the folding process involves the 

stacking of guanine units in G-tracts (G-strands). These stacked G-tracts then aggregate 

into larger, semi-rigid blocks, streamlining the exploration of conformational space by the 

DNA chain, akin to the diffusion collision model observed in protein folding. Notably, isolated 

G-hairpins prove unstable but can find support through additional interactions within the 

compacted coil-like ensemble. 

A noteworthy observation is that each folding event follows a distinct trajectory: there is 

just the common initial step which typically involves the formation of a coil ensemble, 

coordinated with at least one ion. This coil ensemble is a broad set of compacted structures, 

stabilized by hydrogen-bond interactions between guanine bases, and was previously 

proposed as a potential intermediate in parallel G4 folding. 

Subsequently, they predominantly observed the formation of hairpin ensembles, slip-

stranded ensembles, and two-tetrads G4s along these trajectories. Ideal cross-hairpin 

ensembles were formed in only two folding trajectories. However, the coil ensemble 

frequently exhibited cross-like states, featuring interaction between four guanines rather 
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than six. Another variant observed was a tilted ensemble with fully stacked G-tracts, 

resembling a tilted hairpin ensemble but not entirely parallel. While the ideal tilted ensemble 

was rarely observed, structures with a tilted-like configuration and four interacting guanines 

were more common. 

Triplex structures emerged in two folding events, occurring just before the complete 

formation of a G4 in one of them. The other four folding events bypassed the triplexes 

through different routes. In the final stages of folding, once two quartets were fully formed, 

the third layer typically comprised two or three guanines. The remaining guanines were 

either exposed to the solvent or stacked with the loop adenines. After all guanines were 

folded and the last tetrad was formed, the second cation coordinated between the tetrads, 

serving as the concluding step. Standard unbiased simulations initiated from nearly-folded 

snapshots confirmed this chronological order, with the final quartet forming first, followed by 

coordination of the second cation. 

Clearly, folding can occur with very different pathways. Accordingly, the same holds true 

for the unfolding of these structures.  

1.17.3 Methodology 

Our study involved enhanced-sampling unfolding simulations of different topologies of G4 

(parallel both from DNA and RNA sequences, antiparallel and hybrid). The primary objective 

was to establish a method to investigate their unfolding mechanisms and to assess their 

stabilities. To achieve this, we employed metadynamics (MetaD) using the coordination 

number as a collective variable (CV), which effectively captured the G4 unfolding event in 

every simulation of every topology.  

The CV that has been used is the coordination number, CONUM, which calculates the 

number of contacts between two groups of atoms. For a better explanation of this property 

see the Materials and Methods section. For the evaluation of the eventual existence of a 

contact, we used a well-established approach: we evaluated a logistic function based on the 

respective pair distance 𝑑9D.  

In this MetaD protocol we used as group A the heavy atoms of DNA (or RNA) sequence 

and as Group B the oxygen of the water molecules surrounding the G4, as show in Figure 
7. 
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Figure 7. Choice of Coordinate Variables for MetaD. The figure illustrates the selected coordinate 

variables for the simulations, the CONUM, highlighting two key groups: oxygen atoms of water 

molecules (depicted in red), atoms comprising the DNA or RNA sequence (depicted in grey) and the 

magnesium ions (depicted in violet, present in the crystal structure (PDB 1KF1) and fundamental for 

the stability of the structure).  

 
For our study, we utilized the telomeric 22-mer sequence d[AGGG(TTAGGG)3], capable 

of forming an anti-parallel topology in the presence of Na+ (143D), while in the presence of 

K+ (1KF1), it adopts a parallel-type topology. Intriguingly, the telomere G4 in a K+ solution 

assumes a hybrid-type topology, deviating from its crystalline state. Phan and Petal 

investigated the topology in telomeric G4 using the d[TAGGG(TTAGGG)3A] sequence, 

where adenine was added to the 3′-end of the native sequence d[TAGGG(TTAGGG)3] 

(2GKU) and we used these sequences to simulate the hybrid topology (Figure 8). 

For each topology, we carried out 5 replicas, each lasting 200 ns. However, it was 

observed that to capture the unfolding of the structure, a simulation duration of 100 ns would 

have been sufficient. The unfolding process and relevant dynamics were effectively 

captured within this timeframe, indicating that a shorter simulation duration could have 

provided equally meaningful insights into the unfolding mechanisms for the respective 

topologies. 

GROUP A: DNA/RNA

GROUP B: Oxygen of water molecules
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Figure 8. G4s Topologies. For the parallel topology we used the telomeric 22-mer sequence 

d[AGGG(TTAGGG)3], known to adopt a parallel conformation in the presence of K+ (PDB ID: 1KF1) 

and the anti-parallel conformation in the presence of Na+ (PDB ID: 143D). For the hybrid topology, 

we chose the d[TAGGG(TTAGGG)3A] sequence, where adenine was added to the 3′-end of the 

native sequence d[TAGGG(TTAGGG)3] (PDB ID: 2GKU). We simulated every topology coordinated 

with K+ in the central cavity. For each topology, we conducted 5 replicas, each lasting 200 ns. 

1.17.4 Observed unfolding pathways in different topologies 

Generally, we found that our method is always able to unfold G4. By changing the strength 

of the bias, we may decide to modulate the unfolding of the G4, faster or less fast. We 

choose the bias height to be able to perform multiple simulation runs for the different replicas 

within a reasonable computation time, i.e., around 100 ns. For two of three topologies we 

saw very diverse unfolding pathways, whereas for the third topology, the antiparallel, the 

unfolding trajectories were very similar.  

To better understand the differences but also the similarities between the various 

topologies of structures we divide the results according to the respective topologies, i.e., 

parallel, antiparallel and hybrid (as described in earlier sections). 

Parallel topology 

We observed diverse unfolding pathways in different simulation runs with this topology. 

However, certain consistent species were identified across all replicas. Specifically, prior to 

SEQUENCE PDB ID STRUCTURE

AGGGTTAGGGTTAGGGTTAGGG
Native

AGGGTTAGGGTTAGGGTTAGGG
Native

1KF1

143D

Parallel

Antiparallel

TTGGGTTAGGGTTAGGGTTAGGGA
Modified

2GKU

Hybrid-1
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the G4 destabilization, a consistent event was noted involving the terminal 5’ adenine (DA5’) 

stacking onto the terminal tetrad. 

As this adenine shifts away and ceases its interaction with the tetrads, it marks the 

initiation of G4 breakdown. This crucial event is present in all replicas. The differing factor 

lies in whether it is the terminal G directly bound to the terminal adenine or a G from the 

opposite tetrad. This initial movement leads to the formation of a stable structure that can 

either revert to reform the G4 or proceed further by shedding an additional guanine from the 

same tetrad. This progression results in a "two-layered G4" structure characterized by two 

tetrads and the other one with only two guanines (Figure 9). 

Subsequent steps in the unfolding process may follow different paths but they all lead to 

the loss of a second tetrad. This transition ultimately results in a structure with only one 

remaining intact tetrad, which was originally the central tetrad of the G4. At this stage, the 

structure becomes unstable and rapidly unfolds, leading to the disintegration of the last 

tetrad.  

However, an interesting observation at this point is that stacking interactions between two 

guanines persist for a significant duration during this process, which could mean that they 

act as semi-rigid building blocks during the folding process. 

The development of the value of the coordination number (CV) as a function of time can 

be seen in Graph 1. Here, for simplicity's sake, we report the value of CV as a function of 

time for the first replica. From this, we have extrapolated the structures corresponding to the 

various minima of the simulation and we report these structures in Figure 9. 
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Graph 1. CV vs time (ns). MetaD simulation of replica 1, coordination number (CV) in function of 

the time (ns). The dashed rectangles correspond to the minima of the CV from which the structures 

representing the intermediate states in the unfolding process were extracted. The last rectangle (with 

a CV value around 800) corresponds to the B-helix.  

time (ns)

C
V

time (ns)

C
V



 185 
  

Various
disordered states

1G away

2G away

1 TETRADS, 3G

1 TETRADS, 2G

2 TETRADS

FOLDED G4

Interaction 
with DA5’

UNFOLDED 

DA5’

DA5’



 186 

Figure 9. Proposed Unfolding Path for the Parallel Topology. The depicted steps represent the 

common states observed across various replicas, although the specific pathways to these 

intermediate states may vary from one replica to another. The initial cluster consistently represents 

the perfectly folded G4, with a notable configuration where one adenine (specifically, the adenine at 

the 5' end, DA5) is positioned atop the tetrad; this intermediate state is termed "interaction with 

DA5’". Subsequently, a consistent event is the loss of one guanine, which can manifest in either of 

the terminal tetrads, “1G away”. This leads to the loss of the second on the same tetrad (“2G away”) 

and then the whole tetrad (“2 tetrads”). The same thing happens to the other terminal tetrad where, 

first, one G moves away, and this structure with one tetrad formed and another with only 3 guanines 

remains for a while, (“1 tetrad, 3G”) and could be stabilized by the same adenine as before (DA5’). 

But after this adenine moves away and another guanine from the plane with only 3 Gs also moves 

away, (“1 tetrad, 2G”) the structure begins to break down completely. It's important to note that 

numerous unstable intermediate states may exist before the complete rupture of the ex-G4. Notably, 

a state that consistently emerges is the B-helix, characterized by a remarkably low coordination 

number, even lower than that of the folded G4. This state is a significant observation in the unfolding 

pathway. 

 

It is worth noting that the unfolding process can skip the formation of a G-triplex structure, 

aligning with the findings of a recent study. The unfolding mechanism emerging from these 

simulations seems precisely to require two steps: first, a very slow destruction of the first 

terminal tetrad that leads to the formation of rather stable structures that can reform the G4. 

But once the other outer tetrad is destroyed this process leads to the immediate breakdown 

of the structure and the formation of disordered coils. It is interesting to note that we obtained 

in every simulation the complete strand of B-DNA helix and the solvation number is almost 

the same as the folded G4 explaining the stability of these structures. 

The same unfolding mechanism was observed in simulations of the human telomeric RNA 

G4 (called TERRA G4, PDB ID 6HHJ).  

In contrast, the G4 structure found in the virus necessitates further analysis because, 

despite its stability during classical MD simulations, it exhibits significant instability when 

subjected to MetaD simulations. Hence, careful parameter modulation for the MetaD 

simulation is essential: the structure is less stable considering that it is formed by two tetrads 

instead than three, as in the telomeric sequences. Nonetheless, the unfolding mechanism 

appears to resemble that of the other RNA structure.61 It's important to note that these two 

RNA sequences (the human telomeric and the virus sequences) were simulated using 

different force fields, highlighting the need for a nuanced understanding of the specific force 

field impact on simulation outcomes. 
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Antiparallel topology 

Antiparallel topology presents a more straightforward and consistent mechanism across all 

replicas. Specifically, the G4 initiation of breakdown begins when the 5' end initiates 

movement, disrupting interactions within the terminal tetrad. In this scenario, as DA5' moves 

away, the guanine linked to it also shifts, resulting in the disruption of that tetrad. Due to the 

antiparallel topology, all guanines are interconnected through the same loop. Consequently, 

what is observed is a simultaneous disengagement of all overlapping Gs constituting the G4 

structure. This leads to the formation of a transient triplex momentarily, followed by the 

detachment of another guanine strand, ultimately resulting in a structure resembling the one 

depicted in the Figure 10. 
 

Figure 10. Triplex-like Structure. The rectangle highlights three guanines that undergo a bending 

motion, forming a triplex-like structure. These guanines are subsequently displaced away from the 

plane, contributing to the unfolding process of the G4 structure. 

 
Before breaking down, G4 forms a high-order structure, adding to the interactions of the 

guanines of the tetrads also those of some adenines (Figure 11). These very stable 

structures have a lower coordination number than G4 itself because they are obviously much 

more closed and can interact with fewer water molecules. These very high-order structures 

are present in all the replica.  
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Figure 11. Pre-unfolding: Formation of High-Order G4 Structure. Prior to undergoing unraveling, 

the G4 structure attains a high-order conformation, incorporating interactions not only amongst the 

guanines within the tetrads but also involving certain adenines. These exceptionally stable structures 

exhibit a lower coordination number compared to the G4 structure, owing to their notably compact 

nature, allowing interactions with fewer water molecules. Remarkably, these high-order structures 

are consistently observed in all replicas, underscoring their significant presence in the unfolding 

pathway. 

 

Despite this, a pair of interactions persists, maintained between adjacent guanines and 

the two underlying pairs of Gs. This continuity arises because these guanines are bound 

together by the same loop (Figure 12).  
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Figure 12. Intermediate State Preceding Quadruplex Dissociation: This intermediate state occurs 

just before the complete dissociation of the quadruplex structure. Consecutive guanine pairs within 

the same loop remain in close interaction, representing a transitional arrangement in the unfolding 

process. 

 
In one replica, on the other hand, the interaction between pairs of facing guanines is 

maintained and not those linked by the same loop. 

In the case of this topology, the mechanism appears less stepwise, and the sequential 

breakdown of tetrads is not readily discernible. Instead, the rupture occurs mainly because 

a column of guanine folds over and moves away. 

Hybrid topology 

The hybrid topology, on the other hand, is much more reminiscent of the mechanism of the 

parallel topology. Again, the mechanism begins with the loss of a guanine from one of the 

tetrads. This intermediate structure, however, is stabilized by an adenine that is placed on 

top of that tetrad. In this case, however, the mechanism seems as if after the loss of this 

guanine, the two overlying Gs are taken away from the loop to which they are bound, like a 

strand slippage.  

But in the simulations of this topology, we can clearly see the formation of the triplex (in 

replica 3 and 4) Figure 13. 
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Figure 13. Triplex-like intermediate state found in all the replica of the hybrid topology. 

 

The initial change in the coordination number, which first begins to rise and then has an 

abrupt descent is since the G4 begins to open and only two planes of the tetrads remain 

intact (the other one has only three guanines left to interact) but soon after the loop closes 

again forming much more ordered and compact structures than the initial structure. 

This unfolding pathway seems more stepwise than the antiparallel topology but less so 

than in the parallel topology, where the breakage occurred from tetrad to tetrad, in this case 

there is the initial loss of a guanine from one of the tetrads but then one of the guanine 

columns is seen to move away and at that point the triplex formed is not stable and the G4 

immediately unfolds. 

In the replica 5, on the other hand, there is an initial opening of G4, only two tetrads remain 

formed and one with 2 Gs. Subsequently, all three tetrads close and reform and a high-order 

structure is formed, resembling that of antiparallel topology. When this structure breaks 

down, and it does so starting from the bottom loop, the structure collapses and opens without 

the intermediate formation of the G-triplex. 
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1.17.5 Discussion 

Our primary and crucial objective here was to develop an efficient method capable of 

unfolding G4 sequences within a reasonable simulation timeframe. To achieve this, we 

utilized enhanced-sampling techniques, specifically employing MetaD simulations. Through 

this innovative approach, we successfully achieved the unfolding of various G4 topologies 

within approximately 100 ns, and this duration could be easily accelerated or decelerated 

by changing the bias height. 

We applied this developed method to investigate the diverse topologies of the human 

telomeric G4 (including parallel, antiparallel, and hybrid conformations). Our aim was to 

glean valuable insights into the process of G4 unfolding, comprehend the importance of 

specific intermediates, and, at its core, visualize these intermediate structures. Through this 

exploration, we sought to anticipate potential structures that might manifest during the 

unfolding process. 

In this regard, the MetaD method demonstrated its effectiveness by consistently facilitating 

the unfolding of the G4 structure across all simulation replicas. Additionally, the choice of 

the CV for MetaD appeared optimal for achieving this purpose, contributing to the successful 

unfolding of G4 structures.  

In all our simulations, we consistently employed the same collective variable, namely, the 

count of contacts between the DNA sequence and water molecules. The selection of a 

collective variable is a critical aspect of MetaD simulations, as it carries the risk of influencing 

the simulation if chosen incorrectly. By focusing on the number of contacts between the DNA 

sequence and water, we aimed to minimize such influences and ensure that the dynamics 

progressed naturally. Furthermore, our findings suggest that the CV we selected was not 

biased toward a specific unfolding mechanism: this is evident from the observed diversity in 

unfolding mechanisms for two out of the three G4 topologies investigated. The variability in 

unfolding mechanisms underscores the robustness and versatility of the chosen CV in 

capturing the diverse unfolding pathways for different G4 conformations. 

Indeed, we plan to analyze and explore different collective variables in the near future, 

aiming to gain a more comprehensive understanding of the unfolding mechanisms. 

For example, the radius of gyration (Rg) is a commonly utilized metric in G4 simulations 

and sometimes even in experimental studies. It is often presumed that high Rg corresponds 

to unfolded states, while the lowest Rg corresponds to the compact, fully-folded G4 

structure. However, recently folding simulations revealed a distribution of Rg where the 
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coiled ensemble exhibited a lower Rg compared to the native G4. These results are in-line 

with studies on other complex conformation transitions, such as the Coil-Globule transition. 

Quoika and coworkers60 found that Rg may potentially not capture the transition barriers not 

well and is therefore not a good collective variable, eventually. This challenges the notion 

that Rg alone is a sufficiently discriminative metric for distinguishing between folded and 

unfolded states.  

Therefore, taking into account the solvation of molecules might be an alternative metric to 

this end, as it is unbiased with respect to certain intramolecular arrangements. By doing so, 

we aimed to anticipate the potential structures that could arise during the unfolding process. 

In this context, the MetaD method emerged as highly effective, consistently facilitating the 

unfolding of the G4 structure across all simulation replicas. It is evident, however, that 

achieving a comprehensive understanding of the entire unfolding of G4 through unbiased 

MD simulations remains currently beyond the computational capabilities of contemporary 

computers and force fields. 

An important insight from our simulations is the presence of numerous intermediate states 

for each topology examined, highlighting the presence of a multitude of competing states 

and the absence of a single stable structure for these sequences, which agrees with the 

kinetic partition mechanism proposed. 

The comprehension of the unfolding mechanism, akin to the intricacies of the folding 

process, is far from straightforward, and experimental data supporting any proposed 

mechanism remain elusive. Experimental investigation of this pathway is challenging due to 

its inherent complexity, characterized by the existence of numerous mutually exclusive 

intermediate states. Consequently, it is apparent that the formation mechanism involves 

more than a simple transition from a folded to an unfolded state. As a result, the reverse 

journey is equally complex, contrasting significantly with the relative simplicity of G4-folded 

-B-helix transitions. 

Notably, our simulations revealed distinct unfolding mechanisms across the various G4 

topologies. Let's delve into each topology individually. 

Parallel Topology: A Multifaceted Unfolding Mechanism 

The parallel topology of G4s is undeniably fascinating due to its experimental stability, 

making it a crucial focus for understanding G4 unfolding mechanisms and advancing 

therapeutic strategies, particularly in the context of RNA-G4s, because it is the only topology 

found in RNA sequences. 



 193 

Our unfolding simulations of this structure revealed a hierarchical mechanism, 

characterized by various potential paths. However, amidst this diversity, commonalities 

emerged across all simulations. A pivotal event in all simulations was the loss of a guanine 

from one of the terminal tetrads, leading to the formation of a highly stable intermediate 

state.  

This state featured two tetrads, one with three guanines, a state consistently observed in 

every replication. The significance of this intermediate state lies in its ability to either reform 

the G4 structure or lead to the loss of an additional guanine from that plane. This 

intermediate state has also been simulated with MD classical simulations where it showed 

to be perfectly stable.  

Remarkably, this "tilted" G state aligns precisely with the state predicted for interaction 

with G-clamps, a class of molecules known to destabilize G4 structures. The displacement 

of a guanine from the tetrad initiates the formation of four hydrogen bonds between the 

molecule and the guanine, exemplified by the name G-clamp. Recognizing this, we are 

actively working on developing computational methods to study the unfolding mechanism 

with these G-clamp molecules.  

Another shared intermediate state observed in the simulations is the loss of a second 

guanine from the same tetrad after the first guanine is lost. This structure, featuring two 

tetrads and only two guanines, was demonstrated to be unstable in classical MD 

simulations, ultimately leading to the complete breakage of the G4. The rupture, however, 

can follow diverse mechanisms, forming a multitude of distinct intermediate states.  

A recurring observation across nearly all replications was the rupture of the central tetrad 

after the two terminal tetrads were disrupted. This suggests a sequential pathway for the 

G4s to fold into this parallel topology, beginning with the formation of one tetrad, followed 

by the formation of another, and culminating in the formation of the last tetrad. These final 

states represent merely the end points, and the pathways to reach them are incredibly 

varied, encompassing an extensive sampling of markedly distinct intermediate states. 

Additionally, we noted that during the simulation of the unfolding of this topology, G-

triplexes, which were hypothesized as potential intermediate structures, were not observed. 

This observation aligns with a recent study by Sponer and colleagues, where the folding of 

parallel structures similarly did not yield the isolation of G-triplex intermediates. 
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Implications for Unfolding Pathways: DNA vs RNA G4s 

The intricate unfolding mechanisms unveiled in our simulations for parallel-stranded DNA 

G4s hold potential implications for the unfolding processes of their RNA counterparts. The 

hierarchical mechanism observed, accompanied by stable intermediate states marked by 

guanine loss from terminal tetrads, could likely represent pivotal stages in the unfolding 

pathway shared by both DNA and RNA G4s. 

The striking similarity in the unfolding pathways between DNA and RNA G4s suggests a 

fundamental commonality in their structural dynamics. The loss of guanines from the 

terminal tetrads, observed consistently in our simulations, might be a characteristic feature 

of G4 unfolding irrespective of the nucleic acid type. 

Understanding these shared unfolding processes is key for gaining comprehensive 

insights into G4s dynamics, with implications extending to diverse biological contexts. This 

understanding may enable the development of targeted strategies for disrupting G4 

structures, a promising avenue for potential therapeutic interventions in various diseases. 

Further research exploring the parallelism in folding and unfolding mechanisms between 

DNA and RNA G4s could shed additional light on their structural and functional roles in 

biological systems. 

Hybrid and Antiparallel Topologies: Unfolding Mechanisms 

The unfolding mechanism for the hybrid topology closely mirrors that of the parallel topology. 

In both cases, the process unfolds consecutively, usually initiated by the loss of a guanine 

from one of the tetrads. An intriguing observation is the stabilization of intermediate states, 

often involving interactions with adenines in the loop. In some simulations, a unique 

intermediate structure known as the G-triplex forms, resulting from a strand slippage-like 

event where a column of guanines is pulled away. 

In the case of the antiparallel topology, the mechanism diverges significantly from the other 

topologies. The unfolding process involves the formation of distinct intermediate structures 

characterized by stacked columns of bases. These stacked structures exhibit a notably 

lower coordination number than the initial G4 structure. Subsequently, the G4 unravels 

through a straightforward opening of the sequence, often leaving behind hairpin-like 

structures in certain replicas, a consequence of the G4's inherent structural features with 

consecutively bound guanines. 

Understanding these distinct unfolding pathways sheds light on the dynamic behavior of 

hybrid and antiparallel G4s. The identification of these intermediate states and their stability 
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provides valuable insights into the complex and varied nature of G4 dynamics. Further 

exploration of these pathways and their implications can deepen our knowing of the 

biological roles and potential therapeutic targets associated with G4 structures. 

Exploring Unfolding Events and FES Complexity 

Efficiently exploring the unfolding events and the free energy surface (FES) for such 

intricate systems remains a challenge. In this study, the MetaD approach, guides simulations 

towards the unfolding of these structures.  

However, the complexity of the FES in the studied systems presents hurdles in achieving 

fully converged conformational ensembles. Additionally, interpreting these free energies 

proves challenging for understanding the unfolding mechanism comprehensively. The 

choice of CVs, dictating the biasing direction for conformational sampling, profoundly 

influences sampled states and unfolding pathways. Despite robustly capturing the formation 

of highly unstable species, calculating the ∆G of the unfolding of these structures and 

discriminating between different states or identifying commonalities across various 

topologies remain elusive at this stage. Exploration of the conformational space of the 

unfolded DNA is generally very challenging. Independent of the chosen CV, the population 

of the unfolded state may only be approximated. 

Acknowledging the intricate G4 folding landscapes, this study underscores that a single 

simple CV could be useful to encapsulating these complex processes. However, the choice 

of the CV offers valuable insights into the potential existence of alternative pathways. Future 

endeavors will focus on optimizing folding CVs to enrich our understanding of these intricate 

pathways. 

Challenges in Force Field Representation of G4 Unfolding Landscape 

While the current simulations offer valuable insights into the G4 unfolding landscape, they 

are inherently constrained by limitations in force-field accuracy, chosen CVs, and achievable 

sampling. 

In the context of DNA simulations, we used a newly developed force field. Given that this 

force field has been newly parametrized from scratch, it could not have been fully 

established, yet. However, the first validations look very promising. Notably, an 

acknowledged issue with force fields is the tendency to overestimate ion-ion repulsion within 

the G4 channel due to the absence of polarization/charge transfer effects with fixed point 

charges force fields. This overestimation might be addressed in the future through the 

adoption of polarizable force fields. 
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Moreover, the force field might potentially inadequately stabilize propeller loops, a concern 

that has been tentatively raised in the past. Previous studies have indicated notably fast 

unfolding for structures with propeller loops, and longer lifetimes for structures with specific 

loop configurations. 

Previous unbiased and temperature-accelerated MD studies reported notably fast 

unfolding (short lifetimes) for all-anti hairpins, triplexes, and G4s (the latter simulated in the 

absence of cations) with propeller loops. Longer lifetimes were observed for structures with 

propeller loops with at least one guanosine in syn, and structures with lateral and diagonal 

loops. However, these studies used a different force field.  

The precise aspects of the force field contributing to this imbalanced description of 

propeller loops remain unclear. 

However, unraveling the exact components of the force field responsible for imbalanced 

descriptions, particularly concerning propeller loops, remains a challenge. Efforts to improve 

these representations, perhaps through dihedral parametrizations or advancements in 

force-field designs, will be crucial for a more accurate portrayal of G4 folding dynamics. 

1.17.6 Conclusion 

We have demonstrated that using the MetaD simulations along with the coordination 

number as a collective variable in our method holds significant promise for characterizing 

the unfolding pathways of G4s. This approach not only provides insights into the unfolding 

pathways but also enables the identification of transient ensembles that link major free 

energy states. This effort is pivotal in advancing our understanding of G4 properties and 

their functional roles. 

Experimental approaches often face challenges in capturing short-lived intermediates and 

transitory ensembles in the dynamics of G4s. Consequently, complementary modeling and 

simulation studies become essential tools to unravel these intricate dynamics, offering a 

more comprehensive view of G4 behavior and function. Integrating computational 

methodologies with experimental data empowers us to explore and interpret the dynamic 

behavior of G4 structures, providing valuable insights that would be challenging to obtain 

through experimental techniques alone. 

In this study, we presented a comprehensive set of all-atom enhanced-sampling unfolding 

simulations targeting various topologies of both DNA and RNA G4s. Our simulations shed 

light on the unfolding mechanism of parallel G4s, revealing a multi-pathway process 
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involving the tetrads. These finding challenges conventional literature models, which often 

depict simple intermediates like the Hoogsteen triplex in the folding process. 

Moreover, our investigations underscore the considerable differences in unfolding 

mechanisms across different G4 topologies. This insight into topology-specific unfolding 

mechanisms holds immense promise for the design of molecules that can selectively target 

distinct G4 topologies. By leveraging these novel insights, we can pave the way for the 

development of specific molecules tailored to modulate G4 structures, offering exciting 

prospects for therapeutic interventions and advancing our fundamental understanding of G4 

biology. 

1.17.7 Materials and Methods 

Starting structures 

For the DNA we used three different topologies: 

- Parallel: 1KF1 

- Antiparallel: 143D 

- Hybrid: 2GKU 

For the RNA we used the parallel TERRA (PBD 6HHJ) and the structure find in SARS-CoV-

2 genome (RG-1). 

 
PDB ID Number of 

replica 
Time (ns) 

1KF1 5 200 
143D 5 200 
2GKU 5 200 
6HHJ 5 200 
RG-1 5 200 

 
Metadynamics protocol  

The employed CVs for the MetaD biasing were based on the coordination number which 

count the number of contacts between two groups.  

This keyword can be used to calculate the number of contacts between two groups of 

atoms and is defined as:  

𝐶 =<<𝑠9D
9∈39∈b
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where  𝑠9D 	 is 1 if the contact between atoms i and j is formed, zero otherwise. In actuality, 

𝑠9D is replaced with a (sigmoidal) switching function to ensure that the calculated CV has 

continuous derivatives. The default switching function is:  

𝑠9D =
1 − U

𝑟9D − 𝑑7
𝑟7

V
'

1 − U
𝑟9D − 𝑑7
𝑟7

V
> 

Gromacs package (versions 2022.2) patched with PLUMED (versions 2.8.2) was used to 

run the MetaD simulations. The parameter, coordinate, and simulation settings files, 

reference structures, and PLUMED input files are available in the Supplementary data.  

The entire protocol to perform the MetaD simulation is the following: 

1. Initial minimization of the system solvated and with ions (50000 steps); 

2. 100-ps of nvt equilibration; 

3. 100-pns of npt equilibration; 

4. Production MetaD using PLUMED with these parameters:  

dna: GROUP NDX_FILE=G4.ndx NDX_GROUP=DNA 

sol: GROUP NDX_FILE=G4.ndx NDX_GROUP=OW 

 

conum: COORDINATION GROUPA=dna GROUPB=sol R_0=0.3 NLIST 

NL_CUTOFF=0.5 NL_STRIDE=100 

boost: METAD ARG=conum SIGMA=20 HEIGHT=.25 PACE=1000 

PRINT ARG=conum,boost.* STRIDE=1000 FILE=colvar 

RMSD calculation  

The Root Mean Square Deviation (RMSD) measures how much a certain molecular 

structure deviates from a reference geometry. For a general molecular structure with 

𝑁	atoms, we can compute the RMSD between a certain conformation (𝑟) and a reference 

structure (𝑟@&c)  via the following equation: 

𝑅𝑀𝑆𝐷 = ¬
1
𝑁<(𝑟9 − 𝑟9

@&c)0
"

92!

	 

where 𝑟9
@&c represents the set of coordinates of the 𝑖-th atom in the reference structure, while 

𝑟9 is the set of coordinates of the same atom but belonging to the structure that is going to 
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be compared to the reference. In summary, the RMSD is the square root of the average of 

the squared distances between atoms. 

To compute this analysis, we used the gmx rms command which compares two structures 

by computing the RMSD.  

Cluster analysis 

To For clustering, to find the most representative structures for every replica, we used the 

Gromos Clustering Algorithm (Algorithm as described in Daura et al. (Angew. Chem. Int. Ed. 

1999, 38, pp 236-240)) and it works in brief: 

- Count number of neighbors using cut-off based on RMSD 

- Take structure with largest number of neighbors with all its neighbors as cluster and 

eliminate it from the pool of clusters 

- Repeat the same steps for the remaining structures. 

We have done the clustering in several ways but the one that seems to best describe and 

separate the intermediate states is to do the analysis with respect to the orientation of the 

guanines that constitute the G4 during the simulation. 
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Conclusions and perspectives 

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has presented an 

unprecedented global health crisis, demanding urgent research and innovative strategies to 

combat the virus and its emerging variants. This thesis embraced a comprehensive 

approach, integrating both protein-based and genetic methodologies to unravel the 

complexities of SARS-CoV-2 and design innovative therapeutic strategies. 

Protein Approach. 

   Understanding the SARS-CoV-2 Spike protein and its mutations is pivotal, given its 

critical role in viral entry and immune recognition. This research successfully predicted 

immune recognition regions within the Spike protein, guiding the development of potential 

vaccine candidates and diagnostic targets. Additionally, it investigated immune response 

variability to Spike protein mutations, providing insights into the efficacy of monoclonal 

antibodies against different variants. The study also delved into the stability of viral variants 

with Spike protein mutations, offering critical knowledge for effective public health strategies. 

The exploration of the fatty acid binding pocket within the Spike protein across variants 

identified potential druggable targets, furthering the potential for therapeutic interventions. 

Genetic Approach 

   The genetic approach focused on characterizing the G-quadruplex (G4) folding 

landscape, a crucial secondary structure present in both human and viral genomes. By 

developing a computational tool to navigate the complex G4 folding mechanisms, this 

research unveiled the dynamic G4 folding landscape. Understanding the biological roles of 

G4 structures, particularly within viral genomes, is a significant step toward potential 

therapeutic interventions and drug discovery strategies. 

The dual approach taken in this thesis, encompassing both protein and genetic 

perspectives, contributes substantially to our understanding of SARS-CoV-2 biology and its 

interactions with the host immune system. By addressing critical research objectives, this 

work paves the way for the development of effective strategies to combat COVID-19 and 

potentially other emerging viral threats. Ultimately, these findings contribute to the ongoing 

global efforts to mitigate the impact of the pandemic and enhance preparedness for future 

viral outbreaks. 

 


