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Introduction and motivation

he Standard Model of Particle Physics (SM) is at present the most
successful theory to describe the fundamental particles and their in-
teractions. It comprises Quantum Chromodynamics (QCD), which
treats the strong interaction, and the Electroweak (EW) sector, in

which the electromagnetic and the weak forces are unified. At the present
day, apart from few exceptions, the Standard Model has predicted results that
are in excellent agreement with the experimental data. However, many open
questions remain, connected for instance with the existence of dark matter, the
nature of neutrinos, the Higgs hierarchy problem, and how to reconcile gen-
eral relativity with quantum field theory. Moreover, some experimental results
cannot be explained by the SM: the most significant one is the measurement of
the anomalous magnetic dipole moment of the muon, whose value is at tension
with the corresponding theoretical prediction at the level of 5� [1–4]. Con-
cerning the theoretical evaluation of the muon anomalous magnetic moment,
however, the situation is puzzling, and di↵erent methods, which could lead to
a better agreement between theoretical and experimental determinations, are
currently under discussion.

All these facts support the general idea of the existence of physics beyond
the Standard Model, which can be searched mainly in two ways: one approach
consists in looking directly for new particles at the highest available energies;
on the other hand, if the new particles are not kinematically accessible, another
method is to search for indirect e↵ects. Concerning direct new physics searches,
new accelerators have been proposed, like, for example, the Future Circular
Collider (FCC) and multi-TeV muon colliders. New physics indirect e↵ects,
on the other side, can be investigated with model independent analyses, for
instance by means of the Standard Model E↵ective Field Theory (SMEFT),
or within the SM by very precise measurements of some crucial parameters
and distributions, in order to point out discrepancies in the comparison of
these parameter determinations at di↵erent energies and machines. To cite an



Introduction and motivation

example, the future High Luminosity Large Hadron Collider (HL-LHC) will
allow to explore all these approaches.

The precise determination of SM parameters at hadronic machines plays a
fundamental role in present and future physics programmes. In this context,
the neutral-current Drell-Yan (NCDY) process, which has a large cross section
and a clean experimental signature, is ideal to perform precision tests of the
Standard Model electroweak parameters, like the W -boson mass and the weak
mixing angle, at hadronic colliders. For example, the LHC Electroweak Work-
ing Group (EWWG) at CERN is dedicated to develop the theoretical and
experimental setup for a high-precision determination of the e↵ective weak
mixing angle, sin2 ✓`eff , defined as the coupling of the Z boson with leptons at
the Z peak, with the NCDY process.

On the theory side, precision means to evaluate the relevant observables
at the best possible accuracy, by taking into account the radiative corrections
of the strong and electroweak interactions, together with carefully quantify
the theoretical uncertainty associated to a given prediction. In particular, a
key observation for the determination of SM parameters is that one should
have the parameter to be determined, i.e. the W mass or the weak mixing
angle, among the inputs of the renormalization scheme, while keeping in mind
that the choice of a particular scheme has an e↵ect on the total theoretical
uncertainty.

This thesis addresses these issues by presenting a critical comparison among
di↵erent renormalization schemes in the electroweak sector of the Standard
Model, in particular variants of the on-shell and of the MS schemes, at next-
to-leading order (NLO) plus leading fermionic higher-order corrections, and
with particular reference to the neutral-current Drell-Yan process. Beside a
determination of the e↵ective definition of the weak mixing angle, which will
probe the energy scale at the Z resonance, one can conceive a high-energy
test of the Standard Model, via the precise measurement of the MS weak
mixing angle, sin2 ✓MS

w (µ): this can be achieved with the development of a new
parameter scheme with sin2 ✓MS

w (µ) as input, as it is here discussed.

On top of this, several aspects have to be taken into account when calculat-
ing electroweak radiative corrections for the neutral-current Drell Yan, as the
gauge-invariance properties of the treatment of the resonances. In fact, the cor-
rect description of unstable particles like the W and the Z boson, for energies
close to their masses, require to include their decay width in the calculations,
in such a way not to spoil the general properties of the theories, like gauge
invariance. Di↵erent gauge-invariant options for the resonance treatment are
here reviewed, and their numerical implementation is examined. Furthermore,
some newly implemented alternatives for computing the hadronic contribution
to the running of the electromagnetic coupling, as well as a detailed description
of higher-order contributions, are discussed.

Finally, to be able to compare the theoretical predictions with experimental
data, it is necessary to embed the computation of radiative corrections into a
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simulation code. To this aim, an event generator is ideal, as it makes it possible
to have a fully-di↵erential description of the process. Electroweak corrections
to the neutral-current Drell Yan at NLO+universal higher orders have thus
been implemented within the Z_ew-BMNNPV package of the Monte Carlo event
generator POWHEG-BOX-V2. Their e↵ects on relevant di↵erential distri-
butions are studied in the energy region around the electroweak scale, as well
as in the so-called Sudakov regime, at energies of the order of some TeVs.

The original results of this work allow, on one side, to quantify the theoret-
ical uncertainties associated to a determination of sin2 ✓`eff , within the context
of the LHC EWWG. On the other hand, having at disposal a new scheme with
the MS weak mixing angle as input makes it possible to explore the sensitiv-
ity of LHC and HL-LHC to sin2 ✓MS

w (µ), opening the possibility to determine
the running weak mixing angle, and eventually the MS electromagnetic cou-
pling, at high scales. Both these determinations of the weak mixing angle �

at the Z-peak and in the TeV region � will represent a fundamental test of
the Standard Model.

The first four chapters of this work frame the theoretical aspects necessary
to understand the code implementation and the numerical results. In Chap. 1,
we review the building blocks of the Standard Model Lagrangian, while Chap. 2
examines the phenomenology of precision tests of some SM crucial parameters,
like the W -boson mass and the weak mixing angle; moreover, the concept of
running couplings is introduced.

In Chap. 3, the renormalization of the Standard Model in both the on-shell
and the MS scheme is discussed, focusing on the neutral-current Drell-Yan
process at NLO plus universal higher-order corrections. Special attention is
devoted to the choice of the electroweak input parameter scheme, presenting
the di↵erent options implemented in the Z_ew-BMNNPV package. The behaviour
of electroweak corrections in the Sudakov regime is also examined.

Chap. 4 deals with the issue associated with the mathematical description
of unstable particles while preserving gauge invariance. The di↵erent recipes
to treat the resonance implemented in the Z_ew-BMNNPV code are described.

From Chap. 5 to Chap. 7, the original numerical results are presented:
QED corrections to the neutral-current Drell-Yan are examined in Chap. 5,
while the weak contributions are studied in Chap. 6, where predictions within
several input schemes and with di↵erent resonance treatments are compared,
to quantify the parametric and intrinsic uncertainties associated with the the-
oretical prediction of some relevant di↵erential distributions. The e↵ectiveness
of the Sudakov approximation in the high energy regime, together with the
possibility of quantifying the missing bosonic higher-order contributions, are
also assessed. Finally, Chap. 7 presents some results on the sensitivity to the
MS weak mixing angle in the Run 3 and High-Luminosity phases of the LHC,
by studying the feasibility of a test of the Standard Model via a high-energy
determination of sin2 ✓MS

w (µ).
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1
The Standard Model

he Standard Model of Particle Physics is at present the most suc-
cessful theory to explain how fundamental particles interact with
each other, and comprises three of the four fundamental forces: the
strong interaction is described in Quantum Chromodynamics, while

the electromagnetic force, theorised in Quantum Electrodynamics (QED), can
be treated in a unified way together with the weak one, to give the electroweak
interaction. The gravitational force is not included in the theory.

The electroweak and strong sectors of the Standard Model are described in
quantum field theory by non-abelian Yang-Mills gauge theories, characterized
by the symmetry groups SU(2)L ⇥ U(1)Y and SU(3)c, respectively. The the-
ory of electroweak interactions is developed in the Glashow-Salam-Weinberg
model, originally proposed by Glashow, Weinberg and Salam [5–7] for leptons
and later extended to quarks by Glashow, Iliopoulos and Maiani [8]. The elec-
troweak theory is characterised by two gauge coupling constants: g2 for the
weak isospin group SU(2)L and g1 for the weak hypercharge group U(1)Y . The
hypercharge is defined from the relation:

T3 +
Y

2
= Q , (1.1)

where Q is the electric charge operator, and T3 = ⌧3/2, with ⌧3 the third of
the generators of SU(2)L, that are the Pauli matrices ⌧1, ⌧2 and ⌧3. Quantum
Chromodynamics has been theorised in the Seventies, as the result of di↵erent
ideas coming from the description of interactions among nucleons in ordinary
matter, together with experimental results [9–12]. The strong interaction is
quantified by the coupling gS and the SU(3)c group is generated, in its funda-
mental representation, by the Gell-Mann matrices, �A with A = 1, . . . , 8.

The theory is completed with the spontaneous symmetry breaking provided
by the Higgs mechanism, that is responsible to give mass to fermions and gauge
bosons, while the photon and the gluon remain massless [13–15]. The most
remarkable property of the Standard Model is that it is a consistent quantum
field theory, meaning that it is renormalizable, as proven by ’t Hooft [16], and
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anomaly-free, thus making it possible, given a finite set of input parameters,
to predict measurable quantities order by order in perturbation theory.

For future use throughout this work, we write here the Lagrangian of the
Standard Model, and refer to [10, 17–21] for a complete dissertation on how the
Lagrangian is built. The Lagrangian is gauge-invariant under SU(2)L⌦U(1)Y
and SU(3)c transformations and reads:

L = �
1

4
W a

µ⌫W
µ⌫
a �

1

4
Bµ⌫B

µ⌫
�

1

4
GA

µ⌫G
µ⌫
A

+ LSSB

+
X

i

(L̄0
ii /DL0

i + Q̄0
ii /DQ0

i) +
X

i

(l̄
0 R
i i /Dl

0 R
i + ū

0 R
i i /Du

0 R
i + d̄

0 R
i i /Dd

0 R
i )

+
X

i, j

(L̄0
ii h

l
ij l

0 R
j � + Q̄0

ii h
u
ij u

0 R
j �c + Q̄0

ii h
d
ij d

0 R
j � + h. c.)

+ Lfix + Lghost ,
(1.2)

where h.c. means hermitean conjugate. We now describe the content of this
equation in detail.
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�
1

4
W a

µ⌫W
µ⌫
a �

1

4
Bµ⌫B

µ⌫
�
1

4
GA

µ⌫G
µ⌫
A

The first three terms represent the pure gauge-field Lagrangian of the
electroweak and strong sectors: the gauge boson field strength tensors
are denoted with Bµ⌫ and W µ⌫

a , with a = 1, 2, 3, while Gµ⌫
A stands for

the gluon strength tensor, that carries also a colour index A = 1, . . . , 8.
They are defined as:

Bµ⌫ = @µB⌫ � @⌫Bµ (1.3)

W a
µ⌫ = @µW

a
⌫ � @⌫W

a
µ + g2 ✏

abc W b
µW

c
µ , a = 1, 2, 3

GA
µ⌫ = @µG

A
⌫ � @⌫G

A
µ + gS f

ABC GB
µG

C
µ , A = 1, . . . , 8 ,

where ✏abc and fABC are the structure constants of SU(2)L and SU(3)c,
respectively. In Eq. 1.2 we are using the so-called interaction basis
for the electroweak sector: it has the advantage of keeping the gauge
symmetry manifest, but the fields W a

µ , with a = 1, 2, 3, and Bµ are not
the physical ones. They can be related to the physical gauge bosons
by the relations W±

µ = (W 1
µ ⌥ iW 2

µ)/
p
2 and:

✓
cos ✓w sin ✓w
� sin ✓w cos ✓w

◆✓
W 3

µ

Bµ

◆
=

✓
Zµ

Aµ

◆
, (1.4)

where ✓w is the weak mixing angle, that enters also the electroweak
unification relation:

g2 sin ✓w = g1 cos ✓w = e . (1.5)

Eq. (1.4) and (1.5) state the unification of the electromagnetic and the
weak forces.
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1. The Standard Model

L
SSB = (Dµ�)†(Dµ�)� V (�)

In the spontaneous symmetry breaking Lagrangian, one can recognise
a first kinetic term, in which the symbol Dµ denotes the covariant
derivative:

Dµ = @µ � igsI
AGA

µ � ig2T
aW a

µ � ig1
Y

2
Bµ , (1.6)

where IA = �A/2 are the generators of SU(3)c, T a are the generators
of SU(2)L and Y is the hypercharge. The second term is the scalar
potential V (�), that must satisfy certain requirements. First, to guar-
antee the renormalizability of the theory, it must contain at most the
fourth power of the field �, and has to be bounded from below, for
the existence of a minimum in the Hamiltonian. Furthermore, it must
have a stationary point at the origin. Under the hypothesis that only
one Higgs doublet � exists, one writes the scalar potential as:

V (�) = m2�†� +
�2

4
(�†�)2 , � > 0 , m2 = ��v2 < 0 , (1.7)

where the condition � > 0 guarantees that the potential is bounded
from below, i.e. it has minima in:

�0(x) = ei�
v
p
2
, v =

r
�4m2

�
, � 2 [0, 2⇡) . (1.8)

The parameter v is called the non-vanishing vacuum expectation value
(vev) and represents the order parameter of the system, i.e. the energy
scale of spontaneous symmetry breaking. From the infinite set of local
minima, we can choose the ground scale �0 = (0 , v/

p
2) and expand

the Higgs doublet around this minimum:

�(x) =
1
p
2

✓
0

v +H(x)

◆
exp

✓
i⌧i�i(x)

v

◆
=

1
p
2

✓
0

v +H(x)

◆
, (1.9)

where the last equivalence is valid in the unitary gauge, that allows us
to eliminate the unphysical would-be Goldstone fields �i(x), i = 1, 2, 3.
The Higgs scalar has been chosen not to carry electromagnetic and
colour quantum numbers, in such a way that the generators ⌧1, ⌧2 and
T3 � Y/2 are broken, while the symmetries of U(1)em and SU(3)c are
left unbroken, with the photon and the gluon massless. The final result
are the masses of the W±, Z and H bosons:

MW =
g2v

2
, MZ =

p
g21 + g22 v

2
, MH =

r
�

2
v2 . (1.10)
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X

i

(L̄0
ii /DL0

i + Q̄0
ii /DQ0

i) +
X

i

(l̄
0 R
i i /Dl

0 R
i + ū

0 R
i i /Du

0 R
i + d̄

0 R
i i /Dd

0 R
i )

+
X

i, j

(L̄0
ii h

l
ij l

0 R
j � + Q̄0

ii h
u
ij u

0 R
j �c + Q̄0

ii h
d
ij d

0 R
j � + h. c.)

In the following lines of Eq. (1.2) we have the kinetic terms of the
fermions and their gauge interactions, and finally their Yukawa in-
teractions with the scalar doublet. The fermion (i.e. lepton and
quark) doublets and singlets read:

L
0 l
i =

✓
⌫ 0
L,i

l0L,i

◆
, Q0

i =

✓
u0
L,i

d0L,i

◆
, l0R,i , u0

R,i , d0R,i , i = 1, 2, 3 ,

(1.11)
where the index i runs over the three lepton and the three quark
families, with l = e, µ, ⌧ . The colour index is suppressed here, but
one should keep in mind that there are nine quark doublets, due
to the colour quantum number. The labels u and d stand for up-
type-quark and down-type-quark fields, respectively. The fermion
fields are written here in the interaction basis, indicated by the apex,
in which the covariant derivatives are diagonal with respect to the
family indices, but fields are not mass eigenstates. We furthermore
have the right-handed singlets l0R,i, u

0
R,i and d0R,i.

Finally, the couplings hf , with f = ⌫, `, u, d, denote Yukawa-coupling
matrices, necessary for the generation of fermion masses. The field
�c, that couples to up-type right-handed fermions, is the charge-
conjugate of the Higgs field:

�c = i⌧2�
⇤ . (1.12)

The classical Lagrangian density needs then to be quantized, in order to
obtain a complete description in quantum field theory. A convenient method
to do so in a manifestly Lorentz-covariant way is via the path-integral for-
malism, that requires the specification of a gauge and the introduction of the
Faddeev-Popov fields in order to eliminate from functional integrals the physi-
cally equivalent configurations due to gauge transformations [22, 23]. This has
as a consequence the introduction of a gauge-fixing and a ghost Lagrangian.

5
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Lfix = �
1

2⇠
Ca{K}Ca

{K}

In a general non-abelian gauge theory characterised by a gauge term
of the kind:

Lgauge = �
1

4
V a
µ⌫V

µ⌫
a , (1.13)

where V a
µ⌫ = @µKa

⌫ � @⌫Ka
µ + g✏abcKb

µK
c
⌫ is the generic strength tensor

of the field K, the gauge-fixing Lagrangian takes the form reported in
the grey rectangle above, where C is a set of local functionals of the
gauge fields that allows us to fix the gauge condition, i.e. Ca

{K} = 0.
For example, for the quantization of the electroweak sector, we have:

Lfix,EW = �
1

2⇠A
(CA)2 �

1

2⇠Z
(CZ)2 �

1

⇠W
C+C� , (1.14)

with the gauge-fixing functionals expressed in a general renormalizable
gauge:

C± = @µW±
µ ⌥iMW ⇠0W�± CZ = @µZµ�MZ⇠

0
Z�

3 CA = @µAµ ,
(1.15)

where �±, i = 1, 2 are the would-be Goldstone fields and ⇠a with a =
A,Z,±, and ⇠0b with b = Z,±, are independent gauge parameters. For
the strong sector one has:

Lfix,QCD = �
1

2⇠G
(CG)2 , (1.16)

with:
CG = @µGB

µ , (1.17)

where ⇠G appears as the gauge parameter and B denotes the colour
index. Note that, from the gauge-fixing Lagrangian, a mass term of
the kind

p
⇠M corresponds to each would-be Goldstone boson. In

the following we will work under the ’t Hooft-Feynman gauge, where
⇠0± = ⇠± and ⇠0Z = ⇠Z , and ⇠a = 1 for every a = A,Z,±, G.
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Lghost = ūa(x)
�Ca(x)

�✓b(y)
ub(x)

The last term in Eq. (1.2) is the Faddeev-Popov ghost Lagrangian,
resulting after the complete treatment of the path integral [17], where
the derivative describes the variation of the gauge-fixing function Ca

under infinitesimal gauge transformations characterised by the param-
eter ✓b. The Faddeev-Popov procedure is the formal way to remove the
mathematical inconsistencies due to the presence of gauge-equivalent
configurations in the path integral defining the generating functional
of the theory. We have here introduced the unphysical anticommut-
ing scalar fields, ua(x) and ūa(x), that are called Faddeev-Popov ghost
fields and acquire the same mass as the would-be Goldstone boson
fields,

p
⇠M .
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2
Testing the electroweak Standard
Model at high energies

fter its theoretical formulation was completed in the Seventies, the
Standard Model has undergone a great number of precision exper-
imental tests, emerging as the most successful theory in particle
physics. Although the Standard Model can be considered a complete

renormalizable quantum field theory, one should in fact prove its consistency
against experimental data. In the last fifty years, a huge number of experimen-
tal results have confirmed the Standard Model predictions. As we will discuss,
in some cases the theory led to the discovery of new particles, by correctly
indicating the mass range in which they were expected.

However, many open questions cannot currently be solved by the SM: for
example, experimental data indicate that neutrinos have a (small) mass, which
is not foreseen in the Standard Model; yet, one can modify the theory to in-
clude neutrino masses, but it is not clear how to proceed: the main alternatives
predict a Dirac or a Majorana nature for neutrinos. Moreover, mathematical
di�culties arise when trying to express the theory of gravitation, i.e. general
relativity, in terms of a quantum field theory, not to mention that the quantum
e↵ects of gravity would start to be visible at the Planck scale, making it im-
possible to discriminate among di↵erent quantum gravity theories with current
technologies. Another problem is connected with the Higgs sector, and carries
the name of hierarchy problem: it remains unclear the fundamental reason
behind the di↵erent values of the fermion masses, or why the weak scale is
so small with respect to the Planck scale. Finally, Standard Model particles
are not able to account for the observed amount of cold dark matter and dark
energy, and the matter-antimatter asymmetry in our universe is still without
explanation.

On top of that, from a phenomenological point of view, a longstanding puz-
zle is due to the fact that the experimentally measured value of the anomalous
magnetic dipole moment of the muon, usually referred to as the (g � 2)µ, is
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in tension with the Standard Model prediction, presently at the level of 5�.
This number is obtained by considering the theoretical evaluation which makes
use of traditional dispersive techniques to compute the leading order hadronic
contribution to (g� 2)µ, the ingredient of the calculation a↵ected by the high-
est uncertainty, due to the di�culties stemming from non-perturbative strong
interaction e↵ects. However, in recent years, lattice calculations have provided
alternative evaluations of the leading order hadronic contribution, which di↵er
from their dispersive counterparts by an amount from 2 to 2.5�, depending
on the reference value of the dispersive methods, and are in agreement with
the experimental determinations. Moreover, a recent experimental result from
the CMD3 collaboration in the pion channel, which plays the main part in
the hadronic contribution to the (g � 2)µ, would lead to a di↵erent dispersive
value, closer to the experimental one [24]. The final picture is thus even more
unclear.

Another experimental determination which has raised the attention of the
community is the recent one on the W -boson mass from the CDF collabora-
tion, based on the analysis of the full Run-2 dataset and characterised by the
incredible precision of 1·10�4. This new determination should be considered to
supersede the previous result, even if it is in disagreement with it, and stands
7� from the Standard Model prediction [25], as it will be discussed.

On the basis of the scientific method, several consistency tests have been
performed, to assess the validity of the theory and to explore the existence
of possible New Physics (NP) beyond the Standard Model, that could pro-
vide some answers to these open issues. There are two complementary and
intersecting approaches to look for beyond the Standard Model e↵ects, usually
identified with the exploration of the energy rather than the precision (or lu-
minosity) frontier: on one side, we can search directly for new particles at the
highest available energies; on the other hand, one can look for indirect e↵ects.
The latter can be searched with model independent analysis, for example by
means of the SM E↵ective Field Theory: in the SMEFT approach, the SM is
regarded as the low-energy limit of an unknown ultraviolet theory, and NP ef-
fects can be parametrised by a series of higher-dimensional non-renormalizable
operators, built from the SM fields and symmetries, and weighted by inverse
powers of the NP energy scale.

Another method to look for indirect e↵ects it to obtain very precise mea-
surements of some crucial parameters within the Standard Model, in order to
point out discrepancies in the comparison of these parameter determinations
at di↵erent energies and machines. In this work, we will discuss the test of the
Standard Model in the high energy regime, focusing in particular on the preci-
sion measurement of electroweak observables, together with the determination
of the coupling constants and their running.

From the historical point of view, electroweak precision physics started af-
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ter the discovery of the W± and Z bosons, occurred in 1983 at the UA1 and
UA2 experiments, at the Super Proton Synchrotron, CERN [26, 27]. The elec-
troweak precision program was developed with the operation of two electron-
positron accelerators, the Large Electron Positron collider (LEP) at CERN
and the Stanford Linear Collider (SLC) at SLAC. A proton-antiproton col-
lider, the Tevatron, was operating at Fermilab in the same years. The LEP1
phase (1989-1995) and SLC worked at centre-of-mass energies around the Z
peak, about 91 GeV [28, 29], and studied two-fermion production from e+e�

annihilation, mediated by a photon or a Z boson, i.e. e+e� ! �⇤, Z⇤
! ff̄ ,

with f = ⌫, `, q. The sample of Z bosons produced at the two machines was
huge, amounting to about sixteen millions at LEP1 and thousands at SLC,
and, together with a good control of systematic uncertainties, allowed for a
very high precision, at the 0.1% or better, in the determination of observables
such as the cross sections and the forward-backward asymmetries of the di↵er-
ent channels. LEP1 provided the most precise determination of the Z boson
mass up to now, by fitting the experimental cross sections to the relativistic
Breit-Wigner distribution at di↵erent energies around the Z peak. The com-
bined value, that takes into account the numbers quoted by each of the four
experiments at LEP, is MZ = 91.1876 ± 0.0021 GeV [30]: after LEP1, the Z
resonance is so well-known that is used today for the calibration of the detector
response at hadronic colliders, that is essential for the determination of the W
boson mass via the template fit approach.

In 1996, the LEP machine underwent an upgrade that took its centre-of-
mass energy up to about 200 GeV, starting the LEP2 phase, and making it
possible to explore the energy region beyond the WW production threshold,
i.e. the four-fermion production through the processes e+e� ! W+W�

! 4f
and e+e� ! ZZ ! 4f , together with the search of the Higgs boson via the
process e+e� ! HZ ! bb̄f f̄ .

Meanwhile, the Tevatron Collider searched for the top quark, by studying
the production of a tt̄ pair from proton-antiproton collisions at a centre-of-
mass energy of 2 TeV. The physics program at Tevatron included also the
investigation of direct production of the Higgs boson and of new physics beyond
the Standard Model. After the discovery of the top quark in 1995 [31, 32], the
high luminosity of the machine, of the order of 10 fb�1, made it possible to
begin the first series of high precision determinations at a hadronic collider in
history. The precision program of the Tevatron was continued at the Large
Hadron Collider (LHC), at energies of 7 � 8 TeV, and culminated with the
discovery of the Higgs boson in 2012 [33, 34]. The centre-of-mass energy at
LHC has then been upgraded to 13 TeV and very recently taken to 13.6 TeV
with the start of Run 3; at the same time, the nominal luminosity have been
doubled with respect to the design value [35], and is expected to reach a value
five times larger than the present one in the High Luminosity phase, foreseen
for the end of the decade [36]. With such luminosities, the LHC constitutes an
ideal machine for precision physics, with the advantage of exploiting a large
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2. Testing the electroweak Standard Model at high energies

number of processes and energy ranges, and will be even more crucial in the
future for testing the Standard Model and physics beyond.

Precision physics in the Standard Model shows its full potential with the
global electroweak fit: the idea is to exploit the contributions from quantum
corrections to probe physics at energy scales that are much higher with respect
to the masses of the particles directly entering the experimental reactions. In
fact, the theoretical predictions of the observables depend on some unknown
parameters, which can thus be indirectly determined via a best fitting proce-
dure. To best constrain the unknown parameters, a high experimental preci-
sion is thus required, as well as a good control of the theoretical uncertainties
which enter as systematics in the fit [37–39]. Global electroweak fit have been
performed since LEP, and have demonstrated an impressive predictive power,
making it possible to assess the value of the Higgs-boson and the top-quark
mass before these particles were discovered, relying only on the impact that
quantum loop corrections containing the Higgs or the top have on the predic-
tions of other quantities.

The present work is framed in this context, since its main point is the
developing of Monte Carlo tools that make it possible to perform precision
determinations of Standard Model parameters, in particular the weak mixing
angle, at hadronic colliders, and that allow to study the e↵ect on the observ-
ables when varying the values or the choice of the input parameters.

The rest of this chapter is devoted to the two parameters currently used to
perform electroweak precision tests, the W boson mass and the weak mixing
angle. After introducing their definitions and the methods for their determina-
tions, we briefly discuss the measurement of the running coupling constants in
the Standard Model, a crucial concept in this work that will be fully developed
in the next chapter.

2.1 The W boson mass

Since the particle discovery in 1983, theW boson mass has been measured with
increasing precision, with both direct and indirect determinations at e+e� and
hadron colliders. A starting point for the determination of MW can be the
tree-level relation with the Fermi coupling constant Gµ:

MW =
r

↵⇡
p
2 sin2 ✓wGµ

=
MZ
p
2

vuut1 +

s

1�

p
8⇡↵

GµM2
Z

. (2.1)

By knowing the values for ↵, Gµ and MZ , the latter measured with very high
precision, from Eq. (2.1) the LEP1 Collaboration obtained the leading order
determination of the W -boson mass: MW ' 80.94 GeV. This is a significantly
di↵erent value from the current experimental average, MW ' 80.38 GeV [30] 1,

1This number does not include the recent determination by the CDF collaboration based
on their full Run-2 dataset [25].
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because it misses higher-order e↵ects, absent in the tree-level relation. Beyond
the leading order one gets [40]:

MW =
MZ
p
2

vuut1 +

s

1�

p
8⇡↵(1 + �r)

GµM2
Z

, (2.2)

The term �r contains the radiative corrections to the muon decay [41, 42],
after the factorization of QED corrections in the Fermi theory, and can be
written as (cfr. Chap. 3):

�r = �↵�
cos2 ✓w
sin2 ✓w

�⇢+ �rrem , (2.3)

where �↵ represents the running of ↵, �⇢ = ⇢�1 describes the deviation from
1 of the parameter ⇢ = M2

W/(M2
Z cos2 ✓w), and �rrem collects the remaining

radiative corrections. The value of the W boson mass depends quadratically
on the top-quark mass via �⇢ and logarithmically on the Higgs-boson mass
and on the fermion masses present in �↵, as:

�⇢ ⇠
↵

4⇡

3

4s2w

m2
t

M2
W

�↵(q2) ⇠
↵

3⇡

X

p

N c
pQ

2
p ln

q2

m2
p

p 2 {SM particles} ,

(2.4)
with q2 the momentum flowing in the photon propagator. If one takes into
account also mixed electroweak-QCD corrections, MW acquire a dependence
also on the running of the strong coupling constant, �↵S. The present state
of the art on the calculation of radiative corrections leads to the theoretical
prediction MW = 80.364± 0.009 GeV [43].

Experimentally, a precise determination of the W boson mass has been
achieved at LEP2 both at the WW threshold, by deriving it from the cross
section measurement, and below threshold from the distribution of the decay
products, by defining MW as the mass parameter in a Breit-Wigner distri-
bution with mass-dependent width. The final LEP2 combination yields the
value MW = 80.392 ± 0.027 (stat) ± 0.028 (syst) GeV [44], an incredible pre-
cision if compared with the initial uncertainty of 5 GeV at the UA1 and UA2
experiments.

At hadronic colliders, the precision measurement of MW is performed via
a template fit approach: the value of MW corresponds to the best fit to
the data, obtained by comparing the final state distributions (called tem-
plates), predicted by Monte Carlo simulations, to the observed kinematic dis-
tributions. The Tevatron collider published the combined value of MW =
80.387±0.016 GeV from the CDF (Collider Detector at Fermilab) and D0 col-
laborations [46]. Very recently, the CDF collaboration published a new result
on the W mass, based on the analysis of the full Run-2 dataset of 8.8 fb�1,
with a precision greater than the one of all other experimental determinations
of MW combined: MW = 80.4335± 0.0094 GeV [25]. This new CDF determi-
nation includes data of the previous result, but is in significant disagreement
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2. Testing the electroweak Standard Model at high energies

Figure 2.1: Overview of MW measurements with the Tevatron results, the LEP
experiments, ATLAS and LHCb, with total (dark blue band) and statistical
(light-blue) uncertainties. The Standard Model prediction is shown by the
gray band [45].

with it and stands 7� from the Standard Model prediction, as it can be seen
from Fig. 2.1.

The ATLAS experiment at the LHC obtained the value MW = 80.370 ±

0.019 GeV [47], based on data of proton-proton collisions collected at a centre-
of-mass energy of 7 TeV. Recently, this measurement has been updated by
reanalysing the 4.6 fb�1 sample of data used in the previous result with im-
proved fitting methods, yielding MW = 80.360± 0.016, in agreement with the
SM prediction [45].

Fig. 2.1 shows the described measurements, together with the LHCb de-
termination [48]. The most recent combination, that does not include the
latest CDF and ATLAS results, is MW = 80.377 ± 0.012 GeV [30]. It has
furthermore to be reported the study in [49], which explores the compatibil-
ity of the discussed W -boson mass measurements at ATLAS, LHCb, CDF,
and D0 by using a coherent framework with theory uncertainty correlations.
The probability of compatibility among the di↵erent determinations is 91%
when removing the CDF measurement, while dropping at 0.5% if including all
experimental values.
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2.2. The weak mixing angle as a test of the Standard Model

2.2 The weak mixing angle as a test of the Standard
Model

As already seen, the weak mixing angle ✓w is a fundamental parameter to
describe the gauge structure of the electroweak interaction: in fact, it controls
the mixing of the unphysical Bµ and W 3

µ fields to give the photon and Z boson
fields, Aµ and Zµ, and appears in the unification relation of the weak and
electromagnetic forces.

At tree level, we can define it via the relation:

sin2 ✓w =
g21

g21 + g22
= 1�

M2
W

M2
Z

, (2.5)

as can be verified using Eq. (1.10). In on-shell schemes that include MW and
MZ as lagrangian parameters (see Chap. 3), one can promote the last equality
to an all-order on-shell definition of sin ✓w, called sin ✓OS

w [40]. On the other
hand, at the Z-boson mass scale, one has another, conceptually di↵erent but
equivalent at tree level, definition of the parameter, the e↵ective weak mixing
angle, sin2 ✓feff , that is related to the couplings of the Z boson with fermions:

sin2 ✓feff =
1

4|Qf |

 
1� Re

gfV
gfA

!
, (2.6)

where Qf is the electric charge of the fermion f in units of the positron charge,
while gfV and gfA are the e↵ective vector and axial-vector couplings to the Z
boson. A third definition of the weak mixing angle is possible if one per-
forms the Standard Model renormalization within the MS scheme, that will
be discussed at length in Chap. 3. This scheme makes apparent the energy
dependence of the couplings, and since in Eq. (2.5) the weak mixing angle
has been introduced as a ratio of couplings, it also acquire a dependence on
the renormalization scale squared µ2: we will label it sin ✓MS

w (µ2). The three
definitions can be related to one another by appropriately taking into account
the relevant radiative corrections:

sin2 ✓feff = f
Z sin2 ✓OS

w = f
Z(µ

2) sin ✓MS
w (µ2) , (2.7)

where the factor f
Z and f

Z(µ
2) includes the corrections to the Zff̄ vertex,

calculated in the on-shell and MS scheme, respectively. The dominant contri-
butions to these kind of corrections involve the same factors already discussed
for the W -boson mass, �↵ and �⇢.

2.2.1 Determinations of the e↵ective weak mixing angle

The e↵ective weak mixing angle can be determined by probing the ratio of the
vector and axial-vector couplings, defined at the Z pole, with observables like
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2. Testing the electroweak Standard Model at high energies

the forward-backward asymmetries at leptonic and hadronic colliders. In fact,
the unpolarized cross section of the e+e� ! ff̄ annihilation process at lowest
order can schematically be written as:

d�

d cos ✓
= A(1 + cos2 ✓) + B cos ✓ , (2.8)

where ✓ is the angle between the incoming and outgoing fermions, and the
coe�cients A and B are functions of the electroweak vector and axial-vector
couplings. The (1 + cos2 ✓) term is due to the pure QED diagram, mediated
only by the photon, while the additional cos ✓ dependence is due to the presence
of the vector and axial-vector couplings in the Z-boson exchange. As a result,
the number of events in the forward direction is not equal to the one of the
backward production. This e↵ect can be quantified by introducing the forward-
backward asymmetry:

AFB =
�F � �B

�F + �B
, �F =

Z 1

0

d cos ✓
d�

d cos ✓
, �B =

Z 0

�1

d cos ✓
d�

d cos ✓
.

(2.9)
At the Z-boson resonance, we can write the forward-backward asymmetry of
the process e+e� ! ff̄ at tree level, disregarding the photon exchange diagram
and the Z � � interference (which is negligible):

Af
FB = 3

(1� 4|Qe| sin
2 ✓eeff )

1 + (1� 4|Qe| sin
2 ✓eeff )

2

(1� 4|Qf | sin
2 ✓feff )

1 + (1� 4|Qf | sin
2 ✓feff )

2
. (2.10)

Introducing the asymmetry parameter, defined by:

Af ⌘
2gfv g

f
a

gf2a + gf2v
=

1� 4|Qf | sin
2 ✓feff

1� 4|Qf | sin
2 ✓feff + 8|Qf |

2 sin4 ✓feff
, (2.11)

the forward-backward asymmetry at the Z peak takes the form:

Af
FB =

3

4
AeAf , (2.12)

where Ae is the asymmetry parameter corresponding to the production e+e� !

Z, while Af is the one of the final Z ! ff̄ vertex. Measurements of Af
FB near

the Z peak have been performed at both leptonic and at hadronic machines,
leading to relative precisions below 0.1% and 0.2% on sin2 ✓feff , respectively.
The advantage of using the asymmetry instead of other observables is that
most systematic e↵ects cancel in the ratio of cross sections. At LEP, sin2 ✓feff
was measured by counting the number of events to derive the forward and the
backward cross section, then computing the forward-backward asymmetries
and extracting sin2 ✓feff from Eq. (2.10). SLC exploited the high polarization
of the initial electron beam to measure instead the left-right asymmetry ALR,
defined as:

ALR =
�L � �R

�L + �R
. (2.13)

16



2.2. The weak mixing angle as a test of the Standard Model

By making use of the relation ALR = AePe, this asymmetry can be translated
directly to the parameter Ae and then to the e↵ective weak mixing angle, if
one knows the average polarization of the initial electron beam, Pe [50, 51].

At hadron colliders, it is not possible to use the LEP/SLD approach based
on the parameterization of the resonance in terms of pseudo-observables, be-
cause of the combined contribution of several partonic processes, characterised
by di↵erent couplings to the Z bosons and di↵erent weights given by the par-
tonic distribution functions. It is thus necessary to study di↵erential distribu-
tions via the template fit method.

To this aim, the neutral current Drell-Yan process, i.e. pp ! �⇤/Z⇤+X !

`+`� + X, is the best one to extract information on the forward-backward
asymmetry, by virtue of its large cross section and clear experimental signa-
ture. Because of di↵erent contributing partonic subprocesses, however, these
kind of measurements are a↵ected by more uncertainties with respect to those
at electronic machines: the reconstruction of the angle ✓ is more di�cult be-
cause the direction of the incoming quark is not precisely known. Another
problem is that QCD initial-state radiation leads to the fact that the direc-
tions of the incoming partons are not collinear in the laboratory frame, and as a
consequence the vector boson acquires a non-negligible transverse momentum.
Finally, the flavour of the quarks cannot be determined, making it necessary
to take into account the parton density functions, as well as to average over
all initial-state flavours.

These problems can be partially overcome if one chooses to measure the
angular distributions of the decay leptons in a reference frame where the `+`�

pair is at rest. The common choice is the Collins-Soper (CS) frame [52], in
which the x-axis is oriented to bisect the angle between the protons within
the hadron plane, the y-axis is the normal vector to the hadron plane, and
the z-axis is chosen to obtain a right-handed Cartesian coordinate system, as
shown in Fig. 2.2. In the CS frame, the scattering angle ✓CS is expressed as:

cos ✓CS =
pz(``)

|pz(``)|

2(p+1 p
�
2 � p�1 p

+
2 )

m``

p
m2

`` + pT (``)2
, (2.14)

with p±i = (Ei±pz,i)/
p
2, where Ei and pz,i are the energy and the z component

of the momentum of lepton i. In this equation one can recognise two factors:
the first one identifies the direction of the incoming quark, while the second
one represents an average angle between the decay leptons and the quarks.
Note that, since we are dealing with partons inside hadrons, one can correctly
perform the assignment of the quark direction only on a statistical basis. In
the following the CS subscript will be dropped, given it understood that when
discussing measurements at hadronic colliders the angle ✓ is defined in the
Collins-Soper frame.

To be more precise, we write the di↵erential cross section of the Drell-Yan
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Figure 2.2: The Collins-Soper frame.

process in a general way:

d�

dp2Tdyd cos ✓d�
=

d�unpol

dp2Tdy


(1 + cos2 ✓) +

A0

2
(1� 3 cos2 ✓)

+ A1 sin 2✓ cos�+
A2

2
sin2 ✓ cos 2�+ A3 sin ✓ cos�+ A4 cos ✓+

+ A5 sin
2 ✓ sin 2�+ A6 sin 2✓ sin�+ A7 sin ✓ sin�

�
,

(2.15)
where we have made explicit the cross-section dependence on ✓ and �, that are
the polar and azimuthal angles in the CS frame. The Ai coe�cients contain
the dependence on the boson kinematics and indirectly depend on the parton
distribution functions (PDFs) of the proton. By integrating Eq. (2.15) over
the azimuthal angle, it is found that AFB is proportional to A4, and thus
a measurement of A4 can be used to determine the leptonic e↵ective weak
mixing angle.

After measuring the forward-backward asymmetry AFB or the A4 coe�-
cient, the weak mixing angle is extracted by a template fit approach on the
predicted observable set obtained by varying the value of sin2 ✓`eff in the MC
generator program. This procedure requires the amplitude of the process to be
written in terms of sin2 ✓`eff , by choosing a suitable input parameter scheme, as
we will discuss in Chap. 3. However, all analyses performed so far at hadronic
machines rely on LO electroweak event generators: the determined parameter
is sin2 ✓OS

w , rather than sin2 ✓`eff , and then a conversion is performed by means
of Eq. (2.7).

This procedure is perfectly fine at LO, but if one wants more precise deter-
minations that take into account also NLO e↵ects, more care has to be devoted
to some interpretation issues. In fact, the forward-backward asymmetry can
be written in terms of vector and axial-vector couplings only at the Z peak,
where only the Z contributes to the amplitude and the overall factor of the Z
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Figure 2.3: Precision measurements of sin2 ✓`eff from the LEP and SLD ex-
periments, from the D0 and CDF collaborations (Tevatron) and from ATLAS,
CMS and LHCb (LHC) [56].

coupling, that in the templates used so far by the experimental collaborations
depends on sin2 ✓OS

w , cancels in the ratio. If one considers a kinematical dis-
tribution over an invariant-mass range, the presence of the photon-exchange
and interference contributions prevents the cancellation of the overall sin2 ✓OS

w

in the Z coupling, which at NLO does not coincide with sin2 ✓`eff anymore,
making it questionable to use the same parameter in the overall and in the
vector couplings.

Another problem is due to the fact that at hadronic colliders the parameter
fitted from AFB is a non-trivial combination of di↵erent e↵ective mixing angles,
corresponding to the di↵erent parton flavours within the (anti)proton, from
which one should extract the leptonic e↵ective weak mixing angle.

The way out, within the SM, is to directly take sin2 ✓`eff as an input pa-
rameter of the electroweak renormalization scheme [53], without relying on the
combination fo MZ and MW that defines sin2 ✓OS

w , as it will be discussed in
Chap. 3.

At the Tevatron, sin2 ✓`eff was determined by the D0 [54] and CDF [55]
Collaborations, yielding a combined value of 0.23148 ± 0.00033 [56], which
falls in between the LEP and SLD measurements, with a similar precision.

At the LHC, the most precise determination of sin2 ✓`eff has been performed
by the ATLAS collaboration [57], by fitting the angular coe�cient A4 in elec-
tronic and muonic decay channels from the full 2012 data sample. Determi-
nations of sin2 ✓`eff have been provided also by CMS [58] and LHCb [59], with
similar statistical and PDF uncertainties. These measurements, that already
reached a precision competitive with the one at the Tevatron, can improve
further in the future with the large statistics already collected at a centre-of-
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mass energy of 13 TeV during Run 2, with the on-going Run 3 and especially
in view of the upgrade of High-Luminosity. Meanwhile, a further reduction of
PDF uncertainties will be possible as new PDF constraining methods become
available.

The combined value which stems from the results obtained at hadronic
colliders (Tevatron and LHC) is sin2 ✓`eff = 0.23140 ± 0.00023 [56]. If one
makes the assumption that this value is not correlated with the measure-
ments at LEP and SLC, it is possible to get a global combination, that yields
sin2 ✓`eff = 0.23151± 0.00014 [56]. All discussed experimental determinations
are shown in Fig. 2.3.

2.2.2 Low energy experiments

It is possible to determine the weak mixing angle also at energies lower than
the Z peak, by using di↵erent definitions with respect to the e↵ective one.
The low-energy measurements have usually less precision, but they can test
the energy dependence, i.e. the running, of the parameter. They are usually
performed by studying parity violation in atoms or neutrino and polarized
electron scatterings on fixed targets.

The first of these methods exploits the fact that parity violation in atoms
is related to the vector couplings of the proton, gpV , and the axial-vector cou-
plings of the electrons around the nucleus, geA, which can be combined in the
parameter gepAV . This can be directly seen in the definition of the atomic weak
charge QZ,N

W :

QZ,N
W ⇡ �2 (ZgepAV +NgenAV )

⇣
1�

↵

2⇡

⌘
, (2.16)

gepAV = 2geuAV + gedAV ⇡ �
1

2
+ 2 sin2 ✓w , (2.17)

genAV = geuAV + 2gedAV , (2.18)

where Z is the atomic number and N represents the number of neutrons in
the atom. These measurements have been performed for several atoms such as
cesium and isotope ratios [60–64].

Another approach is based on the study of the process eL,R N ! eX,
that is the scattering of a left- or right-handed polarized electron beam on a
nuclear target such as deuteron. The left-right asymmetry in the cross section
of these processes is a good observable to extract the electroweak mixing angle.
This method has been adopted by several groups at di↵erent centre-of-mass
energies, for example through deep inelastic scattering (DIS) at SLAC [65]
and with an electron beam up to 6 GeV at the CEBAF accelerator facility at
JLab [66]. Another determination was published by the Qweak Collaboration,
which measured the left-right asymmetry by using a beam of longitudinally
polarized electrons impinging at 1.16 GeV on a liquid-hydrogen target [67],
with a precision of 5% on the weak mixing angle. The left-right asymmetry
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Figure 2.4: Running of sin2 ✓w in the MS renormalization scheme, and mea-
surements from low energy experiments including atomic parity violation, par-
ity violating electron scattering, e-DIS, and ⌫-DIS [56].

has also been studied in the reaction e�e� ! e�e� using the electron beam of
the SLC directed to liquid hydrogen [68].

Several results are expected for the future to test the low-energy running
of the weak mixing angle with higher precision. After the CEBAF upgrade to
12 GeV, a new detector, SoLID, will operate to reduce the experimental uncer-
tainty to the 0.5% level. The P2 experiment at the newMainz Energy-Recovery
Superconducting Accelerator (MESA) will study the forward-backward asym-
metry in the elastic electron-proton scattering, by using a high-intensity and
highly-polarized beam at 155 MeV. The relative precision is expected to be
0.13%, comparable to the Z pole measurements at LEP and the SLC. More-
over, the MOLLER collaboration at JLab will determine the asymmetry in
Møller scattering with a fivefold greater precision as compared to SLAC. Fi-
nally, a scanning of the region from 10 to 90 GeV will be possible with the
weak DIS data at the future Electron Ion Collider (EIC) [69].

To conclude this section, we turn our attention to neutrino scattering ex-
periments, which are typically performed using the processes ⌫µe ! ⌫µe and
⌫̄µe ! ⌫̄µe. In this case, the ratio of the cross sections of neutrino and anti-
neutrino scattering constitutes the most precise available observable:

R =
�⌫µe

�⌫̄µe
, (2.19)

which is sensitive to the couplings gV and gA. Another possible observable
is given by the ratio between neutral-current (NC) and charged-current (CC)
cross sections in the DIS of neutrinos on isoscalar nuclear targets (N):

R⌫ =
�NC
⌫N

�CC
⌫N

. (2.20)
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The CDHS, CHARM and CCFR collaborations at CERN reached an exper-
imental precision of 1% on the weak mixing angle by making use of this ap-
proach [70–72]. In 2002, a measurement by the NuTeV collaboration drew the
international attention, by providing a value for the on-shell mixing angle that
is 3� larger than the expectation of the Standard Model [73]. Since then, many
studies have been published, but a complete explanation of this feature is still
subject of discussion. For these reasons, several neutrino experiments have the
determination of the weak mixing angle on the agenda, hoping to shed light
on the NuTeV puzzling result (cf. [74] and related references).

Fig. 2.4 shows the energy dependence of the weak mixing angle, as pre-
dicted by the Renormalization Group Evolution (RGE) equation, given by the
blue line. The discussed low-energy experimental results and the most pre-
cise determination of the parameter at LEP/SLC are reported as points. In
order to make a consistent comparison with the evolution predicted by the
RGE equation, in this plot the measurements are interpreted by converting
them to a common MS definition of the weak mixing angle, sin2 ✓MS

w (µ), that
we will discuss in the following section and in Chap. 3. Di↵erent points thus
correspond to determinations of sin2 ✓MS

w (µ) at di↵erent values of the renor-
malization scale µ.

2.2.3 The running weak mixing angle

As it can be seen from Fig. 2.4, low-energy determinations of the weak mixing
angle can be translated into theMS definition of the parameter, thus allowing a
test of the Standard Model running at low scales. In fact, in theMS scheme (cf.
Chap. 3), the U(1)Y and SU(2)L couplings g1 and g2 acquire a dependence on
the renormalisation scale µ, i.e. they become running quantities, thus making
it possible to introduce the weak mixing angle as:

sin2 ✓MS
w (µ2) =

e2
MS

(µ2)

g22,MS(µ
2)

=
4⇡ ↵MS(µ2)

g22,MS(µ
2)

, (2.21)

where we have used the relation ↵MS(µ2) = e2
MS

(µ2)/4⇡, where eMS(µ
2) and

g22,MS(µ
2) are the positron charge and the SU(2)L coupling, respectively,

renormalized in the MS scheme. In the following, we will drop the MS super-
or subscript for all quantities but sin2 ✓MS

w (µ2), keeping explicit only the de-
pendence on µ2.

Together with the low-energy test of the running of the weak mixing angle,
some results for larger space-like scales, of the order of a few hundreds of GeV,
have been obtained from deep inelastic scattering data at the electron-proton
collider HERA [75, 76]. The high-energy regime is particularly interesting: in
fact, as it will be discussed in detail in the following chapters, the Renormali-
sation Group Equation, which governs the energy evolution of the weak mixing
angle, predicts a running with a steep positive slope at high scales, because of
the inclusion of the W -boson contribution above the W mass [77]. However,
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2.3. Running of the electromagnetic and strong coupling constants

the running at time-like scales above the Z-boson mass has not been experi-
mentally explored. A preliminary analysis on the potential of a determination
at the TeV scale, by using proton-proton collisions at

p
s = 13.6 TeV in the

Run-3 and High-Luminosity phases of the LHC, can be found in [78], which
represents one first important result of the work discussed here.

It should be noted that with this data at high energies it is also possible to
probe new particles, beyond the Standard Model physics, provided that they
carry electroweak quantum numbers: in fact, the e↵ect of these new states
would be a modification of the running of the electroweak gauge couplings [79–
81]. These kinds of analysis are particularly interesting because they allow to
see new physics particles in a way that is independent of their specific decay
channels.

2.3 Running of the electromagnetic and strong cou-
pling constants

To conclude the chapter, some words should be spent on the determinations
of the strong and the electromagnetic coupling constants, that represent per
se a fundamental test of the Standard Model, and cannot be omitted in a
dissertation on running couplings. The electromagnetic coupling constant is
defined as ↵ = e2/4⇡, which in the on-shell renormalization scheme is required
to coincide with the fine structure constant at all orders in perturbation theory,
i.e. it is set to ↵ ' 1/137.

In the MS scheme, on the other hand, as a consequence of the renormaliza-
tion procedure when considering the radiative corrections in the calculations of
vacuum polarization diagrams, the electromagnetic coupling constant acquires
a dependence on the renormalization scale µ, assimilated to the energy scale
of the process under study. The evolution of this parameter from a scale µ0 to
the scale µ is described by the RGE equation, which has the solution:

↵(µ2) =
↵(µ2

0)

1� �↵ (µ2, µ2
0)

, (2.22)

where the term �↵ (µ2, µ2
0) includes the resummed gauge-invariant subset of

fermionic corrections to vacuum polarization diagrams, at a given order in
perturbation theory. It is possible to express the energy dependence of ↵ also
in the on-shell scheme:

↵(s) =
↵(0)

1� �↵(s)
, (2.23)

where again �↵(s) includes the fermionic corrections calculated in the on-
shell scheme, that can be resummed at a certain perturbative order, with s a
typical energy scale for the process under consideration. The term �↵ can be
decomposed as:

�↵(s) = �↵lep(s) + �↵(5)
had(s) + �↵top(s) , (2.24)
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2. Testing the electroweak Standard Model at high energies

Figure 2.5: Measurements of ↵S as a function of the energy scale Q. Between
brackets one can see the order of the QCD calculation for the determination
of ↵S (NLO: next-to-leading order; NNLO: next-to-NLO; res. NNLO: NNLO
matched to a resummed calculation; N3LO: next-to-NNLO) [30].

where �↵lep(s) is the leptonic contribution, �↵top(s) is the contribution of

top-quark loop, and �↵(5)
had(s) represents the one from the five lighter quarks.

The determination of the fine structure constant can be obtained with dif-
ferent methods. One example is the extraction from the electron anomalous
magnetic moment, which gives the value ↵�1 = 137.035999150(33) [82]. An-
other determination comes from the combination of measurements of the Ryd-
berg constant and atomic masses with interferometry of atomic recoil kinemat-
ics, applied to rubidium and cesium, yielding ↵�1 = 137.035999183(10) [30].
These two approaches together provide the current world average of ↵�1 =
137.035999180(10) [30]. At

p
s = MZ the electromagnetic coupling constant

is known with a precision level of few per mille or better, from LEP data or
the electroweak precision fit, where the dominant uncertainty is from the five
light-quark contributions in �↵(s), that is calculated using perturbative QCD
for energies su�ciently larger than the strong interaction scale ⇤QCD (above
about 2 GeV) and away from the bb̄ resonance system at around 10 GeV.

For energies below ⇤QCD, the evaluation of �↵(5)
had(s) relies on the evaluation
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2.3. Running of the electromagnetic and strong coupling constants

of dispersion relations, using a combination of experimental data from e+e�

annihilation into hadrons [3, 29, 30, 83].
Also in the case of the strong coupling constant ↵S, one needs to compute

its Renormalization Group Evolution between two di↵erent energy scales µ,
which can be currently calculated up to five-loop order in QCD and that we
report here in the approximation where the five lighter quarks are taken as
massless [56, 84]:

d

d lnµ2

⇣↵S

⇡

⌘
= �


23

12

↵2
S

⇡2
+

29

12

↵3
S

⇡3
+ 2.827

↵4
S

⇡4
+ 18.85

↵5
S

⇡5
+ 15.1

↵6
S

⇡6
+O

✓
↵7
S

⇡7

◆�
.

(2.25)
As it can be seen from Fig. 2.5, the strong coupling constant can be consid-
ered su�ciently small at the Z pole, where its value is ↵S(MZ) = 0.1179 ±

0.0009 [30], but it rises greatly at small energy scales near the GeV region. The
value of ↵S can be determined with a wide range of approaches: some examples
are the studies of e+e� annihilations, deep-inelastic lepton-nucleon scattering,
⌧ decays, hadron collisions, and Z-pole observables such as �Z and �h

0 (�h
0 is the

hadronic cross section at the Z pole, which depends on ↵S through final state
QCD corrections), from which the strong coupling constant is determined as a
free parameter in electroweak fits. At the LHC, recent measurements exploit
the correlation parameters and the angular distributions of particle jets, while
the determinations of ↵S with the smallest quoted uncertainties currently come
from lattice QCD calculations [30].
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3
Electroweak virtual corrections to
the neutral-current Drell Yan

n this Chapter, we introduce the building blocks for implement-
ing electroweak virtual corrections at NLO, plus universal higher-
order corrections, in a process like the neutral-current Drell Yan.
In the literature, the first calculations for electroweak corrections to

Drell-Yan processes can be found in the papers at the basis of the numer-
ical codes RADY [85, 86] and Wgrad/Zgrad [87–90]. EW fixed-order cor-
rections to the Drell-Yan processes are computed also in Horace-3.1 [91–93],
WINHAC/ZINHAC [94, 95], SANC [96–98], KKMC-hh [99], Dizet [100], as
well as in POWHEG-BOX-V2 [101, 102] or in implementations within the
POWHEG framework (see e.g. [103]). A review of several studies concerning
the Drell Yan and a comparison between di↵erent Monte Carlo codes can be
found in [104].

We start by reviewing how the electroweak sector of the Standard Model
is renormalized, by considering both the on-shell and MS scheme. Particular
attention is devoted to the choice of the electroweak input parameter scheme:
we present the di↵erent options implemented in the Z_ew-BMNNPV package of
the event generator POWHEG-BOX-V2 [102, 105]. A brief description of
the POWHEG-BOX framework will be postponed to Chap. 6, in which the
numerical results will be discussed. The Chapter ends with some considerations
on electroweak corrections at energy scales much greater than the electroweak
one.

3.1 Renormalization of the Standard Model: gen-
eral remarks

In the Standard Model Lagrangian (1.2), it appears a certain number of free
parameters, that are not calculable from first principle and have to be deter-
mined experimentally. The usual way to proceed is to establish a relation,
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which depends on the perturbative order, between these lagrangian parame-
ters and some experimental quantities, i.e. to put them in correspondence with
physical masses and couplings.

Beyond the leading-order approximation of the theory, however, infinite
(or better, not defined) momentum-loop integrations appear, as a consequence
of the continuum structure of four-dimensional space-time; thus, the so-called
bare parameters of the original Lagrangian di↵er from the corresponding phys-
ical quantities by divergent contributions. To consistently remove these sin-
gularities when evaluating relations between physical quantities and to restore
meaningful predictions, one can proceed in two steps: first, one has to intro-
duce a regularization scheme in terms of some parameter, to be able to carry
out the calculations, and then proceed with the renormalization, that allows
to obtain finite physical predictions.

First of all, the physical quantities are expressed in terms of the bare pa-
rameters, and then the resulting relations are used to establish a link between
the bare parameters and a set of observables. The prediction of these observ-
ables depends on other physical quantities, which have to be determined from
experiments. The starting point of any renormalization procedure is thus the
choice of a set of independent lagrangian parameters and an input scheme of ex-
perimentally known quantities, as we will further discuss in Sec. 3.2. Together
with the renormalization conditions, the set of chosen independent parameters
defines a renormalization scheme. In principle, all renormalization schemes are
equivalent to each other, but, when making calculations at some finite order
of perturbation theory, the predictions obtained from di↵erent choices of input
parameters di↵er by higher-order contributions.

As a non-abelian gauge theory with spontaneous symmetry breaking, the
Standard Model has been proven to be renormalizable, which means that the
renormalization constants, generated by the renormalization of the indepen-
dent lagrangian parameters and of the fields, reabsorb all divergences occurring
at high-momentum values, called ultraviolet (UV) singularities.

As we mentioned, the first step of this procedure consists in the choice of
a regularization prescription, that usually corresponds to dimensional regu-
larization, motivated by the fact that the divergent integrals would be finite
if the n dimensions of space-time were less than four. One can introduce a
parameter to measure how di↵erent n is with respect to four:

✏ =
4� n

2
. (3.1)

The infinite integrals in n dimensions are thus expressed in terms of the com-
bination:

�UV =
1

✏
� �E + ln 4⇡ , (3.2)

where �E is the Eulero-Mascheroni constant. The 1/✏ part in the expression
of �UV becomes divergent in the limit ✏ ! 0, when the original theory is
restored, while the terms ��E + ln 4⇡ are finite. Note that, since the number
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3.2. Input-parameter schemes

of dimensions have changed, one needs to introduce a dimensional parameter
µdim, to assure that dimensionless quantities in natural units, like the electric
charge, remain so. Being an unphysical parameter, µdim cancels out in the
calculation of physical quantities.

Beside UV singularities, infrared (IR) divergences can manifest in theories
with a massless quantum field, like the photon in QED and the gluon in QCD.
This kind of singularities can have a soft or collinear origin: the first ones are
due to the null mass of the (real or virtual) photon or gluon, that is a divergent
limit when integrating over the small-energy region; collinear divergences, on
the other hand, are related to the emission of photons or gluons in the limit
of vanishig angle with respect to the emitting particle and arise when one
disregards the masses of the external particles in QED, while they are always
present in QCD, where the parton masses are set to zero.

Infrared singularities arise when soft or collinear massless particles are
present in the loop integrals, or when integrating over the phase space of
emitted real soft/collinear particles. Also in the case of IR divergences a reg-
ularization scheme is required to carry on the calculations. In QED, the regu-
larization is traditionally performed by associating a small mass to the photon
field. In QCD, on the other side, such a scheme leads to gauge-invariance vio-
lations, and the dimensional regularization, sometimes employed also in QED,
is preferred. However, both in QED and QCD infrared singularities cancel
when evaluating together the contributions of real and virtual corrections.

After the regularization, one proceeds with the renormalization of the UV-
singularities, usually performed in the countertem approach: all lagrangian
(bare) parameters appearing in Eq. (1.2) are expressed as a combination of
finite renormalized parameters and singular renormalization constants, called
counterterms, that reabsorb the divergence �UV in Eq. (3.2). The countert-
erms consist of a singular part, fixed in such a way that the resulting physical
quantities are UV-finite, and a finite part, which is not constrained by the
renormalization requirements. The choice of the finite part determines the
renormalization conditions, that allow us to distinguish the two most common
classes of renormalization schemes: the on-shell (OS) renormalization schemes,
in which the renormalized parameters are usually chosen so to have a manifest
physical meaning, and the MS renormalization schemes, obtained by setting
the finite parts of the counterterms to zero. In each class, a particular scheme
can then be specified by the selection of a set of independent input parameters.

3.2 Input-parameter schemes

The selection of an input scheme identifies the specific renormalization scheme
adopted within one of the two main classes of on-shell and MS schemes: it
consists in the specification of some lagrangian parameters, that should be in-
dependent from each other; we will refer to this set as input parameters. These
bare parameters are then expressed in terms of their renormalized counterparts
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plus the counterterms as described in Sec. 3.1. In the electroweak sector of the
Standard Model, the set of inputs usually comprises the fermionic and Higgs
masses, plus three other independent lagrangian parameters, that can be cho-
sen with some freedom, to define the couplings and the gauge-boson masses.
All other masses and couplings not taken as inputs, as well as the observable
predictions, are expressed as functions of this set.

At the end of the renormalization procedure, in order to have numerical
evaluations that can be compared with experimental results, the correspond-
ing renormalized parameters are linked with some measured quantities, that
from this point on we will call input data, by means of the renormalization
conditions. This is true in the on-shell scheme, while in the MS scheme the
finite parts of the counterterms are simply set to zero. The MS scheme has the
additional complication that the input renormalized parameters are running,
and it can be more di�cult to find their natural association to some measured
values. The common strategy is to find a relation between MS renormalized
parameters and physical quantities at a given scale.

The input data is usually chosen in a phenomenology-oriented way, and is
relevant for many reasons. From a theoretical perspective, since the predicted
observables within a chosen renormalization scheme depend parametrically on
the input data, one should try to minimize the parametric uncertainty due to
the measured values of the inputs. For this reason, the best known measured
constants, such as for example ↵, Gµ and MZ , are usually preferred as inputs.
The convergence of the perturbative series expansion represents another im-
portant criterium for the choice of the input scheme. The idea is to select input
quantities, by using which the description of a given process is good already at
tree level, as they reabsorb in their definition large radiative corrections. For
example, the scheme with Gµ, MZ and MW is particularly suitable to describe
processes at the electroweak and higher scales, as the coupling contains already
in its definition the logarithmic corrections connected with the running from
0 to the energy scale of the process.

In the literature, the usual on-shell scheme is identified by the set of ref-
erence measured quantities (↵0, MW , MZ), where ↵0 denotes the value of the
fine structure constant, i.e. the on-shell electromagnetic coupling evaluated at
vanishing momenta. A variant of this scheme is (↵(M2

Z),MW ,MZ), that makes
it possible to reabsorb the logarithmic contributions related to the running of
the electromagnetic coupling from the scale 0 to MZ . Finally, the Gµ scheme
is defined by the choice (Gµ, MW , MZ) and is particularly suited to describe
Drell-Yan processes at hadron colliders, since it features a good convergence
of the perturbative series.

From a phenomenological point of view, the crucial remark is that the
predicted observable within a given scheme can be used in the determination
of a parameter of the theory via the template method. When fitting the
theoretical predictions onto experimental data, the fundamental constant to
be determined must be a free parameter of the model, that can be varied in
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the fit in a consistent way, order by order in perturbation theory, without
spoiling the accuracy of the calculations. This approach can be applied to
the direct determination of parameters defined in both the on-shell and the
MS scheme. For instance, the measurements of MZ at LEP1 and of MW at
LEP2, Tevatron and LHC were performed in this way, by having MZ and MW ,
respectively, as input parameters of the Monte Carlo simulation, while, for the
determination of the leptonic e↵ective weak mixing angle, schemes such as (↵,
MZ , sin

2 ✓`eff ) and the (Gµ, MZ , sin
2 ✓`eff ) are being discussed [53].

3.3 Renormalization in the EW Standard Model

In the following sections, we discuss how NLO calculations featuring di↵erent
renormalization schemes in the electroweak sector can be developed for prac-
tical purposes, by referring in particular to their numerical implementation in
the neutral-current Drell-Yan package of POWHEG-BOX-V2, Z_ew-BMNNPV.

3.3.1 EW renormalization with Lagrangian parameters e, MW ,
MZ

We here treat with some detail the classic on-shell renormalization scheme for
the electroweak Standard Model at NLO accuracy, by choosing e, MW and
MZ as independent parameters. For what concerns the input physical quan-
tities, we present the three possible selections available in the Z_ew-BMNNPV
package of POWHEG-BOX-V2, namely (↵0,MW ,MZ), (↵(M2

Z),MW ,MZ)
and (Gµ,MW ,MZ). The input data for e can be ↵0, ↵(M2

Z) or Gµ, while we
choose the measured value for MW discussed in Sec. 2.1 and MZ measured
at LEP for the Z-boson mass. This first subsection will serve as an example,
to which we will refer in the following when discussing other renormalization
scheme options. For this reason we will first give the reader an idea on how
to start the calculations when renormalizing both the fermionic and bosonic
sectors of the electroweak Standard Model. Then we will focus on the gauge
sector, and on the possible choices of input parameters and data. We refer
to [17, 106, 107] for the complete treatment of the renormalization procedure
and to [103, 105] for the implementation in POWHEG-BOX-V2.

First of all, we start by taking ↵0,MW , and MZ as input physical quanti-
ties. We denote bare quantities by an index B and express them in terms of
renormalized quantities and renormalization constants, as follows:

eB = (1 + �Ze) e , (3.3)

M2
W,B = M2

W + �M2
W , (3.4)

M2
Z,B = M2

Z + �M2
Z , (3.5)

M2
H,B = M2

H + �M2
H , (3.6)

m2
f,i,B = m2

f,i + �m2
f,i , (3.7)
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3. Electroweak virtual corrections to the neutral-current Drell Yan

where we have chosen the quark-mixing matrix Vij as unitary.
Since radiative corrections have the e↵ect to shift the minimum of the Higgs

potential, one has to introduce an additional counterterm for the vacuum ex-
pectation value of the Higgs field, that is usually denoted as �t and is fixed
in such a way that it cancels all tadpole diagrams. Besides the counterterms
defined above, in order to have finite Green functions one needs also the renor-
malization of fields, so that renormalized fields are mass eigenstates:

W±
B =

✓
1 +

1

2
�ZW

◆
W± ,

✓
ZB

AB

◆
=

✓
1 + �ZZZ/2 �ZZA/2
�ZAZ/2 1 + �ZAA/2

◆✓
Z
A

◆
,

HB =

✓
1 +

1

2
�ZH

◆
H , (3.8)

fL
i,B =

✓
�ij +

1

2
�Zf,L

ij

◆
fL
j ,

fR
i,B =

✓
�ij +

1

2
�Zf,R

ij

◆
fR
j .

(3.9)

The renormalization constants are fixed by imposing renormalization condi-
tions. The first one determines the Higgs vev counterterm by using the Higgs
one-point amputated renormalized Green function, or tadpole, T:

T =
H

and by requiring:
T + �t = 0 . (3.10)

The field and mass renormalization constants are fixed by making use of
the one-particle irreducible (1PI) two-point functions, that in the ’t Hooft-
Feynman gauge are defined as:

µ ⌫
W

k

W

k
= �W

µ⌫(k)

= �igµ⌫(k2
�M2

W )� i
⇣
gµ⌫ �

kµk⌫
k2

⌘
⌃̂W

T (k2)� ikµk⌫k2 ⌃̂W
L (k2) ,

µ ⌫
a

k

b

k
= �ab

µ⌫(k)

= �igµ⌫(k2
�M2

a )�ab � i
⇣
gµ⌫ �

kµk⌫
k2

⌘
⌃̂ab

T (k2)� ikµk⌫k2 ⌃̂ab
L (k2) ,
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where a, b = A,Z and MA = 0, and:

H

k

H
= �H(k) = i(k2

�M2
H)� i⌃̂H(k2) ,

fi

p

fj
= �f

ij(k)

= i�ij(/p�mi) + i
h
/p!�⌃̂ij

f,L(p
2) + /p!+⌃̂ij

f,R(p
2) + (mf,i!� +mf,i!+) ⌃̂ij

f,S(p
2)
i
,

with !± = (1± �5)/2. Following the usual convention, we denote with a caret
the renormalized self-energies and suppress the index B from the bare ones.
The particle propagators correspond to the inverse of the two-point functions.
The renormalized masses are fixed by fulfilling the request that they must be
equal to the corresponding physical masses, i.e. to the real parts of the poles
of the corresponding propagators, or equivalently to the zeros of the 1PI two-
point functions. The field renormalization matrices are taken in such a way
that the renormalized 1PI two-point functions are diagonal if the external lines
are on-shell. In this way, one determines the non-diagonal elements of the field
renormalization matrices, while the diagonal is fixed so that the residues of
the renormalized propagators equal one. In terms of two-point functions, the
renormalization conditions for on-shell external fields are:

Re�W
µ⌫(k)✏

⌫(k)|k2=M2
W

= 0 , lim
k2!M2

W

1

k2 �M2
W

Re�W
µ⌫(k)✏

⌫(k) = �i✏µ(k) ,

Re�ZZ
µ⌫ (k)✏

⌫(k)|k2=M2
Z
= 0 , lim

k2!M2
Z

1

k2 �M2
Z

Re�ZZ
µ⌫ (k)✏

⌫(k) = �i✏µ(k) ,

Re�AZ
µ⌫ (k)✏

⌫(k)|k2=M2
Z
= 0 , lim

k2!0

1

k2
Re�AA

µ⌫ (k)✏
⌫(k) = �i✏µ(k) ,

Re�AZ
µ⌫ (k)✏

⌫(k)|k2=0 = 0 , Re�AA
µ⌫ (k)✏

⌫(k)|k2=0 = 0 ,

Re�H(k)|k2=M2
H
= 0 , lim

k2!M2
H

1

k2 �M2
H

Re�H(k) = i ,

fRe�f
ij(p)uj(p)|p2=m2

f,j
= 0 , lim

p2!m2
f,i

/p+mf,i

p2 �m2
f,i

fRe�f
ii(p)ui(p) = iui(p) ,

fRe ūi(p
0)�f

ij(p
0)|p02=m2

f,j
= 0 , lim

p02!m2
f,i

ūi(p
0)fRe�f

ii(p
0)

/p0 +mf,i

p02 �m2
f,i

= iūi(p
0) ,

(3.11)

where ✏(k) is the polarization vector and u(p) and ū(p) are the spinors of the

external fields. The operator fRe takes the real part of the loop integrals but
not of the quark-mixing matrix elements appearing in the self energies, and it
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3. Electroweak virtual corrections to the neutral-current Drell Yan

coincides with the usual real part Re if one takes the quark-mixing matrix as
real, as we do here, since we take it to be the identity. From Eqs. (3.11) we
can derive the conditions on the renormalized self-energies that are reported
in [107].

For the charge renormalization one needs the ee�-vertex three-point func-
tion: one defines the electric charge as the ee�-coupling for on-shell external
particles in the Thomson limit, that corresponds to the following condition for
the amputated three-point function:

Aµ

e�p

e+
p

= ū(p)�µ(p, p)ee�u(p)
���
p2=m2

e

= ieū(p)�µu(p)

By means of the renormalization conditions, one can express the coun-
terterms as functions of the unrenormalized self-energies evaluated at special
external momenta. For the complete expressions of the counterterms, we refer
to [17, 107], while here we report only the ones concerning the gauge sector,
that will be the most relevant when discussing the di↵erent options imple-
mented in POWHEG-BOX-V2:

�M2
W = Re⌃W

T (M2
W ) �ZW = �Re

@⌃W
T (k2)

@k2

����
k2=M2

W

,

�M2
Z = Re⌃ZZ

T (M2
Z) �ZZZ = �Re

@⌃ZZ
T (k2)

@k2

����
k2=M2

Z

,

�ZAZ = �2Re
⌃AZ

T (M2
Z)

M2
Z

�ZZA = 2
⌃AZ

T (0)

M2
Z

, �ZAA = �
@⌃AA

T (k2)

@k2

����
k2=0

.

(3.12)

By virtue of the Ward identity, the charge renormalization can be written as:

�Ze = �
1

2
�ZAA =

1

2

@⌃AA
T (k2)

@k2

����
k2=0

. (3.13)

In the schemes where we choose the gauge-boson masses as independent la-
grangian parameters, the weak mixing angle is a derived quantity and the
counterterms of its sine and cosine, sw and cw, at one-loop order are expressed
as:

�cw
cw

=
1

2

✓
�M2

W

M2
W

�
�M2

Z

M2
Z

◆
=

1

2
Re

✓
⌃W

T (M2
W )

M2
W

�
⌃ZZ

T (M2
Z)

M2
Z

◆
,

�sw
sw

= �
c2w
s2w

�cw
cw

= �
1

2

c2w
s2w

Re

✓
⌃W

T (M2
W )

M2
W

�
⌃ZZ

T (M2
Z)

M2
Z

◆
. (3.14)
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3.3. Renormalization in the EW Standard Model

The unrenormalized self-energies can thus be calculated from the Feynman
rules by making use of loop integral techniques discussed in [17, 107]. For
example, in [108] it is computed the explicit expression of ⌃AA

T (k2) and the
counterterm �Ze.

From a practical point of view, when ↵(M2
Z) or Gµ are used as input pa-

rameters, the calculation of the NLO corrections is formally the same one as
in the (↵0, MW , MZ) scheme, provided that one makes the replacements:

�Ze ! �Ze �
�↵(M2

Z)

2
,

�Ze ! �Ze �
�r

2
, (3.15)

respectively for the (↵(M2
Z),MW ,MZ) and the (Gµ,MW ,MZ) scheme. The

terms �↵(M2
Z) and �r remove the logarithmically enhanced fermionic correc-

tions coming from the on-shell running of ↵(q2) from q = 0 to the weak scale,
which are already absorbed in the LO couplings ↵(M2

Z) or Gµ. In particu-
lar, �↵(M2

Z) represents the fermionic running of the electromagnetic coupling
constant from 0 to MZ , which will be discussed in Sec. 3.4.1, while �r is the
full one-loop electroweak corrections to the muon decay in the on-shell scheme
(↵0, MW , MZ) after the subtraction of the QED e↵ects in the Fermi theory.
In this scheme, the factor �r reads:

�r = �↵�
c2w
s2w

�⇢+ �rrem, (3.16)

with

�⇢ =
⌃ZZ

T (0)

M2
Z

�
⌃W

T (0)

M2
W

=
↵

4⇡

3

4s2w

m2
t

M2
W

+ · · · = �⇢1�loop + . . . , (3.17)

and

�rrem =
Re⌃AA

T (s)

s
�

c2w
s2w

✓
�M2

Z

M2
Z

�
⌃ZZ

T (0)

M2
Z

◆

+
c2w � s2w

s2w

✓
�M2

W

M2
W

�
⌃WW

T (0)

M2
W

◆
+ 2

cw
sw

⌃AZ
T (0)

M2
Z

+
↵

4⇡s2w

⇣
6 +

7� 4s2w
2s2w

log(c2w)
⌘
. (3.18)

We make here an important remark about the functioning of the code. In
the package Z_ew-BMNNPV, a flag called a2a0-for-QED-only has been imple-
mented: when active, the same numerical value of the LO couplings (that can
be ↵0, ↵(M2

Z) or ↵Gµ , that is the value of ↵ computed from Gµ) is also used
for the overall weak loop factors. Otherwise, regardless of the scheme used,
the additional loop factor coming from the virtual weak corrections is set by
default to ↵0; on the other hand, the additional ↵ factor from QED corrections
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3. Electroweak virtual corrections to the neutral-current Drell Yan

is always equal to ↵0, to assure the cancellation of IR divergences between the
virtual and the real corrections. In fact, in the real emissions, photons are
emitted on-shell, with momentum q2 = 0, and the correct choice of the scale
in the vertex coupling is thus 0. As a consequence, the right coupling to cancel
the IR singularities is ↵0, which has to be used also for the virtual corrections.

Given that in the NCDY it is possible to separate the pure weak corrections
from the QED ones, as they are separately gauge invariant, for weak correc-
tions one has some freedom to choose the loop coupling. In fact, if one aims
at one-loop accuracy, the choice of the coupling that enters the virtual correc-
tions is completely arbitrary, because spurious terms are beyond the nominal
accuracy and thus out of control. When performing perturbative calculations,
one can make the decision to use ↵0 in all weak and QED loops to treat QED
and weak corrections in the same manner, or choose to express ↵ in terms of
the corresponding combination of input quantities, according to the adopted
scheme, as it has been done for the analysis presented in this work: the latter
option highlights the di↵erences among renormalization schemes.

3.3.2 Implementation of leading universal higher orders

In this section we address some features of the latest version of the pack-
age Z_ew-BMNNPV of POWHEG-BOX-V2, where the neutral-current Drell-
Yan process is implemented at an accuracy that is NLO+leading universal
higher-order (h.o.) contributions. We think it is useful to introduce the
topic here, to discuss how these higher-order terms can be included in the
(↵0/↵(M2

Z)/Gµ,MW ,MZ) schemes. In the following sections, we will see how
they are implemented in di↵erent renormalization schemes.

At collider energies of the order of 10�100 GeV, the leading corrections to
the neutral-current Drell-Yan production are related to the logarithms of the
light fermion masses and to terms proportional to the top-quark mass squared.
These contributions are connected to the counterterms for the process under
consideration and arise from the running of ↵(q2) (i.e. from �↵) and from the
term �⇢.

Since the full two-loop calculation is not yet available for a 2 ! 2 process
like the Drell Yan, one possible way to evaluate the impact of these e↵ects is
taking the square of the part of the counterterm amplitude proportional to �↵
and �⇢ [86, 107, 109, 110] and combining it to the full NLO calculation, after
having subtracted the linear terms in �↵ and �⇢ that are already present at
one loop, to avoid double-counting. Furthermore, one could think of improving
the one-loop accuracy by also including the dominant next-to-next-to-leading
(NNLO) e↵ects, coming from the fermionic corrections included in �↵ and �⇢,
of course under the hypothesis that the bosonic contributions are suppressed.
These terms are fermionic in the sense that they are related to closed fermion
loops, and constitute a gauge-invariant set: thus, their inclusion does not
spoil the gauge independence of the calculation and the validity of theoretical
predictions, to be compared with experimental results.
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3.3. Renormalization in the EW Standard Model

In the Z_ew-BMNNPV package the two-loop leptonic corrections related to
�↵ can be activated with the flag dalpha_lep_2loop. The results in Chap. 6
are however presented by using the one-loop expression for �↵. Concerning
�⇢, in the code the leading Yukawa-enhanced corrections are included up to
O(↵2

S), O(↵Sx2
t ), and O(x3

t ), with xt =
p
2Gµm2

top/16⇡
2. To be more precise,

�⇢ is expressed as:

�⇢ = 3xt(�⇢(1) + xt�⇢(2))

✓
1 +

↵S

⇡
�(2)QCD +

↵2
S

⇡2
�(3)QCD

◆

+ x3
t�⇢x

3
t +

↵S

⇡
x2
t�⇢x

2
t↵S � 3x2

t�⇢(2)
↵2
S

⇡2
�(2)QCD, (3.19)

where �⇢(1) and �⇢(2) are the one and two-loop heavy-top corrections to the ⇢
parameter calculated in [111–113], �(2)QCD and �(3)QCD are the two and three-loop

QCD corrections [114–117], and �⇢x
3
t and �⇢x

2
t↵S are three-loop contributions

where also the top mass squared is present [118]. The role of the last term in
Eq. (3.19) is to avoid the double counting of the O(x2

t↵
2
S) contribution, which

is already present in a factorized form when performing the product in the first
line of the equation. The four-loop QCD corrections to the ⇢ parameter [119]
are not included in the code, but their impact is expected to be negligible
at the energies available at the LHC, as it can be seen from the numerical
results at three-loop in QCD presented in Chap. 6. Note that in Eq. (3.19) one
should choose a renormalization scale for the strong coupling constant, that
is renormalized in the MS scheme: for the numerical results in Chap. 6 we
choose to set it to the invariant mass of the dilepton pair.

In the (↵0/↵(M2
Z)/Gµ,MW ,MZ) schemes, by taking the expression of the

counterterms one can notice that the leading fermionic corrections at NLO
EW accuracy are related to:

�Ze ⇠
�↵

2
,

�sW
sW

⇠
1

2

c2W
s2W

�⇢, �r ⇠ �↵�
c2W
s2W

�⇢. (3.20)

In the Z_ew-BMNNPV package, the leading fermionic corrections to neutral-
current Drell-Yan up to O(↵2) have been implemented as in Eqs. (3.45)-(3.49)
of Ref. [86], modified to be valid also in the complex-mass scheme [105] (cf.
Sec. 4.1).

The calculation in this class of schemes is performed as follows. In the
linear terms of the fermionic corrections, one has to apply the replacement:

�⇢ ! (�⇢� �⇢1�loop) , (3.21)

while the terms proportional to �↵ are left untouched, since we are not in-
cluding two-loop contributions to this factor. Note that, as already stated, it
is necessary to subtract the e↵ects already included in the one-loop calculation
to avoid double counting, a procedure that requires some care concerning the
treatment of the overall coupling constant in front of the weak corrections. In
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3. Electroweak virtual corrections to the neutral-current Drell Yan

fact, if the flag a2a0-for-QED-only is active, �⇢1�loop is computed as a func-
tion of ↵0, ↵(M2

Z), or Gµ for the (↵0, MW , MZ), (↵(M2
Z), MW , MZ), and (Gµ,

MW , MZ) schemes, respectively. If instead ↵0 is used for the overall weak-loop
factors, one subtracts the quantity �⇢1�loop

|↵0 computed in the ↵0 scheme,
independently from the numerical value of ↵ used as independent parameter.

3.3.3 EW renormalization with Lagrangian parameters e,
sin2✓`eff , MZ

As it has already been discussed, the weak mixing angle is a fundamental
parameter of the theory of the electroweak interaction. Its leptonic e↵ective
definition sin2✓`eff , that is introduced at the Z peak, can be a quantity sen-
sitive to new physics, and as such has been measured at LEP/SLD and then
at the Tevatron and at the LHC with very high precision. The direct deter-
mination of sin2✓`eff can be made by following either a model independent
approach or within the pure Standard Model, thus allowing for an internal
self-consistency check of the theory. This latter approach proceeds through
the template method: the theoretical kinematical distributions, obtained by
varying the value of the input parameter sin2✓`eff , are compared with the ex-
perimental data, and the best value for sin2✓`eff is extracted with a fit. In
order to be consistently treated in the evaluation of perturbative corrections
at any given fixed order, the leptonic e↵ective weak mixing angle has to be an
input parameter of the renormalization procedure, i.e. a free parameter in the
model that can be varied during the fit, as already seen in Sec. 3.2.

We discuss here the formulation of a renormalization scheme which includes
the leptonic e↵ective weak mixing angle. Any code featuring such a scheme,
like the package Z_ew-BMNNPV of POWHEG-BOX-V2, can be employed for
a direct determination of sin2 ✓`eff with the Standard Model.

We start by choosing the lagrangian independent parameters to be e, sin2✓`eff
and MZ . The experimental reference data for e can be ↵0, ↵(M2

Z) or Gµ, while
we take the values of sin2✓`eff and MZ measured at LEP for the leptonic e↵ec-
tive weak mixing angle and the Z-boson mass, respectively. We will collectively
refer to these three possible schemes as the (↵i, sin

2✓`eff , MZ) schemes, with
↵i = ↵0, ↵(M2

Z), Gµ. The main references used for this discussion are [53, 105].
The leptonic e↵ective weak mixing angle is defined in terms of the vector

and axial-vector couplings of the Z boson to leptons, g`V and g`A, or, equiva-
lently, in terms of the chiral couplings g`L and g`R, as measured at the Z peak:

sin2✓`eff ⌘
I`3
Q`

Re

✓
�g`R(MZ

2)

g`L(MZ
2)� g`R(MZ

2)

◆
, (3.22)

where Q` and I`3 are the electromagnetic charge and the third component of
the weak isospin for left-handed leptons, respectively.

In the (↵i, sin
2✓`eff , MZ) schemes, the counterterms corresponding to the
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input parameters are defined as:

MZ,B = MZ + �MZ (3.23)

sin2 ✓w,B = sin2✓`eff + �sin2✓`eff (3.24)

eB = e (1 + �Ze) . (3.25)

We fix the expressions of �Ze and �MZ as discussed in Sect. 3.3.1, while the
renormalization constant �sin2✓`eff is determined by requiring that the def-
inition in Eq. (3.22) holds up to the order at which we are performing the
calculation. More precisely, Eq. (3.22) can be written at one loop as:

sin2✓`eff ⌘
I`3
Q`

Re

✓
�G

`
R(M

2
Z)

G`
L(M

2
Z)� G`

R(M
2
Z)

◆
(3.26)

=
1

2
Re

�gR
gL � gR

+
1

2
Re

gLgR
(gL � gR)2

✓
�g`L
g`L

�
�g`R
g`R

◆
,

where GL/R(M2
Z) = gL/R+�gL/R(M2

Z) are the NLO form factors for the vertices
Z`L`L and Z`R`R, respectively. Thus, the following condition must hold:

Re

✓
�G

`
R(M

2
Z)

G`
L(M

2
Z)� G`

R(M
2
Z)

◆
= Re

✓
�g`R

g`L � g`R

◆
, (3.27)

which implies:

Re

✓
�g`L
g`L

�
�g`R
g`R

◆
= 0 . (3.28)

Note that, if one uses the complex-mass scheme to treat the unstable particles,
MZ becomes complex, but sin2✓`eff and gL/R are kept real, and Eq. (3.28)
remains unchanged. The factors �gL/R are functions of �sin2✓`eff and contain
both bare vertices and counterterms. Thus, starting from the expressions of
�gL/R, one can use Eq. (3.28) to compute:

�sin2✓`eff
sin2✓`eff

= Re
n
�

1

2

cos ✓`eff
sin ✓`eff

�ZAZ (3.29)

+

✓
1�

Q`

I`3
sin2✓`eff

◆⇥
�Z`

L + �V L
� �Z`

R � �V R
⇤ o

,

where the first line includes the fermionic corrections, which are separately
gauge invariant together with the bosonic ones, that appear in the second
line. The renormalization constants �Z`

L/R represent the pure weak parts of

the leptonic wave function renormalization counterterms, while �V L/R are the

39



3. Electroweak virtual corrections to the neutral-current Drell Yan

NLO weak corrections to the left/right Z`` vertices and are defined as:

�V L =
�
g`L
�2 ↵

4⇡
Va

�
0,M2

Z , 0,MZ , 0, 0
�

+
1

2s2eff

g⌫L
g`L

↵

4⇡
Va

�
0,M2

Z , 0,MW , 0, 0
�

�
ceff
seff

1

2s2eff

1

g`L

↵

4⇡
Vb

�
0,M2

Z , 0, 0,MW ,MW

�

�V R =
�
g`R
�2 ↵

4⇡
Va

�
0,M2

Z , 0,MZ , 0, 0
�
. (3.30)

Note that the short-hand notation seff = sin ✓`eff and ceff = cos ✓`eff has
been used. The definitions of the vertex functions Va and Vb can be found in
Eqs. (C.1) and (C.2) of Ref. [107], respectively. An important remark is that
Eq. (3.29) does not include any QED correction, since the QED contributions
to the Z`` vertex are the same for left or right-handed fermions and cancel in
Eq. (3.28). Eq. (3.29) is valid also if the complex-mass scheme is employed to
treat the Z resonance, provided that one takes the complex-mass expressions
for �Z`

L/R and �ZAZ [53], and paying attention to use a real q2 = M2
Z value

when this comes from the process kinematics.
As already discussed in Sect. 3.3.1, one can obtain the counterterms in the

(↵(M2
Z), sin

2✓`eff , MZ) and (Gµ, sin
2✓`eff , MZ) schemes from the ones in the

(↵0, sin
2✓`eff , MZ) scheme by simply applying the replacements:

�Ze ! �Ze �
�↵(M2

Z)

2
(3.31)

�Ze ! �Ze �
�r̃

2
,

respectively. The term �r̃ embodies the one-loop electroweak corrections to
the muon decay after the subtraction of QED e↵ects in the Fermi theory, in
the scheme (↵0, sin

2✓`eff , MZ):

�r̃ = �↵� �⇢+ �r̃rem, (3.32)

with

�r̃rem =
Re⌃AA

T (s)

s
�

✓
�M2

Z

M2
Z

�
⌃ZZ

T (0)

M2
Z

◆

+
s2w � c2w

c2w

�s2eff
s2w

+ 2
cw
sw

⌃AZ
T (0)

M2
Z

+
↵0

4⇡s2w

⇣
6 +

7� 4s2w
2s2w

log(c2w)
⌘
. (3.33)

For what concerns the higher-order contributions included in the numerical
code, by inspecting Eqs. (3.29)-(3.32) one can immediately understand that the
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leading fermionic corrections in the schemes with sin2✓`eff in input are only
related to:

�Ze ⇠
�↵

2
, �r̃ ⇠ �↵� �⇢ . (3.34)

Thus, keeping in mind to avoid the double counting of the O(↵) terms, we are
left with overall factors of the Born amplitude which incorporates all higher-
order corrections in the (↵i, sin

2✓`eff , MZ) schemes. They are:

|MLO|
2
⇣ 1

(1� �↵(M2
Z))

2 � 1� 2�↵(M2
Z)
⌘
, (3.35)

and

|MLO|
2
⇣ 1

(1� �⇢)2
� 1� 2�⇢1�loop

⌘
, (3.36)

for the schemes with ↵0 and Gµ as input parameters, respectively, while
they vanish when ↵(M2

Z) is used as independent parameter. Note that in
Eq. (3.35) we have resummed the logarithms of the light-fermion masses, while
in Eq. (3.36) the overall factor can be obtained from the relation between ↵
and Gµ at NLO+h.o., namely:

↵ =

p
2

⇡
Gµs

2
wc

2
wM

2
Z(1 + �r̃ � �↵) . (3.37)

3.3.4 The (↵0, Gµ, MZ) scheme

This scheme has the couplings ↵0 and Gµ and the Z-boson mass as input
parameters: these three quantities are known with great experimental accu-
racy, with the consequence that parametric uncertainties are small. Moreover,
having as inputs two couplings related to di↵erent energy scales makes it pos-
sible to write the LO amplitude of the neutral-current Drell-Yan process as
the sum of the photon-exchange contribution, which is proportional to ↵, plus
the Z-exchange amplitude, which has GµM2

Z as the overall Zff̄ interaction
computed at the weak scale. In particular, we can write:

M
�,⌧ = A�,⌧

spinor

h
�

4⇡↵

s
QqQ` �

4
p
2GµM2

Z

s
G�

qG
⌧
`�Z(s)

i
, (3.38)

where the factor A�,⌧
spinor contains the � matrices and the external fermions

spinors (�, ⌧ = L,R represent the fermion helicities) and

G�
q(`) = I� q(`)

w,3 � s2WQq(`), �Z(s) =
s

s�M2
Z + i�ZMZ

, (3.39)

with Qq(`) and I� q(`)
w,3 that are the quark (lepton) charge and third component

of the weak isospin, for a given �. Note that in the complex-mass scheme the
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Z-boson propagator reads �Z is s/(s�µ2
Z), with the complex mass µZ defined

in Chap. 4.
In the code, it is possible to select two di↵erent realisations of this scheme,

by means of the flag azinscheme4. If the flag is absent or negative, the coupling
used is ↵ = ↵0, i.e. it corresponds to the �ff̄ coupling evaluated at low
energies, while if azinscheme4 is positive, ↵ = ↵0/ (1� �↵(M2

Z)), and thus
also the phton-exchange part of the amplitude is evaluated with a coupling at
the weak scale. In Chap. 6, if not otherwise stated, the numerical results are
presented with the option azinscheme4 1.

We proceed by introducing the counterterms for the independent quantities:

M2
Z,B = M2

Z + �M2
Z (3.40)

Gµ,B = Gµ + �Gµ (3.41)

eB = e(1 + �Ze) . (3.42)

where �Ze and �M2
Z are determined as described in Sect. 3.3.1, while �Gµ is

fixed by the requirement that in this scheme the muon decay does not receive
any weak correction at NLO:

�Gµ

Gµ
= �

2

swcw

⌃AZ
T (0)

M2
Z

�
⌃W

T (0)

M2
W

�
↵

4⇡s2w
[6 +

7� 4s2w
2s2w

logc2w] . (3.43)

The derived quantities in this scheme are the weak mixing angle and the W -
boson mass, which can be computed by:

(1� s2w)s
2
w =

⇡↵
p
2GµM2

Z

, (3.44)

c2w = 1� s2w , c2w =
M2

W

M2
Z

, (3.45)

M2
W =

⇡↵
p
2Gµs2w

. (3.46)

These parameters can be exploited as auxiliary quantities in the calculation of
the leading fermionic corrections at higher orders. For this reason, we introduce
also the corresponding counterterms:

�M2
W

M2
W

=
s2w

c2w � s2w

⇣
� 2�Z̃e +

�Gµ

Gµ
+

c2w
s2w

�M2
Z

M2
Z

⌘
, (3.47)

�sw
sw

=
1

2

c2w
c2w � s2w

⇣
2�Z̃e �

�Gµ

Gµ
�

�M2
Z

M2
Z

⌘
. (3.48)

with

�Z̃e = �Ze �
1

2
�opt�↵(M2

Z) �opt =

(
1 if azinscheme4 is active

0 otherwise
. (3.49)

42



3.3. Renormalization in the EW Standard Model

For what concerns the implementation of the higher orders, from Eqs. (3.40)-
(3.42) and (3.48), one can identify the leading fermionic corrections to the
photon-exchange contribution, which come from �Ze, and the ones to the
Z-exchange amplitude, which are related to the counterterms of the overall
coupling GµM2

Z and to �sw/sw:

�Z̃e ⇠ (1� �opt)
�↵

2
,

�Gµ

Gµ
+

�M2
Z

M2
Z

⇠ �⇢ ,

�s2w ⇠
s2wc

2
w

c2w � s2w

⇣
(1� �opt)�↵� �⇢

⌘
. (3.50)

To include the leading fermionic contributions at higher orders, we employ sw
as an auxiliary parameter, i.e. we use two e↵ective couplings by performing
the substitutions:

↵0 !
↵0

1� �↵
, s2w !

1

2
�

1

2

s

1�

p
8⇡

GµM2
Z

↵0

1� �↵
(1 + �r̃ � �↵) (3.51)

in the leading order amplitude, and then expanding it up to O(↵2). Note that
s2w is replaced by an e↵ective expression where �↵ has been resummed, while
the term:

�r̃ � �↵ = ��⇢+ �rrem|(↵0,Gµ,MZ) (3.52)

at the numerator is formally the same �r̃ in a scheme where sin2 ✓`eff is in input,
but computed with the coupling values of the (↵0, Gµ,MZ) scheme. Note that,
if the azinscheme4 is active, �r̃ is calculated in terms of �Z̃e rather than �Ze.
The e↵ective couplings can be used in the LO expressions to promote them to
include the higher-order universal corrections. Of course, one has to subtract
the O(↵) expansion, already present in the NLO calculation.

3.3.5 The “on-shell” running of ↵

We conclude the discussion on the on-shell renormalization by presenting how
the running of the electromagnetic coupling constant can be taken into account
in these schemes. The “on-shell running” to compute the evolution from the
value of the input ↵ to some scale q2 reads:

↵(q2) =
↵0

1� ↵0
4⇡

h
4
3

P
f N

f
c Q2

f ln
q2

m2
f

i . (3.53)

It has already been introduced in Eq. (2.23) in the phenomenological discussion
of Chap. 2. Note that only the fermionic contribution to �↵ is included:

�↵(q2) =
↵0

3⇡

X

f

N f
c Q

2
f ln

q2

m2
f

. (3.54)

In the code, for on-shell schemes, �↵ is always computed by considering only
the fermionic corrections and therefore whenever we write �↵(q2) in the con-
text of the implemented corrections for on-shell schemes it is understood that
it is the fermionic contribution only.
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3. Electroweak virtual corrections to the neutral-current Drell Yan

The treatment of hadronic contributions in the “on-shell” running

Some remarks are in order here, concerning the contributions to the running of
↵ coming from the light quarks. We write the “on-shell” running in Eq. (3.76)
up to a given scale q2 as:

↵(q2) =
↵0

1� �↵(q2)
. (3.55)

The e↵ects of the charged leptons and the top quark can be calculated in
perturbation theory, by writing �↵ in terms of the photon self-energy and its
derivative:

�↵lept (top)(q2) = �
Re⌃lept (top)

AA (q2)

q2
+

@⌃lept (top)
AA (q2)

@q2

���
q2=0

. (3.56)

However, Eq. (3.56) cannot be used for light quarks, because non-perturbative
QCD e↵ects make it impossible to describe the interaction among quarks at
zero momentum transfer. Provided that one works in a perturbative regime,
which is the case when considering the neutral-current Drell-Yan process as
simulated in the Z_ew-BMNNPV package, one can nonetheless introduce the light-
quark masses as e↵ective parameters in the self-energies and use the equation:

�↵had pert.(q2) = �
Re⌃had

AA (q
2)

q2
+

@⌃had
AA (q

2)

@q2

���
q2=0

. (3.57)

to compute the hadronic running of ↵ due to the light-flavour contributions.
The light-quark masses are set in input to the code, in such a way that the
hadronic running of ↵ from 0 to M2

Z from Eq. (3.57) matches the value ob-
tained by using dispersion relations from experimental data on inclusive hadron
production in e+e� annihilations (�↵had fit):

�↵had pert.(M2
Z) = �↵had fit 1(M2

Z) . (3.58)

In this last equation, �↵had fit 1 represents the value obtained by the fit routine
HADR5X19.F [120–127]. This approach is the default one in the Z_ew-BMNNPV
code. The light-quark masses are used only in the self-energy corrections, but
are zero in vertex and box contributions; in the code, in fact, QED infrared
singularities coming from the light-quarks masses are treated with dimensional
regularization.

Another option to compute the hadronic contribution to the running of ↵
can be selected by activating the input flag da_had_from_fit. The calculation
starts from:

�↵had fit 1(2)(q2) = �
Re⌃had

AA (q
2)

q2
+

@⌃had fit 1(2)
AA (q2)

@q2

���
q2=0

. (3.59)

which can be regarded as a definition of
@⌃

had fit 1(2)
AA (q2)

@q2

���
q2=0

, at di↵erence to

what happens in Eq. (3.57), that is a definition of �↵had pert.. In Eq. (3.59)
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3.4. Renormalization of the EW Standard Model in the MS scheme

the term �↵had fit 1(q2) is computed by the code with the HADR5X19.F routine,
while �↵had fit 2(q2) is obtained from the KNT v3.0.1 one [128–131]. The two
options can be selected by activating the input flag da_had_from_fit together
with the flags fit 1 or fit 2, respectively. Since both these routines produce
valid results only in a range [0, q2max 1(2)], for q2 > q2max 1(2) the computation
proceeds as:

�↵had fit 1(2)(q2) = �↵had fit 1(2)(q2max 1(2))

+�↵had pert.(q2)� �↵had pert.(q2max 1(2)) . (3.60)

The term �Re⌃had
AA (q

2)/q2 is computed in a perturbative way, by using the
values of the masses tuned with the analogue of Eq. (3.58) at q2 = M2

Z :

�↵had pert.(M2
Z) = �↵had fit 1(2)(M2

Z) , (3.61)

for fit 1 or fit 2, respectively. Within the calculation, one can thus exploit
Eq. (3.59) to make the following replacement in the one-loop corrections to the
photon propagator:

⌃had
AA (s)� s�Zhad

A ! �s�↵had fit(q2) + isIm⌃had
AA (s) , (3.62)

and use the fact that:

�Zhad
A = �

@⌃had
AA (q

2)

@q2

���
q2=0

(3.63)

to get the electric charge and photon wave-function counterterms. In this
way, the counterterms are formally equal to those yielded by the default op-
tion da_had_from_fit 0; however, since �↵had fit 1(2)(s) 6= �↵had pert.(s) for
s 6= M2

Z , the two computations for da_had_from_fit set to 0 and 1 are not
equivalent.

3.4 Renormalization of the EW Standard Model in
the MS scheme

The modified minimal subtraction (MS) scheme is defined by fixing the coun-
terterms only through the divergent parts of the radiative corrections of the
bare parameters, proportional to �UV , and by setting the finite part to zero.
In addition, one has to include a term � lnµ2/µ2

dim in the renormalization
constants. This prescription modifies the definition of the renormalization
constants, but otherwise the calculation formally proceeds in the same way as
in the on-shell scheme.

The modified counterterms have the e↵ect that the renormalized parame-
ters become functions of the renormalization scale µ, i.e. they become mani-
festly running. The scale µ plays the role of the renormalization point of the
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3. Electroweak virtual corrections to the neutral-current Drell Yan

theory, and as such one can arbitrarily choose its value. In most cases, µ is set
equal to the energy scale of the process under study, thus making it possible
to reabsorb a significant part of the radiative corrections into the definition of
the running couplings and masses.

In order to make numerical predictions within the theoretical framework of
the MS scheme, it becomes mandatory to find some relations between the MS
renormalized parameters, that do not have a direct physical meaning, and a set
of corresponding physical quantities. For example, if one takes as independent
lagrangian parameters (↵(µ2),MW (µ2),MZ(µ2)), it is necessary to relate ↵(µ2)
to the physical electromagnetic coupling and MZ(W )(µ2) to the physical boson
masses by choosing a renormalization point in the µ scale.

To make another example, in the Z_ew-BMNNPV code, the implemented

scheme is
⇣
↵(µ2), sin2 ✓MS

w (µ2),MZ

⌘
, where the couplings ↵(µ2) and sin2 ✓MS

w (µ2)

are renormalized in the MS scheme, while MZ is taken in the on-shell one.
As input parameters, we use the numerical values of ↵(µ2

0) and sin2 ✓MS
w (µ2

0)
for a given renormalization scale µ2

0, which can set as an input to the code,
together with the on-shell Z mass. The code then evolves the values of ↵(µ2

0)
and sin2 ✓MS

w (µ2
0) to the ones of ↵(µ2) and sin2 ✓MS

w (µ2), with the evolution
equations for ↵(µ2) and sin2 ✓MS

w (µ2) presented in the next sections. Before
entering the details of the discussion, as a general observation we can note
that, in the code, µ can be a dynamical renormalization scale, identified with
the leptonic invariant mass at each space point, or the fixed scale in input, by
default set to MZ . The choice between dynamical or fixed scale is regulated
by the flag running_muR_sw.

3.4.1 The running of ↵(µ2)

We start the description of the
⇣
↵(µ2), sin2 ✓MS

w (µ2),MZ

⌘
scheme by examining

the running of ↵. As already seen in the previous section, in the Standard
Model �Ze is:

�Ze = �
1

2
�ZAA �

sw
cw

1

2
�ZZA =

1

2

@⌃AA
T

@k2

����
k2=0

�
sw
cw

⌃AZ
T (0)

M2
Z

, (3.64)

where the subtraction of the term ⌃AZ
T (0)/M2

Z guarantees gauge-invariance, as
it can be verified for R⇠ gauges by taking the self-energy expressions in [132].
This allows us to define ↵(µ2) in a gauge-invariant way, as in the following.

We specify the counterterm for the on-shell scheme:

�ZOS
e =

↵

4⇡

(
2

3

X

f

N c
fQ

2
f


�UV � ln

m2
f

µ2
dim

�
�

7

2


�UV � ln

M2
W

µ2
dim

�
�

1

3

)
,

(3.65)
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and in the MS one:

�ZMS
e =

↵(µ2)

4⇡

(
2

3

X

f

N c
fQ

2
f


�UV � ln

µ2

µ2
dim

�
�

7

2


�UV � ln

µ2

µ2
dim

�)
.

(3.66)
When identifying the two scales, i.e. when the dimensional regularization
parameter µdim is equal to the renormalization point µ, µdim = µ, one gets:

�ZMS
e =

↵(µ2)

4⇡

("
2

3

X

f

N c
fQ

2
f �

7

2

#
�UV

)
. (3.67)

In the following, ↵0 refers to the renormalized OS parameter, while ↵(µ2) to
the renormalized MS one. The aim is now to compute the � function for the
running coupling e(µ2), or equivalently ↵(µ2), in the MS scheme. The starting
point is the bare coupling:

eb = µ✏ZMS
e e , (3.68)

where it is important to note that, for simplifying the calculation, the usual
choice in the literature is to set µ = µdim and thus to use the counterterm in
Eq. (3.67). By imposing that:

µ
deb
dµ

= 0 = ✏µ✏ZMS
e e+ µµ✏@Z

MS
e

@e

de

dµ
+ µµ✏ZMS

e

de

dµ
, (3.69)

one finds:

e2(µ2) =
e2(µ2

0)

1� e2(µ2
0)

16⇡2

h
4
3

P
f N

f
c Q2

f � 7
i
ln µ2

µ2
0

, (3.70)

or equivalently:

↵(µ2) =
↵(µ2

0)

1� ↵(µ2
0)

4⇡

h
4
3

P
f N

f
c Q2

f � 7
i
ln µ2

µ2
0

, (3.71)

where the fermionic and bosonic contributions are separately highlighted. How-
ever, one can also start from Eq. (3.66) and consider the electromagnetic charge
as a 2-variable function e = e(µ, µdim). The calculation we are interested in is
again the partial derivative w.r.t. µ, i.e. @e/@µ, and the same result can be
found.

Now, we have defined the renormalized MS parameter ↵(µ2), which has
no physical meaning per se, but has to be related to the physical fine-structure
constant ↵0 ' 1/137, by starting from the relation:

eb = (1 + �ZOS
e )e0 = (1 + �ZMS

e )e(µ2) , (3.72)

47



3. Electroweak virtual corrections to the neutral-current Drell Yan

that, by using Eq. (3.65) and (3.66), can be written as:

e0 = e(µ2)
h
1� �ZOS

e + �ZMS
e

i
(3.73)

= e(µ2)

(
1 +

↵(µ2)

8⇡

"
4

3

X

f

N f
c Q

2
f ln

m2
f

µ2
� 7 ln

M2
W

µ2
�

2

3

#)
.

where in the counterterms the identification ↵ = ↵(µ2) has been made, which
is valid at NLO because the spurious terms originated by this operation are
O(↵2). The result is:

e(µ2) =
e0

1� e20
32⇡2

h
4
3

P
f N

f
c Q2

f ln
µ2

m2
f
� 7 ln µ2

M2
W

�
2
3

i , (3.74)

or equivalently:

↵0 = ↵(µ2)
h
1� 2�ZOS

e + 2�ZMS
e

i
, (3.75)

and:
↵(µ2) =

↵0

1� ↵0
4⇡

h
4
3

P
f N

f
c Q2

f ln
µ2

m2
f
� 7 ln µ2

M2
W

�
2
3

i . (3.76)

Another way to find this relation can be found in App. A.

3.4.2 The running of sin2 ✓MS
w (µ2)

Di↵erent definitions of a MS weak mixing angle have been considered in the
literature, particularly in connection with the determination of this param-
eter at low-energy experiments, by using the Møller scattering [133, 134] or
neutrino-induced processes [135]. Moreover, some e↵ort has been devoted to
find a relation between an MS-defined weak mixing angle and its leptonic
e↵ective counterpart, as measured at LEP [136].

We here define theMS weak mixing angle as done in [21, 77, 137], in partic-
ular proving the equivalence between the defintions in [77] and [21]. Similarly
to what has been done for ↵(µ2), the RGE equation for sin2 ✓MS

w (µ2), in the
following often abbreviated as s2w(µ

2), can be found by starting from:

µ
ds2w,B

dµ
= 0 = µ

ds2w(µ
2)

dµ
+

d�s2w(µ
2)

dµ
, (3.77)

and from Eq. (2.21), that we report here:

sin2 ✓MS
w (µ2) =

e2(µ2)

g22,MS(µ
2)

=
4⇡ ↵(µ2)

g22,MS(µ
2)

. (3.78)

To define the running of sin2 ✓MS
w (µ2), one can consider a running ↵(µ2) and

couple the RGE equations for these two parameters. Since theMS counterterm
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3.4. Renormalization of the EW Standard Model in the MS scheme

of sin2 ✓MS
w (µ2) is:

� sin2 ✓MS
w (µ2) = c2w(µ

2)

"
⌃ZZ, MS

T (M2
Z)

M2
Z

�
⌃W MS

T (M2
W )

M2
W

#
(3.79)

=
cw(µ2)sw(µ2)

4

h
⌃AZ, MS

T (M2
Z) + ⌃AZ, MS

T (0)
i

=
↵(µ2)

4⇡


11

3
sin2 ✓MS

w (µ2) +
19

6

�✓
�UV + ln

µ2
dim

µ2

◆

where we can choose µdim = µ, the equation reads:

µ2ds
2
w(µ

2)

dµ2
=

↵(µ2)

4⇡


11

3
s2w(µ

2) +
19

6

�
, (3.80)

where the numerical values are obtained from the self-energy calculations:

11

3
= �7 +

4

3

X

f

N c
fQ

2
f (3.81)

19

6
=

43

6
�

2

3

X

f

N c
fQfI3, f . (3.82)

We have separated the bosonic and fermionic parts to obtain the coe�cients
in the case of decoupling of the top quark and/or of the W boson more easily,
as it will be seen in the next section. Now we rewrite the running of ↵(µ2) as:

↵(µ2) =
↵(µ2

0)

1� ↵(µ2
0)

4⇡
11
3 ln µ2

µ2
0

, (3.83)

and by defining:

C =
11

3
, (3.84)

one gets:

µ2d↵(µ
2)

dµ2
=

↵2(µ2)

4⇡
C , (3.85)

and thus:
ds2w(µ

2)
11
3 s

2
w(µ

2) + 19
6

=
↵(µ2)

4⇡

dµ2

µ2
=

1

C

d↵(µ2)

↵(µ2)
, (3.86)

where the running of s2w(µ
2) has been related to the one of ↵(µ2). By integrat-

ing this equation from µ2
0 to µ2, one gets:

s2w(µ
2) = s2w(µ

2
0)
↵(µ2)

↵(µ2
0)

+
19

22

↵(µ2)

↵(µ2
0)

�
19

22
, (3.87)

that is in agreement with the result in Eq. (12) of [77], where:
P

i N
c
i �iQiI3,iP

i N
c
i �iQ

2
i

= �
19

22
, (3.88)
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as the reader can straightforwardly check by taking the values for �i provided
by Table 1 of the same reference. We report here Eq. (12) of [77], since we will
refer to it in the next sections:

s2w(µ
2) = s2w(µ

2
0)
↵(µ2)

↵(µ2
0)

+

P
i N

c
i �iQiTiP

i N
c
i �iQ

2
i


1�

↵(µ2)

↵(µ2
0)

�
. (3.89)

It is important to notice that in the sum at the denominator is on both left-
handed and right-handed particles. In this way, bosons and fermions are
treated in the same way in the summation. If one wants to sum on LH par-
ticles only, an extra 2 should be taken into account at the denominator when
considering the fermionic contributions. By using the NLO expansion of ↵(µ2):

↵(µ2) = ↵(µ2
0)


1 +

↵(µ2
0)

4⇡

11

3
ln

µ2

µ2
0

�
, (3.90)

one gets the analogue of Eq. (13) in [77]:

s2w(µ
2) = s2w(µ

2
0)


1 +

↵(µ2
0)

4⇡s2w(µ
2
0)

✓
19

6
+

11

3
s2w(µ

2
0)

◆
ln

µ2

µ2
0

�
. (3.91)

The formulae in this subsection and in the following one are to be understood
in the limit where all particles masses are smaller than the renormalization
scale µ, i.e. there are no decoupling or threshold e↵ects and no issues due to
the non-perturbative hadronic contributions at low scales.

3.4.3 Inclusion of higher orders in the running

In the Z_ew-BMNNPV code, the RGE equations for ↵(µ2) and sin2 ✓MS
w (µ2) are

implemented by taking into account not only the O(↵) corrections, but also
some higher-order classes of contributions.

The running of ↵(µ2) is built as in Eqs. (9)–(13) of Ref. [138], i.e. by
starting from:

µ2d↵(µ
2)

dµ2
= �

↵2(µ2)

⇡

✓
�0 + �1

↵(µ2)

⇡
+ �1

↵S(µ2)

⇡
+ �2

↵2
S(µ

2)

⇡2
+ �3

↵3
S(µ

2)

⇡3

◆
,

(3.92)
which includes the fermionic contributions to the � function up toO(↵) in QED
and O(↵3

s) in QCD, which have been calculated in [139–142]. Eq. (3.92) is valid
only in a perturbative regime, and is used only for value of the renormalization
scales well above 4m2

b . In fact, at di↵erence to what happens for the “on-shell”
running of ↵, in our implementation of the MS scheme the non-perturbative
QCD e↵ects are e↵ectively included in the numerical starting-point value of
↵(µ2

0), which in the code is set by the user and should always be chosen at
µ2
0 � 4m2

b .
We can write Eq. (3.92) as done in [77]:

µ2d↵(µ
2)

dµ2
=

↵2(µ2)

⇡

"
1

24

X

i

Ki�iQ
2
i + �

 
X

q

Q2
q

!#
, (3.93)
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where the index i runs over fermions and bosons, both LH and RH particles,
while the index q runs only over quarks, and we have introduced the factors:

Ki = N c
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⇢
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and the QCD singlet contribution:

� =
↵3
s(µ

2)

⇡3

5
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11

24
� ⇣(3)

�
. (3.96)

Symbols nq and ⇣(s) stand for the number of quark flavours and the Riemann
Zeta function of s, respectively. Eq. (3.93) can be obtained from:

µ2d↵(µ
2)

dµ2
=

↵2(µ2)

⇡

"
1

24

X

i

N c
i �iQ

2
i

#
, (3.97)

which is valid at O(↵), by substituting N c
i with the modified colour factor Ki

and adding the O(↵3
S) term proportional to �.

In analogy to what has been done at NLO, also here we relate the running
of sin2 ✓MS

w (µ2) with the one of ↵(µ2), following the approach in [77, 143].
A di↵erent implementation of higher-order corrections to the RGE of a low-
energy definition of sin2 ✓MS

w (µ2) can be found in [144], while in [145] the h.o.
corrections to the relation with the on-shell weak mixing angle are investigated.
Higher-order contributions to the RGE of sin2 ✓MS

w (µ2) can be included as in
Eq. (25) by [77]:

s2w(µ
2) = s2w(µ

2
0)

↵(µ2)
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where:
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P
q I3,qQq

2
P

q Q
2
q

(3.99)
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and:

�̃(µ2) = �4
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33� 2nq
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In App. B it has been checked that the terms with coe�cients �1 and �2 are
already O(↵). Thus, h.o. contributions can be included by simply adding:

↵(µ2)

⇡


3�3

4
ln

↵(µ2)

↵(µ2
0)

+ �̃(µ2
0)� �̃(µ2)

�
(3.104)

to the O(↵) expression of the running in Eq. (3.89). In the Z_ew-BMNNPV code,
the running can be performed also at NLO-only by activating the flag exclude-
HOrun. We end this section with a phenomenological observation, by noting
that in the (↵(µ2), s2w(µ

2),MZ) scheme the universal higher-order e↵ects due
to fermionic corrections discussed in Sec. 3.3.2, which can be computed by
the Z_ew-BMNNPV code, are already included through the running of the cou-
plings, making it possible to reduce the impact of this kind of corrections in
this scheme.

3.4.4 Decoupling of top quark and W boson

The MS scheme is useful for many reasons, the first of which is that it allows
for the definition of running couplings and masses. However, it does not take
into account the decoupling of heavy particles, that arises naturally in the
on-shell scheme. The decoupling is based on the natural observation that two
very di↵erent energy scales do not have any influence on each other.

Let us consider m2
b ⌧ µ2

⌧ M2
W and the O(↵) running of ↵(µ2) to fix

ideas, and suppose to vary the energy of the process s over values comparable
to µ2 and much greater than the bottom quark mass, m2

b . All fermions, with
the exception of the top quark, have a mass much smaller than µ2, and for
them we can apply the MS scheme without modifications.

On the other hand, we obtain that the top quark and the W boson con-
tribute to the running of ↵(µ2) in Eq. (3.76), and to the � function of the RGE
in Eq. (3.71), a feature that is quite unphysical as the low-momenta evolution
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3.4. Renormalization of the EW Standard Model in the MS scheme

of the coupling constant should not be influenced by loops containing particles
with m2

� µ2.
To solve these issues, we can apply a di↵erent renormalization scheme for

heavy particles with m2
� µ2, modifying the MS scheme in the following

way [146]:
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(3.105)

Substituting �ZMS
e, dec to �ZMS

e we find, for the RGE Eq. 3.71 and the relation
between ↵(µ2) and ↵0 in Eq. 3.76, respectively:
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and:
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One can see that in Eq. (3.106) there are no contributions from the heavy
particles, while in Eq. (3.107) one is left with a spurious contribution �2/3 of
bosonic origin.

This issue can be addressed by noticing that Eq. (3.71) is valid only if there
is no particle threshold between µ2

0 and µ2, i.e. it represents the “pure” RGE
running, where µ has no physical meaning. Eq. (3.76), on the other hand,
takes into account the running of ↵ from 0 to µ2, with all particle thresholds
in between, i.e. with additional physical information, that arise when one tries
to connect the MS parameter ↵(µ2) to the physical ↵0. If µ2

⌧ m2
f for some

fermion flavour f , then one can decouple fermion f and the relative terms
does not enter the sum at the denominators of both Eq. (3.71) and (3.76).
Since µ is an arbitrary scale, one can choose to perform such a decoupling for
all µ2

 m2
f , while taking into account the fermion f contribution only for

µ2 > m2
f .

Similarly, when one has also bosonic contributions, it is possible to state
that Eq. (3.71) is valid when there are no particle thresholds between µ2

0 and µ2,
while Eq. (3.76) takes into account the running from 0 to µ2. In Eq. (3.76) we
have the additional�2/3 term when passing theW -boson threshold, that is not
taken into account in Eq. (3.71). Thus, if one wants to decouple the W boson
in the electromagnetic coupling containing the extra physical information of
Eq. (3.76), extra care must be paid to the fact that, when the W threshold is
passed, an additional term �2/3 has to be taken into account. This feature
represents one of the matching conditions discussed in Sec. 3.4.5: one defines a
“full” theory above the threshold and an“e↵ective”one below, and at threshold
requires an observable to be the same if computed with a theory or with the
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3. Electroweak virtual corrections to the neutral-current Drell Yan

other. To decouple the W boson one has to use the following definition of the
counterterm:
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(3.108)
To take into account the decoupling of the top quark and the W boson in

one single formula, we can thus redefine the MS counterterm as:
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where the Heaviside ✓-function guarantees that, for µ2 greater than the thresh-
old value m2

t (M2
W ), the only contribution of the top-quark (W -boson) loop is

the one proportional to the combination 1/✏, while for µ2 < m2
t (M2

W ) the full
top-quark (W -boson) correction is switched on.

Note that, at the considered order of the calculation, physical observables
do not depend either on the decoupling prescription nor on the scale of the
threshold, and therefore there is some freedom in the choice of the W threshold
value: in the Z_ew-BMNNPV code, this can be set by the user via the flag
MW_insw2_thr, the default option being M2

W, thr. = ReM2
Z(1 � s2w(µ

2
0)), which

is the value computed within the
⇣
↵MS(µ2), sin2 ✓MS

w (µ2),MZ

⌘
scheme. This

applies also to the decoupling prescription in the running of sin2 ✓MS
w (µ2), that

will be addressed in Sec. 3.4.5.
In the case of the O(↵) running of s2w(µ

2) the practical prescription to
decouple of the top quark is to substitute in Eq. (3.87):
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while for the decoupling of the W boson one has:
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When including also higher order corrections to the running, the decoupling of
particle i can be performed by removing particle-i contributions in the sum-
mation appearing in Eq. (3.93) for ↵(µ2) and in the coe�cients �3 and �4 in
Eqs. (3.101)–(3.102) for s2w(µ

2).

3.4.5 Threshold corrections

Eqs. (3.71) and (3.89) are valid if there is no particle threshold between the
scales µ2

0 and µ2, with no connections to the physical value of the parameters at
a particular energy scale. In this sense, the decoupling is already implemented
in these equations, as the di↵erent particle contributions are switched on when
passing the corresponding threshold. The particle threshold is however a phys-
ical information to be added to Eqs. (3.71) and (3.89). As pointed out in [77],
to perform in the correct way the particle decoupling at given physical thresh-
olds, some matching conditions have to be taken into account. These con-
ditions are renormalization- and regularization-scheme dependent; they have
been studied at length in the context of E↵ective Field Theories [147–149] and
Grand Unification Theories (GUTs) [150–154]. If taken in the MS scheme
with dimensional regularization, as it is done here, no O(↵) correction appear
at the threshold of scalars and fermions, while we have to take into account
a O(↵) shift produced by bosons in the running of ↵(µ2), that we already
discussed in the previous section. Moreover, at fermionic thresholds O(↵2),
O(↵↵S) and O(↵↵2

S) terms have to be taken into account [146]. Di↵erent pre-
scriptions for regularizing and renormalizing the theory would lead to di↵erent
shifts [155, 156].

At a given fixed order in perturbation theory, e.g. at NLO in ↵, the thresh-
old corrections stemming from the NLO expansion of the running are cancelled
against the corresponding terms contained in the counterterms, in such a way
that physical predictions are not a↵ected by the choice of the regularization
and renormalization scheme adopted [157]. This can be easily sketched tak-
ing into account for example ↵(µ2) and considering the NLO expansion of the
running. The complete calculation can be found in App. A and allows us to
conclude that the decoupling prescription and the shifts induced by threshold
corrections have no e↵ect on the physics of the process under consideration.
Given that, also the position of the threshold is a matter of convention, i.e.
one could in principle set the i-th threshold at values either much lower than
the particle-i mass, or slightly below it, or at the physical mi value.

To calculate the matching conditions atO(↵), we define the couplings above
and below the threshold at fermion i as:

↵(m2
i )

+ , s2w(m
2
i )

+ above threshold (3.116)

↵(m2
i )

� , s2w(m
2
i )

� below threshold .

For the electromagnetic coupling constant, at the threshold of fermion f we
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have:
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and at the W± threshold:
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where the term 1/(6⇡) stems from the additional �2/3 seen in the previous
section. In the Z_ew-BMNNPV code, threshold corrections are implemented for
theW boson at O(↵) and for top-quark including O(↵2), O(↵↵S), and O(↵↵2

S)
e↵ects [138, 158].

For the weak mixing angle, we start by writing the analogue of Eq. (12)
of [77]:

s2w(m
2
i )

+ = s2w(µ
2
0)
↵(m2

i )
+

↵(µ2
0)

+

P
p N

c
p�pQpI3,pP

p N
c
p�pQ

2
p


1�

↵(m2
p)

+

↵(µ2
0)

�
, (3.119)

where p is an index that runs over all SM particles. Note that if p is a fermion,
an extra factor 2 appears in the corresponding contribution to the sum at the
denominator, namely, at fermionic thresholds, we have:
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To prove that this is a correct NLO expression, we have verified that, by
inserting Eq. (3.119) into this last Eq. (3.120), we obtain the analogue of
Eq. (3.119) for s2w(mi)�, namely:
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where now the sums are over all particles with the exception of particle i. Note
that, to this aim, the following NLO relations have to be used:
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From this calculation, it is highlighted that we linked the running of s2w(µ
2) to

the one of ↵(µ2) and one can notice that the discontinuities at threshold i are
due only to the running of ↵(µ2).

Eq. (3.120) is valid also for bosons without 2 at the denominator. It can
be written in the following way:
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For the W boson we have two contributions, one for W+ and one for W�, that
we have to decouple, that is:
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Since: P
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we have:
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that is exactly Eq. (30) by [77]. In this relation, it is present a O(↵) dis-
continuity due to the term 1/(6⇡) arising from the running of ↵(µ2), as seen
in Sec. 3.4.4. From a technical point of view, in the Z_ew-BMNNPV code the
decoupling of the W boson and the top quark in the running of ↵(µ2) and
s2w(µ

2) is performed by integrating out these particles only in the RGE equa-
tions and in the expressions of the relevant counterterms, namely �ZMS

e and
�s2w(µ

2)/s2w(µ
2). However, we do not remove the W - and top-contributions

from the calculation of the matrix elements, i.e. we do not completely adopt
an e↵ective field theory approach in which the heavy degrees of freedom are
integrated out at low energies.

To conclude, we discuss the gauge invariance of our definition of sin2 ✓MS
w (µ2),

which is essentially the one in [77], complete with both fermionic and bosonic
contributions and threshold corrections. In fact, gauge invariance represents
an issue often associated with the definition of the MS weak mixing angle.
In [133], a gauge-independent parameter sin2 ✓̂w(q2) is introduced on the basis
of the Pinch Technique (PT) [159, 160], which consists in moving part of the
corrections coming from vertex and box diagrams (the so-called pinch parts)
into the self-energies, resulting in new gauge independent self-energies. The
pinch parts can be written in terms of equal-time commutators of currents,
and as such do not depend on the specific process and on the strong interac-
tion dynamics. A generalization of the pinch technique is represented by the
background-field method of quantizing the theory [161, 162].
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3. Electroweak virtual corrections to the neutral-current Drell Yan

Even if conceptually di↵erent, the definition of sin2 ✓MS
w (µ2) adopted here

can be proven to be mathematically identical to the one in [133] at NLO, upon
the identification µ2 = q2, and is equivalent to the definition that uses the
background-field method given in [21]. Furthermore, the class of higher-order
terms included in the running essentially represents corrections to the O(↵)
fermionic contributions to the Z/� propagator, and as such is gauge invariant.
We can thus conclude that our definition of the MS weak mixing angle is well-
posed in terms of gauge independence and can be consistently compared with
experimental results.

3.5 Electroweak radiative corrections at high en-
ergy

In the high-energy region, where “high” means much larger than the elec-
troweak scale, i.e. much larger than the W and Z masses, the W and Z
bosons play the role of massless particles, the virtual exchange of which causes
the appearance of large logarithms in the soft and/or collinear limit. The lead-
ing terms are the so-called Sudakov logarithms [163], that have been discussed
in [159, 164–171]. At the one-loop level, the leading logarithmic contributions
are double-logs of the kind (↵/s2w) ln

2(q2/M2
W ), while the subleading ones are

single-logs (↵/s2w) ln(q
2/M2

W ), where q2 is the scale of the process under consid-
eration, usually determined by the centre-of-mass energy

p
s. In the following,

we will refer to the logarithmic part of these corrections with l = ln(q2/M2
W )

and L = ln2(q2/M2
W ). The coe�cient in front of the leading double logs is

negative, giving rise to negative corrections increasing in absolute value with
the energy scale. The single-log contributions, on the other hand, for many
processes have positive sign, compensating in some cases the Sudakov correc-
tions.

The origin of these terms can be understood as following. Also in QED
and QCD, by virtue of the Bloch-Nordsieck [172] and Kinoshita-Lee-Nauenberg
(KLN) [173, 174] theorems, double-log contributions result from the exchange
of virtual photons and gluons, but are cancelled when taking into account
real-emission corrections, i.e. when inclusively summing over all initial and
final degenerate states, that in QED are represented by electrons dressed with
soft and collinear unresolved radiation. In QCD one has to sum also over the
colour index, that means taking the sum over degenerate states within the
colour triplets. Moreover, the remaining single logarithms are reabsorbed into
parton distribution and fragmentation functions.

In the weak sector, two issues arise: the masses of the W and Z bosons are
a physical cut-o↵ and the states within an isospin doublet constitute di↵erent
experimental initial and final states, because the electroweak charges are not
confined. Since real W and Z bosons are very often experimentally resolved, it
is impossible to define fully inclusive cross sections, and the virtual corrections
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are not cancelled, with maybe the exception of a very small fraction of unre-
solved vector bosons [175]. Note also that, since in this case real contributions
are considered as di↵erent processes, characterised by their own cross sections,
that are of course positive, this explains why the virtual corrections due to the
exchange of W and Z bosons are negative.

In the so-called Sudakov regime, where all invariants associated with a
certain particle reactions are large with respect to the electroweak scale, these
corrections can reach also several tens of percent. On the other hand, these
logarithms are connected with the external particles of the given process and
are thus universal [173], allowing to derive general results at least at NLO.
Di↵erent studies at one- and two-loop level exist in the literature [169–171, 176–
183], to which we refer for the theoretical definition of the relevant equations.
In [184–186], Sudakov logs are discussed in the context of LHC and high-energy
pp colliders.

For the numerical implementation, we use mainly the code presented in [187];
the corresponding numerical results are discussed in Sec. 6.7. Alternative au-
tomations of the calculation of electroweak Sudakov logarithms can be found
in [188–190].

By following in particular [178], we consider one-loop calculations, we op-
erate within the ’t Hooft-Feynman gauge and perform the renormalization as
described in Sec. 3.1. This means in particular that the parameter renormal-
ization is carried on in the on-shell scheme, while we will briefly comment on
the MS scheme. A remark is in order here concerning the dimensional regular-
isation parameter µdim. When discussing the Sudakov corrections, one has in
mind to find a good approximation for the complete NLO calculation, that is
able to capture the behaviour of the cross sections in the high-energy regime.
In the complete NLO calculation we know that the dependence on µdim in
the evaluation of the amplitudes is cancelled by the parameter counterterms,
which in a sense can be factorised on top of a leading-order structure. In the
high-energy limit this cancellation results in terms of the kind ln(rkl/M2

W ),
where rkl is a generic invariant built with the momenta of particle k and l
of the tree-level process, that can be traded for s up to constant corrections
that go as ln(rkl/s). These ln(s/M2

W ) logarithms, that have a UV rather than
IR (soft and/or collinear) origin, have however to be taken into account when
describing the cross section at high energies.

Another observation is that, since the evaluation of logarithmic corrections
requires the use of the eikonal and collinear limits, in which one disregards
the vector-boson masses, it is essential that these mass terms appear only in
numerators. In the adopted gauge, a possible issue arise for a generic process
because the Feynman rules for the polarization vectors of the longitudinal
gauge bosons contain inverse powers of their masses. This problem can be
circumvented by invoking the Goldstone-boson equivalence theorem (further
discussed in Sec. 4.1), thus substituting the longitudinal vector bosons with
their associated Goldstone bosons in the amplitudes in the high-energy limit.
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3. Electroweak virtual corrections to the neutral-current Drell Yan

However, this issue is absent when considering a 4-fermion process like the
neutral-current Drell Yan we are interested in.

By adopting the notation used in [178], we consider a 4-fermion process
mediated by a neutral current. To be precise, we take an amplitude with a
quark-antiquark and a lepton-antilepton pair as external states, with the idea
of applying the results to the neutral-current Drell-Yan process q(p1)q̄(p2) !
`(p3)¯̀(p4), and consider the momenta as incoming:

¯̀
�`


�q

�
⇢ q̄

�
⇢ ! 0 , (3.127)

where the fermion chiralities are indicated with ,� = R,L and the isospin
indices with �, ⇢ = ±. We can write the Born amplitude in the limit of high
energies as:

M
¯̀
�`


�q

�
⇢ q̄

�
⇢

0 = e2
✓

1

4c2w
Y`�Yq�⇢

+
1

s2w
I3`�I

3
q�⇢

◆
A12

r12
, (3.128)

where we have introduced the invariant r12 = (p1 + p2)2 = s, while Y and
I3 are the weak hypercharge and the third component of the weak isospin in
the notation of Chap. 1, respectively. The NLO amplitude, in the logarithmic
approximation which retains the leading and sub-leading logs, reads:

M
¯̀
�`


�q

�
⇢ q̄

�
⇢ = M

¯̀
�`


�q

�
⇢ q̄

�
⇢

0 · �¯̀
�`


�q

�
⇢ q̄

�
⇢
, (3.129)

that is, the corrections can be factorised on top of the leading order. To study
the structure of the corrections, we note that, as already stated, in general the
logarithms can be written as:

L(|rkl|,M
2) =

↵

4⇡
ln2 rkl

M2
, l(rkl,M

2) =
↵

4⇡
ln

rkl
M2

, (3.130)

but we can express them only as functions of s and MW :

L(s) =
↵

4⇡
ln2 s

M2
W

, l(s) =
↵

4⇡
ln

s

M2
W

, (3.131)

where, by performing this operation, the “error” we make amounts to terms of
the kind ln(rkl/s) or ln(M/MW ), that do not depend on the energy. Thus, one
can distinguish:

• a logarithmic part, with terms proportional to L(s), l(s) ln(rkl/s) and
to l(s), that is electroweak symmetric, because we choose to set the
scale to MW for both W and Z contributions, as well as for a fictitious
massive photon, that in a sense takes into account the running between
the electroweak and the high-energy scale under consideration;

• an electromagnetic part, which comprehends terms of the type ln(M2
W/�2)

and ln(M2
W/m2

f ), that account for the running between the photonic reg-
ularization mass � or the light fermion masses and the weak scale. The
leading ones of these contributions, which correspond to the emission of
virtual photons, are in most cases compensated by real photonic emis-
sions;
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3.5. Electroweak radiative corrections at high energy

• a sub-leading part due to the mass di↵erence between the W and the Z
boson, that, as already stated, are of the same order of constant correc-
tion terms.

The � factor multiplying the Born amplitude in Eq. (3.129) can be further
decomposed into:

� = �LSC + �SSC + �C + �R , (3.132)

that are the leading and sub-leading soft-collinear logarithms, the collinear
ones and the ones stemming from the renormalization, respectively. We now
examine each of these contributions in more detail.

Soft-collinear contributions

Double-logarithmic contributions arise due to the exchange of soft-collinear
gauge bosons between di↵erent external legs:

V a

ik
jk

il
jl

These corrections can be calculated within the eikonal approximation, which
consists in neglecting the momenta of the soft-collinear gauge bosons every-
where but in the singular propagators, and correctly takes into account soft
singularities. This diagram for the generic process i1 . . . in ! 0 can be written
as:

M
i1...in =

nX

k=1

X

l 6=k

X

V a=A,Z,W±

I
V a

jk,ik
I
V̄ a

jl,il
· M

i1...ik!jk...il!jl...in
0 · �V

a

kl , (3.133)

where I
V a

jk,ik
is the gauge group generator associated to the vertex V aikjk, and

similarly for il, jl. Note that the tree-level amplitude is the one obtained with
the replacements ik ! jk and il ! jl, where jk(l) = ik(l) if V a = A,Z and jk(l)
is the SU(2) transformed of ik(l) in case of the exchange of a W boson. The
factor �V

a

kl corresponds to the three-point function C0:

�V
a

kl = �ie2
Z

d4q

(4⇡)4
4pk · pl

(q2 �M2
V a) [(pk + q)2 �m2

k] [(pl � q)2 �m2
l ]
, (3.134)

which at high energies can be simplified to:

�V
a

kl =
1

2


L(s,M2

V a) + 2l(s,M2
V a) ln

|rkl|

s
+ constant terms

�
. (3.135)
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3. Electroweak virtual corrections to the neutral-current Drell Yan

In this expression, one can distinguish the first logarithm, that is the leading
contribution (LSC in the following) and the second one, which encodes the
angular dependence and gives rise to a subleading part (SSC). After summing
over the A,Z,W contributions and taking into account SU(2)L⇥U(1)Y gauge
invariance, one can write:

M
i1...in
LSC =

nX

k=1

�LSCjkik
M

i1...jk...in
0 , (3.136)

where in the case of a 4-fermion process:

�LSC =
X

fµ
⌧ =`� , q

�
⇢


Cew

fµ
⌧
L(s)� 2(IZ

fµ
⌧
)2 ln

M2
Z

M2
W

l(s,M2
Z)

+Q2
fµ
⌧

✓
2l(s) ln

M2
W

�2
+ L(M2

W ,�2)� L(m2
fµ
⌧
,�2)

◆�
. (3.137)

where Cew indicates the eigenvalues of the electroweak Casimir operator, de-
fined and tabulated in [178], and:

I
Z
fµ
⌧
=

I3fµ
⌧
� s2wQfµ

⌧

swcw
. (3.138)

The remaining SSC terms contribute to give:

M
i1...in
SSC =

nX

k=1

X

l<k

X

V a=A,Z,W±

�SSCjkik, jlil, V aM
i1...jk...jl...in
0 , (3.139)

where �SSC , for a neutral-current annihilation process as the one we are inter-
ested in, is given in Eq. (6.11) of [178].

Single-logarithmic contributions

Single-logarithmic contributions come from two possible sources. The first
one are the terms of the type �Z�/2 from the wave function renormalization,
which contain soft as well as collinear single logs. From a practical point of
view, one can assume MW ⇠ 0 and notice that the mass-singular infrared logs
coming from �Z�/2 have the same structure and the same coe�cient as the UV
logarithms of the form lnµ2/m2

� in the field wave function counterterms. Thus
one can extract them by setting µ2 = s in these terms, up to suppressed terms
of the kind lnM2

W/m2
�. The second origin, on the other hand, is connected

with the emission of virtual collinear gauge bosons from external lines, as in
the diagrams of the kind:

V a

jk ik
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3.5. Electroweak radiative corrections at high energy

which can be evaluated in the collinear limit. It is possible to prove that
single-log corrections from this type of diagrams factorise onto the tree level
amplitude, by virtue of collinear Ward identities, and after subtracting with
due care the contributions already included in the wave-function renormaliza-
tion and in the soft-collinear corrections. The final result is:

M
i1...in
C =

nX

k=1

�CjkikM
i1...jk...in
0 , (3.140)

where:

�C = �coll +
�Z�

2

���
µ2=s

. (3.141)

Contributions from the renormalization

Finally, single-logarithmic contributions of UV origin of the type log s/M2
W may

arise. We identify them with the contribution �R. These terms are connected
to the running of couplings up to the high energy s, which are part of the
parameter renormalization constants of e.g. the electromagnetic coupling or
the weak mixing angle, if the on-shell renormalization scheme is adopted. As
we will discuss in Chap. 6, these contributions are resummed intoMS couplings
and thus do not appear in the MS scheme.

3.5.1 Resummation of Sudakov logarithms

The large logarithms described in the previous section can turn to be huge
as the energy is growing, becoming very relevant in the evaluation of observ-
ables at the LHC. To this aim, they should be properly resummed, at least
for what concerns the double soft-collinear contributions, which are the dom-
inant part. This can be achieved with the method in [169], which essentially
presents a generalization to non-abelian theories of the Sudakov form factor of
QED, based on the Renormalization Group Evolution equations. The Sudakov
double-logs can thus be exponentiated:

M = M0 e
� 1

2

Pn
i=1 Wi(s, µ2

IR) , (3.142)

where Wi(s, µ2
IR) represents the probability that a soft and collinear gauge bo-

son is exchanged between the external particle i and another external particle,
and the summation is over the external legs of the process. The factor de-
pends on µIR, which is an infrared cut-o↵ on the transverse momenta of the
emitted particles. The process amplitude can then be evolved as a function of
µIR, similarly to what happens for the Renormalization Group equations [191].
In inclusive physical observables, the dependence on µIR should be cancelled,
since both virtual and real corrections are taken into account within the KLN
theorem. When considering also real emission, some attention should be paid
to the fact that in non-abelian theories, gauge bosons carry quantum num-
bers and can interact with each other, thus invalidating the assumption that
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3. Electroweak virtual corrections to the neutral-current Drell Yan

each emission is independent from each other. In other words, in the non-
abelian case the emissions are not Poisson-distributed, but the exponentiation
in Eq. (3.142) is still valid, provided that one adds an appropriate term in the
exponential to take into account the emission of a virtual boson from a real
one, in region where the transverse momenta of the emitted particles are much
larger than µIR.

In the case of the electroweak Standard Model, one has also to deal with a
spontaneously-broken gauge symmetry. In the approach of [169], one can thus
solve the evolution equations in two di↵erent regions: first for M ⌧ µIR ⌧
p
s, where M ⇠ MW ⇠ MZ ⇠ MH ⇠ mt is the electroweak scale, then for

µIR ⌧ M , by taking as initial condition the matching for µIR = M . In the
first region, one can neglect the e↵ects due to the symmetry breaking, finding:

M = M0 · exp

 
�

e2

(4⇡)2
· ln2 s

µ2
IR

·

nX

i=1

Cew
i

!
, (3.143)

while in the second sector only photons contribute:

M = M0 · exp
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For what concerns sub-leading logarithms, resummation has not been mathe-
matically proven, but also in this case one can use the evolutions equations,
thus leading to a modification of the Wi factors to include also single logs, as
shown in [179, 182]. Current results are valid up to next-to-leading- (NLL)
and next-to-next-to-leading-logarithmic (N2LL) approximation [170, 192].
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4
The treatment of unstable particles

his Chapter presents the long-standing issue associated with the
mathematical description of unstable particles in Feynman diagrams.
The problem of preventing the resonant propagator from blowing up
at the pole is usually addressed by performing a Dyson summation

of the self-energy corrections. When applying this method, special care has
to be taken to preserve the gauge invariance. The di↵erent options to treat
the resonances which are implemented in the Z_ew-BMNNPV code, namely the
complex-mass, pole and factorization schemes, are described.

4.1 The problem of gauge invariance with unstable
particles

One of the main features of the neutral-current Drell-Yan process is the pres-
ence of the Z-boson channel, characterised by an unstable boson with a life-
time that is not long enough to leave a direct trace in detectors, but that can
be rather reconstructed from its decay products. As a matter of fact, many
unstable particles, such as fermions, or the Higgs and gauge bosons, enter
high-energy processes, making it necessary to infer their properties from the
distribution of the decay products. For example, let us take a resonance P
with a life-time ⌧P : to measure ⌧P , one can parametrise the invariant-mass
distribution of the particles originated by the decay of P as a Breit–Wigner,
obtain the resonance width �P and then extract ⌧P = 1/�P .

From a theoretical point of view, complications in standard perturbation
theory stem from resonant processes. In fact, the resonance propagator GP (p2)
appearing in the Feynman diagrams of the reaction is proportional to:

1

p2 �M2
P

, (4.1)

and thus has a pole for p2 = M2
P , leading to a singularity at any fixed order

in perturbation theory. To cure this behaviour, one can perform a Dyson
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summation of the imaginary parts of the corrections to the particle self-energy
near the pole:

GP (p
2) =

i

p2 �M2
P

+
i

p2 �M2
P

i⌃̂P (p
2)

i

p2 �M2
P

+
i

p2 �M2
P

i⌃̂P (p
2)

i

p2 �M2
P

i⌃̂P (p
2)

i

p2 �M2
P

+ . . .

=
i

p2 �M2
P + ⌃̂P (p2)

, (4.2)

that can be graphically represented as:

GP (p2) =
p

+
p p

+
p p

+ . . .

=
p p

In this way, in the complex plane the pole of the propagator for an unstable
particles does not lie on the real axis, but slightly below it. Stated in other
words, the way to circumvent the di�culties connected to unstable particle
propagators is to use perturbation theory where the series converges, and the
analytical continuation of the result in the problematic regions. One can then
apply the optical theorem, that derives from the unitarity of the S-matrix (see
for example Ref. [17]), to write:

iIm⌃̂P (M2
P ) = iIm

( )�����
p2=M2

P

= 1
2

X

X p pX
...

= 1
2

X

X

R
d�X |MP!X |

2 = MP�P .
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4.1. The problem of gauge invariance with unstable particles

The expression above theoretically relies on the so-called Cutkosky cutting
rules, a generalisation of the unitarity condition on the S-matrix, which state
that imaginary parts of Feynman integrals can be matched with the corre-
sponding cut diagrams, obtained by replacing the propagators along the cut
with physical on-shell intermediate states:

2⇡✓(p0)�(p
2
�M2

P ) , (4.3)

and taking the complex conjugate (indicated with the grey rectangle near the
dashed line of the cut in the illustration above) of propagators and vertices on
one side of the cut [193]. Cutkosky’s results are valid for stable particles; in
presence of unstable states, which cannot appear as intermediate lines with real
masses, a modified version of the rules exists, namely the Veltman’s Largest-
Time Equation, which show that cutting rules are still applicable provided
that cuts on intermediate lines of unstable particles do not contribute, thus
preserving unitarity [194].

We can use the fact that in the on-shell scheme Re⌃̂(M2
P ) = 0 to write

Eq. (4.2) as:

GP (p
2) =

i

p2 �M2
P + iMP�P

, (4.4)

with of course �P > 0 to preserve causality in the Feynman’s +i✏ prescription.
Some important consequences come from this last equation. First of all, when
squaring it, one gets the shape of a Breit–Wigner resonance and, secondly, one
has that the intermediate resonance P exponentially decays with the lifetime
⌧P = 1/�P [21].

As it often happens in quantum field theory, however, one finds the solution
of a problem only to discover a bigger issue. In fact, the inclusion of finite-
width e↵ects via the imaginary part at the propagator denominator, obtained
via a Dyson summation of self-energies, could result in a partial inclusion of
perturbative orders when ones truncates the series at some loop level. On the
other hand, relations ensuring gauge invariance and unitarity of the S-matrix
holds order by order in perturbation theory, and could be invalidated if some
perturbative orders are not completely included or are mixed together in the
calculations.

We here specify that, in the Standard Model, gauge invariance means that
the process amplitudes must satisfy two fundamental conditions: they must
be independent from the gauge-fixing procedure employed when quantizing
the gauge theory, and they must not violate the Ward identities, also called
Slavnov-Taylor identities when generalised beyond QED [17]. The renormal-
ization strategy we adopted in Chap. 3 respects this two conditions, and we
are thus free to choose to work in the most convenient gauge. The same
applies to the gauge-parameter independence of the definition of the running
couplings in Sec. 3.4.1 and Sec. 3.4.2, as well. Following here the line of reason-
ing in [21], we remark that the Slavnov-Taylor identities imply some relations
between the truncated Green functions with gauge-boson external lines con-
tracted with their momenta and the ones with the corresponding would-be
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4. The treatment of unstable particles

Goldstone bosons. In particular, one has that, after spontaneous symmetry
breaking, U(1)em and SU(2)w gauge invariance implies:

pµTW±

µ (p) = ±MWT �±
(p)

pµTZ
µ (p) = �iMZT

�(p) (4.5)

pµTA
µ (p) = 0 ,

where the symbol T denotes a Green function with the vector- or Goldstone-
boson legs truncated. Eqs. (4.5) descend from the symmetry of the Lagrangian
under the Becchi–Rouet–Stora (BRS) transformations, from which it can be
derived a set of identities for the e↵ective action of the theory, translated to the
corresponding relations among Green functions through functional derivation
w.r.t. the classical fields, that are set to zero after derivation.

The first two equations state the validity of the Goldstone-boson equiva-
lence theorem, which expresses the asymptotical proportionality between am-
plitudes involving high-energetic, longitudinal vector bosons and the corre-
sponding amplitudes obtained by replacing those vector bosons with their as-
sociated would-be Goldstone fields. This relation is particularly useful when
considering cross sections at high energies, as one can replace external longitu-
dinal vector bosons with scalars, much simplifying the calculations for example
in the Sudakov regime of Sec. 3.5. Moreover, it allows to have an experimental
handle on the would-be Goldstone bosons and on how spontaneous symmetry
breaking works, from the study of physical longitudinal vector bosons. The
last equation of Eqs. (4.5), that corresponds to the Ward identities in QED,
ensures the transversality of the photon field.

The violation of these relations thus can result in an unphysical behaviour
of the cross sections, as it will become apparent in the following discussion.
In the high-energy limit, breaking the SU(2)w gauge invariance causes the
cross-section to blow up for processes like e.g. e+e� ! W+W� [21, 195].
For instance, there are cases where, in an high-energy regime, an external
fermion-antifermion current becomes proportional to the sum of the fermion
momenta, that we denote with p. If this current is connected to a vector boson
propagator, the Slavnov-Taylor identities ensure the correct behaviour of the
amplitude with the energy. For W or Z bosons, here generically called with
the symbol V , one can write that part of the diagram as:

const.

p2 �M2
V + iMV �V

pµT V
µ (p) , for p0 � MV , (4.6)

and use one of the first two of Eqs. (4.5) to prevent the amplitude from behaving
in an unphysical way at high energies.

Another example comes from the collinear limit in processes like e+e� !

e�⌫eff̄ , where the angle between the incoming and outgoing electrons becomes
small, or in the scattering of a light particle like the electron mediated by a
photon, for vanishing photon virtuality [195–197]. In these situations, the
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4.1. The problem of gauge invariance with unstable particles

U(1)em gauge invariance ensures that the superficial 1/p4 divergence due to
the propagator is reduced to 1/p2, where p is the momentum flowing in the
propagator, as the amplitude goes as:

const.

p2
pµTA

µ (p) |p2| ! O(m2
e) . (4.7)

In single-W production in e+e� annihilations this fact results in large loga-
rithmic contributions going as log(m2

e/s), with s the squared centre-of-mass
energy. Such terms can become large, leading to a dangerous amplification
even of e↵ects due to a tiny gauge violation.

The problem arising in the treatment of unstable particles is that the ex-
pression in Eq. (4.2) is not gauge invariant, because the renormalized self-
energy ⌃̂P (p2) is gauge dependent, as it can be seen in App. C in the case of
the Z boson. Far from the resonance, the gauge dependence enters formally
at O(↵2), but near the peak one has that |p2�M2

P | ⇠ ⌃̂P (p2) and thus gauge-
dependent terms are of O(↵). In [198, 199] it was argued that one can at best
push the gauge dependence to O(↵�P/MP ), by carefully bringing terms that
contribute to the wave-function renormalization of the unstable particle into
the numerator of the propagator when computing the amplitudes.

The discussion of this issue became relevant at LEP, when the treatment
of unstable particles was essential. As a matter of fact, in the case of LEP1
processes, of the kind:

e+e� ! �, Z ! ff̄ , (4.8)

it is possible to perform a gauge-invariant separation of the correction subsets,
ending up with a result which has no significant gauge dependence. Further-
more, one could argue that at the Z peak there is no dangerous large ratio of
masses, the only relevant one being s/M2

Z , and there might be hope to intro-
duce some corrections to mitigate possible e↵ects of gauge violation. However,
the situation gets more complicated if considering LEP2, where the first tech-
niques to deal with the gauge invariance issues associated to unstable particles
were introduced: some example are the narrow-width approximation and the
fermion-loop scheme [195, 196, 200–204].

In the next sections, however, we focus on modern techniques to treat the
resonances. Before that, it is necessary to discuss the definitions of mass and
width of unstable particles beyond the leading order.

4.1.1 Mass and width of unstable particles

The problem of defining the mass for unstable particles is intimately connected
with the issue of gauge invariance encountered with the propagators, and has
been extensively addressed in the literature [205–207]. In fact, when going be-
yond LO, one has to take into account the mass renormalization for unstable
particles to identify the correct definitions of mass and width and parametrise
the resonance. This is of vital importance in view of experimental determina-
tions of these parameters. The two most common schemes used are:
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4. The treatment of unstable particles

• the on-shell prescription, that follows the mass renormalization for stable
particles;

• the pole definition of the renormalized mass from the complex pole loca-
tion M2

P � i�PMP .

In particular, the on-shell renormalization condition fixes the renormalized
mass as the zero of the real part of the inverse propagator:

M2
P,B = M2

P,OS + Re⌃P (M
2
P,OS) , (4.9)

where M2
P,B and M2

P,OS are the bare and renormalized mass of particle P , re-
spectively, and ⌃P (p2) is the unrenormalized transverse part of the self energy,
which is not gauge invariant starting from the two-loop level [208]. The pole
definition, on the other hand, stems from the relation:

M2
P,B = µ2

P + ⌃P (µ
2
P ) , (4.10)

which allows to identify µ2
P = M2

P � i�PMP with the complex location of the
propagator pole. From the definition of the mass, one can derive the one for
the width in one of the two prescriptions, as following.

Starting from the on-shell one, we insert Eq. (4.9) in the expression of the
propagator, and expand it to find its leading resonance behaviour:

1

p2 �M2
P,OS + ⌃P (p2)� Re⌃P (M2

P,OS)
!

1

(p2 �M2
P,OS) [1 + Re⌃0

P (M
2
P,OS)] + iIm⌃P (p2)

for p2 ! M2
P,OS . (4.11)

By comparing this expression with the traditional form at the resonance:

1

p2 �MP + i�PMP
, (4.12)

this yields:

�P,OS =
Im⌃P (M2

P,OS)

M2
P,OS [1 + Re⌃0

P (M
2
P,OS)]

. (4.13)

The procedure with the pole definition is similar, the starting point being:

1

p2 � µ2
P + ⌃P (p2)� ⌃P (µ2

P )
!

1

(p2 � µ2
P ) [1 + Re⌃0

P (µ
2
P )]

for p2 ! µ2
P , (4.14)

which results in the pole massMP, pole = MP and in the pole width �P, pole = �P

already introduced in the definition of the pole location, µ2
P = M2

P � i�PMP .
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Since the pole location is an intrinsic property of the S-matrix, the definitions
of MP and �P are gauge independent, as discussed in [206, 207].

Note that we are using here an abuse of notation with respect to the pre-
vious section, since we label here with MP and �P the pole definitions for
particle P , that will be used in the following sections for the complex mass,
pole and renormalization schemes used to treat the resonances with the pack-
age Z_ew-BMNNPV of POWHEG-BOX-V2. When realising the running-width
prescription for W and Z bosons, one should use the on-shell quantities MP,OS

and �P,OS. At LEP, the Tevatron and the LHC the masses and widths of theW
and Z bosons have been experimentally determined by using this on-shell defi-
nition. They can be translated into pole quantities by using the relations [209]:

MV =
MV,OSr
1 +

�2
V,OS

M2
V,OS

, �V =
�V,OSr
1 +

�2
V,OS

M2
V,OS

, (4.15)

that yield:

MW,OS �MW ' 27MeV , MZ,OS �MZ ' 34MeV , (4.16)

a di↵erence much larger than the quoted experimental uncertainties on the W
and Z masses discussed in Chap. 2.

4.1.2 The complex mass scheme

The complex-mass scheme (CMS) has been first introduced in [210] for LO
calculations and generalized to NLO in [211, 212]. The essential idea behind
the method is a consistent identification of the mass of the generic unstable
particle P , for instance the W and Z masses, with the complex pole location
of the propagators. If one makes use of an input scheme including the vector-
boson masses, also the derived weak mixing angle becomes complex:

c2w = 1� s2w =
µ2
W

µ2
Z

. (4.17)

Gauge invariance is fully respected in this scheme, since it modifies the gauge-
boson masses only by an analytic continuation. However, the CMS violates
unitarity, because the standard cutting relations involve complex conjugation.
On the other hand, spurious unitarity-breaking terms are at (N)NLO in an
(N)LO calculation, i.e. they are always at higher order without any artificial
amplification, because the unitarity cancellations coming from gauge invariance
are respected.

In NLO calculations, one starts by writing the real bare masses in the La-
grangian in terms of complex renormalized masses and complex counterterms.
After this, the usual perturbative calculations with Feynman rules and coun-
terterms can be carried out in the same way as in the on-shell renormalization,
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4. The treatment of unstable particles

the only di↵erence being that renormalization constants are now complex, as it
is described in [21, 86]. One has to take some extra care to treat the imaginary
parts in the complex masses, which would correspond to higher-order contribu-
tions in the formalism for stable particles. The scheme has thus the advantage
that, provided that the widths of the unstable particles have NLO accuracy, it
produces NLO-accurate predictions everywhere in phase space. For this rea-
son and the fact that it preserves gauge invariance at any order and unitarity
within the required accuracy, the CMS is commonly adopted for multi-particle
NLO calculations, and has been implemented in the Z_ew-BMNNPV code as the
default option. In the past, the default of the Z_ew-BMNNPV package was a naif
prescription to treat the resonance, which however did not guarantee gauge
invariance, as it is shown in App. C.

As general remarks, since one should argue that the complex renormaliza-
tion is not necessary for all unstable particles, but only for those entering the
specific process to be calculated, a few points should be kept in mind:

• all initial- and final-state particles of a given process are considered to
be stable, and thus have real masses;

• since when one mass is renormalized in the CMS its value enters in
general all self-energies, the mass and field renormalization constants
also of stable particles become complex; in this case, one has to keep
the imaginary parts in all renormalization constants, to cancel all UV
divergences;

• even if, for instance in neutral-current Drell Yan, only the Z boson ap-
pears as a resonance, in the CMS the complex renormalization is applied
to both the W and the Z boson, to reduce the numerical impact of
spurious imaginary parts from the complex weak mixing angle.

For practical purposes, it has been noted in [21] that it is possible to avoid
the complications due to the evaluation of self-energies at complex squared
momenta, that would require an analytic continuation of the 2-point functions
to the unphysical Riemann sheet, by making an expansion of the self-energies
about a real momentum, in such a way to preserve one-loop accuracy, by
treating with care the case of charged or coloured particles.

Another important point concerns the width of the unstable particle P
renormalized in the CMS. In fact, �P enters the renormalized parameter µP ,
but is not an independent parameter of the theory, and can be calculated from
the decay cross section of P or by iteratively solving the relation:

MP�P = Im⌃P (M
2
P � iMP�P ) . (4.18)

This last equation would however yield a LO result if ⌃P is taken at NLO,
because the imaginary part of the one-loop self-energy, obtained by employing
unitarity cuts, contains only tree-level information about the width. At the
same time, one needs to use �P at NLO to get full NLO accuracy in the cross
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section also in the resonant region, where |p2�M2
P | becomes O(MP�P ). Thus

one should try to use a two-loop self energy to derive the width, or alternatively
calculate it directly from decay amplitudes at NLO.

This fact can be understood by noticing that, in the CMS, one adds and
subtracts the same imaginary part in the Lagrangian, and uses one of these
terms for the imaginary part for the renormalized mass, which is resummed,
and the other one in a counterterm vertex, which is kept at the numerator.
Even if this addition/subtraction procedure preserves gauge invariance and
unitarity cancellations in a way that is independent from the accuracy of the
calculated width value, for the unitarity cut equations to be still valid at NLO
one needs at least NLO decay widths [213]. In the code, we use the experi-
mental value of the widths, given in input. The experimental determination,
in fact, can be regarded as the value resulting from a calculation including all
perturbative orders.

Having in mind an input scheme with a coupling ↵0/↵(M2
Z)/Gµ and the W

and Z boson masses, a final remark on the value of the electromagnetic coupling
is necessary. In fact, in the CMS, the renormalized electromagnetic coupling
e is complex, because the charge renormalization constant is a function of
complex masses via loop corrections. Again in this case, the imaginary part
of e is not among the input parameters, but can be iteratively calculated from
the charge renormalization constant. The di↵erence with respect to the width
is that the imaginary part of the electromagnetic coupling is formally due to
higher-order spurious terms, because the charge counterterm is defined with
self-energies at zero momentum transfer, which are real if the masses are real.
As a consequence, at NLO one can safely set the imaginary parts of e to zero,
also in order to avoid to possibly spoil the cancellation of infrared divergences
between virtual and real EW corrections.

If one uses ↵(M2
Z) or Gµ in place of ↵0 as inputs, the line of reasoning

is similar. To avoid spurious O(↵) terms in the relation between ↵0 and Gµ,
the value of ↵Gµ should be real, i.e. it should be calculated from the real W
and Z masses. Note however that the corresponding factor �r, which enters
the charge renormalization constant in the Gµ scheme, can be calculated by
using real or complex masses, because the corresponding change would be at
two-loop order.

In the Z_ew-BMNNPV package, where the CMS is the default option for
treating the resonances, the input values for MV and �V are the on-shell ones,
i.e. MV,OS and �V,OS, then internally converted, by means of Eq. (4.15), to the
corresponding pole values, which are used throughout the rest of the code for
the matrix-element evaluation.

As already stated at the beginning of the section, if MW and MZ are taken
as input parameters, in the CMS also the weak mixing angle and its countert-
erm, which are calculated in terms of µW and µZ , become complex. For the
schemes with sin2 ✓`eff in input, on the other hand, sin2 ✓`eff is a real quantity,
defined through the real part of the gV /gA ratio. In the same way, also ↵0,
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↵(MZ), and Gµ are considered real input parameters of the code. When Gµ

is among the free parameters � with the only exception of the (↵0, Gµ,MZ)
scheme �, Gµ is converted to ↵Gµ by using the relation from the muon de-
cay, in which also the vector-boson mass enters. In the CMS ↵Gµ could thus
become complex, but in the code its imaginary part is always eliminated by
taking the real part of the mass entering the conversion equation, to reduce
the impact of the corresponding spurious higher-order terms.

4.1.3 The pole scheme

The main idea at the basis of the pole scheme (PS) is the fact that the
pole location of the vector boson propagator and its residue are both gauge-
independent [198, 205–207, 214]. One can thus split the amplitude between
the resonant part and a residue and then introduce the finite decay width only
in the resonant part, in the following way [21, 86]:

M =
R(p2)

p2 �M2
P

+N(p2) =
R(M2

P )

p2 �M2
P

+
R(p2)�R(M2

P )

p2 �M2
P

+N(p2)

!
R̃(µ2

P )

p2 � µ2
P

+
R(p2)�R(M2

P )

p2 �M2
P

+ Ñ(p2) , (4.19)

where R(p2) is the resonant part stemming from the propagator of particle P
with momentum p and N(p2) is the corresponding non-resonant contribution.
One thus proceed to add the term i�PMP to the propagator denominator
p2 � M2

P in the resonant part: in this procedure, both R(p2) and N(p2) get
modified into R̃(µ2

P ) and Ñ(p2), respectively, in such a way that the final sum
does not contain double-counted terms.

The concept of the pole scheme is interesting because it is based on the
separation between a signal (the resonance) and a background (the remaining
non-resonant contributions), thus making the scheme particularly suitable for
the description of the resonance in terms of the pseudo observables, like total
and partial decay widths, asymmetries and e↵ective couplings, as done at LEP.

Since near the resonance p2 ⇠ M2
P and the term involving �P becomes

dominant, the value of the width has to be at one order higher than the rest
of the calculation. This scheme respects gauge invariance and treats in a uni-
form way the resonance and o↵-resonance regions, provided that enough care
is paid to the separation between resonant and non-resonant contributions, in
which there is some degree of arbitrariness. The implementation in the case
of the neutral-current Drell-Yan process at NLO is described in [86], while it
has not yet been fully implemented for processes involving multiple or charged
resonances, because of extra di�culties connected with the exchange of mass-
less particles (photons or gluons) between the resonances or initial and final
states, that in these cases prevents a gauge-invariant separation between radi-
ation emission before and after the resonance production. A similar problem is
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encountered when considering higher-order corrections to the amplitude, and
can be handled as described in [21, 86].

Another observation is that, since in the resonant part it is used a complex
mass µP , one should in principle compute the matrix elements with complex
momenta; however, for narrow resonances such as the W , Z or H bosons, it
is possible to use real kinematical variables after performing an appropriate
expansion in �V /MV .

A simplified variant of the pole scheme is the so-called pole approximation,
which consists in taking into account only the resonant part of the amplitude,
disregarding the non-resonant contributions: the idea is to use this approxi-
mation to get higher-order corrections near the resonance, while the remaining
calculations in the o↵-shell regions are performed at lower accuracy. For ex-
ample, one can employ the pole approximation to have NLO accuracy in the
resonance region and use a LO calculation in the tails of the invariant-mass
distribution, with the final result that the inclusive cross sections integrated
over the resonance delivers NLO accuracy. This technique has been adopted
in di↵erent contexts in the literature [198, 210, 215–225] also in comparison
with the complex-mass scheme [226]

The pole scheme is present as an alternative option with respect to the CMS
in the Z_ew-BMNNPV package and can be swicthed on with the flag PS_scheme
1.

4.1.4 The factorization scheme

The factorization scheme (FS) is based on the concept of factorising a resonance
term on top of a gauge-invariant amplitude. At LO, this can be achieved by
multiplying the amplitude with the factor:

fP (p
2) =

p2 �M2
P

p2 � µ2
P

, (4.20)

from which in the resonance region it is obtained the Breit-Wigner behaviour
after setting to zero the non-resonant contributions, and in the o↵-shell re-
gions the only modification of the amplitude is of order O(�P/MP ), i.e. it is
formally at one-loop level [21, 195, 227]. At NLO some issues can be encoun-
tered if ones proceeds by simply modifying the LO amplitude with the factor
given above, because of spurious terms of O(�P/MP ) that spoil the one-loop
accuracy. However, in some cases, like for instance the charged-current Drell-
Yan process, the tree-level amplitude gets corrections with the same common
resonant structure, without any additional subleading term, and the factoriza-
tion scheme is applicable as described [85]. For the neutral-current Drell-Yan
process, on the other hand, one has also a non-resonant diagram with the pho-
ton exchange and some additional problems arise; the FS can all the same be
employed for weak corrections, as discussed in [86].

The factorization scheme can be set with the flag FS_scheme 1.
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5
Photonic corrections to neutral-
current Drell Yan

n this Chapter, we start to present the original numerical results of
this work, by examining photonic corrections to the neutral-current
Drell-Yan process. After a theoretical introduction on the issues
associated to soft and collinear divergences in QED, the attention

is focused on the numerical computation of NLO QED contributions due to
the emission of photons: subtraction schemes, in particular the FKS one, are
discussed, in order to finally introduce the POWHEG method in the case
of QED and produce the results of numerical simulations performed with the
Z_ew-BMNNPV package.

5.1 Real emission e↵ects

As seen when discussing weak corrections in the high-energy regime, the pres-
ence of massless gauge bosons both in QED and QCD causes the appearance of
infrared singularities due to the exchange of soft and/or collinear massless par-
ticles. At the electroweak scale, in particular, soft divergences are connected
to the exchange of a gluon or a photon, while collinear singularities arise when
a massless particle, that can be a gluon, a photon, or a light fermion in the
massless limit, splits into two massless particles in loop diagrams [173]. We
have furthermore already discussed that, by virtue of the Bloch-Nordsiek and
Kinoshita-Lee-Nauenberg theorems, IR divergences cancel in inclusive observ-
ables when summing up the virtual corrections and the contribution from the
real emission of massless particles.

We here focus on the QED e↵ects on the relevant distributions of the
neutral-current Drell-Yan process. The choice of considering only this sub-
set of corrections can be done since they are separately gauge invariant and
UV-finite by virtue of the Ward identities. We start by distinguish these cor-
rections into their soft or collinear origins, and discuss how they are dealt
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with in Monte Carlo event generators, at O(↵). In particular, the POWHEG
method is briefly sketched in Chap. 5.3. In this context, it can be noted that
the inclusion of QED higher-order e↵ects due to multiple photon emissions
can be performed with the resummation of leading logarithmic contributions,
for instance via a Parton Shower (PS) generator; to avoid the double-counting
of e↵ects already included in the NLO computation, one should implement a
matching procedure, which essentially consists in the subtraction of the O(↵)
expansion of the parton shower and its replacement with the exact O(↵) ma-
trix element. A detailed description is however beyond the scope of this work,
which focuses on fixed-order calculations.

5.1.1 Soft contributions

In the soft limit, the O(↵) amplitude with the emission of a soft photon with
momentum k can be related to the LO one with the Yennie-Frautschi-Suura
approximation [228], in the following way:

|M1|
2
⇠ �Jµ

eikJ
⇤
eik, µ|M0|

2 =
X

n,n0

Qn�nQn0�n0e2
pn · pn0

(pn · k)(pn0 · k)
|M0|

2 , (5.1)

where the eikonal current has been introduced as:

Jµ
eik = �

X

n

Qne�n
pµn

pn · k
. (5.2)

In this last expression, Qne and pn are the charge and momentum of the
particles involved in the process under consideration, and the sign factor �n is
chosen to be +1 if in the process there are an incoming particle and an outgoing
antiparticle (in our convention, this happens for initial-state particles), and �1
in the case of an outgoing particle and an incoming antiparticle (for the final
state). After performing the integration over the photon phase-space, one gets
a logarithmic singularity, which can be regularised by assuming an infinitesimal
m� mass for the photon and obtaining a term of the kind ln(m2

�/s), or by
considering dimensional regularisation. These two regularisations schemes can
be related as following:

lnm2
$

(4⇡µ2)✏

✏�(1� ✏)
+O(✏) = � + lnµ2 +O(✏) . (5.3)

In the literature, the most common choice for dealing with QED emissions is
mass regularization. Soft singularities are cancelled when taking into account
both virtual corrections and the corresponding real contribution due to the
bremsstrahlung of photons, in agreement with the Bloch-Nordsiek theorem:
the dependence on m2

� is cancelled and one can safely restore the limit m� !

0. In QCD, dimensional regularisation is generally preferred: soft-collinear
singularities therefore appear as 1/✏2 poles, while single soft or collinear ones
are 1/✏ poles.
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5.1.2 Collinear contributions

Collinear singularities occur when photons are emitted collinear to massless
fermions. In the case of light fermions, where “light” means that their masses
are much smaller than the typical energy scale of the hard process, large log-
arithmic contributions appear. Like soft emissions, also collinear ones can
happen either in the final or in the initial state, but, unlike soft emissions, in
the case of hard collinear initial-state splittings, the momentum flowing into
the hard scattering process is modified. One can thus introduce the QED
splittings Pab(z) [229], which represent the probability of finding a parton with
flavour a into one with flavour b, as in the figure below:

(1� z)p

zp
b

a
p

They can be specified in terms of photons and fermions:

Pff =

✓
1 + z2

1� z

◆

+

Pf� = z2 + (1� z)2 (5.4)

P�f =
1 + (1 + z2)

z
P�� = �

2

3
�(1� z) ,

where the following + prescription has been used to regularise Pff :
Z 1

0

dxf(x)+g(x) =

Z 1

0

dxf(x)[g(x)� g(1)] , (5.5)

with g a generic test function. The variable z is here the fraction of the total
longitudinal momentum p carried by parton b. We can for example consider
the ff splitting in initial state:

k

q = p� k

p

The momentum k can be written as:

k = (1� z)p+ k? + ⇠n , (5.6)

where k? is the transverse momentum, n is a vector such as n2 = 0 and n·p 6= 0
and the factor ⇠ can be found from on-shell relations. In the collinear limit,
i.e. for p · k ! 0, the associated cross section reads:

�1 =
↵

2⇡
Pff (z)

dq2

q
dz �0(zp) , (5.7)
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where �0 is the tree-level cross section of the hard process and depends on
zp. The same formula is valid for final-state emissions, upon the replace-
ment �0(zp) ! �0(p). When considering collinear-particle exchanges in loops
together with real collinear splittings, the singularities arising from the integra-
tion of Eq. (5.7) cancel according to the KLN theorem. Some issues however
can arise, making it necessary to introduce the separation between initial- and
final-state radiation and discuss the problems connected to photonic emissions
from initial-state quarks.

5.1.3 Collinear divergences in initial and final states

The neutral-current Drell-Yan process has the property that the initial-state
quark current and the final-state leptonic current, being electrically neutral, are
separately gauge invariant under U(1)em transformations. It is thus possible
to separate the QED initial-state radiation (ISR in the following) from the
final-state one (FSR), and one can also define in a gauge-invariant way the
initial-final interference (IFI) contribution. The total di↵erential cross section
with photonic emission at O(↵) can thus be written as:

d�qq̄,phot. = d�qq̄,ISR + d�qq̄,IFI + d�qq̄,FSR . (5.8)

The subsets of corrections d�qq̄,ISR, d�qq̄,IFI and d�qq̄,FSR are explicitly given
in [86]. The separation among the three contributions can be achieved in
practice by noticing that the ISR contribution has an overall factor Q2

q, equal
to the electromagnetic charge of the initial-state quarks squared, while the FSR
is proportional to Q2

` , where Q` is the electromagnetic charge of the final-state
leptons, and IFI to QqQ`. In a numerical code, one can thus isolate the ISR
e↵ects by switching Q` to zero, and the FSR contribution by setting Qq = 0.
Finally, the initial-final interference can be computed, for a given observable,
by subtracting from the total photonic-emission correction the ISR and FSR
terms. In the case of di↵erential cross sections, this means to invert Eq. (5.8):

d�qq̄,IFI = d�qq̄,phot. � d�qq̄,ISR � d�qq̄,FSR . (5.9)

Having clarified the definitions of ISR, FSR and IFI, we turn to the problem
of the cancellation of collinear divergences. For FSR, if the observable under
consideration is not fully inclusive, as it is always the case in presence of
event-selection cuts, some finite terms of the kind ln(m2

f/s) are left. They
can become large, thus making it necessary in some cases to know at least
the dominant higher-order e↵ects. While leptonic masses constitute a physical
cut-o↵, quarks are usually treated with dimensional regularisation. The IFI
contribution, on the other hand, is process dependent and is free of collinear
divergences.

Finally, the cancellation of ISR singularities is more delicate, as the kine-
matical mismatch between virtual and real contributions spoils the validity
of the KLN theorem; one is thus left with a collinear divergent cross section,
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which can be factorised in a process-independent way on top of the leading
order. The divergent factor can be reabsorbed into the definition of the initial-
state parton densities, denoted in general by fH

q (x), which can be interpreted
as the probability densities to find a parton q with longitudinal momentum
fraction x inside the hadron H of momentum K. To be more precise, in the
case of collinear initial-state radiation, the parton momentum xK is further
reduced by a factor z, and thus the momentum entering the hard process is
zxK, which di↵ers from the xK momentum entering the hard process in the
case of virtual contributions. The result is that large logarithmic contributions
survive. They can however be absorbed into the PDFs, namely they can be
regarded as a property of the hadron rather than of the hard scattering process.

The collinear divergences can be proven to be process independent [230],
making it possible to introduce a non-physical factorisation scale µF to separate
the hard process from long-distance collinear contributions included into the
PDFs, as it is done in QCD:

�H1,H2(K1, K2) =
X

q1,q2

Z
dx1dx2 f

H1
q1 (x1;µF ) f

H2
q2 (x2;µF ) �̂q1q2(x1K1, x2K2;µF ) ,

(5.10)
Such newly-defined PDFs of course depend on µF and satisfy the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution equations [229, 231, 232]
with QED kernels. In the case of neutral-current Drell Yan, this fact has
to be taken into account by using photon partonic density functions of the
proton, which are regulated by a DGLAP QCD+QED evolution. Also the
hard process acquires a dependence on µF in such a way that µF is cancelled
in the calculation of physical observables. In practical cases, however, since
the perturbative series is truncated at a fix order, some dependence on the
choice of µF survives and should be included into the theoretical uncertainties
associated with the calculation.

The explicit formulae for the QED splittings can be found for instance
in [21] both in dimensional regularisation and using the leptonic masses as
regulators. In the Z_ew-BMNNPV package, a hybrid scheme is adopted, in which
dimensional regularisation is used for quarks and photons, while m` is used as
a physical regulator for leptons.

The inclusion of initial-state collinear divergences into PDFs requires the
introduction of the so-called collinear counterterms in the hard partonic cross
section of Eq. (5.10), which cancel initial-state collinear singularities appearing
in the virtual and real contributions to this equation. The hard scattering cross
section of Eq. (5.10) is thus written as:

�̂q1q2 = �̂0
q1q2 + �̂virt

q1q2 + �̂real
q1q2 + �̂coll. c.t.

q1q2 , (5.11)

namely it is the sum of the LO contributions plus the virtual and real cor-
rections and the collinear counterterms. Note that to achieve the cancellation
of initial state singularities, the coupling ↵ in the counterterms and thus also
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in the QED PDFs must be the same as the one used in the calculation of
electroweak corrections to the matrix element.

From a phenomenological point of view, we will present in Sec. 5.4 the
impact of the ISR, FSR and IFI contributions on relevant distributions: from
the plots it is possible to conclude that QED FSR yields a large contribution
to the invariant-mass distribution of the lepton pair, while QED ISR e↵ects
are small, because the large logarithmic contributions due to hard collinear
emissions are subtracted and reabsorbed in the definition of the proton PDFs.
The initial-final interference is negligible at the Z peak, but it grows in size
outside the resonance.

Photon-induced processes

The inclusion of QED e↵ects into the PDFs has the consequence that also
a photon distribution function must be considered, opening the possibility of
photon-induced processes. In the neutral-current Drell-Yan process one has
the q� and q̄� channels, which start to contribute from NLO EW, together
with a leading-order channel �� ! `+`�, and the associated one-loop virtual
corrections to �� ! `+`� and real processes �� ! `+`�� and �q ! `+`�q.
We refer to [21] for a general discussion on photon-initiated processes. Note
that the QED-including PDFs di↵er compared to the ones computed in QCD
only, because the total proton momentum is now shared with an additional
parton, i.e. the photon. Since the total momentum carried by the quarks
is reduced, compared to the QCD-only case, also the quark-antiquark cross
sections are smaller. Thus, photon-induced processes give a contribution to
the total cross section that is complementary to the one of the quark-induced
channels, besides having the e↵ect of modifying the di↵erential distributions
of the final states.

However, as it can be seen for example in [86, 233] the e↵ect of the �� !

`+`� process on the cross section amounts to some % at tree-level, i.e. it is of
the same size of the weak corrections to qq̄ ! `+`�. The one-loop electroweak
corrections to �� ! `+`� are negligible. Since �� ! `+`� is a separate process,
i.e. it is separately gauge-invariant w.r.t. qq̄ ! `+`�, in an experimental
analysis one could think of independently simulating it and subtracting it from
the qq̄ events.

Moreover, since the numerical results presented in Sec. 5.4 are obtained by
considering only leptonic final states, without additional jets, the contribution
of �q ! `+`�q as well as of gluon-induced processes is absent in our simula-
tions. The only modification that the use of QED PDFs could produce is thus
related to the NLO DGLAP evolution of the quark PDFs, that is however
negligible [234]. For all these reasons, the numerical results in Sec. 5.4 are
presented with a set of PDFs that does not include QED corrections, given
that similar results would have been obtained otherwise.
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5.2 The FKS subtraction scheme

The evaluation of real emissions can be performed numerically, since in pres-
ence of phase-space cuts or for not fully-inclusive observables an analytic cal-
culation would be prohibitive. However, the treatment of the infrared diver-
gencies should be carried on analytically, to achieve a proper cancellation of
the singularities when including also virtual corrections. This implies that one
should combine in the same tool an analytical integration in phase-space re-
gions containing the IR divergences together with a fast numerical evaluation
of regular phase-space regions. It is important to notice that, by virtue of the
factorization of the squared amplitude in the singular regions, as in Eqs. (5.1)
and (5.7), the analytical integration can be carried out in a process-independent
way. In the literature, both slicing and subtraction methods have been dis-
cussed to this aim. Here however we focus on the second approach, which can
count a number of NLO variants both in QCD [235–241] and QED [242–246]:
the two most used implementations are the Catani-Seymour (CS) [236, 237]
and the Frixione-Kunszt-Signer (FKS) [235] subtractions, the latter employed
in the POWHEG-BOX code for QCD emissions [247–249]. Since in the
Z_ew-BMNNPV code electroweak radiation is dealt with the FKS method [101–
103, 250], we will mainly focus on this one at O(↵), having in particular in
mind the (unpolarized) neutral-current Drell-Yan process.

The basic idea of subtraction techniques [251, 252] is to add and subtract
an auxiliary function |Msub|

2 to the original singular real-emission integrand
|M1|

2, in such a way that, in the expression:
Z

d�n+1|M1|
2 =

Z
d�n+1

�
|M1|

2
� |Msub|

2
�
+

Z
d�n+1|Msub|

2 , (5.12)

the first integral is regular and can be done numerically in all phase space,
while the remaining term is evaluated analytically. Thus |Msub|

2 should be a
simple function with the property of displaying the same behaviour of |M1|

2

in the singular regions, namely:

|Msub|
2
⇠ |M1|

2 for k2
! 0 , pi · k ! 0 , pf · k ! 0 , (5.13)

where k, pi and pf are the momenta of the radiated photon, the initial-state and
the final-state fermion, respectively. Combining the last integral of Eq. (5.12)
to the virtual corrections is not trivial, since the virtual contributions are
integrated over the tree-level phase space d�n. It is thus crucial to define a
mapping:

d�n+1 ! d�̄n · d�rad , (5.14)

where �̄n is the phase space of the non-radiating process, which can di↵er
from �n because for instance in the case of initial-state radiation the momenta
entering the hard process have to be rescaled, and �rad is the phase space
of the emitted particle, which has to be appropriately parametrised. The
jacobian associated to this mapping is included into the definition of d�rad. In
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5. Photonic corrections to neutral-current Drell Yan

the literature, �̄n is called underlying Born configuration, and is obtained as
follows:

• in the case of a soft singularity, one should eliminate the soft parton;

• in the final-state collinear region, one replaces the two collinear particles
with their parent particle carrying a momentum that is equal to the sum
of their momenta;

• for initial-state collinear divergences, one deletes the collinear emitted
particle and assigns to the radiating parton its momentum fraction after
radiation.

The mapping in Eq. (5.14) is defined in an infrared- and collinear-safe manner,
and modifies the momenta of the particles in such a way that momentum
conservation is preserved. We can thus write:
Z

d�n+1|M1|
2 =

Z
d�n+1

�
|M1|

2
� |Msub|

2
�
+

Z
d�̄n ·

Z
d�rad|Msub|

2 ,

(5.15)
where the integration

R
d�rad|Msub|

2 can be performed analytically and then
the last term can be combined with the virtual corrections.

Singular regions in Eq. (5.13) overlap, and thus one cannot proceed to
naively sum them when defining the subtraction function, because that would
imply a double-counting of the singular contributions. In the FKS approach,
this is handled in the following way. First of all we write the cross section for
the process q1q2 ! `3`4, in the factorised form:

�H1,H2(K1, K2) =
X

q1,q2

Z
dx1dx2d f

H1
q1 (x1) f

H2
q2 (x2) �̂q1q2(x1K1, x2K2) , (5.16)

where �̂q1q2 is the subtracted partonic cross section, in which the collinear
initial-state emissions, already included in the parton distribution functions
fH1
q1 (x1) and fH2

q2 (x2), have been cancelled by the collinear counterterms. The
PDFs fH1

q1 (x1) and fH2
q2 (x2) quantify the probability of extracting a parton q1(2)

with a longitudinal momentum fraction x1(2) from hadron H1(2). To be precise,
�̂q1q2 can be written as:

�̂q1q2(x1K1, x2K2) =

Z
d�n [B(�n) + Vb(�n)] +

Z
d�n+1R(�n+1)

+

Z
d�n,1 G1,b(�n,1) +

Z
d�n,2 G2,b(�n,2) , (5.17)

where in the right hand side the dependence on the parton flavours q1, q2 is
implicit. We have denoted with B the born matrix element integrated over the
phase space d�n, where in our case n = 4; R is the real-emission one, which
has to be integrated over d�n+1, and Vb is the virtual contribution, where the
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5.2. The FKS subtraction scheme

renormalization of UV divergences has been understood, while IR singularities
still survive (hence the subscript “b”). The collinear counterterms G1,b(�n,1)
and G2,b(�n,2) account for the fact that initial-state collinear singularities are
already included into the PDFs fH1

q1 (x1) and fH2
q2 (x2). To keep in mind that

the counterterms contain collinear singular contributions, we have added to
them the subscript “b”. The divergences in Vb and G1(2),b(�n,1(2)) are cancelled
against the corresponding contributions in R, after integrating the latter over
the radiation phase space. The counterterms are integrated over the n-particle
phase spaces d�n,1 and d�n,2, which di↵er from d�n because the momentum
of the 1(2) parton entering the hard process is not k1(2) = x1(2)K1(2), but has
to be rescaled to zk1(2), namely the substitution x1(2) ! zx1(2) has to be made
in the phase space as well as in the argument of the PDFs. In other words,
d�n,1(2) are defined as:

d�n,1(2) = d�̄n
dz

z
. (5.18)

We report here the final result of the subtraction procedure, which is illus-
trated in [248]:

�̂q1q2(x1K1, x2K2) =

Z
d�n [B(�n) + V (�n)] +

Z
d�n+1R̂(�n+1)

+

Z
d�n,1 G1(�n,1) +

Z
d�n,2 G2(�n,2) , (5.19)

where R̂(�n+1) has been obtained from R(�n+1) by assuming, for every emitted
particle i, a parametrisation of the singular region associated to i in terms of
the variables:

⇠ =
2k0

i
p
s
, y = cos ✓ , � , (5.20)

which are connected to its energy k0
i , to the angle ✓ between i and a refer-

ence direction and to the azimuthal angle �. With this parametrisation it is
possible to isolate the singular contributions in R(�n+1), integrating them on
the radiation phase space and then combining them to Vb and to the collinear
counterterms G1(2),b to get the finite quantities V and G1(2). The remaining

term R̂(�n+1) is regular and can be integrated numerically.
To proceed with the FKS subtraction, one introduces some non-negative

functions to partition the n + 1 phase space in such a way that the real con-
tribution can be written as a sum of terms containing at most one collinear
and one soft singularity associated with one particle. In particular, for every
final-state particle i we can define the function Si to describe the region where
i becomes soft/collinear to some initial-state parton, and the function Sij for
the region where i becomes soft/collinear to some final-state particle j. We
have:

n+1X

i=1

Si +
n+1X

i,j=1, i 6=j

Sij = 1 , (5.21)
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5. Photonic corrections to neutral-current Drell Yan

and also the properties listed in Eqs. (2.58)–(2.61) of [248], which can be sum-
marised by saying that, if particle m becomes soft, only the terms Sm and
Smj survive in the sum, if m is collinear to an initial-state parton we have
only the term Sm and if m is collinear to the final-state particle j the only
non-vanishing terms are Smj and Sjm. The functions Si and Sij can be chosen
to be smooth, i.e. easy to implement numerically, as described in [248]. One
can thus decompose the n+1 phase space and project the real corrections into
singular regions, as:

R̂ =
n+1X

i=1

R̂i +
n+1X

i,j=1, i 6=j

R̂ij , R̂i = SiR̂ , R̂ij = SijR̂ , (5.22)

where R̂i corresponds to regions where Ri is divergent because particle i be-
comes soft and/or collinear to an initial-state parton and R̂ij is connected to
the singularities of Rij where i is soft and/or collinear to a final-state particle
j. In all other regions, Ri and Rij are finite. For each term in the sum, one
then has to choose a parametrisation of the n+1 phase space in terms of an n
phase space times the radiation phase space, which is described in terms of the
energy of particle i (associated to soft singularities), and the angle between i
and one of the initial-state partons ✓i (related to initial-state collinear singu-
larities) for R̂i, and in terms of the energy of particle i and the angle betwen i
and a final-state particle j, ✓ij (associated to final-state collinear singularities),
for R̂ij. The variables used are thus:

⇠i =
2k0

i
p
s
, yi = cos ✓i , yij = cos ✓ij , (5.23)

with which one defines two independent functional forms for the initial-state-
and final-state-emission phase spaces.

For the electroweak radiation we are interested here, the subtraction for-
mulae are the same as in the case of the QCD fermion-fermion-gluon vertex,
upon the replacements ↵S ! ↵ and CF ! QnQn0 where Qn(n0) is the charge
of particle n(n0) as in Eq. (5.1). The virtual contribution V of Eq. (5.17) is
given in Eqs. (3.3)–(3.7) of [101], while the collinear counterterms G1(2) can
be written as in Eq. (2.102) of [248] provided that one makes the relevant
substitutions for the electroweak sector.

5.3 The POWHEG method

In the definition of inclusive quantities, collinear and soft divergences are can-
celled by summing over degenerate final states. However, in many phenomeno-
logical or experimental cases one is interested in studying exclusive observables,
rather than inclusive ones, and therefore a framework is needed to resum the
large logarithms stemming from imperfect cancellations of infrared singulari-
ties. To this aim, one can employ Shower Monte Carlo (SMC) programs, which
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5.3. The POWHEG method

provide fully di↵erential information on all emitted particles. In a full simu-
lation, one thus needs to match the fixed-order calculation, which is here at
NLO, to the tower of emissions from the shower. The ideal NLO+PS matching
algorithm is such that the final cross section has the following properties:

• it coincides with the NLO calculation (eventually up to NNLO terms) in
the limit where the transverse momentum of the emitted particle w.r.t.
the radiating one, kT , is large;

• it reproduces correctly the value of infrared-safe observables at NLO;

• for small kT its behaviour is like the one of standard SMC generators.

Parton showers are present in many tools in the literature: multi-purpose
event generators, like Herwig [253, 254], PYTHIA [255] and Sherpa [256, 257],
use QED showers to take into account photon emission radiation, while Pho-
tos [258, 259] provides a standalone QED parton shower that can be matched
to any Monte Carlo program. Other examples are the Monte Carlo generators
Horace [91, 93, 260, 261], KKMC-hh [99] and WINHAC/ZINHAC [94], that
feature a QED resummation for specific processes, like for instance Drell-Yan
processes. In the context of Higgs physics, we mention the code in [262], which
includes QED corrections matched to a parton shower for Higgs+2 jets in the
POWHEG framework.

There exist two main approaches to address the issue of matching NLO
fixed-order calculations to a shower program. The MC@NLO one consists in
subtracting the approximated NLO expansion of the SMC implementation
from the exact NLO result [263]. However, from this subtraction negative
weights could arise. The POWHEG (Positive Weight Hardest Emission Gen-
erator) method, on the other hand, guarantees that the hardest emission of
radiation is generated first, in such a way that only positive-weighted events
are obtained from exact NLO matrix elements [247–249]. A great advantage of
this technique is that it is necessary to correct only the first emission at NLO
with a modified Sudakov form factor, a procedure that can be demonstrated to
be equivalent to the use of a vetoed shower [247]. In this way, all modifications
act on the fixed-order computation without touching the SMC structure, that
is only required to generate radiation softer than the NLO emission, i.e. with
a veto on kT . The POWHEG method can be interfaced to showers which
make use of the transverse momentum of the emitted radiation as ordering
variable, as well as to those featuring an angular ordering. In this last case,
truncated vetoed shower should be added, to account for the large-angle and
soft coherent radiation coming from the particles generated by the hardest
splitting.

We report here the master formula of the POWHEG method, originally
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5. Photonic corrections to neutral-current Drell Yan

formulated for QCD radiation, and generalised to photon emission in [101]:

d�̂ = B̄(�n)d�n


�(�n, p

min
T ) + � (�n, kT (�n+1))

R(�n+1)

B(�n)
d�rad

�

�̄n=�n

,

(5.24)
with the Sudakov form factor:

�(�n, pT ) = exp

⇢
�

Z
d�rad

R(�n+1)

B(�n)
✓(kT (�n+1)� pT )

�

�̄n=�n

, (5.25)

which describes the probability of non emission of a particle with transverse
momentum larger than pT , and the function:

B̄(�n) = B(�n) + V (�n) +

Z
d�rad

h
R̂(�n+1)

i

�̄n=�n

(5.26)

+

Z
dz

z
[G1(�n,1) +G2(�n,2)]�̄n=�n

.

In all these equation, the n + 1 phase space is considered to be mapped ac-
cording to Eq. (5.14) into the n phase space �n times the radiation one, within
a specific subtraction scheme like the FKS one. The term B̄(�n) is positive,
since in the perturbative approach NLO corrections are smaller than the Born
cross section, thus overcoming the problem of negative-weighted events. B̄(�n)
is thus the probability with which the Born configuration is generated.

Eq. (5.24) describes how the hardest radiation is generated within the
NLO computation. The first term in the squared bracket accounts for the
no-emission case, i.e. describes the probability of not emitting any particle
with transverse momentum above the minimum cut pmin

T . The second term
represents the probability of emission of the hardest event, and is weighted
by the factor R(�n+1)/B(�n), which is a generalisation of the Altarelli-Parisi
splitting function, in the sense that it incorporates also the finite terms of the
real matrix element and reduces to the Altarelli-Parisi splitting in the collinear
limit. The function kT (�n+1), which depends on the n+ 1 phase space, in the
singular limit becomes the transverse momentum of the emitted particle with
respect to the radiating one, according to the mapping of Eq. (5.14); in all
phase space it is assumed that kT (�n+1) > pmin

T , where pmin
T is the minimum

cut on the transverse momentum.

In the case of multiple emissions, the Sudakov form factor becomes a prod-
uct of form factors defined in di↵erent singular regions arising from the parti-
tion of the real contribution. For each singular region, the suitable mapping of
Eq. (5.14) has to be introduced. Moreover, particular attention has to be paid
to preserve the flavour structure of the underlying Born configuration in the
mapping of Eq. (5.14), where the flavour structure is defined by the flavours
of the tree-level initial- and final-state particles.
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5.4. Numerical results

Input parameter Value Input parameter Value
↵0 7.297353 · 10�3 Gµ 1.166389 · 10�5

MZ 91.1876 �Z 2.4952
MW 80.385 �W 2.085
MH 125 mtop 173
me 0.51099907 · 10�3 mµ 0.1056583
m⌧ 1.77705 mb 4.7
mu 0.06983 md 0.06984
ms 0.15 mc 1.2

Masses and widths are expressed in GeV

Table 5.1: Input parameters for the simulation of QED corrections at NLO.

5.4 Numerical results

We present here numerical results relative to the fixed-order computation of
the Drell-Yan amplitude of the process qq̄ ! µ+µ�, with photonic virtual
and real corrections at O(↵), obtained with the Z_ew-BMNNPV package of the
Monte Carlo code POWHEG-BOX-V2. Only photonic NLO corrections are
switched on in the code, with LO accuracy for the weak and strong part. The
code runs at

p
s = 8 TeV, which is a typical centre-of-mass energy for the

LHC. The numerical setup for the simulation parameters is summarised in
Table 5.1, while we use the default options for the treatment of the hadronic
contributions to �↵ and the conversion to pole masses and widths. No cuts are
imposed on the final states except for the requirement of a minimum invariant
mass of 50 GeV. The (↵0,MW ,MZ) scheme is employed for the electroweak
sector and the complex-mass scheme has been chosen for the treatment of
the resonance. The PDF set used is the MSTW 2008 NLO one identified as
MSTW2008nlo68cl [148] provided by the LHAPDF-6.2 framework [264]. The
choice of a set of PDFs that does not include QED corrections has been justified
in Sec. 5.1.3.

The factorisation scheme employed for the treatment of QED corrections
is the MS, with factorisation scale set to the leptonic invariant mass M`¯̀.
Di↵erent choices of the factorisation scale would have an impact on distribu-
tions, as we will comment in the following. The separation between initial- and
final-state radiation is currently performed by a private version of the Z_ew-
BMNNPV code and it is obtained as described in Sec. 5.1.3. The di↵erential
observables we are taking into account are the invariant-mass distribution and
the forward-backward asymmetry.

To have an idea of the shape of the di↵erential cross section, we present in
Fig. 5.1 the invariant-mass distribution at LO accuracy within the (↵0,MW ,MZ)
scheme, while Fig. 5.2 shows the e↵ect of the O(↵) photonic corrections rel-
ative to the LO, in the invariant-mass range between 50 GeV and 150 GeV.
It can be seen that the FSR contribution (in red) is responsible for the most

89
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Figure 5.1: LO di↵erential cross section as a function of the dilepton invariant
mass in the (↵0,MW ,MZ) scheme.
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Figure 5.2: Relative correction with respect to the LO cross section as given
by the O(↵) total photonic correction (labelled “QED full”), as well as the
separate contributions of ISR, FSR and IFI. A zoom on ISR and IFI corrections
is provided on the right.

part of the total photonic correction (in blue), varying from 15% at 50 GeV
up to a maximum of 90% w.r.t. the LO around 80 GeV, then changing sign
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Figure 5.3: Absolute correction with respect to the LO asymmetry. In the left
panel one has the O(↵) total photonic (blue) and the FSR (red) corrections,
while on the right the ISR (green dashed line) and IFI (brown dotted line)
contributions are showed.

to arrive to account almost 15% in absolute value. It is clear the e↵ect of the
radiative return, which shifts the bulk of events that at LO are produced at the
Z peak towards lower energies. The contribution of ISR (green dashed line)
is very small, as the large logarithms arising from collinear divergences are
subtracted by the collinear counterterms. Also initial-final interference (brown
dotted line) gives a small e↵ect: it amounts to 1 per mille near the peak and
rises in absolute value at larger invariant masses, remaining always below 1%.
The zoom on the right allows to better quantify the ISR and IFI contributions.

Fig. 5.3 is the analogue of Fig. 5.2 for the forward-backward asymmetry
distribution. The IFI contribution is here defined as:

AIFI
FB =

(�F � �B)
NLO

� (�F � �B)
ISR

� (�F � �B)
FSR + 2 (�F � �B)

LO

(�F + �B)
NLO

� (�F + �B)
ISR

� (�F + �B)
FSR + 2 (�F + �B)

LO ,

(5.27)
where the “NLO” label refers to the total photonic O(↵) correction. The LO
term has to be added two times to compensate for the fact that it is included
in the ISR and FSR contributions, which are subtracted from the NLO.

Note that for the asymmetry we show the absolute di↵erence between the
NLO asymmetry and the leading-order one. As in the case of the cross section,
the largest contribution is given by the FSR (in red on the left panel), which
ranges from 2% at 50 GeV up to a maximum of more than 12% around 70 GeV
and then becoming much smaller for higher invariant masses. In the left panel,
the blue line represents the total NLO QED contribution, which as it can be
seen is dominated by the FSR. In the right panel, the ISR e↵ect (green dashed
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Figure 5.4: Diagrammatic picture of the dynamic choice of µF , which is equal
to the invariant mass of the dilepton system computed with the underlying-
Born momenta.
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Figure 5.5: E↵ect of the choice µF = M`¯̀with respect to the µF = M`¯̀� one for
the FSR (left) and IFI (right) contributions to the invariant-mass distribution.
The lower panels show the di↵erence between the red and blue curves, as
explained in the text.

line) is in practice negligible, while the IFI amounts to a maximum of 5 per
mille in absolute value at 50 GeV, is minimum in the resonance region and
then grows in size as one moves to higher invariant masses.

We now turn our attention to discuss the choice of the factorisation scale µF ,
which in the code is taken to be the same for both QED and QCD. Moreover,
we set µF = µR, with µR the renormalisation scale. The results presented so
far are obtained with µF = M`¯̀, where M`¯̀ denotes the invariant mass of the
final-state leptons taken as bare, i.e. without photon recombination. Other
options are however possible: for example, one could choose to compute µF
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Figure 5.6: E↵ect of the choice µF = M`¯̀ with respect to the µF = M`¯̀� one
for the FSR (left) and IFI (right) contributions to the asymmetry distribution.
The lower panels show the di↵erence between the red and blue curves, as
explained in the text.

as the leptonic invariant mass obtained with the underlying-Born momenta.
This option ensures infrared safety, as µF = p2, where p2 is the momentum
flowing into the vector-boson propagator. In other words, this means that for
initial-state radiation µF coincides with M`¯̀, i.e. µF = M`¯̀, while for FSR
is it equal to the invariant mass of the system `¯̀�, i.e. µF = M`¯̀�. This is
sketched in the diagrams of Fig. 5.4. Thus, a di↵erent selection of µF leaves
the correction due to ISR unchanged, but modified both FSR and IFI, and
thus the total NLO photonic contribution.

Fig. 5.5 shows the e↵ect of the choice of µF on the invariant mass distri-
bution. In all plots in the following, red curves refer to the O(↵) distributions
obtained with the dynamical option and blue ones to µF = M`¯̀ computed with
bare-lepton momenta, normalised to the leading order. In the bottom panel
of each figure the green line is the absolute di↵erence, again normalised to the
leading order:

di↵ =
(option with µF = M`¯̀)� (option with µF = M`¯̀�)

LO
. (5.28)

On the left of Fig. 5.5 we have the e↵ect on the FSR distribution. To a good
approximation the figure is the same for the total NLO photonic correction. We
can see that choosing µF = M`¯̀� instead of µF = M`¯̀ changes the distribution
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5. Photonic corrections to neutral-current Drell Yan

especially in the low-energy region, up to almost 3% with respect to the LO.
The right panel, on the other hand, shows the e↵ect on the IFI, which amounts
to a maximum of 5 per mille of the LO for low invariant masses. In the
region above the resonance, selecting one option instead of the other does not
significantly modify the distributions.

In Fig. 5.6 the e↵ect of the choice of the factorisation scale is examined for
the forward-backward asymmetry distribution. Similarly to what happens for
the cross section, the distributions undergo a significant modification only for
low values of the invariant mass. The FSR contribution, in the left panel, is
changed by at most 3 per mille in absolute value, while the e↵ect on the IFI
correction, on the right, amounts to a maximum of 1.5h.

A remark is however in order here. The dependence of the observables on
the choice of the factorisation scale is due to the fact that our computation is
performed at fixed-order: in principle, µF is not a physical parameter and no
measurable quantity would depend on it. The dependence on µF appearing
here is mainly a QCD issue, even if it manifests itself also on QED corrections:
it is due to the fact that the numerical results are taken at LO QCD, and thus
no collinear counterterms are included, to compensate for the µF dependence
of the PDFs. As such, this e↵ect would be mitigated when including more
orders in ↵S.
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6
Numerical results on weak correc-
tions

e here study the numerical impact of the weak corrections on dif-
ferential observables like the invariant-mass distribution and the
forward-backward asymmetry of the neutral-current Drell-Yan pro-
cess at LHC energies: we examine the range from 50 to 200 GeV

and the high-energy region at 1� 3.5 TeV.

6.1 Numerical setup and first results

We consider the process qq̄ ! µ+µ�, with
p
s = 13 TeV, and no cuts on final-

state muons except for the invariant mass cut M`¯̀ � 50 GeV. The numerical
values of the input parameters are listed in Table 6.1, while we use the default
options for the treatment of higher orders, the hadronic contributions to �↵
and the conversion to pole masses and widths. The scheme employed to handle
the resonance, if not di↵erently specified, is the complex mass. We remind the
reader that the input values for MV and �V , with V = Z,W , are the on-shell
ones, which are then internally converted to the corresponding pole values,
used for the matrix element calculations.



6. Numerical results on weak corrections

Input parameter Value Input parameter Value
↵0 1/137.0359909956391 Gµ 1.1663787 · 10�5

↵(M2
Z) 1/128.93 sin2 ✓`eff 0.23154

MZ 91.1876 �Z 2.4952
MW 80.385 �W 2.085
MH 125 mtop 173
me 0.51099907 · 10�3 mµ 0.1056583
m⌧ 1.77705 mb 4.7
mu 0.06983 md 0.06984
ms 0.15 mc 1.2

Masses and widths are expressed in GeV

Table 6.1: Input parameters for the simulation of weak corrections at NLO.
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Figure 6.1: Upper panels: LO distributions of the di↵erential cross section
(left) and AFB (right) as functions of M`¯̀ in the (Gµ,MW ,MZ) scheme. Lower
panels: NLO corrections w.r.t. the LO for the di↵erential cross section (left)
and AFB (right) in three input schemes: (Gµ,MW ,MZ) (solid blue line),
(↵0, Gµ,MZ) (dashed red line) and (Gµ, sin

2 ✓`eff ,MZ) (dotted green line).

The PDFs set used is the NNPDF31 nlo as 0118 luxqed one [234, 265,
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6.2. Higher order e↵ects

266], where we set the factorization scale to the invariant mass of the dilepton
system.

The upper panels of Fig. 6.1 show the leading-order distributions of the
di↵erential cross section (on the left) and AFB (on the right) as functions of
the leptonic invariant mass M`¯̀ between 50 GeV and 200 GeV and with no
additional kinematical cuts on the leptons. The electroweak scheme that has
here been chosen as the reference is the (Gµ,MW ,MZ) one.

In the lower panel on the left one can see the NLO relative correction to
d�/dM`¯̀ w.r.t. the LO prediction, for three input schemes: (Gµ,MW ,MZ)
(solid blue line), (↵0, Gµ,MZ) with enabled option azinscheme4 (dashed red
line) and (Gµ, sin

2 ✓`eff ,MZ) (dotted green line). The schemes
�
Gµ, sin

2 ✓`eff ,MZ

�

and (↵0, Gµ,MZ) present corrections with similar shape and size, between �1%
and about +1%. The correction in the (Gµ,MW ,MZ), on the other hand, is
characterised by a di↵erent shape, with the correction varying from +5% at 50
GeV to �1% around 100 GeV. These behaviours can be explained by notic-
ing that, in all three schemes, the NLO matrix element is written formally
in the same way in terms of �Ze and �s2w, the only di↵erence being the e↵ec-
tive expression of the counterterms and the numerical value of s2w. One can
thus split the NLO matrix element into the one-loop amplitude of the scheme�
Gµ, sin

2 ✓`eff ,MZ

�
plus a term that takes into account the fact that the LO

matrix element is written as a function of a numerically di↵erent s2w 6= s2eff , as
explained in [105].

In the lower panel on the right it is presented the NLO correction to the
asymmetry, defined as the absolute di↵erence w.r.t. the LO. As in the case
of the cross section, the NLO corrections in the schemes (Gµ, sin

2 ✓`eff ,MZ)
(dotted green line) and (↵0, Gµ,MZ) (dashed red line) display similar shapes
and sizes: as pointed out in [53], the corrections to the asymmetry are rather
small, counting up to 0.002. In the (Gµ,MW ,MZ) scheme, on the other hand,
the corrections are larger, reaching a maximum (in absolute value) of �0.018
at about 80 GeV.

6.2 Higher order e↵ects

We proceed here to show the e↵ects of including the higher-order universal
corrections on the cross section and asymmetry distributions.

Fig. 6.2 shows the impact of higher orders on the invariant-mass distribu-
tion on the left and on the forward-backward asymmetry on the right, in the
three renormalization schemes (Gµ,MW ,MZ), (↵0, Gµ,MZ) with azinscheme4
on and

�
Gµ, sin

2 ✓`eff ,MZ

�
. The higher-order corrections in these plots are ob-

tained by including �⇢ as in Eq. (3.19). The usual convention of displaying the
relative corrections, normalised to the LO, for the cross section and the absolute
correction for AFB(M`¯̀), is adopted. For the cross section, when the e↵ective
leptonic weak mixing angle is in input, as expected, one gets the smallest cor-
rection, of the order of �2 per mille, while in the (↵0, Gµ,MZ) the e↵ect is zero
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Figure 6.2: Higher-order correction to the di↵erential cross section (left) and
forward-backward asymmetry (right) distributions as a function of the leptonic
invariant mass, for three di↵erent choices of renormalization scheme as indi-
cated.
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Figure 6.3: Impact of the three-loop QCD contribution to �⇢ on the cross
section distribution (left) and on the asymmetry (right), for the three renor-
malization schemes indicated by the labels.

at low invariant masses, then reaching a maximum of �3h around the Z peak:
this can be understood by considering the extra shift, w.r.t. the one-loop one,
in the value of s2w induced by the h.o. contributions, which only enters in the
Z-exchange amplitude. In the (Gµ,MW ,MZ) scheme, the contribution is large
for low invariant masses, reaching more than 0.7% in absolute value, and then
decreases at higher scales, hitting a minimum around the resonance region and
then remaining of the order of 0.2%: on top of the shift in s2w, in this scheme
there is an additional overall factor 2(�⇢��⇢|1�loop)cw/sw+�⇢2c2w/s

2
w coming

from the relation between ↵ and Gµ, which a↵ects also the photon-exchange
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diagram, dominant at lower energies [105]. For the asymmetry, the overall
factors cancel; the (Gµ,MW ,MZ) and (↵0, Gµ,MZ) schemes show a specular
behaviour, due to the shift in the value of s2w, which is larger in the former
case. In the

�
Gµ, sin

2 ✓`eff ,MZ

�
scheme, on the other hand, the correction is

negligible.
Fig. 6.3 presents the e↵ect of switching on only the three-loop QCD cor-

rection to �⇢, �(3)QCD in Eq. 3.19, presented as a relative (absolute) di↵erence
between the invariant-mass cross section (asymmetry) distribution obtained

with and without �(3)QCD, normalised to the LO predictions. On the left, we can
see that the largest correction to the cross section occur in the (Gµ,MW ,MZ)
scheme in the low invariant-mass region, with a value of 0.05%, then reach-
ing the �0.01% level in the Z resonance region and decreasing to about
�0.04% at large energies. This is due to the fact that the �⇢-dependence
in this scheme stems from both �s2w and the overall factor c2w/s

2
w�⇢ from

the ↵ � Gµ relation: the latter one is the dominant e↵ect for low invariant
masses. In the (↵0, Gµ,MZ) scheme the contribution is limited to the range
[�0.03%, 0]: it comes from the linear �⇢ correction to the coupling in Z-
exchange diagram, and as such is negligible when the photon contribution
dominates, at low energy. Finally, the

�
Gµ, sin

2 ✓`eff ,MZ

�
scheme presents a

correction which varies between 0.015% and �0.04%, due to the overall factor
6xt(�⇢(1)+xt�⇢(2))⇥↵2

S/⇡
2
⇥�(3)QCD stemming from the ↵�Gµ relation, which

is three times smaller than the corresponding contribution in the Gµ scheme.
The dependence on the invariant mass can be related to the residual scale
dependence of the QCD correction.

In the right part of Fig. 6.3, one can observe that in the case of the asym-
metry distribution all overall e↵ects cancel, leading to very small corrections
in all schemes. In particular, for the

�
Gµ, sin

2 ✓`eff ,MZ

�
scheme the impact

is vanishing, because �⇢ cancels almost completely between numerator and
denominator.

6.3 Input scheme comparison

The study of the corrections within di↵erent schemes is completed by Fig. 6.4,
where the cross section (relative di↵erences, on the left) and asymmetry (ab-
solute di↵erences, on the right) distributions are compared to the reference
predictions in the (↵(M2

Z), s
2
eff ,MZ) scheme, for di↵erent levels of perturba-

tive accuracy: the LO in the upper panels, the NLO in the middle and the
NLO with additional universal higher-order corrections, labelled NLO+HO,
at the bottom. In these lower panels, also the predictions obtained with the
MS scheme (↵(µ), s2w(µ), MZ), introduced in Sec. 3.4, are shown (dash-dotted
black line). For the schemes with ↵0 in input, the higher orders are realised
by including the correction due to �↵(MZ), computed at a fixed scale set to
the Z mass, instead of the scale-dependent factor �↵(s).

The first general observation is that the convergence of the perturbative
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Figure 6.4: Invariant-mass distribution ratio and asymmetry di↵erence in dif-
ferent schemes, w.r.t. the (↵(M2

Z), s
2
eff ,MZ) one. In the h.o. it is used

�↵(MZ).

series is apparent, as the di↵erences among the schemes tend to come closer
together, starting from several per cents at LO, counting less then 2% at NLO
and ending at few 0.1% at NLO+HO for the cross section; for the asymmetry,
the absolute di↵erences amount to a maximum of approximately 0.02 at LO
and few 0.001 at NLO, reducing to few 10�4 when including the higher-order
fermionic corrections. The di↵erence among the predictions obtained with
di↵erent input and renormalization schemes can be understood by splitting
the corrections into a non-enhanced part � formally equal to the one in the
reference (↵(M2

Z), s
2
eff ,MZ), but with a di↵erent numerical value for ↵ and the

weak mixing angle � plus the shift in s2w described in Sec. 6.1, plus the overall
e↵ect due to the running of ↵ or to the corrections to the ↵�Gµ relation if ↵0 or
Gµ are in input, respectively. The size of these contributions is fully illustrated
and justified in [105], by referring to the explicit form of the corrections within
each scheme presented in Chap. 3.
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Figure 6.5: Relative corrections to the invariant-mass distribution (left) and
absolute corrections to the forward-backward asymmetry (right) obtained by
considering only NLO bosonic contributions.

To have an idea of the NNLO missing corrections which are not included
in the lower panels of Fig. 6.4, one can look at the size of the NLO bosonic
corrections in the di↵erent schemes, displayed in Fig. 6.5 for the three repre-
sentative schemes of Sec. 6.1. On the left panel, it is shown the relative e↵ect
of NLO bosonic contributions w.r.t. to the LO for the invariant-mass distribu-
tion, where one can see that the bosonic corrections are in general negative and
quite large, reaching up to 5% at 200 GeV. On the right we have the absolute
di↵erence for the asymmetry distribution: here one has an almost specular
trend for the schemes with MW in input with respect to the ones with sin2 ✓`eff
as free parameter, with corrections which amount to few 10�3. The largest
e↵ect from NLO bosonic contributions is visible in the (↵0, Gµ,MZ) scheme,
where it reaches a maximum of 6 · 10�3 near 83 GeV.

The bosonic corrections at NLO are quite large in all schemes, and, by
comparing the middle panels of Fig. 6.5 with Fig. 6.4, one could infer that
there are important cancellations between the fermionic and bosonic part of
the NLO contributions. This can partially explain why the di↵erences among
schemes are still significative at the NLO+HO level: in fact, one could expect
that a rough estimate of the bosonic contribution to the full NNLO calculation
is obtained by squaring the NLO bosonic corrections, which will contribute to
reduce the spread among di↵erent schemes up of several 10�4 in the case of
the cross section and of some 10�5 for the asymmetry. One can conclude that
the leading fermionic corrections at higher orders constitute only a partial
approximation of the complete NNLO calculation.
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6. Numerical results on weak corrections

6.3.1 Comparison with LEP results

The comparison among the di↵erent schemes here presented deserves some
more words: in fact, the di↵erences at NLO+HO are quite large, in ostensi-
ble contrast to results in the literature, especially connected with the high-
precision predictions for the LEP1 experiment [28, 50, 200]. In this section, we
will reproduce the calculations performed for LEP, by using our language and
including only the universal higher-order corrections, available at and outside
the resonance. Note that this prescription di↵ers from the calculations and
related codes used in [28], which included also sub-leading two-loop e↵ects at
the peak [111–113]. As of today, the predictions at the Z resonance have been
updated to include the full NNLO corrections [267].

First of all, we decide to adopt the pole scheme for the treatment of the
resonance, to avoid spurious contaminations from terms of the kind �V /MV ,
and consider the calculation of the Z`¯̀width, in a similar fancy to what is done
in Table 4 of [28]. We do not aim at reproducing the exact LEP numbers, as we
stick to the parameter values of Table 6.1, where e.g. the Higgs and top masses
are the measured ones. The goal here is to reproduce the level of agreement
among di↵erent schemes as declared in [28], which amounts to 10�4 on the Z`¯̀

width, as a check of the internal consistency of our code.

Since the calculations in [28] made use of the input data ↵0, Gµ and
MZ , we follow this prescription as well: in particular, ↵0 is used to com-
pute ↵(M2

Z), which is the overall coupling of the weak corrections. In our
code, this is equivalent to consider three input schemes: (↵(M2

Z), Gµ,MZ)
� i.e. the usual (↵0, Gµ,MZ) with azinscheme4 on, already used in the
previous sections and here relabelled in analogy with the other schemes �,
(↵(M2

Z),MW |Gµ ,MZ), with the value of MW |Gµ computed by using the val-
ues of ↵0, Gµ and MZ , and (↵(M2

Z), sin
2 ✓`eff |Gµ ,MZ), where sin2 ✓`eff |Gµ is

extracted from ↵0, Gµ and MZ . An important remark is in order here: the
code usually computes the values of derived quantities with tree-level relations,
while here we want to do something di↵erent, i.e. to compute the derived pa-
rameters with the accuracy corresponding to the one of the predictions, to
reduce as much as possible the introduction of spurious terms, formally not
under control. The three schemes (↵(M2

Z), Gµ,MZ), (↵(M2
Z),MW |Gµ ,MZ) and

(↵(M2
Z), sin

2 ✓`eff |Gµ ,MZ) thus di↵er for the form of the corrections and the
renormalization conditions, as discussed in Chap. 3, but they all take as input
quantities ↵0, Gµ and MZ .

The relevant formulae for the calculation of the Zff̄ width at LO, NLO
and when including also the universal higher-order corrections can be found
in App. D. The derived parameters are computed in an iterative way with the
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following equations:

MW |Gµ =
M2

Z

2

0

B@1 +

vuuut1�

p
8⇡

GµM2
Z

↵(M2
Z)

1 + �r(1) � �↵ +
c2W
s2W

�⇢(1,X)

1 +
c2W
s2W

�⇢(X)

1

CA

s2eff |Gµ =
1

2
�

s
1

4
�

⇡
p
2GµM2

Z

↵(M2
Z)
⇣
1 + �r̃(1) � �↵ + �⇢(1) � �⇢

⌘
,

(6.1)

where �r(1) is the one-loop �r computed in the scheme with MW in input,
while �r̃(1) is the one with s2eff as free parameter. The term ↵(M2

Z) is calcu-
lated as:

↵(M2
Z) =

↵0

1� �↵
. (6.2)

The factor �⇢(1) is the one-loop contribution to �⇢, which in turn includes
both one- and two-loop (plus eventually higher orders in QCD) terms, while
�⇢(1,X) is defined as:

�⇢(1,X) =
⌃ZZ

T (MZ)

M2
Z

�
⌃W

T (MW )

M2
W

���
fin, µdim=MZ

, (6.3)

that is, it is the di↵erence between the self-energies without the UV poles
and with µdim set to MZ ; finally, �⇢(X) is analogous to �⇢, but the one-loop
contribution is given by �⇢(1,X) instead of �⇢(1). Note that in �⇢(X) the overall
coupling is Gµ.

To implement the higher-order corrections, we use an Improved Born Ap-
proximation, with the couplings given by ↵(M2

Z) and an e↵ective s̃2w computed
for the di↵erent schemes as described in the following. The key observation
here is that one can always define an e↵ective weak mixing angle, as an ob-
servable at NLO accuracy, as:

s̃2w,LO =
1

2

�gR
gL � gR

s̃2w,NLO =
1

2

�gR
gL � gR

+
1

2

gLgR
(gL � gR)2

Re

✓
�gL
gL

�
�gR
gR

◆
. (6.4)

�
↵(M2

Z), sin
2✓`

eff |Gµ,MZ

�
scheme

The input couplings in this scheme are already the e↵ective ones, with s̃2w =
sin2 ✓`eff |Gµ . It does not receive corrections when going from NLO to NLO+HO.

(↵(M2
Z),Gµ,MZ) scheme

In this scheme, it can be demonstrated that the NLO counterterm of s2w, i.e.
�s2w/s

2
w, can be written as the one for the e↵ective weak mixing angle �s2eff/s

2
eff ,
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(↵(M2
Z),MW |Gµ ,MZ) (↵(M2

Z), s
2
eff |Gµ ,MZ) (↵(M2

Z), Gµ,MZ)
s̃2w,NLO+HO 0.2316749 0.2315919 0.2315965

�e LO 8.58920545 · 10�2 8.3203418 · 10�2 8.3315838 · 10�2

�e NLO+HO 8.3697741 · 10�2 8.3717562 · 10�2 8.3717744 · 10�2

Table 6.2: Results for the Z`¯̀width at LO and NLO+HO in the three schemes
described in the text. In the first line, we report also the value for the e↵ective
coupling s̃2w,NLO+HO used to compute the NLO+HO.

plus a term �r̃ formally equivalent to the one with s2eff in input, but computed
with the numerical value of s2w obtained in the (↵(M2

Z), Gµ,MZ). At NLO thus
we can introduce an e↵ective coupling as:

s̃2w,NLO = s2w +
s2wc

2
w

c2w � s2w
�r̃ , (6.5)

and at NLO+HO one can resum the �r̃ term:

s̃2w,NLO+HO =
1

2
�

s
1

4
�

⇡↵
p
2GµM2

Z

(1 + �r̃) . (6.6)

Note that Eq. (6.5) is the one-loop expansion of Eq. (6.6).

(↵(M2
Z),MW ,MZ) scheme

At NLO is valid the second of Eqs. (6.4), while at NLO+HO one can write:

s̃2w,NLO+HO = s2w

✓
1 +

c2w
s2w

�⇢(X)

◆
(6.7)

·


1�

c2w
s2w

�⇢(1,X) +
1

s2w

1

2

gLgR
(gL � gR)2

Re
⇣�gL
gL

�
�gR
gR

⌘�
.

Note that the terms in the second parenthesis should be computed with the
same coupling used as the overall of the NLO weak corrections in the code.

We thus substitute these e↵ective couplings into the Born width, and sub-
tract the one-loop contribution, which is already computed by the code follow-
ing the equations of App. D. By using the numerical setup of Sec. 6.1 and by
switching on the 2-loop mixed and the 3-loop QCD contributions to �⇢, we
obtain the results of Table 6.2.

It can be seen that the overall agreement among the values of the Z`¯̀

width when including the universal higher-order corrections is at the level
of 10�4, even better if we consider only the schemes (↵(M2

Z), s
2
eff |Gµ ,MZ)

and (↵(M2
Z), Gµ,MZ), where the equivalence between the �s2w/s

2
w countert-

erms can be proven analytically also for terms formally beyond accuracy. We
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Figure 6.6: E↵ects of varying the input parameter sin2 ✓`eff = 0.23154±0.00016
in the (Gµ, sin

2 ✓`eff ,MZ) scheme from the central value to the upper and lower
ones, at LO and NLO. On the left it is shown the relative di↵erence between
the invariant-mass distribution obtained with the upper/lower value of sin2 ✓`eff
and the one with the central value sin2 ✓`eff,c = 0.23154, on the right the ab-
solute di↵erence between the asymmetry distribution obtained with the up-
per/lower value of sin2 ✓`eff and the one with the central value.

remark that, at di↵erence to what was available at LEP, we did not include
the full NNLO corrections to the width, leaving it to future work. It would
be indeed interesting to compare our findings with existing tools that provide
exact NNLO accuracy for the form factors and the leptonic width at the Z
peak [100, 267].

6.4 Parametric uncertainties

An important feature that has to be taken into account in the choice of an
input scheme is the experimental accuracy at which the relevant parameters
are known. In this Section, we study the parametric uncertainties due to the
current experimental errors on two important inputs, MW and sin2 ✓`eff , which
enter the computations in the schemes (Gµ,MW ,MZ) and

�
Gµ, sin

2 ✓`eff ,MZ

�
,

respectively. We decide to treat the (↵0, Gµ,MZ) scheme as it was not a↵ected
by parametric uncertainties, given the excellent accuracy with which ↵0, Gµ

and MZ are known. As in the previous sections, we consider these e↵ects on
the cross section and the asymmetry distributions, as functions of the leptonic
invariant mass.

Figure 6.6 shows the impact due to a variation of sin2 ✓`eff within the LEP
range 0.23154±0.00016 [50] in the

�
Gµ, sin

2 ✓`eff ,MZ

�
scheme at LO and NLO

accuracy (black and red lines, respectively). On the left side, it is plotted the
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Figure 6.7: E↵ects induced on the dilepton invariant-mass distribution by
a variation of the input parameter sin2 ✓`eff = 0.23154 ± 0.00016 in the
(↵0, sin

2 ✓`eff ,MZ) scheme from the central value to the upper and lower ones,
at LO and NLO. Same notation and conventions of the left panel of Fig. 6.6.

relative di↵erence on the cross section distribution, i.e. the quantity:

�± =
d�

dM
s2eff,c±�s2eff
µ+µ�

. d�

dM
s2eff,c
µ+µ�

� 1 , (6.8)

where s2eff,c refers to the central value of sin2 ✓`eff , namely 0.23154, while
�s2eff = 0.00016. In the

�
Gµ, sin

2 ✓`eff ,MZ

�
scheme, the renormalisation con-

ditions are imposed in such a way that the radiative corrections do not a↵ect
sin2 ✓`eff : as a consequence, varying sin2 ✓`eff produces the same e↵ect at LO
and at NLO EW. The di↵erential cross section as a function of the invariant
mass depends on sin2 ✓`eff not only through the gV /gA factor arising from the

Zff vertices, but also via the overall coupling1:

↵Gµ =

p
2

⇡
Gµ sin

2 ✓`eff
�
1� sin2 ✓`eff

�
M2

Z . (6.9)

This dependence of the overall ↵ on the value of the input sin2 ✓`eff explains the
enhancement in the low-mass region on the left panel of Fig. 6.6, as one can
better understand by comparing this plot with Fig. 6.7, which is obtained
in the

�
↵0, sin

2 ✓`eff ,MZ

�
scheme, where the overall coupling is ↵0, i.e. it

is independent from sin2 ✓`eff . In light of these observations, it is better to
consider a normalized di↵erential cross-section distribution if one aims to study

1In the complex-mass scheme, the real part of M2
Z should be taken.

106



6.4. Parametric uncertainties

-0.002

-0.0015

-0.001

-0.0005

0

0.0005

0.001

0.0015

0.002

60 80 100 120 140 160 180 200

GµMWMZ
d�

X
d�

w
it
h
M

c W
�
1

M(ll) [GeV]

LO M c
W +�MW

LO M c
W ��MW

NLO M c
W +�MW

NLO M c
W ��MW

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

60 80 100 120 140 160 180 200

GµMWMZ

A
X F
B
�

A
M

c W
F
B

M(ll) [GeV]

LO M c
W +�MW

LO M c
W ��MW

NLO M c
W +�MW

NLO M c
W ��MW

Figure 6.8: E↵ects of varying the input parameter MW = 80.385± 0.015 GeV
in the (Gµ,MW ,MZ) scheme from the central value to the upper and lower
ones, at LO and NLO. On the left it is shown the relative di↵erence between
the invariant-mass distribution obtained with the upper/lower value of MW

and the one with the central value M c
W = 80.385 GeV. One the right one has

the absolute di↵erence between the asymmetry distribution obtained with the
upper/lower value of MW and the one with the central value.

the sensitivity of this observable to the leptonic e↵ective weak mixing angle,
which is considered as a measure of the Zff coupling through the gV /gA ratio.

On the right side of Fig. 6.6 we show the e↵ects of varying sin2 ✓`eff on the
asymmetry distribution. In particular, it is plotted the absolute di↵erence:

�± =
dAFB

dM
s2eff,c±�s2eff
µ+µ�

�
dAFB

dM
s2eff,c
µ+µ�

. (6.10)

As in the case of the cross section, the dependence on sin2 ✓`eff is basically
the same at LO and at NLO, amounting to ±6 · 10�4 near the Z peak and
vanishing away from the resonance region. One can notice that, since AFB

is defined through a ratio of di↵erential cross sections, the overall spurious
dependence on sin2 ✓`eff cancels and with this plot one can quantify the “true”
sensitivity of this observable to the e↵ective leptonic weak mixing angle.

Figure 6.8 shows the impact of the parametric uncertainty due to the value
of the W -boson mass within the (Gµ,MW ,MZ) scheme. In particular, on the
right is it plotted the same quantity of Eq. (6.8) and on the left the one in
Eq. (6.10), but with the central W -mass value M c

W = 80.385 GeV in place of
s2eff,c and the variation �MW = ±15 MeV instead of �s2eff

2. The behaviour
of the cross section and asymmetry distributions in Fig. 6.8 is very similar to

2This was the 1� error of Ref. [268]. As seen in Chap. 2, the current PDG error on the
MW world average is 12 MeV [30], excluding the latest CDF measurement. However, for
our illustration purposes taking �MW = ±15 MeV is enough.
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Figure 6.9: E↵ects of varying the top-quark mass mtop = 173.0 ± 0.4 GeV in
the three considered schemes. The top-quark mass enters only the NLO correc-
tions. On the left, it is shown the relative di↵erence between the invariant-mass
distribution obtained with the upper/lower value of mtop and the one with the
central value mc

top = 173.0 GeV. On the right there is the absolute di↵erence
of the asymmetry distributions obtained in the same mtop range.

the corresponding one in Fig. 6.6, as it can be understood at LO by considering
the relation:

� sin2 ✓`eff = �2

✓
MW

M2
Z

◆
�MW , (6.11)

which links the variation of MW to the one of sin2 ✓`eff . From Eq. (6.11) it can
be calculated that, for example, varying the W mass of 15 MeV is equivalent
to a shift of �0.0003 in sin2 ✓`eff , a quantity that is approximately twice the
�s2eff considered in Fig. 6.6. The same pattern is present also at NLO, even if
beyond the leading order the relation between the shifts of sin2 ✓`eff and MW

is more complicated: in fact, in Fig. 6.8 the NLO curves do not overlap with
the LO ones, at di↵erence from what happens in Fig. 6.6.

On the left panel of Fig. 6.8 we can observe again a spurious enhancement
of the sensitivity in the low invariant-mass region due to the dependence of ↵
on the W mass:

↵Gµ =

p
2

⇡
GµM

2
W

⇣
1�

M2
W

M2
Z

⌘
, (6.12)
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Figure 6.10: Change in the cross section as a function of the invariant mass
(left) and in the asymmetry distribution (right) if one takes the central value for
�↵had fit (that here coincides with zero) plus its error ��↵had fit, here labelled
�1 for results obtained with the flag fit=1, and �2 for results with the flag
fit=2. The input scheme used here is (↵0,MW ,MZ).

where if the complex-mass scheme is employed one should take the real part
of the masses.

To conclude the section, we show the sensitivity of the two considered
observables on the top-quark mass, which enters the loop corrections in all
three schemes (Gµ,MW ,MZ),

�
Gµ, sin

2 ✓`eff ,MZ

�
and (↵0, Gµ,MZ). We take

into account a variation of 400 MeV from the central value mc
top = 173 GeV,

which corresponds to the error quoted in [269], recently improved to mtop =
172.69 ± 0.30 GeV in [30]. The results are presented only at NLO accu-
racy, because the top mass has an impact only through radiative corrections.
For the di↵erential cross section, the dependence on the variation of the top
mass is of the order of 0.01% for all schemes. On the other hand, within the
(Gµ, sin

2 ✓`eff ,MZ) scheme the asymmetry distribution is not a↵ected by mtop

in a relevant way [53], while in the other two schemes the sensitivity of the
asymmetry to the top mass remains below the 0.01% level.

6.5 Treatment of �↵had

We here present results connected to the treatment of the hadronic running of
the electromagnetic coupling constant described in Sec. 3.4.1, in its improved
and most recent version. Since the e↵ects of the hadronic running of ↵ are
not visible in schemes that do not have ↵0 as input, because the terms that
depend logarithmically on the light-quark masses vanish, we choose to work
within the (↵0,MW ,MZ) scheme.

On the left side of Fig. 6.10 one can see the dependence of the di↵eren-
tial cross section on the error associated with the two options of computing
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Figure 6.11: Di↵erence of the pole/factorization scheme with respect to the
default complex-mass scheme in the distribution of the di↵erential cross section
(left) and in the forward-backward asymmetry distribution (right), at NLO.
The di↵erence PS-CMS is shown by the solid blue curve, while the FS-CMS
one by the dashed red one. Every panel corresponds to a di↵erent choice
of the renormalization scheme. Upper panel: (Gµ,MW ,MZ); middle panel:
(↵0, Gµ,MZ); lower panel: (Gµ, sin

2 ✓`eff ,MZ).

�↵had, fit, namely the routine HADR5X19.F [120–127], denoted with the label
“fit 1”, and the KNT v3.0.1 one [128–131], labelled“fit 2”. For the cross section,
we show the relative di↵erence between the distribution obtained by shifting
the central value of �↵had of ±��↵had, with respect to the one with �↵had

fixed to its nominal value. The impact is of ±0.022% for HADR5X19.F and
±0.027% for KNT v3.0.1. On the right, we show the absolute di↵erence in the
asymmetry distribution, obtained within the same range of variation of �↵had:
in this case, the e↵ect is negligible, below the 10�5 level.

6.6 Treatment of the Z width

We compare the di↵erent options implemented in the code for the treatment of
the Z resonance described in Chap. 4: the default is the complex-mass scheme
(CMS), but one can switch on the pole scheme (PS) or the factorisation scheme
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(FS) and see the impact of this choice on the di↵erential distributions.
Fig. 6.11 shows, on the left, the relative di↵erence between the pole (or fac-

torization) scheme, represented by the blue (or red) line, with respect to the
default CMS, for the di↵erential cross-section distribution. We take into ac-
count the usual three di↵erent schemes, all withGµ as an input: (Gµ,MW ,MZ),
(↵0, Gµ,MZ) and (Gµ, sin

2 ✓`eff ,MZ). In all schemes it is possible to observe
an oscillation of few 0.01% of amplitude in the resonance region. This has
already been pointed out in [86], separately for initial state characterised by
the uū or dd̄ channels. Another general consideration is that in all schemes
the shape of the di↵erences is comparable, with the pole scheme that is closer
than the FS to the CMS . Quantitatively, the largest di↵erence appears in the
(Gµ,MW ,MZ) and the (↵0, Gµ,MZ) schemes with the FS, in the energy region
around 70 GeV. It is here not recognisable the structure at the WW threshold
visible in Fig. 6 of Ref. [86], as here the contributions from up- and down-quark
channels partially cancel.

In the right panel of Fig. 6.11, it is shown the absolute di↵erence between
the PS (FS) and the CMS, in the AFB distribution. The di↵erence in the
asymmetry presents a smooth behaviour around the Z peak, and overall it is
of the order of few 0.01%. In the case of the asymmetry distribution, the WW
threshold produces a clear enhancement, of the order of 0.05% in all three
schemes.

6.7 High energy regime

The results so far presented, which refer to the physics at the Z resonance, can
be completed by an analysis of the NLO EW corrections in the high-energy
regime in di↵erent renormalization schemes. Such a study could be relevant in
view of the upcoming physics programme at future high-energy colliders.

We start the discussion by observing that, if considering only the valence
quarks within the proton, one can write the DY LO amplitude asMu u(x, µF )+
Md d(x, µF ), and the NLO one as �u Mu u(x, µF )+ �d Md d(x, µF ), where Mu(d)

is the leading-order hard scattering amplitude and �u(d) is the relative one-
loop correction with only the up(down) contribution in the initial state, while
u(d)(x, µF ) is the corresponding PDF. It follows that, in all plots shown in this
chapter, the ratio NLO/LO is sensitive to the relative PDF weight u/(u+d) and
d/(u+d). In the high-mass regime, it can happen to reach the kinematical limit
of the PDFs, with the consequence that the ratio between up- and down-quark
contributions gets modified, ending up in unphysical behaviours when plotting
NLO/LO ratios. For this reason, we here plot distributions in the down-quark
channel only, having checked that results with up quarks are similar.

On the left side of Fig. 6.12 it is presented the comparison among all dif-
ferent renormalization schemes, at LO (upper panel), one-loop (central panel)
and NLO+HO (lower panel): as already done for Fig. 6.4, we plot the relative
di↵erence w.r.t the reference (↵(M2

Z), s
2
eff ,MZ) scheme, in the energy range
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Figure 6.12: Left: comparison among di↵erent renormalization schemes, at
LO (upper panel) and including NLO weak corrections (lower panel), in the
energy range between 1 TeV and 12 TeV. Right: comparison between the
Sudakov approximation described in the text (dotted lines) and the full NLO
calculation (solid lines), for three di↵erent schemes. In both plots, results refer
to the down-quark channel in the initial state.

between 1 TeV and 12 TeV. A first observation is that, since in the high-energy
regime the invariant-mass dependence of the LO amplitude can be factorised
as an overall 1/M2

`¯̀
up to an error of the size of the terms M2

Z/s, the ratio
between di↵erent schemes does not depend on the invariant mass. In fact, the
shift w.r.t (↵(M2

Z), s
2
eff ,MZ) is due mainly to the ratio of the numerical values

of the overall couplings, plus a tiny shape e↵ect � not visible on the scale of
the plot � due to the di↵erent value of sin2 ✓`eff in the schemes where MW is
in input.

At LO the maximum di↵erence exceeds 10%, remaining large also at NLO,
where it can reach up to 6 � 7% and increases with the invariant mass. The
inclusion of higher-order corrections improves the agreement among di↵erent
schemes in the 1-TeV region, but it does not modify the NLO behaviour of the
curves for larger energy values. In fact, at one-loop, some of the corrections
connected to the coupling running are included in an e↵ective way in the
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countertems, thus reducing the scheme dependence in the part of the amplitude
proportional to the LO structure. On the other hand, the di↵erence due to
the remaining corrections gets enhanced with the energy due to the e↵ect of
Sudakov logarithms, which are multiplied by a scheme-dependent factor and,
being bosonic corrections, are not reabsorbed by including h.o. contributions.

In the Sudakov regime, it is interesting to find a recipe to approximate the
full NLO calculation, for instance by taking into account the leading double
and single logs as described in Sec. 3.5: the idea is then to resum the dom-
inant contributions from large logs to all orders. However, for all schemes
except the MS one, to get a good proxy of the full NLO it is necessary to con-
sider also some additional logarithmic contributions of the form logM2

`¯̀
/M2

W ,
connected with the one-loop expansion of the running of couplings from the
electroweak scale to the high M`¯̀ of the process, which can be numerically
relevant. Moreover, since the NLO correction is the result of a severe cancella-
tion between fermionic and bosonic contributions, but the Sudakov logarithms
are only bosonic, it is necessary to add also the fermionic leading corrections
associated to �↵ for schemes with ↵0 in input and to �⇢ if Gµ is among the
free parameters. The final recipe to get a good approximated NLO behaviour
is thus to sum the Sudakov logs + the logarithms of UV origin + the leading
fermionic corrections.

Some words should be spent on the MS scheme on its own. In fact, the
running couplings already incorporate the resummation of logarithms coming
from the coupling renormalization and part of the fermionic contributions,
making it not feasible to consistently separate fermionic and bosonic correc-
tions. Thus, the described recipe to approximate the NLO does not apply to
the MS scheme, where the UV logs and fermionic contributions are already
included.

The right panel of Fig. 6.12 shows the comparison between the complete
NLO correction (solid lines) and the approximation obtained with the de-
scribed prescription (dotted lines), in the case of the (Gµ,MW ,MZ) scheme
(in blue), the (Gµ, sin

2 ✓`eff ,MZ) one (in green), and the MS one (in black).
The di↵erence between the full NLO and its approximation amounts to a few
percent in all schemes, and remains almost constant throughout the consid-
ered invariant-mass range. Given these results, to quantify the uncertainty
stemming from missing higher-order bosonic corrections, one could take the
square of the Sudakov double and single logs. Alternatively, given that for the
neutral-current Drell Yan the Sudakov logs coincide with the full bosonic one-
loop correction with good approximation, we could take the exponentiation of
double and single logs, under the assumption that they factorise on top of the
complete amplitude.
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7
Direct determination of the weak
mixing angle at high energy

s already stated, the neutral-current Drell-Yan production is particu-
larly suitable for the extraction of the weak mixing angle at hadronic
machines. Measurements of this process at high energies can be used
to test the energy scale dependence, i.e. the running, of the param-

eter in regions where New Physics e↵ects can become important. Of course,
such a determination requires the implementation of at least the full NLO
EW radiative corrections, using a MS renormalization scheme featuring the
electroweak mixing angle as input parameter, as the one discussed in Sec. 3.4.

In this chapter we present some results on the sensitivity to the weak mix-
ing angle of the neutral-current Drell-Yan process in the Run-3 and High-
Luminosity phases of the LHC, obtained with the package Z_ew-BMNNPV of
POWHEG-BOX. In the upcoming years, a great production of neutral-
current Drell-Yan events at high energy is expected at the LHC, by means
of proton-proton collisions at a center-of-mass energy of

p
s = 13.6 TeV. A

preliminary study of the feasibility to probe the weak mixing angle with such
dataset thus appears crucial. Moreover, as already pointed out when discussing
existent determinations of theMS weak mixing angle in Sec. 2.2.3, the running
of this parameter at time-like scales above the Z-boson mass has never been
probed experimentally, and would constitute a complementary point of view to
low-energy studies, allowing a far from trivial test of the internal consistency
of the Standard Model.

7.1 The weak mixing angle at high energy

Exploring the weak mixing angle in the high energy regime is particularly in-
teresting: in fact, according to the renormalization group equation, which reg-
ulates the evolution of sin2 ✓MS

W (µ) as predicted within the Standard Model, the
running of the parameter acquires a steep positive slope [77] at scales above the
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W -boson mass, where the contribution of the W -boson opens up. In addition,
a high energy determination of the weak mixing angle could indirectly probe
new physics particles, as long as they carry electroweak quantum numbers.
Such new states would in fact enter the running of the electroweak gauge cou-
plings, and thus such analyses would not require to know their particular decay
modes [79–81]. In the literature, a conspicuous number of studies exists on the
potential of LHC and future hadronic machines to constrain New Physics mod-
els by analysing the running couplings with Drell-Yan processes [270–273].

In this work, we adopt a pure Standard Model approach, that is indepen-
dent of any particular New Physics parametrization. Furthermore, the study
presented here aims at going beyond the approximation on which existing anal-
yses are based, namely the use of leading-order electroweak matrix elements,
where the running couplings include only the leading logarithmic contributions
to the beta functions. In fact, the Z_ew-BMNNPV package o↵ers the possibility to
directly probe the running of sin2 ✓MS

w (µ) by means of a full NLO electroweak
calculation, with the hybrid MS renormalization scheme described in Sec. 3.4,
where the Lagrangian parameters e and sin2 ✓w are renormalized in the MS
scheme and the Z-boson mass in the on-shell scheme.

As final remark, note that our approach is configured as complementary
to model-independent searches performed via E↵ective Field Theories, as ex-
plored in Refs. [274–276] and references therein. The EFT techniques are
e↵ective at describing New Physics e↵ects where a separation of scales can
be applied, i.e. the observed deviations are due to states with a mass much
greater than the scale of the process under consideration. A pure Standard
Model approach, on the other hand, can be employed also in proximity of the
mass thresholds of these new states.

7.2 Code settings

Traditionally, the extraction of the weak mixing angle at the Z peak is per-
formed through measurements of the forward-backward asymmetry AFB. At
the energies here considered, of the order of 1 TeV, however, it has been found
that the absolute di↵erential cross section is more sensitive to sin2 ✓MS

w (µ) and
thus could constitute a more appropriate choice for its determination. A pos-
sible way to see this is to evaluate the logarithmic derivative w.r.t. sin2 ✓w,
i.e. the relative variation under the change of sin2 ✓w, of the cross section and
of AFB, for M`¯̀ values much greater than MZ [273]. At 1 TeV, keeping the
e↵ect of finite MZ , the logarithmic derivative multiplied by sin2 ✓w has been
evaluated with POWHEG-BOX and found to be:

s2w
1

d�/dM`¯̀

@(d�/dM`¯̀)

@s2w
' 0.9 w.r.t. s2w

1

AFB

@AFB

@s2w
' 0.3 . (7.1)

Motivated by this fact, we start by considering neutral-current Drell-Yan
production at

p
s = 13.6 TeV in two scenarios: the first one assumes an
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integrated luminosity of 300 fb�1, as expected at the end of the LHC Run 3,
while the second one takes into account a number of events given by 3000 fb�1

of luminosity and corresponds to the HL-LHC phase [277]. The observable
chosen for this sensitivity study is the triple di↵erential cross section, as a
function of the invariant mass M`¯̀, of the rapidity y`¯̀ of the leptonic pair,
and of the cosine of the angle between the incoming and outgoing fermions
in the Collins-Soper reference frame, ✓. Since it can be sampled separately
in the forward and backward directions, the triple di↵erential cross section
has the advantage of encoding the information coming from both the absolute
cross-sections and the forward-backward asymmetry, and thus combines the
sensitivity to sin2 ✓w of both these classes of observables. At LO this triple
di↵erential cross section can be expressed as:

d3�

dM`¯̀dy`¯̀d cos ✓
=

⇡↵2

3M`¯̀s

✓
(1 + cos2 ✓)

X

q

Sq[fq(x1, Q
2)fq(x2, Q

2)

+ fq(x2, Q
2)fq(x1, Q

2)] + cos ✓
X

q

Aqsign(y`¯̀)

· [fq(x1, Q
2)fq(x2, Q

2)� fq(x2, Q
2)fq(x1, Q

2)]

◆
,

(7.2)

where we have denoted with M`¯̀ = ŝ = x1x2s the partonic centre-of-mass
energy and with s the hadronic one. The functions fq(q)(x,Q2), with Q2 = M2

`¯̀
,

are the PDFs associated to the extraction of a parton q(q) with momentum
fraction x from the protons. In particular, the two momentum fractions x1

and x2 are related to the invariant mass M`¯̀ and rapidity y`¯̀ as:

x1,2 =
M`¯̀
p
s
e±y`¯̀ . (7.3)

In Eq. (7.2), two coupling combinations appear, one that is symmetric (S) and
one anti-symmetric (A) [278]. They are given by:

Sq = e2`e
2
q + P�Z · e`v`eqvq + PZZ · (v2` + a2`)(v

2
q + a2q)

Aq = P�Z · 2e`a`eqaq + PZZ · 8v`a`vqaq ,
(7.4)

where ei is the electric charge, expressed in units of the positron charge, and
vi (ai) is the vector (axial-vector) coupling. The propagator factors can be
explicitly written as:

P�Z(M`¯̀) =
2M2

`¯̀
(M2

`¯̀
�M2

Z)

sin2 ✓w cos2 ✓w[(M2
`¯̀
�M2

Z)
2 + �2

ZM
2
Z ]

,

PZZ(M`¯̀) =
M4

`¯̀

sin4 ✓w cos4 ✓w[(M2
`¯̀
�M2

Z)
2 + �2

ZM
2
Z ]

.

(7.5)

The bin choice for the evaluation of the triple di↵erential cross section is
the following: six bins in M`¯̀ with boundaries 116, 150, 200, 300, 500, 1500,
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Figure 7.1: E↵ects of QED radiation due to ISR (blue stripes), FSR (dot-
ted red line) and the total contribution (solid green line) on the dilepton
invariant mass distribution, in the case of bare leptons and for the scheme
(↵0, sin

2 ✓`eff ,MZ). The results are presented as relative corrections KQED =
NLOQED/LO� 1.

5000 GeV, six bins in |y`¯̀| with boundaries 0.0, 0.4, 0.8, 1.2, 1.6, 2.0, 2.5, and
two bins in cos ✓ for the forward and backward directions, for a total of 72
bins.

Concerning selection criteria, the final leptons of the process pp ! �/Z !

`+`� are defined at Born level, i.e. with recombination of final-state photon
emission, and are selected by using the usual cuts employed in ATLAS and
CMS measurements (one example can be found in [279]): the leading (sub-
leading) lepton must have a transverse momentum p`T > 40(30) GeV and an
absolute pseudorapidity |⌘`| < 2.5.

We then proceed with the generation of Monte Carlo predictions, that are
simulated at NLO plus parton shower in QCD, including NLO virtual weak
corrections but no photonic corrections, a choice made possible by the fact
that the two sets of corrections are separately gauge invariant, as discussed
in Chap. 5. In each M`¯̀ bin, 109 events are produced at parton level with
POWHEG-BOX-V2, and then interfaced to pythia8.307 [255], to add the
e↵ects due to emission of QCD radiation via parton showering, the underlying
event, the hadronization process and the photonic radiation from quarks, i.e.
only initial-state QED radiation. FSR and IFI e↵ects are not taken into ac-
count in this study. As already discussed in Chap. 5 and as it can be seen in
Fig. 7.1, the largest contribution to the total QED radiation comes from QED
FSR. In the plot, the correction is presented as a K-factor:

KQED =
NLOQED

LO
� 1 , (7.6)
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Figure 7.2: E↵ects of QED radiation due to FSR (dotted red line) and the total
contribution (solid green line) on the dilepton invariant mass distribution, in
the case of dressed leptons and for the scheme (↵0, sin

2 ✓`eff ,MZ). The results
are presented as relative corrections KQED = NLOQED/LO � 1. Photons
emitted within a cone defined by �R  0.2 have been recombined with the
nearest lepton.

where “NLO QED” stands here for the one-loop contribution when considering
only the impact of photonic corrections, without QCD and weak contribu-
tions. For high invariant masses, one can see that the e↵ect due to FSR is
negative and ranges from 8% at 1 TeV to 13% at 3.5 TeV. The figure refers to
the neutral-current Drell-Yan process simulated with POWHEG-BOX-V2
where the leptons are not taken at Born-level (they are “bare”, not “dressed”)
and the adopted renormalization scheme features (↵0, sin

2 ✓`eff ,MZ) as input
parameters. Results produced with this scheme are not very di↵erent from
those expected with the hybrid MS scheme (↵(µ), sin2 ✓MS

w (µ),MZ). In the
present analysis, QED final-state radiation is however negligible, due to the
fact that we chose to work with Born-level leptons, meaning that the photonic
radiation lying within the cone denoted by:

�R =
p

�⌘2 + ��2  0.2 (7.7)

has been recombined to the nearest lepton. In this last equation, �⌘ = ⌘1� ⌘2
is the di↵erence of the pseudorapidity of particle 1 and particle 2, while �� =
�1 � �2 is the di↵erence in the azimuthal angle �.

In Fig. 7.2 it is shown the correction due to FSR and the total contribution
(FSR+ISR+IFI) on the dilepton invariant mass distribution, in the case of
dressed leptons and for the scheme (↵0, sin

2 ✓`eff ,MZ). By comparing Fig. 7.2
with Fig. 7.1, one can see the e↵ect of recombination: the FSR correction for
dressed leptons amounts to some percent, staying well under 4% in the range
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M lo
`¯̀

[GeV] Mhi
`¯̀

[GeV] M̂`¯̀ [GeV] (↵(M̂`¯̀))
�1 sin2 ✓MS

w (M̂`¯̀)
66 116 MZ 127.951 0.23122
116 150 133 127.838 0.23323
150 200 175 127.752 0.23468
200 300 250 127.544 0.23648
300 500 400 127.269 0.23885
500 1500 1000 126.735 0.24350
1500 5000 3250 126.047 0.24954

Table 7.1: The input parameters of the (↵(µ), sin2 ✓MS
w (µ),MZ) scheme. In

each mass bin, the first three columns indicate the lower and upper bin edges
and the respective centre of the bin. The last two columns show the values
of (↵(µ))�1 and sin2 ✓MS

w (µ) at µ = M̂`¯̀ as predicted by the Standard Model
running.

1� 3.5 TeV. Accordingly, the total correction ranges from 3.5% at 1 TeV to a
maximum of approximately 5% at 3.5 TeV. It should be noted that there is a
spurious e↵ect due to ISR contributing to the total correction: in fact, the code
tries to recombine all photons, without distinguishing between photons coming
from FSR or from ISR, so it may happen that some initial-state radiation,
by chance lying in the �R  0.2 cone, is occasionally mis-recombined to a
final-state lepton; this has as a consequence a spurious enhancement of the
correction due to ISR when switching on the recombination.

As it can be seen from Fig. 7.1, the remaining contributions of QED ra-
diation from quarks and initial-final interference are small, reaching at most
1%. It has been checked that the ISR+IFI correction has a flat behaviour with
dilepton invariant masses and stays within 1% between 1.5 TeV and 5 TeV.
Since QED radiation from quarks is included in the analysis, one can conser-
vatively estimate the uncertainty associated with this choice by squaring the
magnitude of the corresponding contribution, which is therefore negligible for
the present study.

Within the (↵(µ), sin2 ✓MS
w (µ),MZ) scheme for the electroweak renormal-

ization, the input parameters for the nominal template are set to their MS
values at MZ , and evolved to their value in each bin according to the renormal-
ization group equation. The running of the couplings is computed by switching
on the decoupling of the W boson and the top quark for µ < MW and µ < mtop,
respectively, but not the O(↵) threshold correction for µ = MW , that is set
to zero. The values of the parameters used in each bin are reported in Ta-
ble 7.1. In the table and in the following, M̂`¯̀ denotes the central point of the
bin. For each M`¯̀ bin, three templates are generated: in the nominal one, the
initial condition for the running of sin2 ✓MS

w (µ) is set to the expected Standard
Model value at the starting scale µ = M̂`¯̀, while in the other two templates
sin2 ✓MS

w (µ) is varied from the nominal value of ±0.01. The Standard Model
running of ↵(µ) is always assumed.
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As final remark on the electroweak settings, the complex-mass scheme is
used for the gauge-invariant handling of the unstable Z-boson propagator.

For what concerns the treatment of QCD corrections, the factorisation and
renormalization scales are set in the code to µR = µF = M`¯̀ and convoluted
with the NPDF31_nnlo_as_0118_hessian [280] PDF set.

Finally, to obtain a realistic measurement scenario, parameterized lepton
e�ciencies and resolutions are employed to get a simplified description of the
detector response. The leptonic identification and reconstruction e�ciencies
and energy-smearing functions are taken from ATLAS analyses during LHC
Run 2 [281–283] and evaluated using Rivet [284].

7.3 Uncertainty estimation

The sensitivity study described here is completed with a quantification of ex-
perimental and theoretical uncertainties. While statistical uncertainties in
the pseudo-data are simply extracted from the reconstructed-level number of
events in each bin, systematics require a more careful evaluation. Starting
from existing ATLAS measurement of high-mass Drell-Yan cross sections at
p
s = 8 TeV [285], systematic uncertainties in the lepton reconstruction and

e�ciencies have been extrapolated to the working conditions of Run 3 and
HL-LHC, by applying a reduction of a factor of two and four, respectively.
In the fit, these kind of uncertainties have been conservatively propagated to
the di↵erent bins by taking them as uncorrelated in M`¯̀, |y`¯̀| and cos ✓. The
luminosity is considered to be determined with an error of 1.5% for Run 3 and
1% for HL-LHC [277].

Theoretical uncertainties due to the knowledge of PDFs within the chosen
set NNPDF31_nnlo_as_0118_hessian are evaluated by eigenvector propaga-
tion, while the error associated with the variation of scales and of the Bjorken
variable is estimated by using interpolating grids generated with
Madgraph_aMC@NLO and aMCfast [286, 287].

Another source of uncertainties is represented by missing higher-order terms
in perturbative calculations of the cross sections, that within a sensitivity study
can be estimated by making use of reasonable approximations. The state-of-art
on neutral-current Drell-Yan production calculations consists in the inclusion
of corrections up to N3LO in QCD [288] with exact NNLO mixed QCD-EW
corrections [289–291] and up to NLO plus leading higher-order contributions in
the electroweak coupling constant. For what concerns QCD corrections, miss-
ing NNLO and N3LO corrections can be quantified by examining the impact
of seven-point scale variations of the renormalization and factorization scales,
µR and µF , at both NNLO and N3LO, with the code n3loxs [292]. The study
has been performed under the assumption that results not to depend on |y`¯̀|
and cos ✓, but only on the invariant mass of the di-lepton system. Further-
more, it does not include the e↵ects of fiducial lepton selections, that can be
neglected at high M`¯̀. In the first four invariant mass bins, one finds similar

121



7. Direct determination of the weak mixing angle at high energy

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

200 400 600 800 1000 1200 1400 1600 1800 2000

K
w
ea
k
=

N
L
O
w
ea
k

L
O

�
1

M(ll) [GeV]

(↵(µ), s2w(µ),MZ)

(Gµ, s2eff ,MZ)

(Gµ,MW ,MZ)

Figure 7.3: E↵ect of the pure weak corrections in the range between 200 GeV
and 2 TeV, shown as the factor Kweak = NLOpureweak/LO � 1. It is clear
the negative logarithmic growth due to Sudakov logs in all schemes shown:⇣
↵(µ), sin2 ✓MS

w (µ),MZ

⌘
(black strips),

�
Gµ, sin

2 ✓`eff ,MZ
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(dotted green line)

and (Gµ,MW ,MZ) (solid blue line).

scale variations at NNLO and N3LO, while in the last two bins, NNLO scale
variations are larger with respect to N3LO ones; nonetheless, the corrections
to the cross section amount to 2� 3% at maximum, a value that is negligible
when compared to the leading uncertainties in those bins, primarily due to
PDF variations, which account for approximately 20% of the total error, and
statistical uncertainties, that contribute up to 80% of the total error in the
last bin. In the fit, also this class of uncertainty is propagated by assuming
uncorrelation in M`¯̀, |y`¯̀| and cos ✓.

The pure weak radiative corrections amount to few 0.1% around the Z
peak, but grow to O(10%) at the few TeV scale because of the presence of
Sudakov logarithms of the form ↵ log2(M`¯̀/MV ), where MV is the mass of the
gauge vector bosons, W or Z. An example of this behaviour can be seen in
Fig. 7.3, where the correction due to pure weak contributions is shown as the
factor:

Kweak =
NLOpureweak

LO
� 1 , (7.8)

in the range between 200 GeV and 2 TeV, for the three di↵erent schemes⇣
↵(µ), sin2 ✓MS

w (µ),MZ

⌘
,
�
Gµ, sin

2 ✓`eff ,MZ

�
and (Gµ,MW ,MZ). As one could

expect, in the
⇣
↵(µ), sin2 ✓MS

w (µ),MZ

⌘
scheme the e↵ect is smaller when com-

pared with the other two, due to the fact that part of the correction is reab-
sorbed in the running couplings. Fig. 7.4 shows a similar plot, but in the range

3.5�7 TeV and for the two schemes (Gµ,MW ,MZ) and
⇣
↵(µ), sin2 ✓MS

w (µ),MZ

⌘
,

the latter with the two options “running turned on” or “running turned o↵”.
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⇣
↵(µ), sin2 ✓MS

w (µ),MZ

⌘
scheme with running on (black strips) and

o↵ (red dashed line) and for (Gµ,MW ,MZ) (solid blue line).

When the running is switched o↵, the couplings are set to their value at µ = MZ

and do not change with energy: in this case results in the MS scheme are very
similar to ones in the

�
↵(M2

Z), sin
2 ✓`eff ,MZ

�
scheme. In the MS scheme, the

weak corrections amount to approximately 11% at 3.5 TeV up to 16% at 7 TeV.
In the higher-mass region of the plot, it is visible a spurious e↵ect due to the
fact that the simulation is run with a centre-of-mass energy of 20 TeV and
near 7 TeV one starts to reach the kinematical limit of the PDFs, where the
Bjorken variable x acquires large values, causing an unphysical bending in the
curves, still not clearly visible here, but more pronounced for higher invariant
masses.

To treat electroweak corrections in the high energy regime with the due
care, one should include in the code the resummation of large Sudakov log-
arithms, as proposed, for instance, in Ref. [293]. However, since this would
fall outside the purpose of this analysis, we restrict our simulations to NLO
fixed-order contributions. To quantify the uncertainty associated to missing
electroweak higher-order contributions, we proceed in two ways. The first ap-
proach consists in a rough estimate, that can be obtained by squaring the size
of the NLO weak correction: this leads to an uncertainty at the per cent level
in the last M`¯̀ bin. The second method is given by a two-point variation of
the MS renormalization scale, which by default is fixed to M`¯̀, of a factor
of two, µ = M`¯̀/2 and µ = 2M`¯̀. When shifting the scale, the cross sec-
tions change by about O(%) variations at LO accuracy and 0.1% at NLO. In
both cases, considering that the statistical and PDF uncertainties in the last
invariant-mass bin are at the level of 10%, one can conclude that the uncer-
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Figure 7.5: Relative contribution of the di↵erent sources of uncertainty to the
triple di↵erential cross section d�/d|y`¯̀|dM`¯̀ in the forward (up) and back-
ward (bottom) directions, for the electron channel in the HL-LHC scenario.
Variations of sin2 ✓MS

w (µ) by a factor ±0.01 are also shown.

tainty stemming from the inclusion of weak corrections would not change the
sensitivity estimate discussed in the study.

Finally, the subtraction of background processes represents another source
of uncertainty. In fact, it is customary in realistic analyses to regard for in-
stance the emission of real W or Z bosons as a background, and subsequently
subtract its contribution from data. Diboson production is however typically
subdominant with respect to other backgrounds arising from top quark produc-
tion processes with leptonic decays, so that both classes of processes should be
properly treated as background. The assessment of uncertainties due to such
backgrounds is usually derived from control regions by using empirical data,
and as such its relevance would be diminished by increasing statistics. From
existing high-mass Drell-Yan measurements [294], one can note that these un-
certainties can be neglected if compared to other error sources.

The content of this section is summarised in Fig. 7.5, that illustrates
the contributions of di↵erent uncertainty sources, as well as the variation of
sin2 ✓MS

w (µ) by ±0.01 of the templates, for the triple-di↵erential cross section
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M̂`¯̀ [GeV] sin2 ✓MS
W (M̂`¯̀)

Run 3 HL-LHC

� sin2 ✓MS
W (M̂`¯̀) [%] � sin2 ✓MS

W (M̂`¯̀) [%]
133 0.23323 0.00216 0.9 0.00159 0.7
175 0.23468 0.00271 1.2 0.00202 0.9
250 0.23648 0.00339 1.4 0.00260 1.1
400 0.23885 0.00434 1.8 0.00345 1.4
1000 0.24350 0.00569 2.3 0.00468 1.9
3250 0.24954 0.01640 6.6 0.00870 3.5

Table 7.2: The Standard Model predicted value of the electroweak mixing angle
in the MS renormalisation scheme in each invariant-mass bin, sin2 ✓MS

W (M̂`¯̀),
and the expected sensitivity � sin2 ✓MS

W (M̂`¯̀) shown as absolute and in %, for
the Run 3 and HL-LHC scenarios.

Figure 7.6: The scale dependence of the electroweak mixing angle as predicted
by the SM RGE (blue line), compared to the combined experimental mea-
surement at µ = MZ (violet point) from hadronic and leptonic colliders. Our
results are shown for LHC Run 3 (black crosses) and HL-LHC (black squares),
shifted to the left and right with respect to the centre of the bin, respectively,
for the sake of clarity. The outer error bars represent the total expected un-
certainty on sin2 ✓MS

w (µ), while the inner error bars include only statistical and
experimental uncertainties (excluding PDFs, QCD and electroweak higher-
order uncertainties).

in the electron channel and for the HL-LHC scenario. Considering the muon
channel would yield similar results.
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M̂`¯̀ [GeV]
� sin2 ✓MS

W (M̂`¯̀) [%]
NNPDF31 NNPDF40 MSHT20 CT18A ABMP16

133 0.5 0.3 0.6 0.9 0.5
175 0.6 0.4 0.8 1.0 0.6
250 0.8 0.5 0.9 1.2 0.7
400 1.2 0.6 1.2 1.5 0.8
1000 1.6 0.8 1.6 1.8 1.0
3250 2.7 1.6 2.5 2.8 1.3

Table 7.3: The contribution of the PDF uncertainty, coming from the use of
di↵erent sets, to � sin2 ✓MS

W (M̂`¯̀) in the HL-LHC scenario.

7.4 Results from the fit

To assess the sensitivity to the running weak mixing angle, the uncertainty
� sin2 ✓MS

w (µ) on the expected value of the parameter is fitted in each bin, as-
suming a Standard Model running for ↵(µ). To be more precise, the fit of
the triple-di↵erential cross section to the pseudo-data is performed in such a
way that independent parameters for � sin2 ✓MS

w (µ) for each M`¯̀ bin are deter-
mined simultaneously, by minimising a �2 function with the xFitter analysis
tool [295]. When evaluating the �2, the cross section in each bin is considered
to be linearly dependent on sin2 ✓MS

w (µ), an assumption that is valid within
the range of variations considered. We include the statistical and experimen-
tal systematic uncertainties, and the theoretical uncertainties from PDFs and
missing higher orders, in the �2 definition, as nuisance parameters that can be
constrained in the fit.

The results on � sin2 ✓MS
w (µ) are presented in Table 7.2, in both absolute

and relative form, and are illustrated in Fig. 7.6. The sensitivity on sin2 ✓MS
w (µ)

ranges from about 1% to 7% under LHC Run 3 working conditions, and from
1% up to 3% for the HL-LHC. In this last case, a significant improvement can
be expected in these figures, because at the HL-LHC larger datasets will make
it possible to reduce experimental uncertainties.

As expected, the uncertainty on � sin2 ✓MS
w (µ) is dominated by the error

from the PDFs in the kinematic range of high Bjorken x, that is probed in
the high mass Drell-Yan production [278]. Given this, the fit has been re-
peated with di↵erent PDF sets, CT18ANNLO [296], MSHT20nnlo_as0118 [297],
ABMP16_5_nnlo [298], and NNPDF40_nnlo_as_01180_hessian [299], to quan-
tify the dependence of the results on the choice of the particular set. Table 7.3
shows the relative contribution coming from di↵erent PDF sets to � sin2 ✓MS

w (µ)
for the HL-LHC working conditions. The PDF uncertainty heavily depends
on the chosen set, varying by up to 50% in the last M`¯̀ bin. Similar results
are obtained if one considers in this study also PDF sets including the photon
contribution.

The results shown here allow one to conclude that measurements of Drell-
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Yan production would make it possible to achieve a sensitivity on sin2 ✓MS
w (µ)

of the order of some per cent in the LHC Run 3 and at the per-cent level
at the High Luminosity phase of the LHC. Even if this study, that has been
performed by considering only the triple-di↵erential cross section, has lead to
promising results, in the future it would be necessary a more refined analysis
that takes into account also other observables.
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Conclusions and future prospects

his thesis work is framed within the global e↵ort of pushing particle
physics to the next frontier: the programme envisaged at the LHC
and the HL-LHC in the next years foresees to explore the electroweak
and Higgs sectors with a level of precision never reached before.

This will open the possibility for high-precision determinations of fundamental
parameters of the Standard Model, as the W -boson mass and the weak mixing
angle, allowing for important consistency checks of the theory.

Since at hadronic colliders such measurements are obtained through a
template-fit method, it is necessary to have a simulation setup which allows to
perform the direct determination of these parameters with high accuracy: this
implies being able to take into account as many orders as possible in pertur-
bation theory, as well as having under control the theoretical uncertainties of
both intrinsic and parametric origin. In this work, we have analysed the the-
oretical ingredients which have to be considered for a precision determination
of the weak mixing angle, both in its e↵ective definition valid at the Z peak
and at higher energies, and implemented them in a novel version of the pack-
age Z_ew-BMNNPV, which is devoted to the simulation of the neutral-current
Drell-Yan process in the POWHEG-BOX-V2 code.

After a general introduction on the Lagrangian of the Standard Model
and on the current status of precision determinations of the W mass and the
weak mixing angle, the focus has been on the renormalization procedure in the
electroweak sector of the Standard Model, and in particular on the choice of
the input parameters when defining the renormalization scheme. The use of a
scheme including the parameter to be measured in input is essential to perform
its determination in a consistent way at every perturbative order. Di↵erent
sets of electroweak input parameters and input data have been discussed in a
critical way, in both on-shell and MS schemes. In particular, a novel scheme,
featuring the MS weak mixing angle and electromagnetic coupling and the on-
shell Z-boson mass as inputs, has been developed. Such a scheme opens the
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possibility of a high-energy test of the Standard Model, in the region above
1 TeV: the sensitivity to the weak mixing angle of future time-like datasets
collected during Run 3 and HL-LHC has been explored here for the first time.

The critical comparison among di↵erent schemes at the best possible ac-
curacy, which can be regarded as a conservative measure of the theoretical
uncertainty associated to the choice of the scheme, has been completed by
connecting our findings to the ones obtained at LEP: with an appropriate
tuning of the parameters and a careful treatment of the corrections which
are formally beyond the considered perturbative order, in fact, the di↵erence
among schemes can be considerably reduced and brought back to the precision
level claimed at LEP, at least for the Z`¯̀ width.

In addition, other aspects have to be taken into account when considering
electroweak corrections to the NCDY: in this work, three di↵erent options for
handling the Z resonance in a gauge invariant way, which already existed in
the literature, have been implemented in the Monte Carlo and their e↵ects on
di↵erential distributions have been compared. Furthermore, we discussed new
implemented options for taking into account the hadronic contribution to the
running of the electromagnetic coupling. On top of this, we have explored the
size of pure QED corrections as well as the possibility of building a Sudakov
approximation of the NLO contribution when going to high energies: this latter
aspect is important if one aims at resumming the large-logarithm e↵ects at all
orders.

To discuss all these results, a realistic simulation of the neutral-current
Drell-Yan process pp ! µ+µ� has been studied, focusing on the di↵erential
cross section and forward-backward asymmetry as functions of the lepton-
pair invariant mass, making it possible to evaluate the e↵ects of the discussed
radiative corrections on these observables. As such, this work can be a precious
contribution for the data analysis connected to the precise determination of
the weak mixing angle at the Z peak or above.

From the point of view of theory and numerical development, the present
code could be interfaced to existing tools in the literature which assure ex-
act NNLO accuracy at the Z peak, thus obtaining an event generator able
to provide NNLO predictions at the resonance, while retaining the current
accuracy, which comprises NLO+universal higher-order contributions, in the
non-resonant region.

Finally, a phenomenological expansion of this work will consist in a study
of the sensitivity not only to the MS weak mixing angle, but also to the run-
ning electromagnetic coupling, by performing a two-variable fit in future LHC
scenarios. In fact, the possible outcomes of the direct determination of the run-
ning weak mixing angle and electromagnetic coupling could be compared with
the evolution of these parameters from low to the highest energies as predicted
by the Renormalization Group Evolution equation, providing a fundamental
test of the Standard Model.
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A
The running of ↵

A.1 The �↵ correction term

The results for the calculation of �↵(k2) are here presented, for a generic
k2 momentum transfer, in the OS scheme, by taking into account the full
fermionic+bosonic correction to the process qq̄ !! `�`+. The starting point
is the relation:
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In the MS scheme, one can write, by using the definition of the QED
counterterm in Eq. (3.67):
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and thus:
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• k2 < 0 or k2 > 4m2
i for all mi appearing in the expression
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The limit for k2
! 0 is:
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A.1.1 The relation between ↵ and ↵(µ)

We consider the ee� vertex one-loop function, with on-shell electron lines, in
the limit of vanishing photon momentum, i.e. k2

! 0. In this limit, the
general relation defining the three-point renormalized Green function in the
MS scheme is:
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where the last equality makes use of the definition of �↵(k2, µ2) of the previous
section. In the MS scheme, and in the limit k2

! 0, this can be rewritten as:
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One thus obtains that the physical electric charge e is defined through the
following relation:

e = e(µ)
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In terms of ↵, by making use of Eq. (A.7), this can be expressed as:
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that coincide with the result (18) by S. Sakakibara [300] in the limit of QED in
which only electrons contribute to �↵. We perturbatively invert this equation,
by writing:
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From the RG function, in the MS scheme, we find:
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For µ⇤ such that �↵(0, µ⇤) = 0, we have ↵(µ) = ↵:
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In the RGE the same result can be found by choosing the renormalization
point µ0 = µ⇤, that is ↵(µ0) = ↵.

A.1.2 Check: the decoupling prescription does not modify the
total amplitude

We consider at first the hybrid MS scheme with independent parameters ↵(µ),
MW , MZ and the complex-mass scheme to treat the resonance. The notation
and the Feynman rules are taken from [107]. The amplitude of the Drell-Yan
process qq̄ ! `¯̀, considering the weak NLO correction, reads:
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where:
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It is easy to see that, if one makes the change �ZMS
e ! �ZDS

e with �ZDS
e as

in Eq. (3.108) to perform the decoupling of the top quark and the W boson,
this amounts to write at one-loop order:

↵(µ) = ↵[1 + �↵(0, µ2)] (A.20)
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The correction in Eq. (A.16) is proportional to:
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where the equalities are valid at NLO.
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B
The running of s2w(µ)

In this appendix we explicitly derive the relevant formulae for the implemen-
tation of higher-order contributions to the RGE of sin2 ✓MS

w (µ), as performed
in [77]. We start from Eq. (18) by [77], which can be obtained from the O(↵)
running:
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by modifying the colour factors to Ki and adding the O(↵3
S) contributions due
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By using the definition of �1 in Eq. (3.99), we can write:
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Subtracting this equation from Eq. (B.3) one gets:
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By exploiting the fact that �q and Kq are the same for every quark, the last
term can be written as:
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where we eliminated the factor 2 at the denominator and performed the sum
on both LH and RH particles. Thus:
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From Eq. (19) by [77], we can also write:
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Putting everything together we can write:
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By using the definitions of �1,�2,�3,�4 in Eqs. (3.99)–(3.102), the last equation
becomes:
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Now we observe that:
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with:

b0 =
1

12⇡
(35� 2nq) . (B.15)

Thus we have:
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We can now write:
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that is Eq. (23) by [77]. We conclude that terms with coe�cients �1 and �2 are
already O(↵) and h.o. contributions can be included by simply adding terms
in �3 and �4.
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C
The treatment of the resonance in
the Z_ew-BMNNPV code

In this appendix we address some issues connected with the resonance treat-
ment within the Z_ew-BMNNPV package of POWHEG-BOX-V2, which have
led to change the old default prescription to the complex-mass one, and to
the implementation of other gauge independent variants like the pole and the
factorization scheme. The main result of the calculation here presented is that
the di↵erence between the old prescription (denoted as CLA scheme) and the
pole scheme is gauge dependent in the R⇠-gauge class in the case of the neutral
current Drell-Yan process at NLO EW.

In the following, renormalized vertex and self-energies are denoted with a
caret, to distinguish them from bare ones. We start by writing the neutral



C. The treatment of the resonance in the Z_ew-BMNNPV code

current Drell-Yan amplitude at NLO EW with the old prescription:
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In the pole scheme, introduced in [86], we have:
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with the leading order term:
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which of course is the same as in Eq. (C.1). In the same way, also the box
contributions are the same in our scheme and the one in [86], namely:
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since the box diagrams are non resonant and do not receive any modification
in the pole scheme. Pure QED vertex corrections given by the factor:
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are as well the same in both schemes. We can thus safely focus on the pure weak
part of the vertex and self-energy corrections. We can split the calculation into
di↵erent pieces and compare them one at the time with the corresponding one
in the pole scheme. For a better comparison with the expressions in [86], we
write the relevant part of the amplitude in Eq. (C.1) in terms of renormalized
vertex and self-energies:
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In [86], the vertex and self-energy correction factors are written as:
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C. The treatment of the resonance in the Z_ew-BMNNPV code

C.0.1 Photon-exchange contribution

The first term we consider is the �-exchange contribution. In our prescription
it reads:
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We can furthermore split this contribution into vertex and self-energy terms,
to make contact with what is done in [86].

Vertex contribution to photon exchange

The vertex correction to the � exchange diagrams reads:
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and is of course the same as in [86], namely:
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since the photon contribution is non resonant.

Self-energy contribution to photon exchange

The self-energy correction to the � exchange diagrams is:

�
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which, being non resonant, is the same as in Eq. (C.9), with:
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which is of course the same for both prescriptions.
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C.1. Calculation for k2
6= M2

Z

C.1 Calculation for k2 6= M 2
Z

C.1.1 Interference contribution

The mixed Z � � and � � Z contribution from Eq. (C.8) reads:
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which comes only from the renormalized self-energy diagrams:
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At NLO, for k2
6= M2

Z (that is, away from the Z peak) we can manipulate the
expression in Eq. (C.17) in the following way:
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in which, by inspecting Eq. (C.9), one can see that the first two lines are
exactly what one would get in the pole scheme, and the di↵erence is:
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In the calculation we have used the fact that Im⌃̂ZZ
T (M2

Z) = �ZMZ , which
is a gauge-invariant quantity at NLO, since it can be expressed in terms of
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physical quantities. Note also that Re⌃̂ZZ
T (M2

Z) = 0 and that ⌃̂ZZ
T (M2

Z) and its
derivative evaluated at the Z on-shell mass are gauge invariant. A proof of this
can be achieved by taking the bare self-energy expressions listed in Eqs. (5.407)-
(5.418) of [301], and deriving the gauge-dependencies for renormalized self
energies, with an important remark: we have adopted the so-called Parameter
Renormalized Tadpole Scheme employed e.g. in [107, 302] and therefore, in
our self-energies, tadpoles do not explicitly appear, at di↵erence from what is
done in Eqs. (5.407)-(5.418) of [301]. In particular we can write:
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where �ZZ(�k2, ⇠) is given in Eq. (5.410) of [301].

C.1.2 Z-exchange contribution

The Z-exchange contribution reads:
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Self-energy contribution to Z exchange

In analogy to what has been done for the interference term, the self-energy
contribution can be written as:
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The di↵erence with Eq. (C.9) amounts to:
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which is gauge invariant, as seen in the previous section.
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Vertex contribution to Z exchange

The weak vertex part reads:
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The di↵erence with respect to Eq. (C.9) is the term:
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Finally we have the pure QED corrections:
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which are treated in the same way in our prescription and in the pole scheme,
and thus do not represent an issue.

The total di↵erence between our old prescription and the pole scheme,
omitting the common factor A±±

spinor, thus is:
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which is equal to the combination left untouched by the modification of the pole
scheme in [86], except for a term ⌃̂ZZ

T (M2
Z)/(k

2
� M2

Z), which is nonetheless
gauge invariant. Since the combination left untouched in the the pole scheme
is gauge invariant by construction, we can conclude that also Eq. (C.27) is so.

Thus, the di↵erence between the CLA prescription and the PS scheme away
from the Z-boson resonance is gauge invariant. One has however to evaluate
the same di↵erence in the limit k2

! M2
Z .

C.2 Calculation for k2 = M 2
Z

C.2.1 Interference contribution

We list here the limits in the PS and CLA schemes for the interference contri-
bution at k2 = M2

Z . In the pole scheme we have:
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while in the CLA scheme:
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The di↵erence CLA-PS is thus:
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C.2.2 Z-exchange contribution

Self-energy contribution to Z exchange

The self-energy contribution to the Z exchange for k2 = M2
Z in the PS is:
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while in our prescription is:
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where ⌃
0 ZZ
T (M2

Z) is the bare self-energy. The di↵erence thus amounts to:
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Vertex contribution to Z exchange

The weak vertex part reads:

M
±±
vert Z,PS = �e2(g±q )(g

±
` )A

±±
spinor

"
F̂±
qqZ,weak(M

2
Z) + F̂±

``Z,weak(M
2
Z)

i�ZMZ

+F̂
0 ±
qqZ,weak(M

2
Z) + F̂

0 ±
``Z,weak(M

2
Z)
i
, (C.34)

while in our prescription one has:

M
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The di↵erence CLA-PS for the vertex part is thus:
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The total di↵erence at the Z resonance is given by:
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To evaluate the gauge invariance of this equation, we note that the derivative
w.r.t. k2 evaluated in k2 = M2

Z of the gauge invariant combination already
introduced in the previous section, namely:
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is:
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This is still a gauge invariant quantity, as it can be proven in the R⇠ gauge class
by considering the Schwarz theorem applied to the derivatives @2/(@⇠@k2) and
@2/(@k2@⇠), where ⇠ is the gauge parameter. This last equation coincides with
Eq. (C.37), the only di↵erence being the term:
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of which we have now to evaluate the gauge invariance. While ⌃̂
0 ZZ
T (M2

Z) is
gauge invariant, its unrenormalized conterpart ⌃

0 ZZ
T (M2

Z) is not. As tadpole
do not depend on the momentum, we can directly use the expressions in [301]
for the derivatives of self-energies. The ⇠-dependent part of the combination
in Eq. (C.40) thus can be written as:

e2g±q g
±
`

1

6

1

i�ZMZ
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Z , ⇠) , (C.41)

which is not zero, finally proving that the CLA scheme is gauge dependent.
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D
The Zff̄ width

The LO expression for the Z boson decay width into ff̄ �(Z ! ff̄) is:

�(Z ! ff̄)LO = 4�0N c
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2
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2
w

⇥
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, (D.1)

where:
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sw cw
, (D.2)
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f is the colour number and
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Z

24
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. (D.3)

At NLO this can be written as:

�(Z ! ff̄)NLO = 4�0 2s2wc
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(D.4)
where 2 �gR, f/gR, f and 2 �gL, f/gL, f are the vertex form factors (multiplied by
2).

In the following we report the equations for the implementation of the
leading fermionic contributions at higher orders in the di↵erent input schemes.

Gµ scheme

We first consider the (Gµ,MW ,MZ) scheme. In this scheme one has to write
Eq. (D.1) as:
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where we have substituted the expression for �0 in the Gµ scheme, and the
formulae of gR/L, e. Note that:

↵Gµ =

p
2GµM2

Zs
2
wc

2
w

⇡
. (D.6)

According to [86, 107], the recipe for universal h.o. contributions in the Gµ

scheme consists in the following substitution:

s2w ! s̄2eff = s2w + c2w�⇢ , (D.7)

c2w ! c̄2eff = c2w(1� �⇢) ,
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�
.

We then need to subtract the terms at one-loop in �⇢ and �↵, with �⇢1�loop

computed with the coupling of the scheme considered. We finally obtain:
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Also in this scheme we start from:
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but, di↵erently from the Gµ scheme, we apply only the substitution:

↵Gµ ! ↵Gµ [1 + �⇢] , (D.10)

because sin2✓`eff is in input and does not get any correction. We thus find:
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↵0 scheme

In the (↵0,MW ,MZ) scheme, Eq. (D.1) reads:
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One makes the following substitutions:

s2w ! s̄2w = s2w + c2w�⇢ , (D.13)

c2w ! c̄2w = c2w(1� �⇢) ,
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where �↵ is the fermionic contribution to �↵. We thus obtain:
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where we note that the terms in the parenthesis are the same as in the Gµ

scheme. By expanding this expression at O ((�↵)2) and O ((�⇢)2) and sub-
tracting the 1-loop contribution, we get:
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Note that, since in the code we are not including the 2-loop contribution to
�↵, there is no term linear in �↵ because this kind of corrections are already
included in the NLO calculation.

(↵0, sin
2✓`

eff ,MZ) scheme

In the (↵0, sin
2✓`eff ,MZ) scheme, we start from:
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and make the only substitution:

↵0 !
↵0

1� �↵
. (D.17)

After subtracting the 1-loop contribution �↵ we thus obtain:
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(↵(MZ),MW,MZ) scheme

In the (↵(MZ),MW ,MZ) scheme, Eq. (D.1) reads:
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One has to make only the following substitutions:

s2w ! s̄2eff = s2w + c2w�⇢ , (D.20)

c2w ! c̄2eff = c2w(1� �⇢) .

After subtracting the 1-loop contribution we obtain:
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In this scheme �(Z ! ff̄) does not take leading higher order corrections.

(↵0,Gµ,MZ) scheme

In the (↵0, Gµ,MZ) scheme, one has:
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The substitutions to be made are the ones discussed in Sec. 6.3.1:
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The result after the subtraction of the NLO contribution is:
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with:
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[17] M. Böhm, A. Denner, and H. Joos, Gauge Theories of the Strong and

Electroweak Interaction. Vieweg+Teubner Verlag, 2001.
[18] F. Mandl and G. P. Shaw, Quantum Field Theory. Wiley, May, 2010.
[19] M. E. Peskin, An Introduction To Quantum Field Theory. CRC Press,

May, 2018.
[20] C. M. Becchi and G. Ridolfi, An Introduction to Relativistic Processes

and the Standard Model of Electroweak Interactions. Springer, Sept,
2016.

[21] A. Denner and S. Dittmaier, “Electroweak radiative corrections for
collider physics,” Physics Reports 864 (Jun, 2020) 1–163.

[22] E. S. Abers and B. W. Lee, “Gauge theories,” Physics Reports 9 no. 1,
(Nov, 1973) 1–2.

[23] L. Faddeev and V. Popov, “Feynman diagrams for the Yang-Mills field,”
Phys. Lett. B 25 no. 1, (1967) 29–30.

[24] CMD3 Collaboration, “Measurement of the e+e� ! ⇡+⇡� cross section
from threshold to 1.2 GeV with the CMD-3 detector.” 2023.
arXiv:2302.08834 [hep-ex].

[25] CDF Collaboration, T. Aaltonen et al., “High-precision measurement of
the W boson mass with the CDF II detector,” Science 376 no. 6589,
(2022) 170–176.

[26] G. Arnison et al., “Experimental observation of isolated large transverse
energy electrons with associated missing energy at

p
s = 540 GeV,”

Phys. Lett. B 122 no. 1, (Feb, 1983) 103–116.
[27] M. Banner et al., “Observation of single isolated electrons of high

transverse momentum in events with missing transverse energy at the
CERN pp collider,” Phys. Lett. B 122 no. 5-6, (Mar, 1983) 476–485.

[28] D. Y. Bardin et al., “Electroweak Working Group Report.” 1997.
arXiv:hep-ph/9709229 [hep-ph].

[29] G. Montagna, O. Nicrosini, and F. Piccinini, “Precision physics at
LEP,” La Rivista del Nuovo Cimento 21 no. 9, (Sep, 1998) 1–162.

[30] Particle Data Group Collaboration, R. L. Workman et al., “Review of
Particle Physics,” PTEP 2022 (2022) 083C01.

[31] D0 Collaboration Collaboration, S. Abachi et al., “Observation of the
top quark,” Phys. Rev. Lett. 74 (Apr, 1995) 2632–2637.

[32] CDF Collaboration Collaboration, F. Abe et al., “Observation of Top
Quark Production in pp Collisions with the Collider Detector at
Fermilab,” Phys. Rev. Lett. 74 (Apr, 1995) 2626–2631.

[33] S. Chatrchyan et al., “Observation of a new boson at a mass of 125
GeV with the CMS experiment at the LHC,” Phys. Lett. B 716 no. 1,

162

https://dx.doi.org/10.1103/PhysRevLett13.321
https://dx.doi.org/10.1103/PhysRev.155.1554
https://dx.doi.org/https://doi.org/10.1016/0550-3213(71)90139-8
https://dx.doi.org/10.1007/978-3-322-80160-9
https://dx.doi.org/10.1007/978-3-322-80160-9
https://dx.doi.org/10.1201/9780429503559
https://dx.doi.org/10.1016/j.physrep.2020.04.001
https://dx.doi.org/10.1016/0370-1573(73)90027-6
https://dx.doi.org/10.1016/0370-1573(73)90027-6
https://dx.doi.org/https://doi.org/10.1016/0370-2693(67)90067-6
https://arxiv.org/abs/2302.08834
https://dx.doi.org/10.1126/science.abk1781
https://dx.doi.org/10.1126/science.abk1781
https://dx.doi.org/10.1016/0370-2693(83)91177-2
https://dx.doi.org/10.1016/0370-2693(83)91605-2
https://arxiv.org/abs/hep-ph/9709229
https://dx.doi.org/10.1007/bf02845546
https://dx.doi.org/10.1093/ptep/ptac097
https://dx.doi.org/10.1103/PhysRevLett74.2632
https://dx.doi.org/10.1103/PhysRevLett74.2626
https://dx.doi.org/https://doi.org/10.1016/j.physletb.2012.08.021
https://dx.doi.org/https://doi.org/10.1016/j.physletb.2012.08.021


(2012) 30–61.
[34] G. Aad et al., “Observation of a new particle in the search for the

Standard Model Higgs boson with the ATLAS detector at the LHC,”
Phys. Lett. B 716 no. 1, (2012) 1–29.
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and L. Salfelder, “Next-to-leading-order electroweak corrections to
pp ! W+W�

! 4 leptons at the LHC,” JHEP 06 (2016) 065.
[227] Y. Kurihara, D. Perret-Gallix, and Y. Shimizu, “ee ! eu from LEP to

linear collider energies,” Phys. Lett. B 349 no. 3, (Apr, 1995) 367–374.
[228] D. Yennie, S. Frautschi, and H. Suura, “The infrared divergence

phenomena and high-energy processes,”Annals of Physics 13 no. 3,
(Jun, 1961) 379–452.

[229] G. Altarelli and G. Parisi, “Asymptotic freedom in parton language,”
Nucl. Phys. B 126 no. 2, (Aug, 1977) 298–318.

[230] J. Collins, “Foundations of Perturbative QCD.” Apr, 2011.
[231] V. Gribov and L. Lipatov, “Deep inelastic electron scattering in

perturbation theory,” Phys. Lett. B 37 no. 1, (Nov, 1971) 78–80.
[232] Y. L. Dokshitzer, “Calculation of the Structure Functions for Deep

Inelastic Scattering and e+e� Annihilation by Perturbation Theory in
Quantum Chromodynamics.,” Sov. Phys. JETP 46 (1977) 641–653.

[233] A. Denner and S. Dittmaier, “Production of light fermion-antifermion
pairs in �� collisions,” EPJC 9 no. 3, (Jul, 1999) 425–435.

[234] V. Bertone, S. Carrazza, N. Hartland, and J. Rojo, “Illuminating the
photon content of the proton within a global PDF analysis,” SciPost
Physics 5 no. 1, (Jul, 2018) .

175

https://dx.doi.org/10.1016/s0550-3213(98)00046-7
https://dx.doi.org/10.1016/s0550-3213(98)00046-7
https://dx.doi.org/10.1016/s0550-3213(00)00511-3
https://dx.doi.org/10.1016/s0550-3213(00)00511-3
https://dx.doi.org/10.1016/s0370-2693(00)00059-9
https://dx.doi.org/10.1103/PhysRevD.49.2247
https://dx.doi.org/10.1103/PhysRevD.49.2247
https://dx.doi.org/10.1016/s0550-3213(99)00110-8
https://dx.doi.org/10.1016/j.nuclphysb.2014.05.027
https://dx.doi.org/10.1016/j.nuclphysb.2014.05.027
https://dx.doi.org/10.1007/JHEP12(2013)043
https://dx.doi.org/10.1007/JHEP06(2016)065
https://dx.doi.org/10.1016/0370-2693(95)00298-y
https://dx.doi.org/10.1016/0003-4916(61)90151-8
https://dx.doi.org/10.1016/0003-4916(61)90151-8
https://dx.doi.org/10.1016/0550-3213(77)90384-4
https://dx.doi.org/10.1016/0370-2693(71)90576-4
https://dx.doi.org/10.1007/s100520050035
https://dx.doi.org/10.21468/scipostphys.5.1.008
https://dx.doi.org/10.21468/scipostphys.5.1.008


List of publications

[235] S. Frixione, Z. Kunszt, and A. Signer, “Three-jet cross sections to
next-to-leading order,”Nucl. Phys. B 467 no. 3, (May, 1996) 399–442.

[236] S. Catani and M. Seymour, “The dipole formalism for the calculation of
QCD jet cross sections at next-to-leading order,” Phys. Lett. B 378
no. 1-4, (Jun, 1996) 287–301.

[237] S. Catani and M. Seymour, “A general algorithm for calculating jet
cross sections in NLO QCD,”Nucl. Phys. B 485 no. 1-2, (Feb, 1997)
291–419.

[238] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trócsányi, “The dipole
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