Fighting drug-resistant tuberculosis: CTP-synthetase and pantothenate kinase as new targets for multitargeting compounds

Marta Esposito
Dottorato di Ricerca in
Genetica, Biologia Molecolare e Cellulare
XXIX Ciclo – A.A. 2013-2016
Fighting drug-resistant tuberculosis:
CTP-synthetase and pantothenate kinase as new targets for multitargeting compounds

Marta Esposito

Supervised by

Prof. Maria Rosalia Pasca
Dr. Laurent Roberto Chiarelli

Dottorato di Ricerca in
Genetica, Biologia Molecolare e Cellulare
XXIX Ciclo – A.A. 2013-2016
Abstract

Tuberculosis (TB), the infectious disease brought about by *Mycobacterium tuberculosis*, is afflicting human health worldwide. Epidemiological data indicate 3 billion people latently infected globally, and only in 2014, 1.5 million people died due to this infection. Moreover, TB plague does not show signs to stop, particularly in view of the spread of *M. tuberculosis* drug-resistant strains (MDR, XDR and TDR), together with patients co-infected with HIV. Thus, considering all these aspects, the research for new antitubercular drugs and the identification of novel targets that could allow the killing of the pathogen through more efficient tools, are surely indispensable.

Recently, from the screening of the National Institute of Allergy and Infectious Diseases (NIAID) chemical library, two compounds distinguished themselves for their efficacious antitubercular activity. These molecules, the thiophene-carboxamide 7947882 and the carbamothioyl-propanamide 7904688, displayed activity against the pathogen *in vitro*, *ex vivo*, and against a latent model. Genetic and biochemical approaches demonstrated that 7947882 and 7904688 are prodrugs activated by the monoxygenase EthA, already known to be the activator of ethionamide. Moreover, from the sequencing analysis of 7947882 and 7904688 *M. tuberculosis* spontaneous resistant mutants, the CTP-synthetase PyrG and pantothenate kinase PanK emerged as the putative targets of these compounds.

The present work led to the demonstration that PyrG and PanK are the cellular targets of these compounds. Moreover, in view of the importance of finding new drugs targeting more than one cellular function, PyrG and PanK were exploited to perform an *in silico* screening of the Collaborative Drug Discovery (CDD) compound database, and an *in vitro* screening of the GSK TB-set chemical library of compounds against the two enzymes. From these screenings, a number of compounds affecting both enzymes emerged, thus strengthening the usefulness of PyrG and PanK for new multitargeting drugs research.

Finally, all *M. tuberculosis* PyrG inhibitors were tested against human CTP-synthetase-1, identifying one compound that inhibits almost exclusively the mycobacterial enzyme, and not the human one, paving the way for new *M. tuberculosis* PyrG selective inhibitors.
Acknowledgements

First of all I want to thank Prof. Giovanna Riccardi and Prof. Maria Rosalia Pasca for the precious opportunity to spend my Ph.D. period in this laboratory, as well as for the trust in me, the continuous help, support and teaching. This experience was essential for my personal growth.

A special thank is addressed to all the members of the laboratory, particularly to Dr. Laurent Chiarelli, to whom I dedicate a profound gratitude.

Furthermore, I thank all the collaborators that gave a priceless contribution to this project: Dr. Vadim Makarov, (AN Bakh Institute of Biochemistry, Russian Academy of Science, Moscow, Russia), Dr. Marco Bellinzoni and Prof. Pedro Alzari (Institut Pasteur, Paris, France), Dr. Ruben Hartkoorn and Prof. Stewart Cole (Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland), Prof. Riccardo Manganelli (Department of Molecular Medicine, University of Padova, Padua, Italy), Dr. Sean Ekins (Collaborative Drug Discovery, USA), Dr. Ana Luisa de Jesus Lopes Ribeiro (Centro de Biologia Molecular “Severo Ochoa” Universidad Autònoma de Madrid, Madrid, Spain), Prof. Katarina Mikusova (Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia), Dr. Luiz Pedro S. de Carvalho (Francis Crick Institute, Mill Hill Laboratory, London, UK), Dr. Lluís Ballell (GlaxoSmithKline, Tres Cantos, Madrid, Spain).
Abbreviations

ADP: adenosine diphosphate
ATP: adenosine triphosphate
BTZs: Benzothiazinones
CoA: Coenzyme A
CTP: cytidine triphosphate
DMSO: Dimethyl Sulfoxide
DPA: Decaprenol-phosphoryl-β-D-arabinose
DPR: decaprenylphosphoryl-β-D ribose
EDTA: Ethylenediaminetetraacetic Acid
EMA: European Medicines Agency
EMB: ethambutol
ETH: Ethionamide
FDA: Food and Drug Administration
HIV: Human immunodeficiency virus
HTS: high throughput screenings
INH: Isoniazid
IPTG: Isopropyl β-D-1-thiogalactopyranoside
LPZ: Lansoprazole
MIC: Minimal Inhibitory Concentration
MDR: MultiDrug-Resistance
MDR-TB: MultiDrug-Resistant Tuberculosis
MM4TB: More Medicines For Tuberculosis
OD: Optical Density
PAS: para-aminosalicylic acid
PZA: pyrazinamide
QRDR: Quinolone Resistance Determining Region
RIF: Rifampicin
RNAP: RNA polymerase
SDS-PAGE: Sodium Dodecyl Sulphate-PolyAcrylamide Gel Electrophoresis
TB: Tuberculosis
TDR: Totally Drug-Resistance
TMM: trehalose monomycolate
UTP: uridine triphosphate
WHO: World Health Organization
X-Gal: 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside
XDR: Extensively Drug-Resistance
XDR-TB: Extensively Drug-Resistant Tuberculosis
Contents

Abstract 3
Acknowledgements 5
Abbreviations 7
1. Introduction 11
2. Aims of the work 43
3. Materials and methods 45
4. Results 57
5. Discussion and future perspectives 89
6. References 97
7. List of original manuscripts 113
1. Introduction

1.1 Tuberculosis: a re-emergent worrisome issue

Tuberculosis (TB), one of the deadliest infections afflicting humans, is a contagious disease caused by the *Mycobacterium tuberculosis* complex (Dheda *et al*., 2016). *M. tuberculosis* complex embraces different species of mycobacteria (*M. tuberculosis*, *Mycobacterium bovis*, *Bacille Calmette-Guerin* (BCG) vaccine strain, *Mycobacterium africanum*, *Mycobacterium microti*, *Mycobacterium canettii*, *Mycobacterium caprae*, *Mycobacterium pinnipedii*, *Mycobacterium orygis* and *Mycobacterium mungi*), and its most diffused member, *M. tuberculosis*, is the main causative agent of TB in primates and humans (Broset *et al*., 2015). Although TB generally affects lungs, infection of other organs cannot be excluded: the former kind of infection, the most frequent, is named “pulmonary TB”, the latter, more occasional, “extrapulmonary TB” (Riccardi *et al*., 2009).

TB history probably begins 70,000 years ago, thus following human migrations out of Africa (Comas *et al*., 2013). Getting closer to our century, it peaked in Europe in the first half of the 19th century (Dubos and Dubos, 1952), but only in 1882 Robert Koch isolated and identified its etiologic agent, thus named Koch’s bacillus (Ducati *et al*., 2006). Between the 17th and 19th centuries, 20% of deaths have been caused by TB in both Europe and North America, especially because of the complete lack of effective treatments (Wilson and Tsukayama, 2016). Thereafter, even though the introduction of prevention and chemotherapeutic strategies led to a significant fall of TB mortality in developed countries, feeding a new hope for pathogen eradication (Ducati *et al*., 2006), in 1980s novel TB cases appeared. There are several explanations for this “resumption”: the most significant ones are the co-infection with HIV and the spread of *M. tuberculosis* drug-resistant strains (Ducati *et al*., 2006). Recent World Health Organization (WHO) data clearly declared TB as a global plague: in 2014, 1.5 million people were killed by this infection, and 9.6 were affected by TB worldwide (Fig. 1) (WHO, 2015). Among the risk factors that predispose to the disease, there are under nutrition, poverty, smoking, diabetes, HIV infection and all suppressed-immune response conditions (Dheda *et al*., 2016). According to mathematical models, despite their obvious limits, current tools are not sufficient to completely eliminate TB from the world scenario; rather, TB eradication may probably occur in 2050, only if prevention (e.g. vaccines), diagnosis and new drug therapies will combine together to combat and win the fight against TB (Dye *et al*., 2013).
1.2 Mycobacterium tuberculosis: a general overview and the infectious process

M. tuberculosis is an ancient pathogen, highly evolved (Shankar *et al.*, 2014), whose main features are the absence of a flagellum, the impossibility to produce toxins, spores, as well as a surrounding capsule, and a typical road-shape (Ducati *et al.*, 2006). Moreover, the bacillus growth is very slow, having a generation time of around 24 hours, and is able to enter a dormant state, as described below; on solid media it forms opaque and rough colonies (Cole *et al.*, 1998). The understanding of the complex biology of the pathogen rests on the deep characterization of *M. tuberculosis* H37Rv strain, being extensively investigated in biomedical research. In 1998, the complete genome sequence of *M. tuberculosis* H37Rv strain was enlightened (Cole *et al.*, 1998). The microbe circular genome is 4.4 megabase (Mb) in length and reach in G + C (Cole *et al.*, 1998).

Infectious process follows a series of steps that have been defined utilizing animal models and studying human TB cases (Russel, 2007). Focusing on pulmonary TB, *M. tuberculosis* transmission occurs from one individual to another, inhaling infectious bacilli as exhaled droplets, that can persist in the air for hours (Russel, 2007). This exposure does not mean disease development; on the contrary, symptoms appear very rarely, depending on the immunocompetence of the new host and the strategies developed by *M. tuberculosis* during its evolution to guarantee a successful spread among humans (Dheda *et al.*, 2016). Effectively, only 1–5% of
infected people develop the active disease right after the contagion; in all other cases, the bacillus remains in a dormant status without showing any pathological signs (Riccardi et al., 2009). The probability of bacteria reactivation depends on the immune system integrity: in immune-competent patients, the probability of displaying an active disease is 5-10%, whilst in patients co-infected with HIV, this percentage rises every year (Fig. 2) (El-Sadr and Tsiouris, 2008).

Figure 2. Phases of M. tuberculosis infectious process (Koul et al., 2011).

Once inside the host, bacteria are internalized by alveolar macrophages, that in turn move to the lung interstitium, thus releasing a series of inflammatory players such as TNF-α, IL-1, IL-6, IL-12 and chemokines, provoking a local pro-inflammatory reaction (Korb et al., 2016). This kind of response is followed by the recruitment of different mononuclear cells from blood vessels, hence paving the bases for granuloma formation (Dheda et al., 2016) (Fig. 3). Granuloma is defined as the principal pathogenic hallmark of M. tuberculosis pulmonary infection (Ulrichs and Kaufmann, 2006). At this point, the majority of infecting bacteria are enclosed within the so called foamy macrophages, that start covering the external part of granuloma (Hoagland et al., 2016). Granuloma undergoes a series of changes once has formed (Russel et al., 2010); at the beginning, it appears highly vascularized and full of immune response cells,
thus supporting the immune defenses to fight the bacilli, as well as the capability of therapeutic drugs to achieve the infection. Successively, granuloma undergoes further modifications, maturing in a necrotic state. The typical features of a necrotic granuloma are its outer part becoming a harder fibrous capsule, then creating a barrier between immune cells and its internal part, and a caseum core, that eliminates all the residual vascularization (Hoagland et al., 2016). In this phase, bacteria are enclosed in the necrotic granuloma, entering their dormant state, and are protected from drug entrance. This status can last for several decades, and in case of a weakening of immune defenses, the granulomas can explode, leaving bacilli free to reach other organs and new hosts (Fig. 3) (Dartois, 2014).
Introduction

Figure 3. Maturation stages of granuloma during TB infections (Dartois, 2014).
1.3 Standard therapy for drug-sensitive TB

The first drug discovered for TB treatment, streptomycin, was identified in 1940s, but developed resistance soon after its introduction in chemotherapy (Crofton and Mitchison, 1948). Consequently, it was understood very early that single-compound therapy causes fast drug-resistant strains spread, failing in the fight against the pathogen (Crofton and Mitchison, 1948). Streptomycin resistance was counteracted by the administration of a second antitubercular compound, para-aminosalicylic acid (PAS), that was able to reduce cell proliferation (Wilson and Tsukayama, 2016). Being aware of the complexity of the battle against *M. tuberculosis* spread, in 1950s further drugs were developed in order to define a combinational therapy (Zumla *et al*., 2013a). This strategy was demonstrated to be a valid approach, remaining nowadays the most effective one (Blumberg *et al*., 2003; Shcherbakov *et al*., 2010). For example, the introduction of isoniazid (INH) in the combination therapy, gave the possibility to get successful results with a complete eradication of the pathogen after 18 to 24 months of treatment (Council, 1962); successively, rifampicin (RIF) was added, permitting to shorten therapy duration to 6 - 9 months (Kurz *et al*., 2016).

Nowadays, WHO classified antitubercular compounds in five groups: first-line drugs are gathered in group 1, whilst second-line compounds are listed in the remaining four groups (Wilson and Tsukayama, 2016). First-line compounds are principally bactericidal, and associate their great efficacy with a modest toxicity, including INH, RIF, ethambutol (EMB) and pyrazinamide (PZA) (Ducati *et al*., 2006). Second-line agents are mainly bacteriostatic, with higher toxicity and less efficacy (Ducati *et al*., 2006). Group 2 is identified by the injectable drugs, including capreomycin and aminoglycosides (streptomycin, kanamycin and amikacin), whilst group 3 contains fluoroquinolones, in particular levofloxacin, ofloxacin, moxifloxacin and gatifloxacin. Ethionamide (ETH), cycloserine and PAS, the remaining second-line drugs, form the group 4, whilst the group 5 presents the most recent antibacterial compounds that are yet to be further investigated from a clinical point of view and concerning the efficacy against *M. tuberculosis* drug-resistant strains, such as linezolid, bedaquiline, delamanid, amoxicillin-clavulanate, clofazimine, meropenem and clarithromycin (Wilson and Tsukayama, 2016).

Current therapy for drug-susceptible TB was set up forty years ago, but is still highly efficacious. During the first 2 months INH, RIF, PZA and EMB are delivered together (Fig. 4) (Hoagland *et al*., 2016). Afterwards, this very intensive phase is followed by a 4-months stage during which RIF
and INH are continually swallowed in order to annihilate remaining bacteria that have entered a latent, slow-growing phase (Kurtz et al., 2016).

![Chemical structures of Isoniazid, Pyrazinamide, Ethambutol, and Rifampicin](image)

Figure 4. Drugs currently utilized for *M. tuberculosis* drug-susceptible treatment.

INH is a bactericidal drug, very effective, causing a quick bacterial growth inhibition as soon as therapy is initiated (Vilchèze and Jacobs, 2007). In order to be effective, INH requires an activating-step performed by the catalase peroxidase KatG enzyme; once activated, INH forms an adduct with NAD, thus inhibiting the *inhA*-encoded NADH-dependent enoyl-ACP reductase, its cellular target (Vilchèze and Jacobs, 2007). The degree of resistance to INH is correlated to the genetic alterations affecting the bacterial genome: point mutations, missense ones and deletions mapping in the *katG* gene cause high-level resistance, whilst alterations in the *inhA* promoter causing an augmented expression of the correspondent gene, are associated to a low-level of resistance, together with cross-resistance to ETH (Zhang et al., 1992; Banerjee et al., 1994). Moreover, around 25% clinical isolates showing resistance to INH, are characterized by a point
mutation affecting InhA, either a Ser94Ala or a Ile16Thr, leading to an enzyme having a reduced affinity towards both NADH and the adduct formed by INH-activated form and NAD⁺ (Vilchèze and Jacobs, 2014).

RIF is another very effective anti-TB drug, that is able to shorten the duration of the treatment (Kurz et al., 2016). This compound targets the β-subunit of bacterial DNA-dependent RNA polymerase (RNAP), the rpoB gene product (Campbell et al., 2001). Concerning its mode of action, it has been shown that RIF operates by creating a steric obstacle that blocks RNA synthesis, instead of affecting the enzymatic activity of the target protein (McClure and Cech, 1978). Resistance to RIF is caused by a single mutation affecting a precise region of the gene, increased copy-number of the target gene, efflux pumps activity or modifications of the drug itself (Tupin et al., 2010). It is worth to observe that, whilst single resistance to INH is frequent, it is rare to encounter mono-resistance to RIF cases; precisely, RIF resistance tends to develop in strains already resistant to INH (Somoskovi et al., 2001).

PZA, a structural analogue of nicotidamide, is a prodrug that requires activation mediated by pyrazinamidase (encoded by pcnA gene), thus forming pyrazinoic acid. The active form of PZA targets fatty acid synthetase 1 (Zimhony et al., 2000), and resistance to this compound is especially caused by mutations affecting pcnA gene (Miotto et al., 2015). Its sterilizing activity is widely exploited to defeat persistent bacteria (Zhang and Mitchison, 2003).

EMB is an antitubercular drug that interferes with bacterial cell wall synthesis, targeting the enzyme arabinosyl transferase, coded by embCAB cluster, involved in the production of arabinogalactan (Belanger et al., 1996).

This 4-drugs therapy, although called “short-course”, has as most significant drawback the extent of regimen duration. In fact, the fraction of patients failing to fulfil the complete treatment raises after one month, and varies between 7% and 53.6% (Kruk et al., 2008). Among the several side effects caused by the treatment, hepatotoxicity, gastrointestinal disorders, arthralgias and allergies are the most recurrent (Horsburgh et al., 2015). Concerning liver lesions, it has been reported that the frequency of liver injury caused by antitubercular treatment varies between 5% and 33% (Saukkonen et al., 2006), but the majority of recovered data shows a remarkable fraction of patients having an asymptomatic increase in transaminases (Dheda et al., 2016). This phenomenon, named “hepatic adaptation”, may happen in the first weeks of therapy, but only in case of high risk of hepatotoxicity liver monitoring is recommended; in turn, when clinical hepatitis occurs, the hepatotoxic drugs (RIF, INH or PZA) should be
removed from the therapy, thus adding two second-line compounds to EMB (Dheda et al., 2016).

1.4 Co-infection with human immunodeficiency virus: one of the major obstacles for successful TB treatment

WHO reported that in 2014, at least one-third of individuals infected by HIV, were also affected by TB, and among HIV-positive cases, 1.2 million were also new TB patients. Furthermore, among TB-deaths, 0.4 million people were co-infected with HIV, and among HIV-positive deaths, around one-third died for TB infection (Fig. 5) (WHO, 2015).

![Figure 5. Percentage of notified TB patients with known HIV status by country (WHO, 2015).](image)

The probability of developing active TB importantly increases for patients already living with HIV (WHO, 2015). These data are really worrisome, considering that TB and HIV are two of the greatest public health dangers in the world, taken separately (El-Sadr and Tsiouris, 2008). Although HIV co-infection is a much more diffused in poor countries, especially for living conditions (e.g. neglected sanitation, lacking education, poor socio-economic conditions) that significantly predispose population to this circumstance (WHO, 2013), recently it has been shown that it is gradually diffusing also in developed countries background (Khabbaz et al., 2014).
The reasons explaining the earlier active TB development in HIV-positive cases have to be individuated in the immunopathogenesis of the co-infection (Montales et al., 2015). Moreover, it is worth to consider that individual *M. tuberculosis* and HIV pathogens lead to a strong deterioration of immune defences (Pawlowski et al., 2012), and in case of co-infection, specific immunological phenomena speed up each disease progression (Shankar et al., 2014). As described before, once *M. tuberculosis* has reached lung alveoli, an inflammatory cascade is initiated with the consequent granuloma formation; here, bacteria remain in a dormant state, and cell-mediated immunity, by activating CD4 T lymphocytes, makes sure that no bacteria re-activation occurs (Cooper, 2009). In turn, HIV, after infection upon genital mucosal exposure and throughout its progression, causes a gradual inactivation of the immune system, an impairment of macrophages activity and a serious CD4 T lymphocytes reduction, that lead to granuloma disintegration and mycobacteria reactivation (Pawlowski et al., 2012; Shankar et al., 2014).

It has been demonstrated that macrophages infected with *M. tuberculosis* tend to produce higher amount of IL-1 and IL-6, together with tumor necrotic factor-α (TNF-α), thus favoring HIV replication (Briken et al., 2004), whilst macrophages infected simultaneously with *M. tuberculosis* and HIV, are less prone to apoptotic events than those infected with the microbe alone, due to reduced production of tumor necrotic factor-α (TNF-α) (Patel et al., 2009). Concerning the negative effects of HIV infection on the capacity of T-cells to restrict bacterial infection, it has been observed a decreased production of interferon-γ (IFN-γ) and interleukin-2 (IL-2) by T lymphocytes in co-infected patients compared to those with TB only (Hertoghe et al., 2000; Geldmacher et al., 2008). Other evidences demonstrated that a particular peptide-glycolipid localized on *M. tuberculosis* surface, named Wax-D, leads to enhanced CD4 type 1 T-helper cells expansion by stimulating dendritic cells, together with macrophages, to release interleukin-12 (IL-12), thus facilitating viral infection (Briken et al., 2004) (Fig. 6). All these mechanisms, among others, significantly highlight how *M. tuberculosis* and HIV followed a co-evolution, in order to support and facilitate each other during the infection, rendering this phenomenon a new pathogenic scenario worldwide (Shankar et al., 2014).
1.5 Drug-resistant TB and current therapeutic regimen

The phenomenon of drug resistance is one of the most typical aspects of *M. tuberculosis* spread, inducing several advantages for the survival of mutant strains (Nguyen, 2016). The emergence and spread of drug-resistant strains is accentuated by several risk factors, such as previous treatment for TB, prolonged hospitalization in TB endemic regions, incorrect drug choice and doses for treatment, lack of patients compliance to the treatment and of possibility to supply these expensive drugs at lower prices, delayed diagnosis of the disease, among others. Nevertheless, the lack of patients conformity to TB therapy is still the driving issue (Wilson and Tsukayama, 2016).

Since *M. tuberculosis* possesses several enzymes able to modify many different kinds of molecules, and owing a highly hydrophobic cell membrane rich in mycolic acids, as well as many efflux pumps, it is naturally resistant to several drugs (Ducati *et al.*, 2006). Moreover, the majority of *M. tuberculosis* drug-resistant cases originate from spontaneous and independent mutations leading to a decrease in enzymes involved in prodrugs activation, an overexpression of the target gene, or changes in the drug binding site of the target molecule (Cohen *et al.*, 2014).

WHO declared that in 2014, 480,000 TB cases were caused by *M. tuberculosis* strains resistant to both INH and RIF (Fig. 7) (WHO, 2015), thus classified as multidrug-resistant (MDR) (Migliori *et al.*, 2007).
Furthermore, around 9.7% of them exhibited also resistance to at least one of the second-line injectable compounds and one fluoroquinolone, consequently named extensively drug resistant (XDR) (WHO, 2015). Particularly, among the total MDR instances, 3% of them represent new TB infections, whilst 20% are already previously treated cases, and only 50% of patients will survive, successfully concluding the entire treatment path (WHO, 2015). Although the drug-resistant TB scenario is already worrisome considering MDR and XDR cases, the most dangerous infections are represented by the so-called totally-drug resistant (TDR), defined as <i>M. tuberculosis</i> strains resistant to all first- and second-line drugs (Parida <i>et al.</i>, 2015).

![Global distribution of MDR-TB cases in 2014 (WHO, 2015).](image)

Facing <i>M. tuberculosis</i> drug-resistant strains is, without any doubts, more complicated compared to drug-susceptible infections, causing the spread of drug-resistant TB all over the world (Kurtz <i>et al.</i>, 2016). Therapeutic procedure for drug-resistant TB is poorly tolerated due to the increased toxicity of drugs employed during the treatment, and lengthened up to 2 years, being these compounds less efficacious (Dheda <i>et al.</i>, 2016; Kurtz <i>et al.</i>, 2016). In case of a mono-resistance to INH, patients have to
follow a 6 months treatment with RIF, PZA and EMB (Mitchison and Nunn, 1986), whilst a mono-resistance to RIF alone, although very uncommon, could be efficaciously defeated in 9 months, employing INH, PZA and streptomycin (Hong Kong Chest Service/British Medical Research Council, 1977). Concerning MDR infections, the best plan of action implicates the use of at least four agents that were shown to be active towards the clinical isolates: among them, one fluoroquinolone (e.g. levofloxacin) additioned to an injectable compound chosen between amikacin, kanamycin and capreomycin (WHO, 2011) are utilized, and any first-line compound with verified efficacy. This treatment has to be followed for 21-24 months, and injectable drugs are usually utilized for 6-8 months (WHO, 2011). In case of XDR infections, the therapeutic strategy becomes even more complicated, requiring the use of linezolid to battle fluoroquinolone resistance, together with a continuous monitoring of treated patients for side effects (Sotgiu et al., 2012). In addition, no common agreement about the duration of anti-XDR therapy was achieved so far, highlighting the gravity of this circumstance (Wilson and Tsukayama, 2016). Moreover, the most recent drugs introduced in TB therapy, bedaquiline and delamanid, can be delivered in addition to the other drugs in case the level of resistance and the toxic side effects do not allow a possibly efficacious treatment (WHO, 2013; WHO, 2014).

A further complication of \textit{M. tuberculosis} infections is represented by the co-infection with HIV. One of the most essential reasons that renders this phenomenon highly worrisome, is the fact that RIF, a drug having a central role in TB therapy, is also a strong activator of enzymes involved in drug metabolism, e.g. cytochrome P450 3A4 (Hoagland et al., 2016). This acceleration of drug metabolism strongly decreases the plasma concentration of many antiretroviral compounds, thus obligating patients not to perform the two treatments simultaneously (Breen et al., 2006). Moreover, considering that co-infected people have a higher probability to interrupt anti-TB therapy ahead of time, they have also a higher frequency of \textit{M. tuberculosis} MDR infections development (Brennan, 1997). Consequently, people affected by both MDR-TB and HIV have few chances to survive, dying in some months (Hoagland et al., 2016).

1.6 New antitubercular compounds on the horizon

Among the numerous challenges concerning TB therapy, \textit{M. tuberculosis} drug-resistant spread is one of the most alarming issue. In view of the urgent need of new active agents development, research in TB drug discovery has to never stop, trying to identify new agents that could kill
drug-resistant pathogens, shorten treatment, and limit side effects (Hoagland et al., 2016).

After several decades of near inactivity of TB drug development, in the last years a promising pipeline emerged, showing a number of new compounds and repurposed drugs in the different stages of pre-clinical and clinical development (Zumla et al., 2013a) (Tab. 1), as well as the existent gaps in this research, underlying the urgent need for the discovery of new agents (Kana et al., 2014).

In this context, two new antituberculars have been recently approved for TB treatment: bedaquiline and delamanid (Fig. 8). Bedaquiline was approved in 2012 by US Food and Drug Administration (FDA) for MDR- and XDR-TB treatment (Cohen, 2013; Wilson and Tsukayama, 2016), and belongs to a new class of antituberculars, diarylquinoline, known to inhibit ATP-synthetase activity (Andries et al., 2005). Additionally, it has been shown to be active against murine TB model, as well as against replicating and non-replicating mycobacteria in vitro (Matteelli et al., 2010). Delamanid, a bactericidal compound active towards both proliferating and non-proliferating bacteria, is a nitroimidazole that has been approved in 2014 in the European Medicines Agency (EMA) (Gler et al., 2012; Ryan and Lo, 2014). Delamanid has been shown to be a prodrug, requiring an activating step mediated by the deazaflavin (F420)-dependent nitroreductase (Ddn) (Singh et al., 2008). This agent, once activated, inhibits the synthesis of mycolic acids, consequently affecting cell wall formation, the strongest barrier for drugs penetration (Wilson and Tsukayama, 2016). Due to the serious adverse effects observed upon treatment, the approval for bedaquiline and delamanid use was done under certain conditions (Hoagland et al., 2016). Specifically, these agents must be inserted in a combination treatment in addition to other three agents shown to be effective, in case no other therapeutic options are available (Wilson and Tsukayama, 2016).
Another interesting nitroimidazole present in the pipeline, PA824, is nowadays in phase II clinical trials (Tab. 1). This compound, proven to be highly active both in vitro and in vivo, has been demonstrated to represent a potential drug to abbreviate duration of anti-TB therapy, as well as an active molecule against M. tuberculosis drug-resistant strains (Nuermberger et al., 2006; Nuermberger et al., 2008). As for delamanid, also PA824 is a prodrug that requires activation mediated by the deazaflavin (F420)-dependent nitroreductase, and once activated, inhibits mycolic acids biosynthesis (Singh et al., 2008).

Other compounds present in clinical development, such as SQ109, fluoroquinolones, Q203 and benzothiazinones, with others, will be discussed below.
Table 1. Current pipeline of new TB drugs in preclinical and clinical development (From: http://www.newtbdrugs.org/pipeline.php).
1.7 Targets for tuberculosis treatment: past and present

In view of the crucial need of new TB drugs discovery, a significant attention should be focused on the target topic (Fig. 9). In the identification and validation of promising drug targets, it is worth to consider the important properties that a potentially “ideal target” should possess. First of all, it must be essential for *M. tuberculosis* survival, and vulnerable, meaning that a potential drug affecting its activity should kill the pathogen at the lowest concentration as possible (Wei *et al.*, 2011; Kana *et al.*, 2014). Moreover, a potential target involved in several cellular pathways could supply numerous weapons to rapidly kill the pathogen. Other important features are: a low mutational frequency, a positive aspect that could lead to a reduced drug-resistant strains emergence; and a certain vulnerability in case of TB latent infections (Kana *et al.*, 2014). In effect the bacillus develops a latent infection in a high count of infected people, throughout which no pathological symptoms appear. Therefore, since the 2 billion individuals latently infected worldwide represent a convenient storage source for the pathogen, drugs able to eliminate bacteria in latent stage could be extremely precious (Zumla *et al.*, 2013b). Finally, the cellular location of a potential target within the cell is another aspect that could influence the efficacy of a compound: for example, a drug target belonging to enzymatic complexes is more troublesome to be studied in TB drug research, or simply the cell wall could represent a physical unsurmountable barrier to reach an intracellular component (Kana *et al.*, 2014). Consequently, an extracellular factor could significantly improve the druggability of an antitubercular compound (Kana *et al.*, 2014).

In the research for new TB drugs identification, two main strategies can be followed: the “whole-cell screening” and the “target-based” approaches. The “whole-cell screening” is a phenotypic-based strategy that allowed the identification of several new promising molecules. In particular, all the compounds that are now in clinical development, have derived from this kind of strategy (Lechartier *et al.*, 2014). The “whole-cell screening” rational consists in testing definite classes of molecules against *M. tuberculosis*, in order to identify which of them are capable to affect bacterial cell growth or even kill the bacillus (Zuniga *et al.*, 2015). The central utility of this kind of screening is providing a direct evidence of tested compounds ability to penetrate bacterial cell wall, thus inhibiting a vulnerable cellular function; on the other side, the negative aspect is that compounds target(s) identification is really tricky, then requiring a lot of additional work, often vain, trying to elucidate the mechanisms of action (Lechartier *et al.*, 2014; Zuniga *et al.*, 2015).
Figure 9. A general overview on the principal *M. tuberculosis* cellular targets and the correspondent drugs that compromise their activity (Horsburgh *et al.*, 2015).
The target-based strategy has been employed for a long time, but is quite unsuccessful. In this context, everything starts from a cellular function, usually an enzyme, which is known to be essential for the pathogen life; then, chemical libraries are utilized to perform high throughput screenings (HTS) against this essential enzyme aiming the discovery of active molecules (Cole and Riccardi, 2011). This approach, although selecting compounds that inhibit activity of specific bacterial essential enzymes \textit{in vitro}, usually do not supply the same results at the cellular level (Zuniga \textit{et al}., 2015). There are some possible explanations for that: for example, several of these synthetic compounds are incapable to pass through the mycobacterial cell envelope, or once inside, are immediately brought out \textit{via} efflux pumps, leading to the impossibility to reach the cellular target (Cole and Riccardi, 2011); moreover, the compound could be inactivated by detoxification pathways that occur within the cell, thus losing its activity (Zuniga \textit{et al}., 2015). The consequence is that the tested molecules do not show any bacterial growth inhibition, as well as bactericidal effects (Zuniga \textit{et al}., 2015). A further limitation of the “target-based” approach, is the very limited number of surely validated targets, being the validation process a complex path. There are some criteria that should be satisfied to classify a cellular function as a target of a certain compound: the evidence that the small molecule binds directly to the putative target; the demonstration that the overexpression of the gene encoding for the target enzyme confers a resistant phenotype to the studied compound; and the verification that a decrease in target gene expression increases the sensibility to the compound (Titov and Liu, 2012).

In recent years, in view of the advantages and disadvantages of these two approaches, biochemical and structural studies adopted new strategies to exploit the most beneficial aspects of the two methods. In particular, nowadays tendency of TB drug research, is to combine both “whole-cell screening” and “target-based” approaches, in order to test already known antituberculars against well validated targets, in a sort of “target-based phenotypic screening” (Lechartier \textit{et al}., 2014).

1.7.1 Old targets reintroduction: a cornerstone for new TB drug discovery

A convenient strategy followed to identify new antitubercular compounds, is the proposal of novel derivatives of already known antituberculars inhibiting \textit{M. tuberculosis} targets already characterized to possess essential and extremely vulnerable functions. Among these validated targets, the trans-2enoyl-acyl carrier protein reductase InhA, the β-
subunit of the RNA polymerase and DNA gyrase are the most exploited ones.

InhA is considered a “perfect” target, since once inhibited, mycobacterial cell death immediately occurs (Vilchèze and Jacobs, 2007). Involved in mycolic acids production, it reduces the trans-2-enoyl-acyl carrier protein in a NADH-dependent manner, thus allowing fatty acids elongation (Dessen et al., 1995). The two best known InhA inhibitors are INH and ETH (Banerjee et al., 1994), both prodrugs requiring an activation step to give rise the final active metabolites. As described previously, INH is activated by the peroxidase KatG (Lei et al., 2000). Instead, ETH activator is the NADPH-dependent flavin adenine dinucleotide-containing monooxygenase EthA. Once activated, ETH can form, similarly to INH, a covalent adduct with NAD⁺, thus bringing about its toxic cellular effects (Vannelli et al., 2002). Since high degree of resistance to INH or ETH have been reported to be associated with genetic alterations affecting either katG or ethA genes, respectively (Vilchèze and Jacobs, 2014), the current effort for new InhA-targeting agents identification consists in searching for molecules that do not require KatG- or EthA-mediated activation.

Considering all the new inhibitors of InhA activity that have been discovered in recent years, one of the most promising for future development is the natural compound pyridomycin (Fig. 10), having an MIC towards M. tuberculosis growth of 0.31 µg/ml. What makes this compound even more interesting, is the evidence that pyridomycin and INH/ETH do not share the same mechanism of action; in fact, the mutation causing pyridomycin resistance is a Asp148Gly change. Moreover, M. tuberculosis strains resistant to this compound do not show resistance to INH and ETH, and similarly, the most frequent point mutation leading to INH resistance, Ser96Ala, does not confer, instead, resistance to pyridomycin. In view of these knowledges, together with structural analysis, a concrete hope for pyridomycin future studies to combat TB etiologic agent arose (Hartkoorn et al., 2012). In addition, in the last years, to go ahead in this direction, pyridomycin derivatives were chemically synthesized, thus producing even more active compounds (Horlacher et al., 2012).
RNA polymerase (RNAP) is another essential validated *M. tuberculosis* cellular target, largely exploited for TB drug development. The first antitubercular compound identified to affect RNAP is RIF, another key drug for the treatment of drug-susceptible TB infections (Floss and Yu, 2005). Although its efficacy in TB therapy, the RIF-related issues linked to the strong induction of cytochrome P450 and the elevated probability of *M. tuberculosis* resistant mutants emergence represent important limitations. Consequently, researchers felt encouraged to search for new RIF derivatives, trying to overcome these problems.

Two RIF derivatives have been inserted in TB therapy: rifapentine and rifabutin. The former (Fig. 11), even though cross-resistant to RIF, displays important advantages that make this compound useful in TB therapy. First of all, it shows a strong activity against the pathogen both *in vitro* and *in vivo* and, compared to RIF, has a longer half-life, thus giving the possibility to deliver the drug once a week and reduce the treatment span (Benator *et al*., 2002; Sterling *et al*., 2011). The latter (Fig. 11) has been demonstrated to be a less potent cytochrome 450 inducer, thus widely exploited in combination therapy in patients co-infected with TB-HIV. In addition, as rifapentine, it displays a greater efficacy in killing the bacillus compared to RIF (Williamson *et al*., 2013).

Figure 10. Pyridomycin chemical structure (Hartkoorn *et al*., 2012).
Introduction

DNA gyrase, also known as topoisomerase II, is a *M. tuberculosis* key enzyme involved in monitoring the DNA topology. Precisely, the reaction, which occurs in adenosine triphosphate (ATP) -dependent manner, consists in the formation of a temporary break at DNA level, with a consequent generation of transient covalent bonds between the protein and the broken strands. The final protein structure is composed of four subunits, two encoded by *gyrA* gene, and the remaining two by *gyrB*. These subunits have
distinct functions: the first one is directly involved in the catalytic function of this enzyme, whilst the second contains the site where ATP hydrolysis takes place (Takiff et al., 1994; Ehmann and Lahiri, 2014).

The most efficacious class of DNA gyrase inhibitors known so far is represented by fluoroquinolones, and among them, moxifloxacin and gatifloxacin (Fig. 12) emerged as the most active in vitro, in vivo murine model, (Ji et al., 1998; Rodríguez et al., 2002) and in humans (Rustomjee et al., 2008). Both compounds share a peculiar mechanism of action: the inhibition of DNA gyrase occurs by creating a covalent complex between the enzyme and DNA, thus impeding the generation of the temporary break. Moreover, these two fluoroquinolones, considered potential future first-line compounds, have been already employed to combat MDR-TB infections (Horsburgh et al., 2015; Dheda et al., 2016; Ruan et al., 2016).

Unfortunately, M. tuberculosis fluoroquinolone resistant strains already emerged, and genetic studies revealed which are the most frequent mutations responsible for the resistant phenotype. Specifically, these mutations map in a conserved region, named “Quinolone Resistance Determining Region” (QRDR), that overlaps a portion of both gyrA and gyrB genes (Ginsburg et al., 2003).

Trying to overcome fluoroquinolone resistance, TB drug research is attempting to find new DNA gyrase inhibitors. Among the newest

![Figure 12. Moxifloxacin and gatifloxacin chemical structures.](image)
molecules identified, the most promising display inhibitory effects against GyrB ATPase domain, such as aminopyrazinamides (Shirude et al., 2013) and the thiazolopyridine urea (Kale et al., 2013). In this way, these inhibitors disable the enzyme to utilize the source of energy required to carry out its job (Jeankumar et al., 2016). What renders all these new compounds promising topoisomerase II inhibitors, is the fact that mutations responsible for fluoroquinolone resistance mapping in gyrB, do not induce, instead, resistance to drugs affecting the DNA gyrase ATPase function, thus justifying the growing interest for them (Jeankumar et al., 2016).

1.7.2 New potential targets for the development of new promising antitubercular compounds

In view of the worrisome spread of M. tuberculosis drug-resistant strains, with the consequent reduction in therapeutic options to kill the lethal pathogen, the need of novel cellular targets has never been so impelling. Moreover, the achievement of the complete genome sequence of M. tuberculosis (Cole et al., 1998), together with the next generation sequencing (NGS) approaches, introduced new tools in drug target discovery panorama. Therefore, in the last years, a number of potential drug targets involved in several essential cellular pathways were identified. The most relevant ones are here described.

Decaprenylphosphoryl-β-D-ribose 2’-oxidase (DprE1), is an enzyme carrying out, together with decaprenylphosphoryl-2-keto erytropentose reductase (DprE2), an essential step for the synthesis of mycobacterial arabinan, fundamental component of cell wall arabinogalactan. Precisely, DprE1 and DprE2 convert decaprenylphosphoryl-β-D ribose (DPR) into decaprenylphosphoryl arabinose (DPA), through an epimerization reaction, and specifically, DprE1 is involved in the first part of the reaction, working in a FAD-dependent manner (Mikusová et al., 2005; Kolly et al., 2014). Moreover, DprE1 is able to oxidize again its FAD cofactor by reducing several different organic molecules (Neres et al., 2012). The wide range of specificity towards different substrates, could explain why so many classes of compounds have been identified so far as DprE1 inhibitors. For this reason, this enzyme has been named “magic drug target” (Manina et al., 2010).

The first class of DprE1 inhibitors identified is represented by the 1,3 benzothiazin-4-ones (BTzs) (Makarov et al., 2009). Among them, the 8-nitro benzothiazinone BTZ043 (Fig. 13) emerged as the antitubercular with the highest potency against M. tuberculosis growth (Makarov et al., 2009).
This compound is a prodrug that requires to be activated in order to fulfill its inhibitory effect. It has been shown that the activating step is performed by DprE1 itself (Neres et al., 2012; Trefzer et al., 2012), and consists in the reduction of the nitro group to a nitroso one, thus re-oxidizing the FAD cofactor. Then, once activated, it makes up a covalent bond between its nitroso group and a cysteine residue of DprE1 active site, with a consequent irreversible inhibition of the enzymatic activity (Trefzer et al., 2012).

Although BTZ043 is the most active antitubercular compound in vitro, this efficacy was not reflected in a TB murine model, thus justifying the further investigations that have been performed successively, aiming the improvement of the in vivo efficacy of this compounds. From these copious analysis, PBTZ169 came out, derived from the addition of a cyclohexylmethyl-piperazine moiety within the BTZ structure (Makarov et al., 2014) (Fig. 14).

PBTZ169 immediately displayed several positive aspects: an increased affinity towards DprE1 cellular target, higher potency in TB mouse model, and a decreased toxicity (Makarov et al., 2014). Consequently, at the beginning of 2016, PBTZ169 entered Phase I clinical trials in Russia (http://www.nearmedic.ru/en/node/690).
Mycobacterial membrane protein large 3 (MmpL3) is an essential transmembrane transporter principally engaged in exporting trehalose monomycolate (TMM) outside the bacterial cell, across the cell membrane via a proton antiport system (Varela et al., 2012; Tahlan et al., 2012; Murakami, 2008). MmpL3 possesses 12 transmembrane domains, and is part of mycobacterial membrane protein large (MmpL) family, which in turn belongs to the group of resistance nodulation division (RND) efflux pumps (Domenech et al., 2005).

Among the compounds identified to affect MmpL3 activity, the first one was the 1,5-diarylpyrrol derivative BM212. This molecule, having displayed activity against a high number of drug-resistant clinical isolates (Deidda et al., 1998), was utilized for further investigations in order to find new BM212 derivatives with improved properties, both in vitro (Biava et al., 2006) and in vivo murine models (Poce et al., 2013).

Moreover, another compound found to target MmpL3 protein is the 1,2-diamine SQ109 (Fig. 15), nowadays localized in phase II clinical trials (Sacksteder et al., 2012). Despite being an EMB analog, SQ109 displayed activity against EMB-resistant M. tuberculosis strains, thus highlighting a different mechanism of action (Protopopova et al., 2005). Particularly, biochemical analysis revealed that SQ109, by inhibiting MmpL3 activity, causes an intracellular accumulation of TMM, thus blocking cell wall formation (Tahlan et al., 2012). In addition, SQ109 is also active against M. tuberculosis latent bacilli, phenomenon which was not observed studying other cell wall synthesis inhibitors (Zhang et al., 2012). The explanation for this unusual behavior was given by further recent investigations, that uncovered SQ109 to be a compound targeting more than one cellular functions. For instance, it has been demonstrated that this compound and its derivatives, interfere with electron transport and act as uncouplers, thus leading to a failure of pH gradient and membrane potential maintenance, that are at the base of several transporters operations (Li K et al., 2014). Then, putting together all these findings, researchers started supposing that the TMM accumulation registered upon SQ109 action, could be mainly induced by the dissipation of the proton gradient, and MmpL3 inhibition may have only a secondary role (Li W et al., 2014). In conclusion, the role of MmpL3 as cellular target of all the inhibitors identified so far, should be re-examined in depth, in order to better clarify their mechanisms of action (Li W et al., 2014).
Introduction

Figure 15. SQ109 chemical structure.

Cytochrome bc\(_1\) complex is an essential enzyme involved in the energy conversion apparatus, linking the passage of electrons from a quinol to a cytochrome-c and the flow of protons throughout the membrane, a fundamental step for ATP production (Kleinschroth et al., 2011; Hunte et al., 2003). Several observations have confirmed the great relevance of cytochrome bc\(_1\) in bacillus survival and growth, thus encouraging TB drug research to analyze more in depth this promising new target. Furthermore, recent studies highlighted that this complex contains three main catalytic components, cytochrome b (QcrB), cytochrome c\(_1\) and the Rieske iron-sulfur protein (Kleinschroth et al., 2011). Among the cytochrome bc\(_1\) inhibitors identified so far, Q203 and Lansoprazole emerged, both targeting QcrB component (Pethe et al., 2013; Rybniker et al., 2015).

The importance of Q203 compound resides in its effectiveness against both M. tuberculosis H37Rv reference strain (MIC\(_{50}\) equal to 2.7 nM) and drug-resistant clinical isolates, in its pharmacokinetic profile that reveals a bioavailability of 90% and in its capacity of decreasing granuloma development (Pethe et al., 2013). Moreover, cytotoxicity studies highlighted a good safety profile, since no cytotoxic sign has been observed up to 10 \(\mu\)M of the compound, and upon a long exposure, Q203 is well tolerated (Pethe et al., 2013). All these positive aspects fuel the hope of shortening TB therapy with the possible future use of this compound, being so active at low concentration against the pathogen (Pethe et al., 2013).

Lansoprazole (LPZ) is an already known drug widely utilized to treat stomach disorders, in particular those related to an excessive acidic pH (Welage, 2003). This compound is a proton-pump (H+K+-ATPase) inhibitor, and has been demonstrated to be a prodrug that undergoes different kinds of activation. Within the acidic stomach environment, LPZ is converted into the sulfenic acid intermediate that leads to the block of the gastric proton pump. On the other side, once activated within the M. tuberculosis intracellular environment through its conversion into lansoprazole sulfide (LPZS), it possesses activity against both M.
Introduction

tuberculosis drug-susceptible and drug-resistant strains (Fig. 16) (Rybniker et al., 2015). LPZS active compound, no more able to inhibit gastric H^+K^+-ATPase, targets both QcrB and ATP synthesis within the bacillus. All these positive aspects make this molecule an extremely interesting lead compound for further development of efficacious antituberculars. It is clear that LPZ is a good example of a new effect identified in a molecule already known for a completely different activity (Rybniker et al., 2015).

Figure 16. Mechanisms of LPZ activation (Rybniker et al., 2015).

ATP synthase is an essential enzyme for *M. tuberculosis* growth involved in the synthesis of ATP through the reaction between adenosine diphosphate (ADP) and inorganic phosphate (P_i). This multi-subunit protein is a membrane-embedded complex made of two domains, named F_1 and F_0, that are structurally connected. The synthase catalytic function, that allows ATP production, resides within the F_1 domain, whilst F_0 contains a rotor ring that produces a rotational energy that is then spread to the F_1 component (Boyer, 1997; Walker, 2013; Preiss et al., 2015). It has been shown that *M. tuberculosis* ATP synthase has an important role in favoring pathogen growth even in disadvantageous conditions, like nutrients starvation (Koul et al., 2011). Considering the essentiality of this enzyme, it
is understandable the importance of finding inhibitors able to completely block its activity. Among them, the class of diarylquinoline represents the most efficacious one (Andries et al., 2005). Bedaquiline, the diarylquinoline described previously, has a mechanism of action consisting in a highly specific direct inhibition of the rotor ring of *M. tuberculosis* ATP synthase (Andries et al., 2005; Preiss et al., 2015). Being active against both actively replicating and dormant mycobacteria, it captured the attention of TB drug research (Lounis et al., 2006). Particularly, it has been demonstrated that this compound could potentially shorten therapy for people affected by drug-resistant infections, particularly if bedaquiline delivery is coupled with PZA (Lounis et al., 2006; Ibrahim et al., 2007; Diacon et al., 2009). From a chemical point of view, bedaquiline possesses two chiral centers, thus giving rise to four stereoisomers and, among them, the R207910 has been shown to be the best one, with a MIC$_{90}$ of 0.06 µg/ml (Koul et al., 2007). Unfortunately, as described before, bedaquiline use has many safety issues that have to be considered. Several adverse effects have been registered, such as altered transaminases, nausea, arthralgia, headache, among others.

For these reasons, it is worth to further investigate on new compounds inhibiting ATP synthase activity (Kakkar and Dahiya, 2014).

1.8 Bacterial CTP synthetase and pantothenate kinase: two essential functions as potential targets for antimicrobials development

De novo pyrimidine biosynthesis is an essential pathway that gives rise to important DNA precursors (Djaout et al., 2016). For this reason, inhibitors targeting different steps of this pathway are capturing the attention of TB drug research. In this context, a particular attention was recently focused on the *M. tuberculosis* thymidylate synthase ThyX, an essential enzyme which is not correlated with the correspondent enzyme in humans (Myllykallio et al., 2002; Koehn et al., 2009). In detail, the reaction catalyzed by this enzyme is a methylation of 2′-deoxyuridine-5′-monophosphate (dUMP) thus producing 2′-deoxythymidine-5′-monophosphate (dTMP), an essential component for DNA biosynthesis (Djaout et al., 2016). Among the ThyX inhibitors identified so far, naphthoquinone (NQ) was recently uncovered. This drug, already known to possess anti-tumor and anti-malarian effects, unveiled also antibacterial and antimycobacterial activity, successively discovered to inhibit, together with its derivatives, *M. tuberculosis* ThyX (Tran et al., 2004; van der Kooy et al., 2006; Djaout et al., 2016; Karkare et al., 2013).

Being aware of the importance of pyrimidine biosynthesis for *M. tuberculosis* growth and survival, and in view of the increasing interest
focusing on that, TB research is going ahead in this direction, concentrating also on other parts of this biosynthetic pathway.

Cytidine 5’ triphosphate (CTP), a key nucleotide for the biosynthesis of DNA, RNA and phospholipids (Kent and Carman, 1999), is produced by enzymes called CTP-synthetases, that catalyze the conversion of uridine triphosphate (UTP) into CTP in ATP-dependent manner (Fig. 17) (Long and Pardee, 1967; Endrizzi et al., 2004; Barry et al., 2014). CTP levels are highly controlled within the cell, particularly regulated by both CTP and UTP cellular concentration, as well as by GTP (Barry et al., 2014). Moreover, it has been demonstrated that CTP synthase is an essential enzyme for growth of several bacteria, e.g. Escherichia coli (Gerdes et al., 2003) and Haemophilus influenzae (Akerley et al., 2002). For all these reasons, knowing the desperate need of new drug targets identification, there is a growing interest in investigating this essential pathway to find novel weak points for pathogen killing.

Figure 17. Enzymatic reaction catalyzed by CTP synthetase.
Introduction

Pantothenate kinase (PanK), instead, is an enzyme that catalyzes the rate-limiting ATP-dependent phosphorylation of pantothenate to 4′-phosphopantothenate (Fig. 18) (Jackowski and Rock, 1981), a fundamental precursor of the cofactor coenzyme A (CoA). It has been demonstrated that PanK is essential for *M. tuberculosis* survival, thus encouraging further investigations on its potential role as new target against TB. However, up to now, no PanK inhibitors with antitubercular activity have been identified (Gerdes et al., 2002; Spry et al., 2008). Trying to find new *M. tuberculosis* PanK inhibitors, “target-based” approach was widely utilized performing screening of chemical libraries on PanK activity. Among compounds that have been tested, some triazoles and biaryls emerged (Björkelid et al., 2013). Through crystallographic studies, it has been shown that both triazoles and biaryls classes of compounds are able to bind to PanK active site. In particular, all the triazoles tested showed to be competitive inhibitors towards ATP, whilst the biaryl molecules resulted to behave as non-competitive ones (Björkelid et al., 2013). Successively these compounds were tested against *M. tuberculosis* growth, resulting inactive (Björkelid et al., 2013), probably for the “target-based” approach well known limitations.

Figure 18. Enzymatic reaction catalyzed by pantothenate kinase.

2. Aims of the work

Tuberculosis (TB), an old disease come back as a serious current issue, is killing an increasingly high number of victims every year worldwide. In fact, World Health Organization declares TB as a major global health problem, and the second leading cause of death provoked by an infectious disease worldwide: new drugs are urgently needed.

This research is inserted in the “More Medicines for Tuberculosis” (MM4TB EC-VII framework program) project, aiming to validate at least five new drug targets and the identification of at least one class of new potential antituberculars. Within this project, two new antitubercular compounds, the 7947882 and 7904688, emerged for their good activity against the pathogen. Genetic and biochemical approaches demonstrated the two agents to be prodrugs activated by the monooxygenase EthA, and sequencing data led us to hypothesize the CTP-synthetase PyrG and the pantothenate kinase PanK being their cellular targets.

Going in this direction, the present research can be divided in three main parts.

Firstly, the aims of the thesis project were the identification of 7947882 and 7904688 active metabolites derived from EthA-mediated activation, together with the definitive validation of PyrG and PanK as targets of the 7947882 and 7904688, by employing biochemical strategies.

Successively, in a context of “multitargeting antituberculars research”, the second part focused on the identification of further compounds able to inhibit both PyrG and PanK enzymatic activities bypassing EthA activation, utilizing in silico and in vitro approaches. In fact, drugs able to inhibit more cellular targets are, without any doubt, more efficacious in killing the pathogen and in overcoming the \textit{M. tuberculosis} drug-resistant strains issue.

Finally, since a certain similarity between \textit{M. tuberculosis} PyrG and human CTP-synthetase-1 (hCTPS-1) has been observed, the third topic of the thesis aimed to express and purify the recombinant human enzyme to test all \textit{M. tuberculosis} PyrG inhibitors. The purpose of this strategy was not only to check the possible cross-reactivity of these agents with the human enzyme, but also the identification of compounds with a selective inhibitory effect against the bacterial enzyme. In fact, agents able to affect only the mycobacterial CTP-synthetase could be employed for further structural optimizations, aiming the achievement of even more effective and less toxic antitubercular derivatives.
3. Materials and methods

3.1 Bacterial and yeast strains

Bacterial and yeast strains utilized in this work are listed in Table 2. *Escherichia coli* XL1 Blue was employed for cloning experiments, whilst *E. coli* BL21(DE3) for recombinant protein expression. *Pichia pastoris* KM71H yeast strain, kindly provided by Prof. Andrea Mattevi, (Pavia University, Pavia, Italy), was utilized for human CTP synthetase-1 (hCTPS-1) expression.

<table>
<thead>
<tr>
<th>Strains</th>
<th>Features</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>E. coli</td>
<td>endA1 gyrA96(nalR) thi-1 recA1</td>
<td>Stratagene</td>
</tr>
<tr>
<td>XL1-Blue</td>
<td>relA1 lac glnV44 F[::Tn10 proAB+</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lacI8 Δ(lacZ)M15 hsdRI7(tK mK+)</td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>F- ompT hsdSB (rB- mB-) dcm</td>
<td>Laboratory</td>
</tr>
<tr>
<td>BL21(DE3)</td>
<td>(DE3)</td>
<td>collection</td>
</tr>
<tr>
<td>P. pastoris</td>
<td>arg4 aox1::ARG4</td>
<td>Invitrogen</td>
</tr>
<tr>
<td>KM71H</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Bacterial and yeast strains used in this work.

3.1.1 Growth media and conditions

Escherichia coli XL1-Blue and BL21(DE3) cells were grown in Luria-Bertani (LB) broth/LB LOW SALT or on LB/LB LOW SALT agar (18 g/l) at 37°C. When necessary, media were supplemented with kanamycin (50 µg/ml), ampicillin (100 µg/ml), or zeocin (25 µg/ml), 5-bromo-4-chloro-indolyl-β-D-galactopyranoside (X-Gal) (0.04 µg/ml) and isopropyl β-D-1-thiogalactopyranoside (IPTG) (1.7 µM) (Table 3).

P. pastoris strain was grown in Yeast Extract Peptone Dextrose Medium (YPD) (Table 3) at 30°C for cell competent preparation and transformation, and in Buffered Glycerol-complex Medium (BMGY)/Buffered Methanol-complex Medium (BMM) (Table 3) at 30°C for protein expression.
Materials and methods

Table 3. Components of media used in this work.

<table>
<thead>
<tr>
<th>Medium</th>
<th>Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB broth</td>
<td>Tryptone 10 g/l</td>
</tr>
<tr>
<td></td>
<td>Yeast Extract 5 g/l</td>
</tr>
<tr>
<td></td>
<td>NaCl 10 g/l</td>
</tr>
<tr>
<td></td>
<td>Sterile Water to 1 l</td>
</tr>
<tr>
<td>LB broth LOW SALT</td>
<td>Tryptone 10 g/l</td>
</tr>
<tr>
<td></td>
<td>Yeast Extract 5 g/l</td>
</tr>
<tr>
<td></td>
<td>NaCl 5 g/l</td>
</tr>
<tr>
<td></td>
<td>Sterile Water to 1 l</td>
</tr>
<tr>
<td>YPD</td>
<td>Yeast Extract 1%</td>
</tr>
<tr>
<td></td>
<td>Peptone 2%</td>
</tr>
<tr>
<td></td>
<td>Dextrose 2%</td>
</tr>
<tr>
<td></td>
<td>Sterile Water to 1 l</td>
</tr>
<tr>
<td>BMGY</td>
<td>Yeast Extract 1%</td>
</tr>
<tr>
<td></td>
<td>Peptone 2%</td>
</tr>
<tr>
<td></td>
<td>Potassium phosphate pH 7.5 100 mM</td>
</tr>
<tr>
<td></td>
<td>YNB 1.34%</td>
</tr>
<tr>
<td></td>
<td>Biotin $4 \times 10^{-5}%$</td>
</tr>
<tr>
<td></td>
<td>Glycerol 1%</td>
</tr>
<tr>
<td>BMM</td>
<td>Potassium phosphate pH 7.5 100 mM</td>
</tr>
<tr>
<td></td>
<td>YNB 1.34%</td>
</tr>
<tr>
<td></td>
<td>Biotin $4 \times 10^{-5}%$</td>
</tr>
<tr>
<td></td>
<td>Methanol 0.5%</td>
</tr>
</tbody>
</table>

3.2 Plasmids and cloning procedures

All DNA manipulation procedures were done according to standard protocols described by Sambrook and Russel (2001). The genes cloned were purified from agarose gel employing Wizard SV Gel and PCR Clean-Up System (Promega) and ligated into the correspondent vector utilizing T4 ligase (Promega). All the restriction enzymes (Promega) were used following the manufacturer’s protocols. Both *E. coli* and *P. pastoris* electrocompetent cells were transformed by electroporation, utilizing Bio-Rad Gene Pulser. After that, *E. coli* cells were plated onto LB plates when transformed with pGEM-T Easy, pET SUMO or
Materials and methods

pET-28a vectors (described below), whilst when transformed with pPIZ-B-eGFP vector (described below), were plated on LB LOW SALT. *P. pastoris* cells transformed with pPIZ-B-eGFP vector were plated onto YPD plates. All plates were supplemented with the required antibiotic.

Plasmids purification was done either with an alkaline-lysis extraction (Sambrook and Russell, 2001) or using the Plasmid Mini kit (Qiagen).

pGEM-T Easy plasmid (Promega) is a 3015 bp long vector utilized for cloning and sequencing of PCR products.

Plasmids utilized in this work for expression of *M. tuberculosis* proteins in *E. coli* are shown in Figure 19.

The pET SUMO (Invitrogen) (Fig. 19) expression vector, utilized for *M. tuberculosis* EthA expression, is a plasmid for *E. coli* that allows the expression and purification of recombinant proteins, fused with a small ubiquitin-like modifier (SUMO). Fusion with SUMO increases the solubility of expressed proteins and may increase their expression level. Moreover, the SUMO tertiary structure is recognized and cleaved by a ubiquitin-like protein-processing enzyme, SUMO protease, resulting in the production of a native protein.

The pET-28a (Novagen) (Fig. 19), used for *M. tuberculosis* PyrG and PanK expression, is a 5369 bp vector utilized to express recombinant proteins in *E. coli*. It carries an N-terminal His-Tag/thrombin/T7-Tag configuration in addition to an optional C-terminal His-Tag sequence, together with a kanamycin resistance gene. Moreover, it shows a T7lac promoter, thrombin cleavage site and internal T7 epitope tag.

Figure 19. Maps of plasmids used for expression of *M. tuberculosis* proteins.
Materials and methods

For cloning and expression of hCTPS-1 in *P. pastoris*, the pPICZ-B-eGFP vector was utilized. The pPICZ-B-eGFP plasmid (Figure 20) is a modified version of the 3.3 kb expression vector pPICZ-B (Invitrogen) in which an enhanced Green Fluorescent Protein (eGFP) was inserted in the cloning site. In this way, the final recombinant protein possesses the eGFP at the C-terminus, in addition to a peptide containing the c-myc epitope and a polyhistidine (6xHis), allowing a direct fluorescent signal detection of the expressed product (Prof. A. Mattevi, personal communication). Moreover, the vector carries a 5’ fragment with the AOX1 promoter for methanol-inducible expression of the cloned gene (Ellis et al., 1985; Koutz et al., 1989; Tschopp et al., 1987) and a gene conferring zeocin resistance in both *E. coli* and *P. pastoris* (Drocourt et al., 1990; Baron et al., 1992). The human full length CTPS-1 cDNA was purchased from Dhharmacon, cloned into pOTB7 vector.

![Figure 20. Map of the expression vector pPICZ-B-eGFP.](image)

3.3 Polymerase Chain Reaction (PCR)

PCR procedure is based on the synthesis, performed by DNA polymerase, of a new strand of DNA complementary to a certain template. The reactions are characterized by 20–40 temperature changes, called cycles, that lead to the production of billions of copies of the desired DNA fragment. PCR reactions were performed in a final volume of 40 µl, in which 2 mM of each dNTP, 0.5 pmol/µl of each primer, 2% dimethylsulfoxide (DMSO), 2.5 mM MgCl₂, 50 ng of DNA template (plasmid DNA) and 1 U of Pfu DNA Polymerase (Promega) were added.
Materials and methods

Cycles conditions were as follow: denaturation step at 95°C for 2 min, then 30/35 cycles of denaturation at 95°C for 1 min, annealing at a temperature depending on melting temperature of the primer utilized, and elongation at 72°C for a time dependent on product sequence length, with a final elongation at 72°C for 5 min. All primers used for PCR are listed in Table 4.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence 5’-3’</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>hpyrG28a FOR</td>
<td>TTGGATCCATGAAGTACATTCTG (BamHI)</td>
<td>Cloning of hCTPS-1 in pET 28a</td>
</tr>
<tr>
<td>hpyrG28a REV</td>
<td>TTCTCGAGGTCAGTACATTCTG (XhoI)</td>
<td>Cloning of hCTPS-1 in pET 28a</td>
</tr>
<tr>
<td>hctps1pichia FOR</td>
<td>TTGGATCCAAATACATTCTG (BamHI)</td>
<td>Cloning of hCTPS-1 in pPICZ-B</td>
</tr>
<tr>
<td>hctps1pichia REV</td>
<td>TTGCGGCCGCGTCATGATTATG (NotI)</td>
<td>Cloning of hCTPS-1 in pPICZ-B</td>
</tr>
<tr>
<td>hctps1pichiaseq FOR</td>
<td>AGAACTTTTGTAAACATCCACGT</td>
<td>Sequencing of hCTPS-1 from pPICZ-B</td>
</tr>
<tr>
<td>hctps1pichiaseq REV</td>
<td>ACGTGGATGTTACAAAGTTCT</td>
<td>Sequencing of hCTPS-1 from pPICZ-B</td>
</tr>
<tr>
<td>AOXfor</td>
<td>GACTGTTCCAATGCAAGC</td>
<td>Sequencing of hCTPS-1 from pPICZ-B</td>
</tr>
<tr>
<td>AOXrev</td>
<td>GCAAATGGCATTTGCAATCCACCC</td>
<td>Sequencing of hCTPS-1 from pPICZ-B</td>
</tr>
</tbody>
</table>

Table 4. Primers used in this work.
Materials and methods

3.4 Pichia pastoris competent cells preparation and transformation

P. pastoris KM71H chemically competent cells (Lin-Cereghino et al., 2005) were prepared as follows: 5 ml of *P. pastoris* KM71H cells pre-inoculum was grown overnight in YPD medium at 30°C in shaking conditions (300 rpm); the next day, the pre-inoculum was diluted in a final volume of 50 ml of the same medium, to reach an OD$_{600}$ between 0.15 and 0.2; the yeast culture was grown at 30°C until OD$_{600}$=0.8-1.0 was reached, and then cells were collected by centrifugation at room temperature; successively, pellet was resuspended in ice-cold BEdS solution (10 mM bicine-NaOH, pH 8.3, 3% (v/v) ethylene glycol, 5% (v/v) dimethyl sulfoxide (DMSO), and 1 M sorbitol) supplemented with 1 M dithiothreitol (DTT), and, after 5 minutes of incubation followed by centrifugation, cells were resuspended in 1 ml of BEdS without adding DTT. Competent cells are stored at -80°C.

For yeast transformation, 50-100 ng of pPICZ-B/hCTPS-I recombinant plasmid linearized with SacI restriction enzyme (Promega) were incubated with 40 µl of *P. pastoris* KM71H competent cells, kept on ice for 2 minutes. For cell transformation, electroporator was utilized with a charging voltage of 1500 Volt, a resistance of 200 Ohm and a capacitance of 50 µFaraday. After electroporation, cells were transferred in sterile conditions in 500 µl 1M sorbitol + 500 µl YPD and incubated at 30°C on shaker for 1-3 hours. Then, *P. pastoris* transformed cells were plated on YPD agar plates supplemented with 100 µg/ml zeocin, and plates were incubated at 30°C for 2-3 days until some yeast colonies appeared.

3.5 Protein expression and purification

3.5.1 EthA expression and purification

E. coli BL21(DE3) One Shot® cells transformed with pET-SUMO/EthA were grown overnight in a pre-inoculum at 37°C in LB additioned with kanamycin (50 µg/ml). Then, the pre-inoculum was diluted 50 times in 6 l of the same medium and grown at 37°C until cells reached OD$_{600nm}$ = 0.6–0.8. Protein expression was induced by IPTG 0.5 mM, 3 hours at 37°C. Cells were collected by centrifugation and resuspended in lysis buffer (50 mM sodium phosphate pH 8.0, 1% triton-X100, 300 mM NaCl) and broken by sonication. The cellular lysate was then centrifuged and the supernatant applied to a His-trap column (1 ml, GE-Healthcare), equilibrated in lysis buffer. The column was washed with 50 mM imidazole, then EthA was eluted with 250 mM imidazole, dialyzed in 50 mM sodium phosphate pH 8.0, 150 mM NaCl, and incubated with SUMO protease in
order to eliminate the tag, getting a native protein after a second purification step on the His-trap column. The purity was checked with SDS-PAGE analysis, and the protein concentration was calculated by measuring absorbance at 280 nm ($\varepsilon=97290 \text{ M}^{-1} \text{ cm}^{-1}$).

3.5.2 PyrG expression and purification
pET-28a/pyrG recombinant vector was transformed in *E. coli* BL21(DE3) cells. The transformed cells were grown in a pre-inoculum LB medium additioned with kanamycin (50 µM) up to OD$_{600nm} = 0.6–0.8$, then diluted 50 times in the same medium. PyrG protein was expressed with the following induction conditions: 0.5 mM IPTG for 12 hours at 25°C. Cells were then harvested by centrifugation, sonicated and resuspended in lysis buffer containing 50 mM sodium phosphate pH 8.0 and 300 mM NaCl. The protein was purified using a HisTrap column, through an elution step with 250 mM imidazole. Therefore, the eluted protein was dialyzed against 50 mM potassium phosphate pH 7.5, 50 mM KCl. The concentration of purified protein was evaluated measuring the absorbance at 280 nm ($\varepsilon=40715 \text{ M}^{-1} \text{ cm}^{-1}$) and SDS-PAGE was utilized to check samples purity.

The same procedure was employed to express and purify the PyrG mutant (V186G) enzyme.

3.5.3 PanK expression and purification
E. coli BL21(DE3) cells transformed with pET-28a/coaA construct were grown in a pre-inoculum LB liquid medium to which kanamycin was added at the proper concentration, up to OD$_{600nm}= 0.6-0.8$, diluted 50 times in the same medium and induced with 0.5 mM IPTG for 5 hours at 37°C. After collection, cells were resuspended with lysis buffer containing 50 mM sodium phosphate pH 8, 600 mM NaCl, and 25 mM imidazole, supplemented with protease inhibitor cocktail (Sigma), and then sonicated. Once the cell lysate was centrifuged, the supernatant was applied to a HisTrap column. PanK protein was eluted with 250 mM imidazole and dialyzed against 100 mM TrisHCl pH 8, 150 mM NaCl and 5% glycerol. Protein concentration was determined by absorbance at 280 nm ($\varepsilon=36900 \text{ M}^{-1} \text{ cm}^{-1}$), and SDS-PAGE analysis was performed to control the purification steps.

The purification of PanK mutant (Q207R) protein was done with the same protocol.

3.5.4 hCTPS-1 expression and purification
In order to identify *P. pastoris* KM71H cells transformed with pPICZB/hCTPS-1 expressing hCTPS-1 protein, each colony was inoculated
in 2 ml of BMGY medium utilizing a plate with 24 wells, thus incubated at 30°C shaking at 280 rpm for 60 hours. Successively, for protein expression induction, the medium was exchanged with BMM. In order to establish the best induction time, fluorescence signals were checked after 24, 48 and 72 hours by using a Clariostar plate reader (BMG Labtech; excitation 489 nm, emission 509 nm), thus identifying the clone having the highest fluorescence signal. To scale up, the single positive colony identified was grown in a 15 ml pre-inoculum of BMGY, at 30°C for 30 minutes. Then, the pre-inoculum was diluted 80 times in 1 l of BMGY, divided in 2 flasks of 5 l final volume. The cell cultures were grown at 30°C in a shaking incubator (200 rpm) for 72 hours, after that cells were harvested by centrifugation and resuspended in half-volume of BMM medium for expression induction. 0.5% methanol was added every 24 hours.

After 48 hours of induction, yeast cells were collected and resuspended in lysis buffer containing 50 mM sodium phosphate pH 7.5, 500 mM NaCl, 10% glycerol, 1 mM phenyl-methyl sulfonyl fluoride (PMSF; Sigma-Aldrich), protease inhibitors Complete EDTA-Free (Roche), and 1 mg/ml DNAase. Then, an equal volume of zirconia beads (BioSpech) was added to the suspension, and yeast cells were disrupted in a mechanical way by utilizing a BioSpec Mini Bead-Beater. The mixture was passed through a cloth mesh strainer in order to separate cells from zirconia beads, after that cell lysate was centrifuged at 70,000 rcf for 30 minutes at 4°C. The supernatant was applied on a HisTrap column previously equilibrated with lysis buffer, and the protein was eluted with 500 mM imidazole and dialyzed against 50 mM TrisHCl pH 7.5, 1 mM EDTA, 150 mM NaCl, 10% glycerol, 1 mM DTT. The protein solution was concentrated using Centrifugal Filter Units (Millipore) to 3 mg/ml concentration and fluorescent signal was visualized by ChemiDoc system Bio-Rad (ex. 489 nm, em. 509 nm). Successively, PreScission protease 1:10000 v/v ratio (GE healthcare) was added to the protein solution in order to cleave the tag, together with the eGFP. After a second purification step on HisTrap, a native hCTPS-1 protein was achieved. Protein samples were analyzed by SDS-PAGE.

3.6 Enzymatic assays

All the enzymatic assays were performed employing an Eppendorf BioSpectrometer.

M. tuberculosis EthA activity was checked at 37°C by measuring the NADPH consumed during the course of the reaction at 340 nm (ε= 6.22 mM−1 cm−1) (Fraaije *et al.*, 2004). The reaction mixture was composed by 50 mM potassium phosphate pH 8.0, 10 µM serum bovine albumin (BSA), 0.2
mM NADPH. The compounds were tested at a concentration of 50 µM, previously dissolved in dimethylformamide, and the reaction was started by addition of EthA enzyme at concentration of 1µM.

M. tuberculosis PyrG activity was spectrophotometrically assayed at 37°C by measuring the production of CTP starting from UTP (ε= 1.34 mM⁻¹ cm⁻¹) at a wavelength of 291 nm (Lunn *et al.*, 2008). The reaction mixture contained 50 mM HEPES pH 8.0, 10 mM MgCl₂, 1mM UTP, 1 mM ATP and 0.5 µM PyrG enzyme. The reaction was initiated by addition of 100 mM NH₄Cl.

The activity of hCTPS-1 was spectrophotometrically assayed as described for *M. tuberculosis* PyrG, using a final concentration of 1.8 µM of the enzyme.

M. tuberculosis PanK activity was checked by measuring the formation of ADP through a coupled assay that employs pyruvate kinase (PK) and lactate dehydrogenase (LDH) (Yang *et al.*, 2008). The assay was performed at 37°C, in a reaction mixture containing 50 mM potassium phosphate pH 7.0, 25 mM KCl, 10 mM MgCl₂, 2 mM DTT, 0.5 mM PEP, 0.24 mM NADH, 10 units PK/LDH, 0.12 mM Mg-ATP, 0.3 mM D-pantothenate and 0.5 µM PanK enzyme. The reaction was started by the addition of PanK to the reaction mix and monitored by observing the change in absorbance at 340 nm.

3.6.1 Steady state kinetics and inhibition assays

Steady-state kinetics parameters for *M. tuberculosis* PyrG and PanK were calculated through enzymatic assays performed at 8 different concentrations of the correspondent enzyme substrates. All the assays were done in triplicates, and the K_m and k_cat values were determined fitting the obtained data to the Michaelis-Menten equation using Origin 8 software.

Inhibition assays of *M. tuberculosis* PyrG, PanK and human CTPS-1 were done by dissolving the tested compounds in DMSO, and blank reactions were performed by adding 1 µl DMSO to the reaction mixture. For IC₅₀ determinations, the enzyme activities were measured in presence of a serial dilution of each compound and values were estimated by fitting [I] and normalized in response to Equation 1. The K_i values were determined using an adapted equation for competitive inhibition (Equation 2) and an equation for uncompetitive inhibition (Equation 3) (Copeland, 2000).
Materials and methods

\[A[I] = A[0] \times \left(1 - \frac{[I]}{[I]+IC_{50}} \right) \]
Equation 1

\[v = \frac{V_{max}[S]}{[S]+K_m\left(1+\frac{[I]}{K_i}\right)} \]
Equation 2

\[v = \frac{V_{max}[S]}{[S]\left(1+\frac{[I]}{dK_i}\right)+K_m\left(1+\frac{[I]}{K_i}\right)} \]
Equation 3

3.6.2 Compound library screening against PyrG enzyme activity

The GlaxoSmithKline antimycobacterial compound set (GSK TB-set) consists of 204 compounds already known to possess activity against *M. tuberculosis* growth (Ballell *et al.*, 2013). This compound library was kindly provided by GlaxoSmithKline. Compounds of this library were employed for a target-based screening against PyrG activity, tested at a final concentration of 100 μM, dissolved in DMSO. Blank reactions were done by adding 1 μl DMSO to the reaction mixture.

Among the 204 compounds checked, three of them were selected, having an inhibitory degree against PyrG higher than 75%. To deeper investigate on them, the three compounds were re-purchased from MolPort (Riga, Latvia): GSK1570606A,(2-(4-fluorophenyl)-N-(4-(pyridin-2-yl)thiazol-2-yl)acetamide, #MolPort-003-158-205; GSK735826A, N-(4-(pyridin-2-yl)thiazol-2-yl)-[1,3]dioxolo[4',5':4,5]benzo[1,2-d]thiazol-6-amine #MolPort-003-038-940; GSK920684A, 2-(3-fluorophenoxy)-N-(4-(pyridin-2-yl)thiazol-2-yl)acetamide, #MolPort-004-106-239.

Consequently, IC$_{50}$ and K_i values were calculated. The three compounds were also tested against hCTPS-1 and IC$_{50}$ values were evaluated.

Successively, the GSK1570606A, GSK735826A and GSK920684A compounds were also tested against PanK, and for those that displayed inhibitory effects, IC$_{50}$ and K_i values were determined.
3.7 EthA activated 7947882 and 7904688 metabolites production and analysis

In order to produce 7947882 active metabolites, 10 mg of EthA recombinant enzyme was incubated in agitation at 37°C with 30 mg of the compound, in 50 mM potassium phosphate pH 8.0, with the addition of 500 µM NADPH and 10 µM BSA. After 5 hours of incubation, the reaction products were extracted with diethyl ether, and the organic component was washed using brine and then dried over Na₂SO₄. After the removal of solvent employing a reduced pressure, the products were partially purified on flash column chromatography (Merck SiO₂ 60, 230–400 mesh). The purified products were analyzed in ESI mass spectrometry, both in negative and positive mode, utilizing a Thermo LTQ-XL mass spectrometer.

For the 7904688 active metabolites identification trials, the same procedure was utilized.

3.8 Production of PyrG and PanK complexed with 7947882/7904688 metabolite(s) upon co-incubation with EthA

For obtaining PyrG complexed with the active 7947882 or 7904688 metabolite(s), PyrG recombinant protein (45 µM) was co-incubated with EthA (10 µM) in the presence of either 7947882 or 7904688 at a final concentration of 300 µM. The reaction was performed at 37°C in 50 mM potassium phosphate buffer pH 8.0, adding 300 µM NADPH. In parallel, a blank control was performed in the absence of NADPH, in order to keep EthA enzyme in a no-working state. During the course of the reaction, PyrG activity was monitored as explained in the following paragraph, with ATP at final concentration of 0.2 mM. After 4 hours, PyrG was re-purified on 300 µl of Ni-nitrioltriacetic acid (Ni-NTA) resin (Qiagen) in order to eliminate EthA and all the possible unbound 7947882 or 7904688 metabolites. Thus, the mixture was loaded on the column previously equilibrated with 50 mM potassium phosphate pH 7.5, 50 mM KCl, and PyrG was eluted with 100 mM imidazole, and finally dialyzed for imidazole elimination.

For obtaining PanK-7947882 or PanK-7904688 metabolites complexes, the same protocol was followed.
4. Results

4.1 Background

In view of the alarming TB scenario worldwide, there is an urgent need for new drug targets discovery, together with the identification of new antituberculars with greater potency. In this context, the Molecular Microbiology Laboratory from Pavia University, member of a European project named More Medicines For Tuberculosis (MM4TB, EC-VII framework program), is inserted.

From the screening of the National Institute of Allergy and Infectious Diseases (NIAID) library of 594 chemical compounds (Ananthan et al., 2009; Goldman and Laughon, 2009; Maddry et al., 2009) performed by Prof. S. T. Cole laboratory (EPFL, Lausanne, Switzerland), the 7947882 and 7904688 molecules (Fig. 21) emerged for their efficacious antitubercular activity (MIC = 0.5 µg/ml for both compounds). Moreover, these two compounds resulted active against *M. tuberculosis* H37Rv in vitro, ex vivo, and in TB latent models.

![Figure 21. 7947882 and 7904688 chemical structures.](image)

In order to unveil the mechanisms of action and resistance of these two compounds, *M. tuberculosis* resistant mutants to the two compounds were isolated, and Illumina sequencing data highlighted that the resistant mutants were mutated in *ethA*, *pyrG* and *coaA* genes. *ethA* gene product is the non-essential FAD-containing NADPH-dependent monooxygenase EthA, responsible for the activation of ETH (Baulard et al., 2000); in turn, *pyrG* is an essential gene encoding the CTP-synthetase PyrG responsible for the conversion of UTP in CTP by using ATP as energy source (Turnbough and Switzer, 2008); and *coaA* codes for the essential pantothenate kinase PanK, that converts pantothenate to 4'-phosphopantothenate in an ATP-dependent manner (Jackowski and Rock, 1981) (Table 5).

Since mutations affecting *ethA* lead to ETH resistance (DeBarber et al., 2000), and *M. tuberculosis* resistant to 7947882 and 7904688 and...
Results

Mutated in EthA were cross-resistant to ETH, this enzyme was hypothesized to activate both compounds. Moreover, since mutations affecting target gene(s) are often responsible for a drug-resistant phenotype, PyrG and PanK were supposed to be the 7947882 and 7904688 cellular targets.

Through genetic approaches, the role of EthA as an activator of these two compounds has been validated, and biochemical strategies demonstrated the monooxygenase to be able to metabolize both prodrugs.

Consequently, the work of this thesis was focused on the definitive biochemical validation of EthA as the activator of 7947882 and 7904688, the identification of their active metabolite(s) and the validation of the role of PyrG and PanK as cellular targets.

<table>
<thead>
<tr>
<th>M. tuberculosis strains</th>
<th>MIC (µg/ml)</th>
<th>Mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7947882</td>
<td>7904688</td>
</tr>
<tr>
<td>H37Rv (wild-type)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>82.14</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>82.20</td>
<td>>40</td>
<td>20</td>
</tr>
<tr>
<td>82.21</td>
<td>>40</td>
<td>>40</td>
</tr>
<tr>
<td>88.1, 88.2</td>
<td>2.5</td>
<td>10</td>
</tr>
<tr>
<td>88.7, 88.10</td>
<td>5-10</td>
<td>10</td>
</tr>
</tbody>
</table>

Table 5. Phenotypic and genotypic profiles of M. tuberculosis resistant mutants.

4.2 M. tuberculosis PyrG and PanK are affected by 7947882 and 7904688 compounds upon activation by EthA

In order to validate the role of M. tuberculosis PyrG and PanK as the cellular targets of the 7947882 and 7904688 compounds, both recombinant wild-type and mutant proteins were expressed in E. coli, purified and characterized. PyrG catalytic constants were calculated toward both ATP.
Results

and UTP: $k_{\text{cat}} 21.9 \pm 0.5 \text{s}^{-1}$ and $K_m 0.18 \pm 0.01 \text{mM}$ toward ATP; $k_{\text{cat}} 22.9 \pm 0.9 \text{s}^{-1}$ and $K_m 0.14 \pm 0.01\text{mM}$ toward UTP. These values are very similar to those of the other already characterized bacterial CTP synthetase (Long and Pardee, 1967; Anderson, 1983; Willemoes et al., 2005). Conversely, the PyrG V186G mutant enzyme was partially compromised, as observed from the reduced k_{cat} toward both ATP and UTP (1.5 ± 0.11 and $1.6 \pm 0.08 \text{s}^{-1}$, respectively). Additionally, a significantly higher K_m toward ATP ($1.46 \pm 0.18 \text{mM}$) was observed, with no differences toward UTP.

Concerning PanK enzyme, the kinetic characterization highlighted a k_{cat} of $6.1 \pm 0.2 \text{s}^{-1}$ and a K_m of $0.19 \pm 0.02 \text{mM}$ toward ATP, whilst toward pantothenate the catalytic constants were $k_{\text{cat}} 6.3 \pm 0.3 \text{s}^{-1}$ and $K_m 0.28 \pm 0.03\text{mM}$. PanK Q207R mutant enzyme, as V186G PyrG, was partially impaired, with a reduction of the k_{cat} values toward both ATP and pantothenate ($2.0 \pm 0.1 \text{s}^{-1}$ and $1.8 \pm 0.2 \text{s}^{-1}$, respectively). Moreover, the K_m toward ATP was significantly increased, being equal to $3.56 \pm 0.36 \text{mM}$, indicating a reduced affinity for ATP, whilst no significant differences were observed toward pantothenate.

Due to the resistant phenotype associated with both PyrG V186G and PanK Q207R mutations and in view of the catalytic data, we hypothesized that 7947882 and 7904688 inhibitors could bind to the ATP-binding site of both enzymes. To check this hypothesis, both PyrG and PanK wild-type enzymes were assayed in presence of either 7947882 or 7904688 compounds at a final concentration of 200 µM. However, as expected for compounds requiring activation, they did not affect neither PyrG nor PanK activities.

For this reason, to confirm that the EthA metabolites of the compounds might act on PyrG and PanK, EthA reaction on 7947882 or 7904688 was performed either in the presence of PyrG or PanK, and the activity of the latter enzymes was checked throughout the reaction. The blank control was performed in the absence of NADH, in order to maintain EthA in its inactive state, whilst the full-reaction contained all reaction components. As it is shown in Figure 22, PyrG activity from blank control remained unaffected, whilst PyrG from full reaction completely lost its activity in 4 hours of co-incubation with the 7947882. Similarly, in the presence of the 7904688 compound, PyrG lost the 80% of its activity in the same time (Fig. 22).

Afterwards, PyrG was re-purified from both blank and full reaction, and its activity was tested, showing that the enzyme coming from the control remained active, whilst that from the complete reaction was still inactive. Moreover, the UV-Vis spectra of PyrG from both blank and full reactions in the presence of 7947882 compound were analyzed, highlighting
Results

a peak at 330 nm, characteristic of the 7947882, which was present in the full reaction, and absent in the control one (Fig. 23). Furthermore, UV-Vis spectra of the blank and full reactions with the 7904688 compound displayed a broad peak between 310 and 400 nm, characteristic of this molecule, present in the complete reaction and absent in the blank one (Fig. 23).

Analogous experiments were conducted with PanK. By incubating the pantothenate kinase with a full-active EthA in the presence of the 7947882 compound, 100% of the activity was lost after 24 hours of incubation, whilst the 80% was retained when incubated with EthA in the absence of NADPH (Fig. 24). Similar results were achieved incubating PanK with the 7904688 compound (Fig. 24). The UV-Vis spectra of the blank and full reaction after PanK re-purification, gave analogous results to those of PyrG (Fig. 25).

All these results taken together gave the demonstration that EthA converts the 7947882 and the 7904688 into metabolites that are able to bind both to PyrG and to PanK compromising their enzymatic activity, thus definitively confirming the role of EthA as 7947882 and 7904688 activator.
Results

Figure 22. PyrG activity monitored in the presence of the 7947882 (A) or 7904688 (B) compounds. Red bars indicate PyrG activity from the blank reaction, the black bars that from the full reaction.

Figure 23. UV-Vis spectra of PyrG incubated with 7947882 (A) and with 7904688 (B) after re-purification. Red line corresponds to PyrG spectrum from full reaction, black line is the spectrum of PyrG from blank reaction, and blue line represents the spectrum of the corresponding compound at a concentration equal to 20 μM.
Results

Figure 24. PanK activity monitored in the presence of the 7947882 (A) or 7904688 (B) compounds. Red bars indicate PanK activity from the blank reaction, the black bars that from the full reaction.

Figure 25. UV-Vis spectrum of PanK incubated with 7947882 (A) and with 7904688 (B) after re-purification. Red line corresponds to PanK spectrum from full reaction, black line is the spectrum of PanK from blank reaction, and blue line represents the spectrum of the corresponding compound at a concentration equal to 20 μM.
4.3 Identification of EthA activated 7947882 and 7904688 metabolites

Once the role of EthA as the 7947882 and the 7904688 activator was confirmed, the following step consisted in the identification of the active metabolites, able to affect PyrG and PanK activity.

The monooxygenase EthA has been previously demonstrated to activate ETH by producing the correspondent S-oxide and S-dioxide active cytotoxic metabolites (Fig. 26) (Vannelli et al., 2002; DeBarber et al., 2000).

Thus, we decided to verify whether these kinds of metabolites could arise also upon EthA-mediated 7947882 activation (Fig. 27).

![Figure 26. EthA-mediated ETH activation (DeBarber et al., 2000).](image)

![Figure 27. Hypothesized EthA-mediated 7947882 activation.](image)
To confirm this hypothesis, we attempted to identify the active EthA metabolite(s) of the prodrugs.

In order to do that, the products of the EthA and 7947882 co-incubation were purified from the reaction mixture, and analyzed by liquid electron spray ionization-mass spectrometry (ESI-MS). As it is shown in Figure 28, two main products with m/z of 293 and 277, and named M1 and M2, respectively, emerged, being in accordance with S-oxide and S-dioxide 7947882 metabolites. Moreover, fragmentation patterns of these two compounds were comparable to that of the 7947882 compound upon its mono- and di-oxygenation at the thiophene moiety level, confirming our hypothesis (Fig. 29). Then, M1 and M2 purified metabolites were tested against PyrG recombinant protein, showing that its enzyme activity is affected by these derivatives.

Figure 28. Full ESI-MS of the 7947882 reaction products.
Figure 29. Fragmentation patterns of M1 and M2 putative 7947882 metabolites.

The same approach was employed to identify the EthA-activated 7904688 metabolites. Figure 30 shows ESI-MS analysis of the 7904688 compound, compared with the EthA reaction products, highlighting the presence of m/z 351 compound, very likely corresponding to 3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamoyl]propanamide.

Probably, this metabolite derives from consecutive EthA-mediated reactions on the sulfur atom of the 7904688 compound, as shown in Figure 31 (Chigwada et al., 2014).
Figure 30. Identification of 7904688 EthA metabolite(s). (A) Mass spectrometry analysis of the 7904688 in positive mode, and MS2 and MS3 fragmentations; (B) mass spectrometry analysis of the EthA metabolite of 7904688 in positive mode, MS2 and MS3 fragmentations; (C) mass spectrometry analysis of 7904688 in negative mode, MS2 and MS3 fragmentations; (D) mass spectrometry analysis of the EthA metabolite of 7904688 compound in negative mode.
However, this purified reaction product tested against both PyrG and PanK showed no effects on their activity, indicating that the isolated compound is an inactive end product. Moreover, the mono- and di-oxidation of the 7904688 have been attempted through chemical procedures but without any success; in fact, also with this approach the only one final compound obtained was always the 3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamoyl]propanamide derivative, due to the high reactivity of the intermediates. So, probably the real 7904688 active metabolite is one of these highly reactive intermediate of the EthA-mediated reaction, thus impossible to isolate. For this reason the 7904688 compound was not further investigated.

4.4 Further characterization of the S-dioxide 7947882 derivative: the 11426026 compound

In order to better investigate the 7947882 derivatives, the S-dioxide 7947882 one was chemically synthesized by our collaborator Dr. Vadim Makarov (A. N. Bakh Institute of Biochemistry, Russian Academy of Science, Moscow, Russia) and named 11426026. The mass spectrum of the synthetic compound was compared to that of the M1 EthA metabolite previously isolated, showing a perfect overlapping, thus confirming the M1 identity as the 7947882 S-dioxide derivative.
Results

The MIC to 11426026 compound of *M. tuberculosis* H37Rv strain and *ethA*, *pyrG* and *panK* mutants were evaluated, in order to check the effects of this compound on the mycobacterial growth. As it is shown in Table 6, *M. tuberculosis* H37Rv strain displayed a degree of sensitivity to the 11426026 metabolite that was comparable to that of the 7947882 prodrug. Moreover, the *ethA* mutant strain, resistant to the 7947882, was not resistant, instead, to its S-dioxide derivative, confirming that 11426026 does not require EthA-mediated activation anymore. Concerning *M. tuberculosis* *pyrG* and *panK* mutant strains, they were still resistant to the metabolite, confirming that PyrG and PanK could be the cellular targets of the 7947882 S-dioxide derivative (Table 6).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Structure</th>
<th>MIC in M. tuberculosis (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>H37Rv</td>
</tr>
<tr>
<td>11426026</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>7947882</td>
<td></td>
<td>0.5</td>
</tr>
</tbody>
</table>

Table 6. MICs to 11426026 and 7947882 compounds of *M. tuberculosis* wild-type and mutant strains.

The 11426026 metabolite was then assayed against PyrG and PanK enzymes, both wild-type and mutant forms. The compound resulted active against PyrG and PanK wild type proteins, whilst it did not show significant effects against the mutant enzymes. In detail, 11426026 inhibits the PyrG wild-type activity with an IC$_{50}$ of 0.035 mM, but is very less active toward the mutant protein with an IC$_{50}$ higher than 1 mM (Fig. 32). In parallel, PanK wild-type activity is moderately affected, with an IC$_{50}$ of 0.105 mM, but not that of the mutant one, showing an IC$_{50}$ of 0.876 mM (Fig. 32). Through further kinetic analysis, 11426026 metabolite resulted to be a competitive inhibitor with respect to ATP for both PyrG and PanK, with a K$_i$ of 0.010± 0.002 mM and 0.023± 0.001 mM, respectively. Moreover, the increased K$_{m}$ value for ATP of PyrG and PanK mutant enzymes reveals that the identified point mutations could introduce a structural change involving the ATP-binding site, consequently reducing much more the affinity toward 11426026, thus explaining the resistant phenotype.
4.5 Inhibition of PyrG by 7947882 affects *M. tuberculosis* nucleotide metabolism: a metabolomic analysis

Basing on the knowledge concerning the role of PyrG in pyrimidine *de novo* production (Meng *et al.*, 2004), metabolomic studies were performed, in collaboration with Prof. Luis Pedro de Carvalho (Francis Crick Institute, London, UK) and Prof. Katarina Mikušová (Comenius University, Bratislava, Slovakia), by analyzing the effects of the 7947882 on the *M. tuberculosis* nucleotide metabolism. Consequently, *M. tuberculosis* cells were grown in the presence of either 7947882 (at a concentration equal to 5X MIC value) compound, or with DMSO as control. Then, metabolites pool was extracted, addressing the attention mainly to nucleotides and bases (de Carvalho *et al.*, 2010; Larrouy-Maumus *et al.*, 2013). Consistent with PyrG role in pyrimidine biosynthesis, treatment with the 7947882 compound led to a significant increase in purines and pyrimidines intermediates, compared to the control treated with DMSO (Fig. 33A). These metabolomic data markedly draw attention to the effects of a direct PyrG inhibition: CTP nucleotides amount decreases inside the cell, with a consequent fall in nucleotide metabolism.

Moreover, in order to further strengthen the role of PyrG as the cellular target of the 7947882, and in particular of its EthA-activated S-dioxide metabolite 11426026, radiolabeling experiments were done, employing the non-pathogenic *M. tuberculosis* H37Ra strain, whose MIC toward 11426026 compound is 4 μg/ml. Therefore, *M. tuberculosis* was treated with 11426026 (4X MIC) for 1 hour, and then [14C]uracil was added.
Results

to the culture for other 3 hours. [14C]uracil is firstly utilized for [14C]uridine monophosphate (UMP) production, and successively is incorporated in all the nucleotides deriving from uracil units. Once \textit{M. tuberculosis} cells treated and not treated with the inhibitor were collected, the nucleotide content was analyzed through autoradiography. In all experiments performed, results highlighted an increase in [14C]UTP and a decrease in [14C]CTP (Fig. 33B), giving a further, unequivocal proof that PyrG is targeted by 11426026 active metabolite of 7947882 prodrug.

Figure 34 shows an outline of PyrG inhibition effects on the cellular metabolism. Being a CTP-synthetase, PyrG inhibition leads to the impairment of DNA and RNA synthesis, together with carbohydrate, fatty acids and amino acids production. Consequently, these data importantly corroborate PyrG as a new, precious tool for TB drug research, since its inhibition interferes with essential pathways for cellular growth and survival (Fig. 34).

Figure 33. PyrG inhibition affects nucleotide metabolism in \textit{M. tuberculosis}.
(A) Heat map illustrating overall changes in nucleotide pool sizes in 7947882-treated \textit{M. tuberculosis} compared to control. Data are derived from two biological replicates. (B) TLC of nucleotide extract from [14C]-uracil-radiolabeled \textit{M. tuberculosis} H37Ra grown on GAS medium. The figure is a representative image from three separate experiments.
4.6 Searching for new PyrG and PanK inhibitors that do not require EthA-mediated activation

The 7947882 and 7904688 compounds have been demonstrated to be two multitargeting compounds activated by EthA and affecting both PyrG and PanK enzymatic activities. Since resistant phenotype to prodrugs is frequently caused by mutations in the activator gene, it could be worth to identify new PyrG and PanK inhibitors that do not require the activating step mediated by EthA. In this work, two approaches have been utilized for this purpose: docking experiments, exploiting PyrG and PanK available crystallographic strictures, and a target-based screening of a chemical library.
4.6.1 Docking experiments with the 11426026 compound and PyrG and PanK inhibitors

In collaboration with Prof. P. Alzari and Dr. M. Bellinzoni (Institute Pasteur, Paris, France), the *M. tuberculosis* PyrG crystal structure was solved, highlighting an enzyme formed by two different domains: a synthetase domain, or more precisely the amidoligase domain, located at the N-terminus of the protein, and a glutamine amido-transferase domain, localized at the C-terminus. These two domains display a Rossmann-like fold, and are connected by a linker component. The functional PyrG protein is a tetramer, in which the synthetase domain represents the central part of the tetramer, whilst the glutamine amido-transferase domain is oriented outward (Fig. 35).

![Figure 35. M. tuberculosis PyrG crystallographic structure.](image)

M. tuberculosis PanK is a P-loop kinase whose structure was solved for the first time in 2006 (Das et al., 2006). This enzyme has a dimeric structure, with each subunit possessing a mononucleotide-binding fold, characterized by seven β-sheets in the central part, and a number of helices on the other side.

The knowledge about PyrG and PanK structures represents a precious resource for the identification of new inhibitors through *in silico* methods. In this context, docking experiments with both PyrG and PanK structures...
were performed in collaboration with Dr. Sean Ekins (Collaborative Drug Discovery, Burlingame, CA, USA).

Firstly, in order to examine in depth 11426026 binding to PyrG and PanK, docking analysis was performed, studying all the possible poses of this compound within the crystallographic structures. From this *in silico* analysis, it has been shown that 11426026 compound might exclusively dock in the PyrG or PanK ATP-binding site (Fig. 36).

Figure 36. Docking analysis with the 11426026 using PyrG (A) and PanK (B) crystallographic structures (Kindly provided by Dr. S. Ekins).
In view of these results, a virtual screening on PyrG of the Collaborative Drug Discovery (CDD) compounds database (including compounds already known to be active against *M. tuberculosis* growth) was performed (Ananthan et al., 2009; Ekins and Bunin, 2013; Ekins et al., 2014). Among all the molecules tested, four of them emerged with the best docking score (Fig. 37; Fig. 38; Table 7).

Consequently, the four compounds were tested against PyrG activity, and only the CDD-823953 displayed inhibitory effects against the CTP-synthetase, affecting more than 90% its activity at 200 μM (Table 7), whereas the other ones showed no effects. Moreover, steady-state kinetics proved this compound to be a weak competitive inhibitor toward PyrG ATP binding site, with a K_i of 88.9 μM (Fig. 39).

Successively, docking experiments with the four CDD compounds were performed employing PanK structure. (Fig. 40).

Figure 37. Chemical structures of CDD compounds identified in the virtual screening on PyrG.
Figure 38. Docking of the CDD-823953 in PyrG crystallographic structure (Kindly provided by Dr. S. Ekins).

<table>
<thead>
<tr>
<th>Cpd ID</th>
<th>Libdock score</th>
<th>Pose num</th>
<th>MIC (µg/ml)</th>
<th>PyrG inhibition at 200 µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDD-815202</td>
<td>71.003</td>
<td>1</td>
<td>< 0.098</td>
<td>n. i.</td>
</tr>
<tr>
<td>CDD-833850</td>
<td>64.9544</td>
<td>10</td>
<td>0.159</td>
<td>n. i.</td>
</tr>
<tr>
<td>CDD-934506</td>
<td>90.4321</td>
<td>1</td>
<td>0.872</td>
<td>n. i.</td>
</tr>
<tr>
<td>CDD-823953</td>
<td>106.701</td>
<td>1</td>
<td>4.392</td>
<td>> 90%</td>
</tr>
</tbody>
</table>

Table 7. Docking results of CDD compounds toward PyrG.
Results

Figure 39. Steady-state kinetics of PyrG towards ATP in the presence of different concentrations of CDD-823953 compound.

Figure 40. Docking of the CDD-823953 in PanK crystallographic structure (Kindly provided by Dr. S. Ekins).

Since all of them were successfully docked in PanK structure, CDD compounds were tested against PanK enzyme \textit{in vitro}. Two compounds were able to inhibit PanK enzymatic activity at 200 μM: CDD-934506 (80%) and CDD-823953 (50%). The IC$_{50}$ determination demonstrated that CDD-934506 is a moderate PanK inhibitor (40 μM) (Fig. 41).
Results

Concerning the CDD-823953, although having a high IC$_{50}$ value (250 μM), it is worth noting that this inhibitor, like the 11426026 compound, inhibits both PyrG and PanK enzymes (Fig. 41).

![Figure 41. IC$_{50}$ determination of PanK for CDD-934506 and CDD-823953.](image)

4.6.2 *M. tuberculosis* PyrG and PanK: two new validated targets as precious platforms for target-based screening of antitubercular compounds libraries

Once demonstrated the feasibility in the research of new common PyrG and PanK inhibitors, the target-based approach was employed. Considering the compounds affecting both PyrG and PanK activities identified until now, it was observed that the inhibitory degree toward PyrG was always higher compared to that toward PanK. For this reason, a target-based screening of the publically available GlaxoSmithKline antimycobacterial compound set (GSK TB-set) (Ballell *et al.*, 2013) kindly provided by GlaxoSmithKline was done first against *M. tuberculosis* PyrG enzyme. All the 204 compounds were tested as described in “Materials and Methods” section (data not shown). Among them, three molecules resulted to inhibit in a significant manner PyrG activity: GSK1570606A, GSK920684A, and GSK735826A, affecting 91%, 75% and 79% of CTP-synthetase activity, respectively (Fig. 42).
Figure 42. Chemical structures of the GSK compounds that inhibit more than 75% PyrG activity.

To further investigate the three GSK compounds, they were re-purchased and their inhibitory effects against PyrG activity were re-confirmed. Successively, IC$_{50}$ were determined: 2.9 ± 0.61 μM for the GSK1570606A, 23.3 ± 2.15 μM for the GSK920684A, and 19.7 ± 2.16 μM for the GSK735826A (Fig. 43). Moreover, testing PyrG activity by varying the concentration of each compound, steady-state kinetics analysis highlighted that all these molecules are competitive inhibitors towards PyrG ATP-binding site, and K$_i$ were calculated: 3.5 ± 0.4 μM for GSK1570606A, 22.0 ± 0.6 μM for GSK920684A, and 20.3 ± 0.5 μM for GSK735826A (Fig. 44).

On the contrary, the three compounds resulted uncompetitive inhibitors toward UTP (Fig. 45).
Figure 43. PyrG enzymatic activity in presence of different GSK compounds concentrations (GSK606A: ■; GSK684A: ▲; GSK826A ○).

Figure 44. Lineweaver-Burk plots of PyrG towards ATP at different concentrations of GSK1570606A (A), GSK920684A (B) and GSK735826A (C) compounds.
Docking experiments were performed with these three compounds, showing that they perfectly docked into PyrG active site: GSK1570606A displayed a libdock score of 88.1622, GSK920684A of 92.9566, and GSK735826A of 87.2348 (Fig. 46).

Furthermore, the three GSK compounds were tested against PanK activity, and only the GSK735826A molecule showed to affect the
pantothenate kinase activity, with an IC$_{50}$ of 70 µM. Moreover, the GSK735826A resulted to dock also in PanK structure (Fig. 47).

Figure 47. Docking of the GSK735826A into PanK ATP binding site (Kindly provided by Dr. S. Ekins).

Kinetic analysis showed that the GSK735826A compound is also a competitive inhibitor toward PanK ATP-binding site, with a K_i of 65.3 ± 4.33 µM (Fig. 48A). In turn, the compound resulted to exert an uncompetitive inhibition toward pantothenate (Fig. 48B).
4.6.2.1 Validation of *M. tuberculosis* PyrG as cellular target of the GSK1570606A, GSK920684A and GSK735826A compounds

To unveil the mechanism of action of these three GSK compounds, together with the role of PyrG, a *M. tuberculosis* conditional PyrG knockdown (cKD) mutant was built in collaboration with Prof. Riccardo Manganelli (University of Padova, Italy), named TB456. This strain possesses *pyrG* gene under the control of the inducible Pip promoter; consequently, *pyrG* expression is switched on exclusively in the presence of the inducer, Pristinamicine (Pi), and expression levels increase by increasing Pi concentration. The MIC values toward the three GSK compounds were determined in liquid medium by REMA assay, adding different concentrations of the inducer, as shown in Table 8.

Since PyrG is essential for *M. tuberculosis* growth and survival, in the absence of Pi, as expected, the cKD strain is not able to grow. In parallel, the GSK920684A compound does not show any significant change in MIC values at the different Pi concentrations tested. Concerning the remaining two compounds, instead, MIC values display a certain dependence on *pyrG* transcript levels. As shown in Table 8, in the presence of the GSK735826A, the TB456 cKD strain is incapable to grow when Pi concentration is low. Thus, by increasing Pi amount, *pyrG* expression increases, and TB456 strain shows a decrease in MIC values of 4-fold respect to the wild-type. These evidences gave a proof that GSK735826A mechanism of action involves inhibition of the CTP-synthetase. Similar results were obtained with the GSK1570606A compound, but to a lower extent, displaying an MIC two-
fold higher compared to that of the wild-type strain, even at the highest Pi amount in the cell culture.

<table>
<thead>
<tr>
<th>Compounds</th>
<th>MIC (μg/ml) in M. tuberculosis (TB456 (Pi, ng/ml))</th>
<th>MIC (μg/ml) in M. tuberculosis (H37Rv)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>GSK1570606A</td>
<td>6.2</td>
<td>/</td>
</tr>
<tr>
<td>GSK920684A</td>
<td>12.5</td>
<td>/</td>
</tr>
<tr>
<td>GSK735826A</td>
<td>1.55</td>
<td>/</td>
</tr>
</tbody>
</table>

Table 8. MIC values toward GSK1570606A, GSK920684A and GSK735826A compounds of M. tuberculosis wild type (H37Rv) and TB456 cDK strain at different Pi concentrations.

These results strongly reinforce the role of PyrG as a cellular target of the GSK735826A and GSK1570606A compounds, whilst concerning the GSK920684A, it may have a secondary role in the mechanism of action of this molecule.

4.7 Expression and purification of human CTP synthetase-1 (hCTPS-1) in Pichia pastoris

The results here described are pointing toward PyrG as a good, druggable cellular target for the development of novel antitubercular compounds. Unfortunately, M. tuberculosis PyrG has been shown to possess a large similarity with human CTP synthetase-1 and -2 (CTPS-1 and CTPS-2) isoforms. In view of the essential metabolic pathways in which CTP synthetases are involved, deeper investigations on the possible effects of M. tuberculosis PyrG inhibitors on the correspondent human enzymes could be fundamental for further development of antimycobacterial agents. For this purpose, it was decided to clone the hCTPS-1 gene into expression vectors for E. coli, in order to express and purify the recombinant enzyme, to be finally tested in the presence of M. tuberculosis PyrG inhibitors already identified. Since all our attempts (cloning in different expression vectors and performing expression trials testing several different conditions, co-expression with bacterial molecular chaperones, auto-inducing medium ZYP-5052, etc.) to obtain a soluble and active human enzyme from E. coli failed (data not shown), we moved to a eukaryotic expression system in Pichia pastoris. Consequently, hCTPS-1 gene was cloned into pPICZ-B-E-GFP vector (described in Material and Methods), allowing expression of the cloned gene, fused with eGFP, under the control of a methanol-inducible
Results

promoter. The linearized recombinant vector was transformed into *P. pastoris* KM71-H cells, and several colonies grew, meaning that the recombinant plasmid has been integrated into yeast genome through homologous recombination within 5’ AOX1 region. Among the recombinant clones obtained, 18 were checked for fluorescent signal after 24 hours, 48 hours and 72 hours of induction, and the recombinant clone that gave the highest fluorescent signal (clone 4, Fig. 49) was chosen for further investigations.

P. pastoris clone 4 was checked on a larger scale, to test whether hCTPS-1 is expressed in a soluble and active form.

Starting from 1L of cell culture, the protein was expressed and then purified, as described in “Materials and Methods” section. Purified protein sample was analyzed by SDS-PAGE, and the results were visualized by ChemiDoc system Bio-Rad (Fig. 50).

![Figure 49. Fluorescence signal of the 18 recombinant clones tested.](image)

Fluorescence was analyzed at time 24 hr, 48 hr and 72 hr.
Figure 50. SDS-PAGE detecting eGFP fluorescence of hCTPS-1 protein.

A=marker; B=protein sample. The upper band corresponds to the expected molecular weight of eGFP-hCTPS-1 (99.4 kDa); the lower band corresponds to free eGFP (32.7 kDa).

Protein sample was dialyzed and digested with PreScission enzyme and then applied on a Ni-NTA resin (Fig. 51). The digested hCTPS-1 enzyme, recovered from the flow through (FT), was quantified ($e_{280\text{ nm}}=0.953 \text{ mM}^{-1} \text{ cm}^{-1}$): from 1L of cell culture, 10 ml of hCTPS-1 were recovered, at concentration of 0.6 mg/ml. Then, the human enzyme was enzymatically tested following the same assay conditions employed for *M. tuberculosis* PyrG, exhibiting full activity.

Successively, hCTPS-1 catalytic constants were calculated toward both ATP and UTP: K_m 0.2 toward ATP; K_m 0.2 mM toward UTP.
Results

Figure 51. SDS-PAGE of hCTPS-1 protein before and after digestion with PreScission enzyme.
1 = marker; 2 = hCTPS-1 not digested; 3 = hCTPS-1 digested; 4 = hCTPS-1 from FT from Ni-NTA.

4.7.1 hCTPS-1 enzymatic assays in the presence of M. tuberculosis PyrG inhibitors

Until now, some new antitubercular compounds targeting M. tuberculosis PyrG have been identified: the 11426026 compound, emerged as the S-dioxide active metabolite of the 7947882 prodrug; the CDD-823953, derived from docking experiments; and the GSK compounds GSK1570606A, GSK920684A and GSK735826A, emerged from the target-based screening. All of them have been tested against hCTPS-1 activity, for toxicity studies.

Among them, the most active M. tuberculosis PyrG inhibitor, the 11426026, displayed to be nearly ineffective against hCTPS-1, with an IC50 higher than 1000 µM (Table 9; Fig. 52A). This result strongly corroborates the importance of the 11426026 metabolite as potential new platform for antituberculants development.

Concerning the CDD-823953, preliminary results shows that the compound exerts an inhibitory effect against the human enzyme which is approximately five-fold lower compared to that against the mycobacterial PyrG (data not shown).

Instead, the three GSK compounds displayed a certain inhibitory degree against hCTPS-1, that was comparable to that against M.
Results

tuberculosis PyrG, as it can be observed from the correspondent IC$_{50}$ values: GSK1570606A displayed an IC50 of $15.1 \pm 3.45 \mu\text{M}$, GSK920684A of $34.6 \pm 5.15 \mu\text{M}$, and GSK735826A of $24.2 \pm 3.70 \mu\text{M}$ (Fig. 52B,C,D; Tab. 9).

Consequently, whilst on one hand GSK compounds inhibit both *M. tuberculosis* and human enzymes, the 11426026 compound represents an agent that selectively affects the mycobacterial PyrG activity. Thus, the 11426026 constitutes a starting platform for further optimizations, in order to develop new and more efficacious selective *M. tuberculosis* PyrG inhibitors. In parallel, GSK compounds could be submitted to chemical modifications, aiming to reduce as much as possible the effects against the human enzyme.

<table>
<thead>
<tr>
<th>Compound</th>
<th>IC$_{50}$ M. tuberculosis PyrG (µM)</th>
<th>IC$_{50}$ hCTPS-1 (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>11426026</td>
<td>35.0 ± 0.20</td>
<td>> 1000</td>
</tr>
<tr>
<td>GSK1570606A</td>
<td>2.9 ± 0.61</td>
<td>15.1 ± 3.45</td>
</tr>
<tr>
<td>GSK920684A</td>
<td>23.3 ± 2.15</td>
<td>34.6 ± 5.15</td>
</tr>
<tr>
<td>GSK735826A</td>
<td>19.7 ± 2.16</td>
<td>24.2 ± 3.70</td>
</tr>
</tbody>
</table>

Table 9. *M. tuberculosis* PyrG and human CTPS-1 IC50 values toward 11426026, GSK1570606A, GSK920684A and GSK735826A compounds.
Results

Figure 52. IC50 calculation for 11426026 (A), GSK1570606A (B), GSK920684A (C) and GSK735826A (D) compounds.
5. Discussion and future perspectives

Tuberculosis (TB), despite considered for a long time a completely eradicated infection, started tormenting human health again in 1980s. HIV infections, defects in individuals immune response, poverty, smoking, lack of adequate sanitary conditions and under nutrition, are the main risk factors predisposing to the infectious disease, among others (Dheda et al., 2016). Although the short-course therapy is still an efficacious approach (Hoagland et al., 2016; Kurtz et al., 2016), the spread of *M. tuberculosis* drug-resistant strains (MDR, XDR and TDR) is perpetually augmenting, making all therapeutic strategies more and more ineffective (WHO, 2015). For all these reasons, the research for new, more potent antitubercular drugs, together with the identification of novel cellular druggable targets whose impairment allows killing of *M. tuberculosis* drug-resistant strains, are absolutely required.

Two main routes can be followed for antitubercular compounds identification: “from drug to target” and “from target to drug” (Lechartier et al., 2014). The first strategy, employed for the identification of all the compounds nowadays present in clinical development stages, rests on the so called “whole-cell phenotypic screening”, namely a screening of libraries of compounds against *M. tuberculosis* growth, to see which of them deserve further investigations. Unfortunately, the principal limitation of this approach is the frequent impossibility to identify the cellular targets, thus limiting the possibility of further development (Lechartier et al., 2014). On the other side, the “from target to drug” strategy consists in an *in vitro* screening of chemical libraries against well established and validated cellular targets, permitting the identification of molecules able to affect their enzymatic activity. Regrettably, also this second approach has restrictions, since compounds able to inhibit a certain essential bacterial target, often do not reflect this efficacy when tested against the mycobacterial growth. In view of the limitations characterizing both strategies here described, TB drug research decided to take advantage of a combination of them, by screening compounds having known antitubercular activity, against well validated mycobacterial targets (Lechartier et al., 2014). In this work, everything started employing a “whole-cell phenotypic screening”; successively, once interesting compounds have been identified, together with their cellular targets, we decided to combine both strategies, performing a “target-based phenotypic screening”.
Getting to the point, this project started from the screening of CB2 library of the National Institute of Allergy and Infectious Diseases (NIAID) (Ananthan et al., 2009; Goldman and Laughon, 2009; Maddry et al., 2009) through which two molecules, the thiophenecarboxamide 7947882 and thecarbonothioyl-propanamide 7904688 derivatives, emerged for their efficacious activity against M. tuberculosis growth. Trying to unveil 7947882 and 7904688 mechanisms of action, isolation of M. tuberculosis mutants resistant to these compounds and the sequencing of their genome, allowed the identification of mutations mapping in ethA, pyrG and coaA genes. ethA codes for the FAD-containing NADPH-dependent monooxygenase EthA already known to be the activator of ethionamide (ETH). Since mutations in the gene coding for a drug activator are often responsible for a resistant phenotype, we hypothesized EthA being also the activator of the 7947882 and 7904688. Moreover, being pyrG and coaA two essential genes, the former coding for the CTP-synthetase PyrG, and the latter coding for the pantothenate kinase PanK, both of them were hypothesized to represent the cellular targets of the 7947882 and 7904688.

The CTP synthetase is an enzyme involved in de novo pyrimidines biosynthesis, an essential pathway for M. tuberculosis, particularly for the production of nucleic acids precursors, already targeted with efficacious antituberculars (Djaout et al., 2016). Among the enzymes involved, thymidylate synthase ThyX inhibition displayed important and interesting results (Djaout et al., 2016), being inhibited by the Naphthoquinone (NQ) compounds, that showed to possess also anticancer and antimalarial properties (Tran et al., 2004; Djaout et al., 2016). Further investigations demonstrated M. tuberculosis ThyX being a promising cellular target, with an available crystallographic structure (Sampathkumar et al., 2005) and with no correlations with the correspondent human enzyme (Myllykallio et al., 2002; Koehn et al., 2009). These evidences highlight the vulnerability of this pathway, reinforcing our hypothesis in considering PyrG as a really good potential target for new antitubercular compounds.

On the other side, the pantotheinate kinase is involved in another essential pathway for M. tuberculosis growth: coenzyme A (CoA) biosynthesis. In detail, PanK catalyzes the rate-limiting phosphorylation of pantothenate, which belongs to a series of reactions that will give rise to CoA production (Reddy et al., 2014). Anti-TB drug research is already focusing on this biosynthetic pathway. Particularly, compounds inhibiting one of the enzymes involved in pantothenate production, pantotheinate synthetase PanC, have been identified (Spry et al., 2008). Among the most recent PanC inhibitors, imidazo[2,1-b]thiazole derivatives displayed moderate activity against M. tuberculosis, in both latent and actively
Discussion and future perspectives

growing stages (Samala *et al.*, 2016). Considering, instead, already known PanK inhibitors, some triazoles and biaryls recently emerged through a target-based screening (Björkelid *et al.*, 2013). In view of the importance of the pathway in which PanK is involved, and knowing its essentiality in *M. tuberculosis* (Awasthy *et al.*, 2010), it is understandable the growing interest of anti-TB drug research in finding new inhibitors targeting this enzyme.

Moreover, although PyrG and PanK are involved in two different pathways, it is important to note, as it is shown in Figure 53, how they are actually convergent in lipid biosynthesis. Thus, the relevance of the two targets taken individually, together with this important observation, gave us a strong motivation to go ahead in investigating these two enzymes in our research.

![Figure 53. PyrG and PanK biosynthetic pathways.](image)

In view of the drug-resistant TB infections scenario, it is clear that not only new drugs are required, but is of inestimable importance the identification of novel compounds that are able to be “resistance resistant”
Discussion and future perspectives

(Li K et al., 2014). Among the several approaches that can be employed to fight drug-resistant strains spread, one of the most powerful is the research of “multitargeting” compounds, thus affecting more than one target (Silver, 2007; Morphy, 2012). These targets could belong to the same pathway (“series inhibition”), or could work in different pathways, and the inhibitor could be a mimicry of a common substrate or inhibit, for instance, a membrane component (“parallel imitation”). Moreover, in more complex circumstances, a “network inhibition” could be exerted, when several targets in series and/or in parallel are implicated (Li K et al., 2014). Moreover, compounds reported to be efficacious in monotherapy, effectively affect more than one cellular function (Silver, 2007), whilst drugs inhibiting only one single target, among which many antituberculars, result more effective when combined with other compounds (Li K et al., 2014). Considering these aspects, it is comprehensible the growing interest toward the identification of multitargeting antitubercular compounds, representing a potent tool to kill the pathogen in a more efficient way.

Consequently, this knowledge made the validation of PyrG and PanK as cellular targets of the 7947882 and 7904688 even more important, paving the way for possible future multitargeting antitubercular therapies.

For the genetic validation of the two putative targets, we tried to overexpress either pyrG or coaA in M. tuberculosis wild-type strain, to see whether it could decrease the sensitivity of the bacterium to the 7947882 and 7904688 molecules. Unfortunately, the overexpression of the two genes resulted to be toxic for mycobacterial cells, thus hampering this approach. For this reason, we moved to a biochemical validation, using the recombinant wild-type and mutant PyrG and PanK proteins. However, being the compounds demonstrated to require EthA activation, the monooxygenase was also produced.

This approach demonstrated in vitro that the compounds, once activated, are effectively able to inhibit the enzymatic activity of both enzymes. Moreover, the metabolomic experiments reinforced these results, demonstrating that the effects of 7947882 on mycobacterial cells are ascribable to a CTP-synthetase inhibition, causing a reduction in CTP amount and an accumulation of intermediates in pyrimidines and purines biosynthetic pathways.

As reported above, several drug-resistant phenotypes develop as a consequence of mutations affecting drug activators, and in particular, ethA mutation frequency has been observed to be significantly high. Being the 7947882 and 7904688 two prodrugs activated by this monooxygenase, they are poorly useful as potential anti-TB drugs, in particular considering that M. tuberculosis strains already resistant to ETH, are cross-resistant to the
Discussion and future perspectives

7947882 and 7904688. Therefore, the development of antituberculars that do not require anymore EthA activation could be of extreme interest for drug research.

Proceeding in this direction, and going on collecting proofs that PyrG and PanK are the targets of these compounds, a 7947882 active metabolite, the S-dioxide derivative, was identified via biochemical approaches, chemically synthetized and named 11426026. Conversely, the 7904688 active metabolites were impossible to identify, probably due to their high reactivity; consequently, we abandoned this series, concentrating our efforts on the 11426026. The compound was tested against PyrG and PanK, showing to be able to directly inhibit both enzymes activity \textit{in vitro}, without further EthA activation. This evidence was further confirmed by the fact that, like the wild type, \textit{M. tuberculosis} ethA mutant strain did not show resistance to the 11426026. Moreover, pyrG and coaA mutants displayed resistance to the metabolite, thus reinforcing our hypothesis. In conclusion, the 11426026 is a new active antitubercular, affecting two essential targets, subsequently representing an interesting scaffold for the development of further multitargeting compounds (Fig. 54).
Discussion and future perspectives

Figure 54. 11426026 effects through both PyrG and PanK inhibition.

In view of the limitations of the “whole-cell phenotypic screening” approach, it is clear why the study of the mechanisms of action and resistance of compounds already proven to possess a good antitubercular activity is very complex, and several strategies should be combined to fulfil this objective. Here, a combination of biochemical, microbiological and metabolomic analysis allowed the demonstration of PyrG and PanK being the cellular essential functions targeted by EthA-activated 7947882 and 7904688. Once these goals have been achieved, the following steps were focused on exploiting the two validated targets to perform “target-based” screenings of chemical libraries of compounds with known antitubercular action. This kind of strategy, becoming an increasingly suitable tool for research, in this specific context represents a convenient path aiming the discovery of new antituberculars that target more than one cellular function.

Thus, in this work, target-based screening approaches were employed in order to identify new multitargeting antitubercular compounds by
exploiting the two validated targets, both with *in silico* and *in vitro* approaches.

The *in silico* method consisted in a virtual screening on PyrG of the Collaborative Drug Discovery (CDD) compounds database. In particular, the 4-Nitroacetanilide substructure of 11426026 was used to search for a set of *M. tuberculosis* active compounds collected in the CDD Database (Ekins and Bunin, 2013). Twelve compounds were retrieved and docked in the PyrG, and subsequently in the PanK ATP binding sites. Successively, the four compounds showing the highest scores were tested against PyrG and PanK activities, providing a moderate inhibitor of both enzymes (CDD 823953), exerting a competitive inhibition toward ATP.

Similarly, the *in vitro* approach consisted in the screening of a chemical library of compounds with known antitubercular activity (GSK TB-set), firstly against PyrG. Among the 204 compounds tested, 15 of them displayed to inhibit more than 50% PyrG activity. In particular, three of them showed to affect more than 75% PyrG activity, and from a structural point of view, the three compounds share a common pyridyl-thiazole moiety. Interestingly, 12 of the 15 compounds identified possess this common moiety, underlining the importance of the pyridyl-thiazole component for PyrG inhibition. Successively, the characterization of PyrG inhibition by the three molecules highlighted again a competitive inhibition toward the ATP-binding site. All of them were tested against PanK activity, and one, the GSK735826A, represents another PyrG inhibitor able to moderately affect also the pantothenate kinase activity, and resulting, as for PyrG, a competitive inhibitor toward ATP.

Whilst PanK enzyme is an already validated antitubercular target (Björkelid *et al.*, 2013), PyrG represents an important innovation in the scenario of target validation for anti-TB therapy. However, CTP-synthetases are present also in humans, encoded by *CTPS*-1 and *CTPS*-2 genes (Martin *et al.*, 2014; Kassel *et al.*, 2010; van Kuilenburg *et al.*, 2000), and show a certain homology with *M. tuberculosis* CTP-synthetase PyrG. Consequently, we decided to produce one of the two human isoforms, hCTPS-1, in order to test *M. tuberculosis* PyrG inhibitors against the human enzyme, for toxicity studies. Since all the attempts to obtain the human enzyme in a prokaryotic system failed, we expressed and purified the CTPS-1 using *Pichia pastoris*, that resulted active. Among the inhibitors tested, the GSK compounds resulted to inhibit the human counterpart, with a potency which is very similar to that observed against the mycobacterial PyrG. On the contrary, the 11426026 compound, the best inhibitor of *M. tuberculosis* PyrG identified so far, does not inhibit the human enzyme, giving a great encouragement to continue working on this compound. Particularly, it could
be worth to submit this molecule to chemical modifications in order to gain even more efficient inhibitors, leaving the human enzyme as more unaffected as possible.

However, concerning the GSK compounds, it is essential to specify that all of them have been reported to exert a low toxicity in humans (Ballell et al., 2013). Therefore, the inhibitory effect that has been observed in vitro against the human enzyme, does not properly reflect what could be seen at the whole human organism level. Consequently, whilst on one side M. tuberculosis PyrG can be coupled with the human CTPS-1 in order to screen chemical libraries against both enzymes, on the other side, every time good but not selective mycobacterial PyrG inhibitors are identified, the inhibitory effects against the human CTP-synthetase should be submitted to further investigations.

Concluding, these results led to the identification and characterization of two new M. tuberculosis cellular targets, PyrG and PanK, both inhibited by a certain number of common compounds. Therefore, these two enzymes could be employed in the future as a “double-tool” in performing more efficacious screening of libraries of compounds, in order to proceed in finding new multitargeting antitubercular drugs.
6. References

References

References

References

References

- Hong Kong Chest Service/British Medical Research Council (1977) Controlled trial of 6-month and 9-month regimens of daily and intermittent streptomycin plus isoniazid plus pyrazinamide for pulmonary tuberculosis in Hong Kong. The results up to 30 months. Am Rev Respir Dis. 115:727-35.

References

References

References

References

References

7. List of original manuscripts

Full paper

Posters

new antitubercular compounds. XXX Meeting of “Società Italiana di Microbiologia Generale e Biotecnologie Microbiche (SIMGBM)”, Ischia, Italy, 18-21 September 2013.

Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG

1Department of Biology and Biochemistry, Università di Pisa, Pisa, Italy
2Department of Molecular Medicine, University of Padova, Padova, Italy
3Department of Molecular Medicine, University of Padova, Padova, Italy
4Department of Microbiology and Immunology, University of Florence, Florence, Italy
5Department of Molecular Microbiology, University of Padova, Padova, Italy
6Program in Bioinformatics, University of California, Los Angeles, Los Angeles, CA 90095, USA
7Global Health Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
8Department of Microbiology, University of Padova, Padova, Italy
9Department of Microbiology, University of Padova, Padova, Italy
10Department of Microbiology, University of Padova, Padova, Italy
11Department of Biology, University of Florence, Florence, Italy
12Department of Biology, University of Florence, Florence, Italy
13Department of Biology, University of Florence, Florence, Italy

SUMMARY

To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Pheno- typic screening of a library of 694 hit compounds uncovered two lead compounds that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N4-6-phenylthiophen-2-carboxamide) and 7945888 (5-phenyl-N6-4-benzylidenehydantoin). Mutants resistant to both compounds harbored mutations in ethA (m6354c), the gene encoding the monoxygenase EthA, and/or in pyrG (m1659) coding for the CTP synthetase PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmaceutical inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.

INTRODUCTION

Tuberculosis (TB) remains a leading cause of infectious mortality worldwide, killing approximately 1.5 million people each year. Drug-resistant strains of Mycobacterium tuberculosis threaten global TB management, with an estimated 500,000 deaths being drug resistant, defined as resistant to rifampicin and ison-iazid. A subset of these cases, approximately 10%, is also resis- tant to the second-line drug drugs, fluoroquinolones, and injectable aminoglycosides, and is referred to as extensively drug resistant (XDR). Defining the pharmacological targets of antitubercular drugs under development and finding new compounds with greater potency are both important aspects in the search for agents that are effective against drug-resistant and drug-resistant M. tuberculosis strains (Ochsoner et al., 2005). Several current antitubercular agents are prodrugs requiring some form of cellular activation before they can bind to their specific targets.
and, in such cases, resistance can be resolved by mutations that prevent the activation step. Therefore, understanding the mode of action not only helps to decipher the mechanisms of drug resistance, but may also facilitate the development of analogs that do not require activation (Jow et al., 2007).

In this work, by screening a library of compounds with known antibacterial activity, synthesized by the National Institute of Vectors for Drug Resistance (IVDR), Goldman and Laubhun, 2006; Mandla et al., 2008, a new series of molecules was found, displaying a very low minimum inhibitory concentration (MIC) value (3.5 μg/mL), that includes compounds 794763 and 794648. Through the isolation of M. tuberculosis-resistant mutants, genetic analysis, and biochemical characterization, the roles of these compounds in the intracellular replication of M. tuberculosis have been characterized. The combined data indicate that 794763 and 794648 are not resistant to the RIF ribonucleotide, which is the target of RIF, a cyclic triphosphate (CTP) synthetase catalyzing the ATP-dependent synthesis of adenosine triphosphate (ATP) to form the essential pyrimidine nucleotide 5-(6-Phospho)thymidine-2′(3′)-deoxyribonucleoside (TPR) and to stabilize the translation of the ribosome into the ribosome. CTP synthetase is thus a targetable new TB drug target.

RESULTS AND DISCUSSION

Screening of IVDR Library

EB1 Is an Activator of 794763 and 794648

To verify whether EB1 is responsible for the activation of 794763 and 794648, the EB1 gene was cloned in the expression vector pSOOD-2, and M. tuberculosis H37Rv cells were transformed with the corresponding recombinant plasmid. A statistically significant shift in the MIC of the transformed strains was observed with respect to the control over-expression of EB1 in M. tuberculosis H37Rv, with the sensitivity to 794763 and 794648 (Table S1). Moreover, the overexpression of wild-type EB1 restored the sensitivity to 794763 and 794648 (Table S1). To prove that both compounds were activated by EB1, a recombinant form of the M. tuberculosis enzyme was expressed in E. coli and purified, and its activity toward the two compounds was assayed. EB1 was active toward both 794763 and 794648, with IC₅₀ values of 2.9 ± 0.9 and 2.4 ± 0.1 μM and K₅₀ values of 0.02 ± 0.004 and 0.02 ± 0.004 μM, respectively. Moreover, both compounds were better substrates for EB1 than for EB1.
List of original manuscripts

Table 1: Marked Phenotypes of M. tuberculosis Mutants Resistant to 7H47882 and 7H44688

<table>
<thead>
<tr>
<th>Strain</th>
<th>MIC (μg/mL)</th>
<th>W23 (beginning)</th>
<th>W23 (final)</th>
<th>Acetate Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>H37Rv</td>
<td><0.008</td>
<td>0.008</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>M. tuberculosis</td>
<td><0.008</td>
<td>0.008</td>
<td>0.5</td>
<td>1</td>
</tr>
</tbody>
</table>

See Table S1

Identification of Active Metabolites of 7H47882

7H47882 and 7H44688 do not affect PyrG enzyme activity but require EθA subunit.

To check whether compounds 7H47882 and 7H44688 are able to inhibit PyrG, their effect on the enzyme activity was evaluated. For this purpose, wild-type PyrG and the V235G mutant protein were produced in E. coli, purified, and characterized. M. tuberculosis PyrG shows catalytic constants for K_{m} (0.3 ± 0.05 mM) and K_{cat} (0.08 ± 0.02 mm) toward ATP and $EθA_{c}$ (0.3 ± 0.05 mM) and K_{cat} (0.08 ± 0.02 mm) toward ATP and $EθA_{c}$, respectively. Moreover, the mutant enzyme showed a K_{m} value for ATP that was about 10-fold higher than that of the wild-type protein (1.6 ± 0.18 mM), whereas the affinity for $EθA_{c}$ was unchanged.

Since the reaction is associated with resistance to 7H47882 and 7H44688 (Table 1), it was conceivable that the ATP-binding site was involved in binding the inhibitor. For this reason, the effects of the two compounds were tested on wild-type PyrG at a final concentration of 0.05 μM. As expected, molecules that need to be activated by EθA, the compounds were inactive toward PyrG in all the conditions tested.

Thus, to confirm that EθA produces metabolites that might act on PyrG, the EθA-ysisic reaction was performed with either 7H47882 or 7H44688 in the presence of PyrG, and the activity of the latter enzyme was monitored during the course of the reaction. The blank control was performed omitting reduced nicotinamide adenine dinucleotide phosphate (NADPH) to inhibit the EθA-catalyzed reaction, and under these conditions PyrG showed full activity up to 30 min. Incubation in the presence of 7H47882 and 7H44688 (Figure 1A) resulted in the inactivation of PyrG by 90% and 85%, respectively.

At the end of incubation, to remove EθA as well as anybound compounds, PyrG was re-purified by Ni-NTA (nitrilotriacetic acid) chromatography and dialyzed. Whereas PyrG from the blank reaction preserved its activity, the enzyme incubated in the EθA-containing fraction completely inactivated. Moreover, the UV-Vis spectrum of PyrG incubated with EθA and 7H47882 showed a peak at 320 nm (Figure 1B). This peak, which was not present in the PyrG spectrum from blank reactions without NADPH, is characteristic of 7H47882, thus demonstrating that in contrast to its producing, the EθA-activated metabolite is able to inhibit PyrG. Similarly, the spectrum of PyrG incubated with 7H44688 showed the broad peak between 310 and 400 nm, typical of the compound; this peak was absent in the blank control (Figure 1D). These results demonstrated that the conversion of 7H47882 and 7H44688 by EθA leads to active inhibition of PyrG.
List of original manuscripts

Figure 1. dCNA Converts the 7,94382 and 7,94382C compounds into Active PyrG Inhibitors

- (A) Inhibition of PyrG activity during the co-translation with dCNA and 7,94382. Gray bars correspond to the activities of the blank control in the absence of dCNA, and black bars represent the residual activity after incubation with working dCNA.
- (B) UV/Vis spectra of the purified PyrG after co-translation with dCNA in the presence and absence of full dCNA, dashed line is the spectrum of PyrG incubated with full dCNA, dotted line is the spectrum of PyrG from blank reaction; solid line is the spectrum of the compound at 20 nM.
- (C) and (D) Correlation of PyrG with dCNA and 7,94382 compound. Conditions are the same as for (B) and (D), respectively.
- (E) and (F) Identification of pyrG after dCNA incubation of 7,94382 compound. Mass spectra analysis shows that both the 7,94382 compound and the partly purified product of dCNA reaction M1 and M2, and the synthetic metabolites 112d326. (G) Full-electrospray ionization mass spectrometry of the compound isolated in negative mode. (H) Mass spectrometry of the compounds. See also (Figures S1 and S2). Table S2.

This evidence confirms the hypothesis that 114d6262 affects the wild-type enzyme. Interestingly, the inhibitory effects were only found at submicromolar concentrations of ATP (0.005 - 0.03 mM) in the presence of 0.02 mM ATP. Moreover, the compound was not active against the PyrG V166G mutant when tested under the same conditions. In fact, the estimated IC50 value was 44-fold higher than against the wild-type enzyme (0.5 - 0.15 mM) at an ATP concentration of 1.0 mM, which corresponds to the Km of the mutant for this substrate (Figure S1A).

920 Chemistry & Biology 22, 217-227, July 23, 2018 ©2018 The Authors
The same procedure was used to identify the metabolites derived from 7944645. In this case, only one metabolite was found, corresponding to 3-bromopyruvate (3BAP) in 1H NMR spectra. The metabolite was identified as 3-bromopyruvate by comparing the 1H NMR spectra of 3BAP and the metabolites derived from 7944645. The results indicate that the active metabolite of 7944645 might be an unstable intermediate, thus facilitating its isolation.

7944645 Inhibition of PyrG Amino Nucleotide Metabolism in M. bovis

Since PyrG is a key enzyme involved in the de novo pyrimidine biosynthesis pathway, the effect of 7944645 on M. bovis nucleotide metabolism was investigated. For this purpose, metabolic studies were performed with M. bovis bacilli incubated for 24 h in 7944645 at 64 mg/L or its solvent, DMF. Polar metabolites were extracted and analyzed by standard methods (see Carvalho et al., 2010; Lamboy-Marcus et al., 2013) that focused on bases, nucleosides, and nucleotides. M. bovis bacilli, treated with 7944645, showed an increase in the abundance of all classes of intermediates that were detected. Figure 2A illustrates extracted ion chromatograms (EICs) obtained for 3BAP in M. bovis extracts treated with either compound or DMF alone. Compound-induced changes in the abundance of the metabolites are shown in Figure 2B. Taken together, these data demonstrate that direct inhibition of PyrG decreases CTP levels, leading to depletion of the nucleotide metabolic network, characterized by increased levels of several intermediates in the biosynthesis of pyrimidines and purines.

The molecular target of 7944645 in M. bovis was further corroborated through metabolic studies with 3BAP and the active metabolite 1142026, using M. tuberculosis H37Ra (MIC 4 μg/mL) grown in glycerol-ketoiridol (GK) medium or with 5 μg/mL 3BAP for 24 h. Inhibitors were added to the culture media for 24 h, and then [3H]CTP was added and metabolized for 3 h. The results showed that 3BAP and the active metabolite inhibited CTP synthesis and metabolism. In conclusion, the results indicate that 7944645 is a potent inhibitor of PyrG, affecting nucleotide metabolism and, thus, very likely several pathways.
List of original manuscripts

Validation of PyrG Essentiality In Vivo and Ex Vivo

Since PyrG inhibition by the active metabolite of 7-Nitro-2-1H-1,2,4-Triazolo[1,5-a]pyrimidine has been unambiguously demonstrated, its validation as a drug target was further investigated. To demonstrate the essentiality of pyrG in M. Tuberculosis, a conditional mutant was constructed where the pyrG promoter was replaced by the nopsis promoter Psp in a strain carrying the TetR-PspOFP reporter system. In this conditional mutant, the expression of pyrG was expected to be downregulated by the addition of adenosine (A) to the culture medium, thus leading to depletion of its protein product. The growth of the pyrG conditional mutant was evaluated on solid 7H10 and in liquid 7H9 media (+ATc, 500 ng/ml). In each case, the conditional mutant exhibited inhibition of growth upon ATc exposure, while its parental strain was not affected, thus clearly demonstrating that PyrG is essential for M. Tuberculosis growth in vitro (Figures 5A and 5B).

PyrG essentiality was also verified during intracellular growth. For this purpose, TH-1-derived macrophages were infected with the pyrG conditional mutant or with its parental strain, and the cells were incubated in the presence or absence of ATc (500 ng/ml). While the control was able to divide intracellularly under both conditions, the pyrG conditional mutant grew similarly to the control only in the absence of ATc. When pyrG expression was downregulated by ATc, the number of viable bacteria drop rapidly, demonstrating pyrG essentiality also during intracellular growth (Figure 5C). Proof that PyrG is essential both in vitro and in vivo further corroborates the value of this enzyme as a drug target.

PyrG Crystal Structure

The crystal structure of PyrG was solved by molecular replacement on a 2.5 Å resolution data set (Table S1). The structure showed a bidomain enzyme with an N-terminal amidophosphoribosyltransferase (AMTase) domain, also commonly known as the synthetase domain (residues 1-278), connected through an insertion domain to a C-terminal glutamine amidotransferase (GATase) domain (residues 279-453), both domains displaying a Rossmann-fold architecture (Figures 6A). The bidomain architecture is typical of amidotransferases, already observed in the other available structures of full-length bacterial GAT synthetases (Sono et al., 2004; Enders et al., 2004; Leubner et al., 2011). On the other hand, the N-terminal GATase domain of M. Tuberculosis PyrG, which has no predicted secondary structure or known function, could not be traced due to the lack of supporting electron density, suggesting a high degree of flexibility.

The enzyme is in complex with either UTP, UTP plus the non-competitive AMT inhibitor AMT-PFP or the glutamine analog L-0-0-0-dinitro-L-ornithine (L-0-0, Table S1). L-0-0 is a non-metabolizer with crystalllographic 222 symmetry (Figure 6A), consistent with previous studies reporting positive cooperativity at
A list of original manuscripts.

Figure 4: Crystal Structure of M. tuberculosis PypG
(a) Tetrameric structure of M. tuberculosis PypG in complex with nucleotides and agonists, i.e., ATP or AMP-PNP and ADP. As observed in other available crystal structures of CTP synthetases, the N-terminal synthetase domain is positioned at the center of the tetramer, while the C-terminal glutamyltransferase domain is peripherally located. The gray dashed lines indicate the PypG dimer (pale yellow), proposed to enable the CTP synthetase domain to function as a tetramer.

(b) Surface view of the synthetase active site, with PypG and ATP-binding pockets, and "cut section" that shows a possible "cleft" in the region connecting the glutamyltransferase to the synthetase site. The electrostatic surface potential has been calculated and represented by PyMOL (Schrodinger, http://www.schrodinger.com).

(c) Surface view of ATP-binding pocket, occupied by AMP-PNP, to show the location of Val918 residue mutated to Gly in the M. tuberculosis-resistant strain. Side chains of glutamate residues surrounding Val918 are depicted as sticks.

See also Table S1; Figures S1 and S5.

for ATP and UTP due to nucleation-driven termination. Indeed, another structure of the enzyme in the apo form at lower resolution (2.8 Å; Table S5), revealed a homodimeric protein, each homodimer representing half of the functional tetramer and showing a dimerization surface of 1,200 Å² per monomer (Figure A), all in good agreement with previous structural studies (Endrizzi et al., 2004; Goto et al., 2004; Laustsen et al., 2011). Also consistent with the oligomeric assembly as a dimer of dimers being targeted by ATP/UTP, the nucleotides-binding pockets were delimited by residues from two (ATP) or three (UTP) different subunits (Figures S1A and S1B). Surprisingly, in the high-resolution structure available (Table S3), UTP was found only in both pockets, likely affected by the high concentration of the nucleotides (5 mM) in the co-crystallization conditions (Figure S1C). It should be noted that the UTP orientation in the ATP-binding pocket is inappropriate for the course of the reaction, as the pyrimidine ring points away from ATP. Moreover, the UTP orientation coincides with the OTP orientation observed in E. coli PylG (applied with CTP and ADP) (PDB: 2U6U; Figure S2A), suggesting that this structure likely resembles an inhibited complex (Endrizzi et al., 2004).

In contrast, in the independent crystals from, grown in the presence of AMP-PNP as well as ATP and the glutamine analog 2-ketoglutaric-1-acid-4-oxotetrahydrofolate (K-DON), AMP-PNP lies in the ATP-binding site, as expected, with UTP maintaining the same orientation as before (Figure S2A and S2B). In addition, a catalytic pocket was observed between the Cys939 sulfur and the oxygens, as expected from the reaction with L-DON coat and PylG-Leu, 2008, therefore confirming the role of Cys939 as the catalytic nucleophile within a Glu-hydroxy group that includes His524 and Glu509 (Figures S2D and S2E), in line with similar observations made on E. coli PyrG (Moutet et al., 2006). A possible antiparallel diffusion channel was visualized connecting the glutamine active site in the C-terminal domain to the synthetase site at the N-terminal domain (Figure 4A). However, the tunnel is not continuous, but appears to be blocked by the side chains of residues Pro65, Pro66, and Val67, all located on the long (B) helix (Figure S2B) including the short α1 (Figure S2C) and α2, forming a conformation in the channel (Figure 4B). The residue Val67 mutated to Gly in the M. tuberculosis-resistant mutant lies on the α7 strand behind the conserved P loop (Gly16 to Gly25), that contributes...
List of original manuscripts

Figure 6. SAR Optimization Strategy of 7947882 Compound Modifications made in the thioephene ring positions 4 and 5 and the sulfur atom and the di-4-bromo isoxazole led to three new active compounds (11326028 and 11326029). See also Tables S9 and S10.

Furthermore, no improvement arose from modification of the substituents in the thioephene moiety. Lack of the methyl group in position 5 on the thioephene led to an increase in the MIC (Table S10), as did introduction of a methyl or nitro group in position 4, with the exception of compound 11326026 which showed a lower MIC value (0.31 μg/ml) (Figure 6, Tables S4B and S5B). Curiously, analogs of the compound lacking the nitro group (11326038) did not show lower MIC (2 μg/ml). Moreover, all compounds with the thioephene moiety substituted with a nitro group showed lower potency than those lacking this group. Such high activity of compound 11326026 is optimally connected with the antimycobacterial properties of nitroimidazoles (Harwood et al., 2014), and is in parallel with the entire moiety discussed in this paper.

Finally, substitution of the aryl with a hydroxyl group, to give the 3-methylthiophene-2-carboxylic acid (11326029), led to the most potent compound (MIC of 0.32 μg/ml; Figure 5). The carbocyclic group of compound 11326026 was fundamental for its antimycobacterial activity, since the carboxylic derivative was less active and likewise for compound 7947882; modification of the thioephene substituents led to less active derivatives (Table S5B).

The M. tuberculosis pyrG mutant 887 showed levels of resistance to both 11326028 and 11326054 derivatives that were significantly higher (MIC values >8 μg/ml) compared with that of the wild-type strain, thus confirming that they still target PyrG. Similarly, the 81.10 mutant instead of a wild-type was resistant to both compounds, indicating that they still need to be activated by EthA. This result was confirmed by the fact that the compounds are substrates of the enzymes FhuA, values of 13.3 μM and 98.85 μM for 11326028 and 11326054, respectively.

Finally, five derivatives of the active EthA metabolite 11426036 were synthesized. These compounds were as active toward wild-type PyrG, but not against the 887 mutant. However, none of these compounds showed an improved MIC compared with the active metabolites of 7947882 (Table S5B).

Docking of the 11426036 Active Metabolite and PyrG Inhibitors

To acquire insight into the binding between the active metabolite of 11426036 and PyrG, a careful computational analysis of the possible poses of the compound was performed. Docking the 11426036 compound demonstrated that it would only successfully dock in the PyrG ATP site (Figures 4C, S9, and S10). The superposition with the UTP molecule shows a partial overlap.

The pyrG ring is suggested to pi-stacking with Arg225 while the nitro group is proposed to interact with Arg413 and Arg462. Similarly, searching based on the 4-bromoacetamidine fragment of the molecule resulted in 17 similar compounds present in the Collaborative Drug Discovery (CDD) database (Binks and Burman, 2013; Arthanari et al., 2009; Binks et al., 2014; Mody et al., 2010; Binks et al., 2013; Hendricks et al., 2013). Four of these compounds were tested in vitro against PyrG enzymatic activity. One compound, CDD-429593 (B2Dock score 106.7), was a weak PyrG inhibitor (K = 88 μM) (Figures S9B and S10B) shows how this compound may bind less optimally in the ATP-binding site with the 4-bromoacetamidine portion in a different position to that of 11426036. Docking of compounds may be instructive for SAR.
until the co-crystal structure with a ligand is obtained. For example, the 1H262604 tyrosine was also docked in the Pyr3 structure and was shown to be in an orientation similar to that of the 1H262602 active metabolite (Figures S5F and S5G).

SIGNIFICANCE

Now leads and new targets are required for tuberculosis drug development. Using phenotypic screening of a chemical library, two thiosemicarbazone derivatives were identified that inhibited M. tuberculosis under replicating, non-replicating, and intermediate growth conditions, both compounds were activated by the EMA monooxygenase, and the main metabolites of one of them (7H9+1082), identified by mass spectrometry, was shown to target the CTP synthase (Pyr3). The active metabolite was synthesized and shown to behave as a competitive inhibitor toward the ATP-binding site of Pyr3, thus validating this enzyme as a new antibacterial drug target. Further validation was obtained genetically using conditional knockdown of pyr3 to prove its essentiality in all the physiological states. A metabolic approach demonstrated that the thiosemicarbazone derivatives caused general repression of nucleotide metabolism, consistent with the inhibition of CTP synthase. The combined evidence strongly indicates that Pyr3 is potentially a clinically relevant drug target. To overcome the requirement for EMA activation, we obtained high-resolution crystal structures of Pyr3 in a drug-laced, unliganded form, radiolabeled by standard methods. Enzymatic assays were performed according to the published method (Papageorgiou et al., 2002; Lam et al., 2003). See Supplemental Experimental Procedures.

Experimental Procedures

MSD Library Screening

The MSD, a library of 54 compounds selected from an HPL containing M. tuberculosis H37Rv derivatives (Barrett et al., 2003; flour and ginger, 2001; Murray et al., 2009), was kindly provided by MSD Prof. R.C. Beckman. The compounds were synthesized, tested for their ability to inhibit HPL and tested in an in-cell format using the standard reduced redox reaction as described in the Experimental Procedures. Synergistic effects were observed in the presence of HPL. Interactions between the two compounds were analyzed for their MIC, metabolic activity in HPL, and potential for the human host or other complications to the liver (P1 and H2). The human liver enzyme (H4) and H2. HPL were used as positive controls, and H2 and H3 were used as negative controls. See Supplemental Experimental Procedures.

Compounds Used and Synthesis of Their Derivatives

The derivatives were synthesized from the appropriate starting material by standard methods. Enzymatic assays were performed according to the published method (Papageorgiou et al., 2002; Lam et al., 2003). See Supplemental Experimental Procedures.

Isolation and Characterization of M. Tuberculosis Mutants Resistant to 7H9+1082 and 7H9+464

The isolation of M. tuberculosis mutants was performed by using the 7H9+1082 plasmids as in the cases of previous studies (S476 and S486) using standard methods. See Supplemental Experimental Procedures.

Bacterial Growth

Design of Pyr3 Inhibitors

In Vivo Bacterial Metabolism and Metabolite Identification

In Vivo Bacterial Metabolism

Acknowledgments

Author Contributions

Supplementary Material

Conflict of Interest

References

Supplemental Information

Supplemental Experimental Procedures

Supplemental Figures

Supplemental Tables

Supplemental Data

Supplemental Videos

Supplemental Software

Supplemental Methods

Supplemental Results

Supplemental Discussion

Supplemental References

Supplemental Figures

Supplemental Tables

Supplemental Data

Supplemental Videos

Supplemental Software

Supplemental Methods

Supplemental Results

Supplemental Discussion

Supplemental References
List of original manuscripts

Metabolic experiments have been described elsewhere (Kumar et al., 2015; Kumar et al., 2016). For example, HEPG-2 cells were cultured in DMEM supplemented with 10% FBS and incubated at 37°C for 5 days, after which the cells were transferred to XTT-containing 96-well plates (5 μM XTT) for 4 h. Following this, the culture medium was replaced with fresh DMEM containing 10% FBS, and the cells were further incubated for an additional 4 h. The absorbance at 492 nm was measured using a microplate reader.

The authors have used XTT assay for the detection of cell viability. The assay is based on the conversion of XTT (2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide) into a blue formazan dye by mitochondrial dehydrogenases. The blue formazan is then measured spectrophotometrically at 490 nm. The absorbance is proportional to the number of viable cells.

Acknowledgments

We thank R.G. Gehre and the MRC for providing the C227 and J. Saffrich for providing the anti-panetacrine serum. We also thank C. Frey and H. Kuchler for help in producing a new antibody against the endoplasmic reticulum marker protein SNAP-23. The authors thank the core service staff for the helpful assistance. Finally, we would like to thank G. Proctor and M. White for providing the computer software.

References

List of original manuscripts

New and Old Hot Drug Targets in Tuberculosis

Laurent Roberto Charelli, Giorgia Mori, Marta Esposito, Beatrice Silva Oreni and Maria Rosalia Pasca*

Department of Biology and Biotechnology, Lazzaro Spallanzani, University of Pavia, Pavia, Italy

Abstract: Tuberculosis is an infectious disease caused by the bacillus Mycobacterium tuberculosis. The World Health Organization publishes global tuberculosis reports annually in order to provide the latest information on the surveillance of drug resistance. Given the alarming rise of resistance to anti-tubercular drugs worldwide, finding new cellular targets and developing new analogues or new compounds with greater potency against already known targets is both important aspects in fighting drug-sensitive and drug-resistant M. tuberculosis strains. In this context, the introduction of the phenotypic screen as an efficient tool for the identification of active compounds for tuberculosis drug discovery has improved the possibility to find new effective targets.

With this review we describe the state of art of the currently well validated antitubercular drug targets as well as the advances in discovery of new ones. The main targets will be discussed starting from the oldest such as the enoyl reductase InhA which is constantly repositioned with new inhibitors, through the well assessed targets like the gyrase, the ATP synthase or the RNA polymerase, up to the hot promising targets decarboxylase OctA2 and the mycolic acid transporter MdrA2, or the newly validated and promising targets like the CTP synthetase.

Keywords: Tuberculosis, antitubercular drugs, repurposed targets, promiscuous targets, phenotypic screening, drug design.

1. INTRODUCTION

Tuberculosis (TB), the second most damaging among the human infectious diseases, is still a major concern to global public health. In 2014, TB killed 1.5 million people and 9.6 million people were affected by TB worldwide [1, 2]. Moreover, the World Health Organization (WHO) reported that the 3.3% of new tuberculosis cases and the 20% of the previously treated cases had multidrug resistance TB (MDR-TB).

The recommended regimen for drug-sensitive tuberculosis was established four decades ago and is still highly effective; it includes first-line drugs such as isoniazid and rifampicin for 6 months, together with pyrazinamide and ethambutol for the first 2 months. Nevertheless, the major threat is represented by the spread of MDR-TB, resistant at least to isoniazid and rifampicin. These cases are treated with second-line drugs such as new fluoroquinolones (e.g. moxifloxacin or levofloxacin), in combination with an injectable drug (amikacin, kanamycin, or capreomycin) [1]. Notwithstanding, 9.7% of MDR-TB has been reported as extensively drug resistant TB (XDR-TB), resistant to first-line drugs and to at least one fluoroquinolone and to one second line injectable drug in 103 countries [1, 2]. The need of new antitubercular drugs is thus considered a priority and new agents have entered clinical trials after a long period of stagnation (Table 1).

Among these, many are new inhibitors of old repurposed targets, such as new fluoroquinolones and new fluorinated, targeting DNA gyrase and RNA polymerase, respectively (Table 1) [2]. However, new drug
Table 1. New antitubercular drugs in preclinical and clinical trials.

<table>
<thead>
<tr>
<th>Phase of development</th>
<th>Preclinical development</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early stage development</td>
<td>INH (Isoniazid)</td>
<td>TBM-154 (Tubercular)</td>
<td>Serebril (Osmium)</td>
<td>Bedaquiline TMC-207 (Dihydrodiamino- line) for MDR-TB</td>
</tr>
</tbody>
</table>
| &n...
Rifampin is another first-line antitubercular compound active against both replicating and non-replicating \textit{M. tuberculosis} strains. It targets the \(\beta\) subunit of the RNA polymerase encoded by \textit{rpoB} gene [13].

Among the second-line drugs, the most used are the fluoroquinolones class of compounds (e.g. moxifloxacin and gatifloxacin): they target the DNA gyrase, a tetramer of two A and two B subunits, encoded by \textit{gyrA} and \textit{gyrB} genes, respectively [14].

\textit{InhA}. RNA polymerase and DNA gyrase cellular targets are treated in detail in the next paragraphs.

2.1. Trans-Enoyl-Acyl Carrier Protein Reductase (InhA)

\textit{InhA} is an essential enzyme identified as the cellular target of \textit{INH} and of the prodrug ethionamide (\textit{ETH}) (Fig. 1) [15]. \textit{INH} and \textit{ETH} inhibit mycolic acids biosynthesis causing accumulation of long-chain fatty acids, inhibition of \textit{Cys4} and \textit{Cys6} monounsaturated fatty acid biosynthesis and cell death [16]. \textit{INH} is activated by the \textit{KatG} enzymatic, thus forming an isonicotinyl acetyl or radical [17] that reacts with NAD\(^{+}\) producing the \textit{INH-NAD} adduct, which in turn binds \textit{InhA} [18]. \textit{InhA} belongs to the fatty acid synthase type II (FASII), which elongates fatty acids up to 56 carbons to form mycolic acids, and catalyzes the \textit{NADH}-dependent reduction of 2-trans-enoyl-ACP molecules with 16 or more carbons during the last step of fatty acid elongation [19].

The \textit{INH-NAD} adduct inhibits \textit{InhA}, blocking mycolic acid biosynthesis then causing cell death. Whereas the majority of the \textit{M. tuberculosis} \textit{INH} resistant mutants show mutations in the \textit{katG} gene, encoding for the activator, about 20% of the \textit{M. tuberculosis} \textit{INH} resistant clinical isolates display \textit{Ser94Ala} and \textit{Ile98Ile} mutations in \textit{inhA}. These mutations cause \textit{INH} resistance by decreasing the affinity of \textit{InhA} for the \textit{NADH} and for the \textit{INH-NAD} complex [16].

The first \textit{InhA} crystal structure was solved in complex with \textit{NADH} (Fig. 1A) [19]. The \textit{InhA} enzyme is composed of seven \(b\) strands and eight \(a\) helices and it has a core structure similar to the dinucleotide-binding fold of many dehydrogenases. The \textit{NADH} cofactor binding site is at a pocket between the back and the root of the \textit{InhA} enzyme and its structure suggests that recognition of \textit{NADH} is mediated by interactions with an array of polar amino acids and backbone atoms. In the \textit{InhA} wild-type structure the \textit{NADH} phosphate forms hydrogen bonds with the main-chain nitrogen atom of the \textit{Thr21} and with a well-ordered water molecule. The crystal structure of the \textit{Ser94Ala} mutant revealed that this water molecule is disordered and forms only a single hydrogen bond with the \textit{NADH} phosphate, resulting in a fivefold reduced affinity for \textit{NADH} compared to that of the wild-type strain, thus accounting for \textit{INH} resistance [19].

\textit{ETH} (Fig. 1) is a prodrug activated by the \textit{NADPH}-specific flavin adenine dinucleotide-containing monoxygenase \textit{EhhA} [20]. \textit{ETH} active form reacts with \textit{NAD}\(^{+}\) yielding an \textit{ETH-NAD} adduct, which in turn binds \textit{InhA}, causing the inhibition of mycolic acid biosynthesis [21]. Similarly to \textit{INH} mutations in the gene encoding for the \textit{EhhA} activator conformed

![Fig. 1. Main compounds targeting InhA.](image)
List of original manuscripts

high level of resistance to this drug [23]. In order to solve this problem, new drugs targeting InhA and avoiding KatG or EdoA activation are required.

Some of the new InhA inhibitors were obtained starting from thiaclosan (TRC), an uncompetitive InhA inhibitor with a low in vitro activity against M. tuberculosis (Minimum Inhibitory Concentration, MIC = 5.10 mg/ml) [23]. Among the obtained derivatives, click chemistry allowed the synthesis of 1-dodecyl-4-phenethyl-1H-1,2,3-triazole by replacing the phenolic moiety with 1,4-dimethoxybenzene triazole. This derivative displayed MIC values against M. tuberculosis H37Rv lower than 2 mg/ml [24]. A new series of triazole derivatives have been synthesized showing analogues with TRC [25]. All of them inhibited M. tuberculosis growth and had a good activity against InhA enzyme, even if the best compound (MIC = 0.6 μM) was totally inactive against InhA. Recently, new TRC analogues were obtained with specific modifications in its 5 and 4 positions and seven of the obtained derivatives were highly active against M. tuberculosis, compared to TRC. Among them, the most active, the 4-(isobutyl)-1,2,3-triazole, had an MIC of 0.6 μg/ml and inhibited InhA activity [26].

Pyridomycin (Fig. 1) is one of the most interesting and promising among the new InhA inhibitors. It is a natural compound produced by Lactobacillus acidophilus subsp. acidophilus very active against M. tuberculosis growth (MIC = 0.31 mg/ml). M. tuberculosis pyridomycin resistant mutant harbours the Acpl-166Gy mutation in InhA, but it is not cross-resistant to INH and ETH. In the same way, the M. tuberculosis INH resistant mutant carrying the Ser244Asn mutation is insensitive to pyridomycin. This finding suggested that INH and pyridomycin bind the InhA active site in different ways. In fact, structural studies demonstrated that pyridomycin inhibits InhA binding the core of the enzyme active site, simultaneously blocking part of the NADH and fatty acyl binding pockets. These findings allowed the discovery of a new druggable pocket in the InhA enzyme [27], thus giving hope in pyridomycin development. In 2013, new pyridomycin derivatives were synthesized, lacking the characteristic enol ether moiety of the hit compound, and leading to a four-fold more active compounds [28].

Through in silico screening based on the succinimide core fragment, a new promising pharmacophore moiety was identified in the 3-(9H-fluoren-9-yl)pyridin-3-2,3-dione (Fig 1) [29]. These new derivatives displayed an interesting activity against InhA, with the most active 3,5-dichlorophenylamido-

4-

Current Medicinal Chemistry, 2006, Vol. 21, No. 30
Chiavelli et al.

Another class of direct InhA inhibitors was identified in the methyl triazole scaffold. The best compounds of this new triazole series showed potent enzyme inhibition (InhA IC50 = 0.003 μM) and good MIC against M. tuberculosis both in vitro (MIC = 0.19 μM) and in vivo (MIC = 1 μM), although being less potent than INH (Fig. 1). The InhA inhibition mechanism was investigated. Most of the InhA inhibitors, like TRC, bind the NADH-InhA complex, whilst last class of compounds binds tightly (Kd = 137 μM) to the NADH-bound enzyme forming a ternary complex [30, 31]. Structural studies of InhA in complex with a methyl triazole revealed new interactions between the compound and the enzyme active site [30]. Precisely, the compound forms hydrogen bonds between the triazole ring and the Met68, and between the triazole ring and the ribose moiety of NADH [30]. This information has been exploited to produce improved analogues.

Among the new classes of direct InhA inhibitors, the 4-hydroxy-2-pyridones were recently identified through a phenotypic high-throughput whole-cell screening [31]. These compounds had potent bactericidal activity against several M. tuberculosis INH resistant clinical isolates. They do not require KatG activation, and they have an in vitro frequency of spontaneous resistant mutants 100 times lower than that of INH resistant mutants. The NITD-916 lead compound MIC = 0.05 μM (Fig. 3) considerably binds the NADH-InhA complex, similarly to methylthiazoles. Since InhA has a higher affinity for NADH rather than for NAD, the inhibitors binding the NADH-InhA complex are likely to be more efficient. NITD-916 shows good efficacy in vivo, paving the way for further development of inhibitors of a well assessed old target [32].

2.2. RNA Polymerase (RNP)

Rifampicin (RIF) (Fig. 3), the major frontline antitubercular agent together with INH [33], belongs to the rifamycin class of DNA-dependent RNA synthesis inhibitors. RIF is one of the most potent and broad spectrum antibiotic, it blocks DNA transcription through the inhibition of the RNA-polymerase (RNP) with a very high affinity for bacterial enzyme (binding constant about 10^7 vs 10^3-10^4 M of subterylic RNA-polymerase) [34].

Bacterial RNP has a σ70 subunit composition organized in a shape that is similar to that of a crab claw (Fig 4), with the two “pincers” formed by the
larger subunits \(\beta \) and \(\beta' \) defining the active site [25].

Structural studies demonstrated that RIF can adopt several conformations, from a fully open clamp to a fully closed conformation which allows or prevents DNA entry and exit into the active site during the different stages of transcription [58, 59].

![Crystal structure of M. tuberculosis LAM in complex NADH (PDB: 4DRE).](image1)

![Detail of the NADH binding site, showing the residues 594 and D148, involved in resistance to INH and pyrazinamide, respectively.](image2)

All the mutations conferring resistance to RIF map in \(rpoB \), an essential gene encoding the \(\beta' \) subunit of the \(\beta\rpoB \) enzyme. These mutations mainly involve the amino acid residues going from position 420 to 450 (38, 39). Kinetic analysis demonstrated that RIF does not impair the binding of the promoter to the 23S rRNA, the formation of the open complex, or the formation of the first phosphodiester bond, but it blocks the formation of the second or third phosphodiester bond (depending on whether the transcription initiated with a nucleoside triphosphate or with a nucleoside monophosphate instead) [40]. RIF does not impair the substrate binding or the catalytic activity, but it was suggested that it simply acts as a steric block of the DNA elongation [49], as demonstrated by the crystallographic studies performed on the Thermus aquaticus \(\beta\rpoB \) [13]. Precisely, RIF binds in a pocket of the 23S rRNA \(\beta \) subunit. This pocket is surrounded by those amino acids that confer resistance to the antibiotic when mutated. When RIF binds to the \(\beta \) subunit, it is in contact with almost all of the possibly mutated amino acids mainly through van der waals or hydrogen interactions [13]. It is noteworthy that among the clinical isolates resistant to RIF about 84% of the mutations affect only three residues: Arg516, His526, and Ser531 [39].

RIF is commonly used in therapy, but it shows several disadvantages, such as the high frequency of spontaneous resistant mutants and the serious side effects, such as heptotoxicity at high dosage. Moreover, this compound is a strong cytochrome P450 inducer, thus leading to several drug-drug interactions, precluding its use in HIV-infected people [41]. Two further rifamycin compounds, rifapentine and rifibutin, have been approved for TB treatment (Fig. 3).

Although rifapentine shows cross-resistance with RIF, it has a better pharmacokinetic profile with a longer half-life, it is more potent in vivo and useful for shortening TB therapy [42, 43]. Similarly, rifabutin shows improved potency and better pharmacokinetic compared to RIF. It is a very weak cytochrome P450 inducer, thus reducing drug-drug interactions [44] and being suitable even for HIV-infected patients [45]. The most interesting among the newer RIF derivatives is the benzoxazinomycin rifabutin [46], which combines an improved potency with a very reduced cytochrome P450 induction and gently low toxicity in early clinical studies [47, 48]. However, clinical trials evidenced adverse effects causing the suspension of the development of rifabutin for TB treatment [41, 49].

The antibiotic myoxopromin was the first one identified as inhibitor of the “switch region” of RNAP. This region is a structural element at the base of the RNAP clamp comprising five segments (switch 1 to 5) which can adopt different local conformations, serving as a hinge for their opening or closure (Fig. 4). Different residues of the switch region, particularly switch 1, 2, and 3, interact with the DNA, thus coordinating the clamp closure and DNA binding [37].

Structural studies demonstrated that myoxopromin inhibits transcription by binding a pocket encompass-
Soon after, lipiarmycin (also known as thiamicin B, or fidaxomicin) (Fig. 5) was identified as a RNA polymerase inhibitor targeting the switch region [51, 52]. It has been demonstrated that lipiarmycin inhibits RNA polymerase by blocking the open conformation of the clamp with a mechanism similar to that of the minocycline. However, lipiarmycin interacts with the switch region of RNA polymerase by blocking the switch 2 and 3, thus partially overlapping the minocycline binding site [53]. For this reason, lipiarmycin does not show cross-resistance neither with minocycline nor with rifampicin [50].

Fig. (5) Most significant rifamycins inhibiting *M. tuberculosis* RNApol.

Lipiarmycin has been approved for the treatment of *Clostridium difficile*. It is very active also against *M. tuberculosis* but it actually shows very low oral bioavailability thus limiting its use in the systemic tuberculosis infection [53]. Moreover, despite its isolation in 1975 [54], no SAR studies have been performed and no total synthesis of lipiarmycin has been reported for several years. In spite of that, synthesis of aglycone lipiarmycin has been recently published, finally giving the possibility to develop RNA polymerase switch region inhibitors [55-57].

2.3. DNA Gyrase

Bacterial topoisomerases are still very attractive targets for drug discovery, and fluoroquinolones are one of the most successful classes of antibacterials targeting type II and type IV topoisomerases [58]. Unlike many other bacterial species, *M. tuberculosis* only has topoisomerase II, also known as DNA gyrase. This enzyme is an essential heterodimeric protein consisting of two A and two B subunits, encoded by the gyrA (330 bp) and gyrB (375 bp) genes, respectively [59]. These two subunits control the DNA topological state catalys-
List of original manuscripts

New and Old Hot Drug Targets in Tuberculosis

Current Medicinal Chemistry, 2018, Vol. 23, No. 30

...ing its negative supercoiling through a transient double stranded DNA break, thanks to ATP hydrolysis. Precisely, GyrA contains the tyrosine active-site involved in DNA cleavage and in the formation of the protein-DNA covalent bond, whilst GyrB contains the ATPase active-site [59].

Fluoroquinolones inhibit topoisomerase by converting the transient double strand DNA break into a covalent enzyme-DNA adduct, forming the so-called “cleaved complex”. The two most active fluoroquinolones, moxifloxacin and gatifloxacin (Fig 6), are currently under evaluation as promising first-line therapeutics, being already used for MDR-TB treatment [2, 60, 61]. Most of the mutations associated with fluoroquinolone resistance map in the conserved quinolone resistance determining region (QRDR), comprising both gyrA and gyrB genes. Specifically, the most common mutations identified in M. tuberculosis fluoroquinolone-resistant strains involve the substitution of the residues Ala90, Ser91 and Asp94 in GyrA, or Asn499, Thr500 and Gln501 in GyrB (Fig 7) [14, 59, 62].

The crystallographic structures of the M. tuberculosis gyrase cleavage core, complexed with DNA, and five fluoroquinolones, has been recently described for the first time [63] (Fig. 7). A biochemical assay demonstrated the importance of the fluoroquinolone-cleaved complex stability in determining the efficacy of the compound. An efficacy ranking among the different fluoroquinolones has been defined with moxifloxacin and its C8 methyl derivative being the most potent among the five analyzed. These new fluoroquinolones were followed by the most potent gatifloxacin, and the less efficient ciprofloxacin and levofloxacin [63]. However, the crystal structures did not evidence specific interactions between the different fluoroquinolones and the gyrase, thus explaining the differences in their in vivo antibacterial activities.

Recently, new drugs targeting DNA gyrase have been discovered. Among these, the aminopyrazamides (Fig. 6) were identified from a high throughput screening against the poorly explored GyrB ATPase domain of Mycobacterium smegmatis protein [64]. These compounds were shown to specifically inhibit mycobacterial GyrB, with a very weak activity against other Gram-positive or Gram-negative bacteria. Structural studies confirmed the unique and specific interaction present between the compound and the GyrB active site. It differs from that of other known GyrB inhibitors, such as novobiocin, thus rendering aminopyrazamides highly pathogen specific [64]. The aminopyrazamides class of compounds showed a re-
List of original manuscripts

8 Current Medicinal Chemistry, 2018, Vol. 23, No. 30

巨头 SAR and they were found to be highly bactericidal against both replicating and non-replicating M. tuberculosis. For these reasons, they are considered as a new class with a great potential for further optimization [64].

Another new promising scaffold suitable for ATPase inhibition of GyxB is the thiazolopyridine used [65] (Fig. 6). Like the other GyxB ATPase inhibitors, these compounds are very active also against M. tuberculosis drug-resistant strains, including quinolone-resistant ones, as they target different DNA gyrase activities. The best derivatives, showing antibacterial activities below μM concentrations (MIC ≤ 0.1 μM) are efficacious in vivo in an acute murine model of tuberculosis [65].

Starting from thiazolopyridine used scaffold, the thiazolopyrimidines were designed in order to allow hydrophilic interactions also in the more pocket of the GyxB ATP binding region [66]. Resulting compounds showed good activity in vivo, but were affected by a low solubility, thus needing further optimization [66].

Since GyxB mutations conferring resistance to fluoroquinolones do not confer resistance to the ATPase inhibitors, the interest in new drugs acting through inhibition of the GyxB ATPase activity increased. New series were then developed using different strategies: the thiazole-thiazolopyridine and the quinolone-sulfonamide, developed by molecular hybridization [67, 68]; the pyrimidines, obtained by drug design [69, 70] and the aminobenzimidazole, optimized using structure-guided design and structure-activity relationship (SAR) studies of potency against both Gram-positive and some Gram-negative bacterial species [71, 72] (Fig. 6). Pyrimidines optimization led to compounds showing good bactericidal activity against M. tuberculosis in vitro and ex vivo, and moderately active in vivo [59].

The last optimization of the aminobenzimidazole metabolic profile led to the identification of VX-486 [72]. VX-486 was very effective against M. tuberculosis drug-sensitive and drug-resistant isolates in vitro (MICs of 0.03 to 0.30 μg/ml and 0.08 to 5.48 μg/ml, respectively), ex vivo and in vivo. Moreover, this compound showed bactericidal activity also against M. tuberculosis dormant bacteria. VX-486 was then improved using a phosphate ester prodrug approach. The obtained prodrug (pVX-485) was more potent in vivo and when used in combination with other antimicrobial drugs (rifampicin–pyramamide and bedaquiline–pyramamide) was effective in mice [72].

For all these characteristics pVX-485 could be considered a promising starting point for future drug development.

Finally, new classes of gyrase inhibitors are emerging. All of them are characterized by different mechanisms of action and they do not show cross resistance with fluoroquinolones. Among these, the N-linked aminoquinolone compounds developed by AstraZeneca exert their inhibition through a single strand cleavage complex [74]. These compounds have a good in vitro and in vivo efficacy, a good pharmacokinetic profile and show sufficient structural diversity for further optimization [74].

Recently, GSX has identified new topoisomerase inhibitors characterized by new mechanisms of action. These compounds are called MGIs (Fig. 6) and they showed good in vitro and in vivo antibacterial activity without cross-resistance with fluoroquinolones [75]. The isolated MGIs resistant mutants had mutations in either GyxA or GyxB, suggesting that the binding to the enzyme occurs in proximity of the fluoroquinolone binding site. This hypothesis has been confirmed by DNA gyrase supercoiling and the cleavage complex assay [75]. These recent compounds further confirm the usefulness of the gyrase as well assayed targets for the development of new antimycobacterial drugs.

5. NOVEL PROMISING TARGETS

After the first complete sequencing of M. tuberculosis genome [70] and the introduction of next generation sequencing platforms, whole genome sequencing
List of original manuscripts

(WGS) was widely and intensively used for identification of the cellular target of novel compounds. The screening of several chemical libraries led to a number of new potential drug targets, some of which inhibited by more than one compound or chemical entity [17, 78]. For this reason, these targets are defined as "promiscuous" [78]. The two most representative *M. tuberculosis* promiscuous targets, the decaprenylphosphoryl-β-D-ribose 2’-oxidase (DprE1) and the transmembrane transporter of triacontane monooxygenase (ManE-L), are here described.

3.1. Decaprenylphosphoryl-β-D-Ribose 2’-Oxidase (DprE1)

Among the *M. tuberculosis* drug targets, DprE1 is probably the most promiscuous, being defined also as a "magic drug target" [79]. It has been recognized to be inhibited by more than ten different classes of compounds with antibacterial activity [4, 80-91], most of them discovered through independent whole cell screening of different compound libraries.

DprE1 is an essential mycobacterial enzyme which works in concert with DprE2 (decaprenylphosphoryl-D-2-keto-3-enoyl-CoA isomerase) to catalyze the epimerization of decaprenylphosphoryl-β-D-ribose (DPR) to decaprenylphosphoryl arabinose (DPA), a precursor for arabinogalactan biosynthesis [92, 93]. Specifically, DprE1 catalyzes the first part of the reaction, the oxidation of DPR into decaprenylphosphoryl-2-keto-β-D-erythro-pentofuranose (DFX), which could then be reduced by DprE2 into DPA [94].

DprE1 is usually reported as an oxidase since it catalyzes a flavin adenine dinucleotide (FAD)-dependent oxidation, but it should be considered a dihydrogenase instead [95]. In fact, although the enzyme can use molecular oxygen to oxidize the FAD cofactor, it has been observed that it could also use several organic compounds as electron acceptors [95].

Besides its physiological relevance, the ability of DprE1 to reduce organic compounds for the reoxidation of its FAD cofactor explains the peculiar mechanism of action of its novel inhibitors.

The first DprE1 inhibitors were the 1,3-benzothiazole-4-one (BTO), a class of compounds belonging to a series of derivatives of the antibacterial dialkyldithiocarbamates [2]. The lead compound from this series, the 8-nitro benzoic derivative BTO43, is one of the most active antibacterial agents known to date (MIC = 1 ng/mL). BTO43 is characterized by the presence of a 6-nitro group that is essential for its activity, since the substitution of this group with an amino (BTO43C) or hydroxylamine (BTO45) led up to 5000-fold loss in potency [4] (Fig. 8A).

The BTO43 IC50 against DprE1 is in the micromolar range, but its outstanding antibacterial activity resides in its peculiar mechanism of action. The compound is effectively a pro-drug which, upon the reduction of the nitro to a nitroso group, reacts with a cytochrome (Cyb587) of DprE1 forming a semicarbazide covalent adduct, irreversibly blocking the enzyme activity [96].

This activation has been demonstrated to be catalyzed by DprE1 itself [95, 96], which uses the nitro group of the BTO43 to reoxidize its FAD cofactor, thus reducing it to a nitroso. The nitroso group can then readily react with the near cysteine 387 of DprE1 active site, forming the covalent adduct (Fig. 8B).

Fig. (8): A) Structure of 1,3-benzothiazole-4-one. B) Mechanism of activation of BTO43 by DprE1 itself, with consequent formation of the covalent semicarbazide adduct between Cyb587 and BTO43.
group induced by the thiocarbamates [97]. However, the fact that the BTZ043-DpaE1 covalent adduct does not occur in the absence of the substrate, is in favor of an enzymatic activation [98].

The broad specificity for the different electron acceptors explains the number of the different chemical entities found to inhibit DpaE1. In the 3 years following the discovery of DpaE1 as a target of the BTZ6, three further independent whole cell screenings of different chemical libraries identified new compounds targeting this enzyme [99] [100, 101]. All these compounds were characterized by a nitro-aromatic group and, although less potent than the BTZ043, behave as covalent inhibitors, thus showing a similar mechanism of action [93, 99].

![Fig. 9](image)

Fig. (9). Covalent inhibitors of DpaE1.

Crystallographic studies finally demonstrated that BTZ043 forms a covalent adduct with the cysteine residue of the active site of DpaE1. The crystal structure of M. tuberculosis DpaE1, in apo form and in complex with BTZ043 [93], and the crystal structure of the M. tuberculosis enzyme in complex with the nitro analog CT35 [100] have been published at the same time. In both cases, BTZ043 was found to be allocated in front of the PAD cofactor, forming the expected semicarbazide adduct with the Cys287 (Fig. 10). An additional interaction was found between the side chain of the Lys141, a residue essential for DpaE1 enzymatic activity, and the semicarbazide moiety of the compound [93]. Further key interactions are formed between the trifluoromethyl group of BTZ043 and a pocket formed by the His132, Gly133, Lys134, Arg165 and Lys167 residues. In contrast, no particular interactions are present with the covalent piperidine group of BTZ043. Effectively, SAR studies evidenced the essentiality of the nitro group (R1, Fig. 11), of the trifluoromethyl group (R2) and of the sulfur (R3) and oxygen in the thiadiazole ring for the antimycobacterial activity of BTZ, whereas the spirocyclic piperidine group (R4) seemed more suitable for derivatization [3, 4].

Despite the outstanding in vitro potency of BTZ043, its efficacy in a mouse model of TB was relatively low, mainly due to the poor solubility of the compound. Moreover, BTZ043 was found to be the substrate of nitroreductases, such as the M. tuberculosis NhR2 enzyme, that can transform the compound into its inactive hydroxylamine or amine form [101]. Further SAR studies are therefore needed in order to improve the PK/PD parameters.

As previously mentioned, all strategies designed to modify the nitro group [4, 102, 103] led to a 3000- to 5000-fold decrease in potency. Similarly, a loss of potency with a consequent increase in the MIC values results from modifications of the trifluoromethyl group [4], or from modification of the sulfur atoms into sulfide or sulfone [104] (Fig. 11). Becoming of that, all the major efforts used to improve BTZ6 properties have been concentrated in the modification of the spirocyclic piperidine moiety (R4) (Fig. 11) [3, 105, 106].

PTBZ169, the most attractive DpaE1 inhibitor emerged among the numerous studies performed, was obtained upon the introduction of a cyano, chloroethyl, piperazine substituent in the BTZ scaffold (Fig. 11). This compound was more effective than BTZ043 in a TB murine model [3]. The compound improved in vivo potency was mainly attributed to the higher affinity for DpaE1, reflected in a 10-fold reduced MIC, combined with a lower susceptibility to nitroreductases [3]. PTBZ169 is also less toxic and is a good candidate to enter clinical trials. It has in fact on December 2015 that the Ministry of Health of the Russian Federation gave permission for Phase I clinical trials of PTBZ169 in Russia. In 2016, NERAMEDE is planning to conduct human clinical trials (http://www.nemamedic.ru/en/node/690).

The high tractability of DpaE1 as a drug target is further corroborated by a number of non-covalent reversible antimycobacterial inhibitors found in recent years. In fact, the enzyme has been found to be the target of several non-nitro compounds (Fig. 12), some of them deriving from SAR studies of BTZ6 [89, 102, 103]. However, the majority of these were identified through whole cell screening [84, 85] from target based whole cell screening [90], or from structure based approaches [90].

Crystallographic analysis [84, 87] and molecular docking [83, 85, 86, 89, 107] demonstrated these compounds to interact with DpaE1 in a similar way to that of
the BTZs, despite their structural differences. The crystal structure of DpsE1 in complex with Ty39C (Fig. 13 A) [87] and in complex with TCA1 (Fig. 13 B) [84] showed how the compounds bind the enzyme in the active site, in front of the FAD cofactor, nearly involving the same residues participating in BTZ binding, such as the backbone of the residues 132-134, and the side chain of Amp565 and Lys418. As expected, since there is not formation of covalent adducts, mutations in the Cys824 residue of DpsE1 do not confer resistance to the non-covalent inhibitors. Interestingly, mutations leading to the substitution of the Tyr514 were recurrent among the isolated M. tuberculosis mutants resistant to most of the non-covalent DpsE1 inhibitors. These compounds showed very high affinity for DpsE1, with IC50 in the nanomolar range and MIC values higher than that of the BTZs [55-58, 107]. However, most of these DpsE1 inhibitors showed no efficacy in vivo, with the exception of TCA1 and of the ansamycins [84, 86]. In fact, differently from covalent inhibitors, for non-covalent inhibitors to be efficacious in vivo DpsE1 inhibition should be characterized by a prolonged occupancy of the active site [103].

Fig. (16). Detail of the M. tuberculosis DpsE1 crystal structure in complex with BTZ043 (PDB 474D). For simplicity, the amino acids were numbered according to M. tuberculosis sequence.

Although a very high number of different classes of compounds are active against DpsE1, this is not sufficient to fully explain the high promiscuity of this enzyme. It has been recently demonstrated that DPA biosynthesis occurs outside the mycobacterial plasma membrane, in the periplasm [108]. Therefore, despite the lack of known export signals, DpsE1 is not located in the cytoplasm but in the periplasmic space, thus avoiding the action of efflux pumps or potential cytosolic inactivation mechanisms. DpsE1 cellular localization makes the enzyme more accessible to the drugs, thus explaining, together with its particular enzymology, the great potential of this drug target.

3.2. Mycobacterial Membrane Protein Large 3 (MmpL3)

Another “promiscuous” drug target is the trehalose monomycolate transporter MmpL3. This 12 transmembrane domain protein (Fig. 16) belongs to the mycobacterial membrane protein large (MmpL) family, a class of the resistance-nodulation-division (RND) efflux pump [100] transporters exporting substrates through a proton antiport mechanism [110]. Among the 13 mmpL genes identified in M. tuberculosis, mmpL3 is the only one that is essential, whilst mutations in mmpL4, mmpL7, mmpL8, mmpL10, mmpL11 lead to growth impairment [111]. MmpL3 is involved in the export of trehalose monomycolate (TMMO) [5] and it also has a role in iron uptake, being involved in heme import together with MmpL11 [112].

The first compound described to target MmpL3 is BMS212 (Fig. 15), a 1,5-diazeprydrole derivative active against several multidrug resistant M. tuberculosis clinical isolates [113]. Genomic library screening and WGS of M. tuberculosis M. bovis and M. xenopi spontaneous resistant mutants lead to the identification of different mutations in mmpL3 gene, thus indicating MmpL3 as target of BMS212 [114, 115]. Moreover, uptake-efflux experiments excluded that the phenotypes was associated to BMS212 efflux, thus confirming that the transporter is the target of the compound [111].

From this initial scaffold, several studies were conducted in order to improve the antimycobacterial potency as well as the pharmacokinetic properties [116, 117], leading to improved analogs active in a murine tuberculosis infection model and still targeting MmpL3 [115].

Nearly at the same time, MmpL3 was identified at the target of other two unrelated compounds: the 1,2-diamine SQ109 (Fig. 15) [5], and the alkanoylureas A712335 [118, 119]. SQ109 was selected using combinatorial chemistry by screening a chemical library designed around ethambutol (Etb), with the aim to re-
Fig. (11). Most significant DpxEl inhibitors deriving from SAR studies of BT2043.

Fig. (12). Most representative non-covaled DpxEl inhibitors.

Fig (13). Details of the crystal structure of DpxEl in complex with Ty30C (A) and TCA1 (B) molecules (PDB:490K and 4KWS).
List of original manuscripts

New and Old Hit Drug Targets in Tubercolosis (Curran Medicinal Chemistry, 2010, Vol. 23, No. 10) 13

Fig. (14). Predicted topology of the MmpL3 protein and localization of the mutations responsible for the resistance to multiple inhibitors or to their analogs (GC indolocarbazolones, AU adamantyl aryls, SP spiroindoles).

visit this well-established drug [120]. Although designed to be an analog of EMB, SQ109 had a different mechanism of action, being also active against M. tuberculosis EMR-resistant strains [121]. SQ109 showed in vitro and in vivo efficacy, as well as a pharmacokinetically profile, better than EMB [131]. At present, SQ109 is in phase II clinical trial (http://www.newtbdrugs.org/pipeline.php) [122], despite its mechanism of action remained uncharacterized for several years.

The isolation of M. tuberculosis spontaneous SQ109 resistant mutants was in all cases unsuccessful. It was only by using less potent analogs of the compound that cross-resistant mutants could be isolated. The WGS of five of these isolated mutants revealed mutations in mmpL3 gene (leading to Q49R, L587P and A700T mutations, Fig. 14), indicating MmpL3 as the target. Moreover, complementation biochemical studies demonstrated that SQ109 disrupts the cell wall assembly, leading to an intracellular accumulation of TDM, thus demonstrating the physiological function of the transporter [3]. Metabolic labeling studies and WGS of M. tuberculosis resistant mutants allowed identification of MmpL3 as the target of SQ109 and further confirmed its role in the export of TDM [113].

The high druggability of MmpL3 was demonstrated by a number of further unrelated inhibitors described within the following three years, such as the benzamidothiazole C215 [83], tert-butythiophosphamide [5,6]-pyrrolidin-3-carboxamides (THPP) [123], spiro compounds [124, 125] and spiroindoles [126] (Fig. 15). Many of them are active in TB mouse model of infection. MmpL3 mutations causing resistance to multiple compounds are numerous and widely distributed along the protein, demonstrating a large cross-resistance among MmpL3 inhibitors. Noteworthy, most of these mutations are present in residues within or near the transmembrane helices 4, 11 and 12, and close to those amino acids probably involved in the proton gradient necessary for the translocation activity of the pump [127].

The resistance levels conferred by these mutations are very different and in several cases quite low, such as 4- to 8-fold increase in MIC for SQ109 [5], up to 16-fold for BM212 [114, 115], 4- to 70 fold for THPP [113] or 8- to 70 fold for indolocarbazolones [124]. Moreover, SQ109, BM212 and THPP also showed activity against different pathogens lacking mycolic acids. However, being a lipophilic amine, SQ109 probably leads to membrane disruption and loss of membrane polarization, possibly causing non-host specific cell toxicity. Finally, BM212, SQ109 and spiroindoles are active against non-replicating M. tuberculosis, differently from the other compounds targeting cell wall biosynthesis [128], suggesting them a different mechanism of action [127, 129].

Recently, it has been recently shown that SQ109 and its analogs are multistratgeing compounds [129]. In addition to MmpL3, they also inhibit MenA and MmpG, two enzymes involved in menaquinone biosynthesis. Moreover, these compounds were shown to act as uncouplers, thus interfering with the pH gradient (pH5) and membrane potential (Δψ), thus collapsing the proton motive force (PMF) [129].

138
4. NEW PROMISING DRUGGABLE TARGETS

Even though several drugs and targets are already available, the worldwide increase in resistance to the first and second-line TB drugs suggests that further drug targets are needed. Several efforts have now led to new potential antimicrobial targets, which encompass different metabolism or processes, such as the biosynthesis of coenzyme A or of nucleotides, cellular division or energy metabolism. A selection of these promising drug targets is here described.

4.1. Pantothenate Synthetase (PanC)

Pantothenate biosynthetic pathway is essential in prokaryotes, but absent in mammals, and it has been recognized as a promising target for the development of antimicrobials [131]. The biosynthesis of the essential precursor of coenzyme A is carried out by several enzymes, PanB and PanE, that realize the D-pantoate synthesis, PanD, that participates in the synthesis of β-alamine, and the pantothenate synthetase, PanC [131]. The latter of these enzymes is essential for Mycobacterium tuberculosis growth and has been extensively exploited in drug discovery.

The importance of the pantothenate biosynthetic pathway has been demonstrated in in vivo models where a pantothenate auxotroph of Mycobacterium tuberculosis, defective in the de novo pantothenate synthetase, results in a significantly reduced pathogenicity, protecting mice from the infection [135]. This evidence suggests that pantothenate acid biosynthesis is a valuable drug...
target, despite the existence of pantoate salvage pathways. The growth of this anaerobic strain was unimpeded as well when enough exogenous pantoate was added in high amounts, thus highlighting the need for using physiological concentrations of metabolites in such screens [133]. Nevertheless, the phospho-ridic substrates of the CoA pathway and CoA itself cannot be utilized by most of the bacteria when supplied exogenously. This pathway is therefore likely to be essential not only for the viability of *M. tuberculosis* but also for that of many more bacteria [134]. Moreover, since this pathway is absent in mammals, PanC has been considered an attractive target for new antitubercular drug development [135].

The product of PanC, pantoate, besides being a critical precursor of CoA, is also involved in the synthesis of the scy1 carrier protein, essential for fatty acid synthesis, as well as for cell signaling, antimicrobial peptides and polyketide synthesis [136]. PanC catalyzes a single-step reaction to condense D-pantoate with β-aminooxy in an ATP-dependent manner [137]; thus, D-pantoate reacts with ATP forming a pantoyl-adenylate intermediate, with a subsequent pyrophosphate release, then PanC catalyzes the ligation of β-aminooxy with the pantoyl-adenylate intermediate, thus forming AMP and pantoate [138].

The crystal structure of the enzyme from *M. tuberculosis* has been solved, showing that PanC consists of two subunits, each of them made by two well-defined domains. The active site is positioned on the N-terminus of the protein, whilst the C-terminus partially masks the active site cavity [139]. Additionally, crystal structures of PanC in complex with AMP/PP, an ATP analog, with D-pantoate and with the reaction intermediate pantoyl-adenylate have been determined [139], allowing rational drug design approaches.

There are several strategies that could be used to identify PanC inhibitors [140]. Among them there are hit identification by high-throughput screening (HTS) [140], fragment-based approaches [141], energy-based phamacophore modeling [142], Group Efficiency (GE) analysis [143] and synthesis of pantoyl-adenylate analogues, based on the knowledge of the strong interactions present between this intermediate and the enzyme active site [144].

In this context, the last strategy is the most frequently employed. However, despite the interest in PanC, no effective inhibitors of the *M. tuberculosis* enzyme have been obtained by rational design, and only weak inhibitors have been found by HTS [136, 140, 141]. The first effective PanC inhibitors reported (IC 0.22 μM) are sulfonamidyl adenyly derivatives (Fig. 16). The crystal structure of PanC in complex with these compounds was solved, allowing elucidation of its binding mode mimicking the pantoyl-amine intermediate in the enzyme catalytic site (Fig. 17) [140].

For this reason the sulfonamidyl adenyly scaffold was considered a useful tool for the design of new inhibitors through rational design and fragment-based approaches. However, neither these compounds, nor their further derivatives are effective against *M. tuberculosis* growth [145].

![Figure 16](image_url) Sulfonamidyl adenyly derivatives effective against PanC activity.

Based on the fact that a non-reactive pantoyl-amine analog could be an effective inhibitor, several compounds emerged from virtual HTS, molecular hybridizations and rational design, such as 2-methylimidazo[1,2-a]pyrimidine-3-carboxamides [147], thiazolines derivatives [148], tetrahydrothioamides [149], 1,4,5-trisubstituted pyruvate-3-carboxylic acids [144], 3-phenoxy-4,5,6,7-tetrahydro-1H-pyrazole-4,3-2-carboxylic derivatives [145] (Fig. 18). The majority of these compounds are not active against *M. tuberculosis* growth, even if some of them are effective against a *M. tuberculosis* strain with downregulated *panC* expression [144].

However, all these PanC inhibitors could serve as scaffolds for new inhibitors identification, in order to increase their potency and hopefully to improve their inhibitory effects against bacterial growth [144].

One explanation of the low or non-existent antimycobacterial activity of most of these compounds could be represented by the presence of several effector systems in the bacteria that allow survival of the pathogen in the presence of several drugs. Based on this hypothesis, new hit inhibition PanC have been characterized by firstly exploiting "energy-based pharmacophore modeling" strategy. The best among these derivatives was thiazolines, with IC50 0.35 μM and moderate activity against *M. tuberculosis* growth (MIC=1.55 μM) (Fig. 18) [138]. It is noteworthy that the thiazolines are considered promiscuous compounds, also known as Pan Assay Interference Compounds (PAICs), as they appear frequently in many biochemical high-throughput screens [146, 147].
Fig. (17). Detail of the crystal structure of PanC showing the active site occupied by the sulfamoyl acetamide inhibitor (PDB: 3COW).

Afterward, the same compounds were assayed against M. tuberculosis growth in combination with known efflux pump inhibitors [138]. Almost all molecules increased the inhibitory power against M. tuberculosis growth, with a decrease of MBC values of two- to six-fold. Particularly, the best compounds of this series displayed an MBC of 0.98 μM, demonstrating that inhibition of efflux pumps significantly improves the efficacy of novel antitubercular compounds [138].

Very recently, interesting progress has been made by utilizing the Group Efficiency approach to improve already existing PanC inhibitors [148]. The purpose of this technique is to dissect these compounds to evaluate each single chemical group binding contribution, consequently introducing modifications in the molecules in order to improve binding efficiency. Through this approach, insalicyl-sulfonamide derivatives have been obtained (Fig. 18), not only active against M. tuberculosis, but also having effects against bacterial growth [148].

Similarly, new insalicyl-2,1-benzisoxazole derivatives have been recently reported, showing moderate activity against growing and latent M. tuberculosis, and also active in a zebrafish model of Mycobacterium marinum infection [149].

In conclusion, despite the fact that no PanC inhibitors have been tested in vivo in mammalian models, PanC still remains an interesting target.

4.2. DNA Topoisomerase I (TopoI)

DNA topoisomerases are an essential class of enzymes whose role is to maintain topological homeostasis during a variety of DNA transactions processes such as replication, transcription, chromosome segregation and recombination [150, 151]. Topoisomerases are divided into two different groups, type I and type II, based on their structure and mechanism of action [152]. The type I group includes all those enzymes that cleave and rejoin only one strand of DNA. There is a further classification into type IA subfamily, if topoisomerases bind to a 5'-phosphate, and type IB subfamily, if topoisomerases bind to a 3'-phosphate. The type II group includes all those enzymes that cleave and rejoin both strands of DNA. Type II topoisomerases have been divided into type IIA and type IIB subfamilies on the base of the discovery of a novel type II enzyme from hyperthermophilic archaean Sulfolobus solfataricus, representing the prototype of IIB subfamily [153].

The reaction catalyzed by topoisomerases includes the formation of a phosphotyrosine covalent adduct and a DNA single- or double-strand break during the two trans-esterification reactions [154].

In conclusion, despite the fact that no PanC inhibitors have been tested in vivo in mammalian models, PanC still remains an interesting target.

4.2. DNA Topoisomerase I (TopoI)

DNA topoisomerases are an essential class of enzymes whose role is to maintain topological homeostasis during a variety of DNA transaction processes such as replication, transcription, chromosome segregation and recombination [150, 151]. Topoisomerases are divided into two different groups, type I and type II, based on their structure and mechanism of action [152]. The type I group includes all those enzymes that cleave and rejoin only one strand of DNA. There is a further classification into type IA subfamily, if topoisomerases bind to a 5'-phosphate, and type IB subfamily, if topoisomerases bind to a 3'-phosphate. The type II group includes all those enzymes that cleave and rejoin both strands of DNA. Type II topoisomerases have been divided into type IIA and type IIB subfamilies on the base of the discovery of a novel type II enzyme from hyperthermophilic archaean Sulfolobus solfataricus, representing the prototype of IIB subfamily [153].

The reaction catalyzed by topoisomerases includes the formation of a phosphotyrosine covalent adduct and a DNA single- or double-strand break during the two trans-esterification reactions [154].
and belong to type IA subfamily [155, 156]. M. tuberculosis, differently from E. coli and other bacteria, possesses only one DNA type I topoisomerase. Mtrtop, a protein of 934 amino acids encoded by topid gene (Rs2646c) [76].

Recently, the crystal structure of Mtrtop was solved [157]. The structure of this enzyme is composed of two different parts: a core D1-D4, which contains all conserved motifs (Fig. 19) forming the active site of the protein, and a C-terminal and D3, which is the most variable in size and sequence among species. The D1 N-terminal end includes a TPR (TOPOIOMERASE PROTEIN MOIETY) domain, which harbors the metal ion Mg2+ coordination motif Arg-X-Arg-X-Glu essential for the enzyme activity [158, 159], whilst the D3 has several residues able to interact with DNA.

Fig. (19). Crystal structure of Mtrtop (PDB: 5D30).

A new expression and purification protocol for M. tuberculosis DNA topoisomerase I [156] allowed a better characterization of the enzyme and the DNA cleavage. Mtrtop has been characterized for the first time. Based on a careful comparison with E. coli DNA topoisomerase I (Etopol), Mtrtop has been shown to possess the same enzymatic efficiency of Etopol in initial removal of negative supercoils. But the efficiency is lower in removing the remaining negative supercoils. The only specificity for the DNA cleavage sites of Mtrtop is a C nucleotide in the -4 position, like most of the bacterial DNA topoisomerases [1156].

Because of its essentiality in many crucial biological pathways, Mtrtop represents an ideal target for the discovery of novel antimycobacterial compounds, causing DNA lesions and cytotoxicity [155, 160]. The main inhibitors of M. tuberculosis DNA topoisomerase I are m-AMSA, imipramine, norclomipramine and hydroxy-camptothecin (Fig. 20) [130, 159, 161].

m-AMSA is an isomer of amoxicine (Fig. 20), an antituberculosis derivative able to act as a topoisomerase II poison, known for its potent anti-neoplastic activity [162]. m-AMSA was identified as a possible M. tuberculosis DNA topoisomerase I inhibitor through in silico screening which revealed a favorable docking score for this drug. Its inhibitory potential was evaluated against M. tuberculosis, M. smegmatis and E. coli DNA topoisomerase I [161]. The activity of Mtrtop and Mtrtop was completely inhibited at 10 μM, whilst the inhibition of Etopol was between 10 and 25 μM. This result clearly indicated that the enzyme activity is inhibited in a concentration-dependent manner and that m-AMSA is able to inhibit topoisomerase I of different bacteria, probably binding a region that is shared between the enzymes of different species. Furthermore, two crucial characteristics of the m-AMSA mechanism of action were understood: the first one is that the compound must interact either with the enzyme or the DNA before the formation of the topo-DNA complexes for inhibition of the reaction, otherwise its efficiency could be severely compromised. The second characteristic revealed that the interaction of the drug to the DNA is required for its activity, like its mechanism of action against eukaryotic topoisomerase II [101]. Unfortunately, considering its powerful activity against eukaryotic topoisomerase II, m-AMSA cannot be introduced as M. tuberculosis therapy. However, these compounds represent a starting point to develop new molecules with a specific activity against mycobacterial topoisomerase I [161].

Imipramine and norclomipramine are two well-known compounds: the first one is clinically used as a tricyclic anti-depressant and the second one is the active metabolite of the tricyclic antidepressant clomipramine (Fig. 20) [165, 164]. These compounds were identified as mycobacterial topoisomerase I inhibitors by in silico screening using a homology model of the enzyme. The inhibitory activities of both compounds were tested against DNA topoisomerase I from M. tuberculosis, M. smegmatis and E. coli. The DNA relaxation assay revealed a complete inhibition of Mtrtop and Mtrtop at 0.1 μM while there was no inhibition of Etopol, clearly indicating that imipramine and norclomipramine are specific inhibitors of mycobacterial topoisomerase I [159].
To understand their mechanism of action, assays on individual steps of the DNA replication cycle of topoisomerase I were performed. Both imipramine and nor-
diclofenac are able to bind the enzyme, the DNA or the enzyme-DNA complex, but their favorite target is the pre-formed enzyme-DNA complex. In particular, they interact with the TPR/ERM domain of the enzyme near the Gln112 residue of the metal coordination motif. In addition, it was demonstrated that imipramine and nor-diclofenac act as cytotoxic agents inducing protein-mediated DNA breaks and affecting cell growth. Finally, it was shown that it is possible to combine the use of imipramine and miconazole, a mycobacterial gyrase inhibitor. This latter discovery was a desirable result considering the alarming spread of M tuberculosis resistant strains [159].

![Chemical structure of imipramine and miconazole](image)

Fig. (20). Principal mycobacterial Mtopol inhibitors.

The screening of a chemical library, in which also amoxicillin was included, led to the selection of hydroxyamphotericin (Fig. 20). This compound showed the best inhibitory activity with an IC50 of 0.25 μM. Docking study of hydroxyamphotericin suggested some important details about its structure and interaction with Mtopol, where the hydroxyl group of the compound is facing towards the opening of the active site. At this site, the residues Ala41, Pro181, Thr184 and Ala193 are involved in hydrophobic interaction with the compound, whilst the residues Asp113 and Ser235 interact with the compound for the hydrogen bonding [150].

According to these studies and considering its non-cytotoxicity, hydroxyamphotericin was derivatized substituting the terminal hydroxyl group with different hydrophobic moieties, in order to understand the influence of these elements in the compound activity. The best compound, harboring a nitrilo-benzylic substituent, was very active also against XDR and non-replicating M. tuberculosis and, being also active in an *in vitro* zebrafish model of *M. marinum* infection, it represents the most promising Mtopol inhibitor for the development of antibacterial drugs.

4.3. Cytochrome b c Complex - QrB

Cytochrome b c complex, or ubiquinone-cytochrome c oxidoreductase, is an energy-transducing enzyme playing an essential role in the energy conversion machinery of respiratory and photosynthetic electron transfer chains [165, 166]. In bacteria, this multienzyme complex is located in the plasma membrane and it oxidizes a membrane-located quinol, reducing a c-type cytochrome and promoting the translocation of protons across the membrane [165, 166]. This mechanism is known as Q cycle and it contributes to the proton motive force used for ATP synthase [167]. The catalytic core of the complex is composed by three redox-active subunits: cytochrome b (cyt b), which has two cofactor heme b6 and b5, and two reactive sites named the ubisemiquinone donor (Qb) and the ubisemiquinone-reduction (Qa) sites, cytochrome c (cyt c1), which has the cofactor heme c1, and the Raske iron-sulfur protein (ISP), which contains an [2Fe-2S] cluster [165].

An increasing number of studies have confirmed the importance of cytochrome bc complex for mycobacterial growth, thus providing a novel and excellent opportunity to target M. tuberculosis [168, 169]. Among the main inhibitors of cytochrome bc complex (QrB) of bc complex, there are the class of imidazo[1,2-a]pyridines (IP), Q203 and Lusonaprazole (LFZ) [169-171].

The imidazopyridine IP (compounds Fig. 21) were identified as potent class of inhibitors of M. tuberculosis subunit b of cytochrome bc complex. All of them are active against M. tuberculosis growth and are non-cytotoxic antibacterial compounds. Two of them showed metabolic stability both in vitro and in murine pharmacokinetic model, one of them revealed a bacteriostatic behavior in *in vivo* models. QrB was identified as the cellular target of IP compounds by WGS of resistant mutants and by the over-expression of *qrrB* gene [170].

Q203 compound is an imidazopyridine amide (IPA) derivative (Fig. 21) [171] synthesized in one sequential amide-coupling step with an imidazopyridine acid and a piperidino-benzylic amine. This method allows a large-scale synthesis and low production costs, a feature that is a considerable advantage since M. tuberculosis mainly affects people in poor countries [171]. The compound efficacy is enhanced by the introduction of a
In *M. tuberculosis*, Lamosprazole sulfide (LPZS) was identified as the stable and active metabolite of LPZ [169]. LPZS active metabolite was very active against *M. tuberculosis* growth and also against resistant strains but, unfortunately, it showed additive effects when tested in combination with some first- and second-line anti-TB drugs (rifampicin, isoniazid, moxifloxacin, bedaquiline and BTZ063). Finally, as observed for QD3 compound, LPZS inhibited simultaneously QsrB activity, binding at the ubiquitin Qo site, and the ATP synthase. LPZ represents a great example of a new activity found for an old drug using an innovative screen [169].

If QD3 and LPZ are promising antituberculosis compounds and, considering the essentiality of QsrB target, it is possible that they could be active against both replicating and non-replicating *M. tuberculosis*, an important feature for future anti-tuberculosis drugs.

4.4. ATP Synthase

Bacterial ATP synthase is a ubiquitous enzyme involved in energy metabolism. It utilizes the electrochemical transmembrane ion gradient (GNa or G) for production of ATP, to satisfy cell demand [172]. It is a macromolecular, membrane-embedded protein complex also known as FvFv-ATPase, where Fv and Fv represent the hydrophilic and the membrane domain, respectively (Fig. 22). Fv domain consists of the subunit (p)Fv17p, whilst the Fv domain is composed of subunits (p)Fv8p, building a structural connection between the two Fv-Fv domains that is crucial for their functional coupling (Fig. 22) [173-175].

Recently, an innovative host-cell-based high-throughput screen has been developed to select compounds that protect MRC-5 lung fibroblasts from *M. tuberculosis* cytotoxicity. In this way, Lamosprazole (LPZ) (Fig. 21), a gastric proton-pump (H-K-ATPase) inhibitor (PF4), has been identified as an antituberculosis compound able to protect fibroblasts [169].
adenosine triphosphate (ATP) [171-175]. Pathogenic bacteria such as M. tuberculosis can reside in the human host for many years, entering a so-called dormant state, which renders this mycobacterium poorly susceptible to most of the currently used antibiotics [176-179]. ATP synthesis in bacteria such as M. tuberculosis is responsible for facilitating survival under particular conditions found within the human host, e.g., low oxygen tensions and nutrient limitation [179]. ATP synthesis is required to be essential in M. tuberculosis for optimal growth and in the non-pathogenic model strain M. smegmatis. ATP synthesis activity is completely blocked by the diarylquinoline class of drugs [6, 180-182]. Among the antibacterial compounds belonging to this chemical class, the bedaquiline TMC207 (or 2C7910) is a promising agent in the fight against TB, directly targeting the C-ring of the M. tuberculosis ATP synthase [6, 183, 184]. Bedaquiline has two chiral centers leading to four stereoisomers, where the 2C7910 (R,S) stereoisomer (Fig. 23) is the most active, with minimal concentration required to inhibit 90% of M. tuberculosis isolates (MIC90) of 0.06 μg/mL and with a strong affinity to the C-subunit of the M. tuberculosis ATP synthase [181, 185].

Bedaquiline has been proposed to bind in the C-subunit transmembrane region of the M. tuberculosis ATP synthase [6, 185]. The C-ring from the non-pathogenic Mycobacterium phlei shares 85.7% of sequence identity with its M. tuberculosis homologue and displays MIC values very close to that of M. tuberculosis (0.05 μg/mL and 0.06 μg/mL, respectively). For these reasons, a drug identical mode of interaction between the drug and the C-ring of these two species has been suggested, and the M. phlei C-ring has been thus selected as a model system and co-crystallized with Bedaquiline [6, 184-186]. The ATP synthase C-ring has a putative-exposed ion-binding site, in which the Bedaquiline molecule can be accommodated upon conformational changes of F1 αβ, which provides a hydrophobic space for the drug. Several specific molecular interactions will then be formed thanks to changes in the conformation of Bedaquiline itself: one example is an ionic intermolecular H-bond between the dimethyl amine (DMA) moiety group and Glu65 (Fig. 24). This Glu65-DMA conformation blocks the C-ring rotation and, consequently, ion exchange in F0, resulting in halting ATP synthesis and causing subsequent mycobacterial death [184, 187-191]. According to this mechanism, the binding of one single Bedaquiline molecule is enough to completely stop ATP synthesis [184].

Fig. 23. Most effective M. tuberculosis ATP synthase inhibitor.

Bedaquiline has been approved by the US Food and Drug Administration for the treatment of both drug-sensitive and drug-resistant TB, but with a specific attention for the treatment of multidrug-resistant TB (http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm333695.htm). Clinical tests confirmed that, in patients receiving the diarylquinoline bedaquiline, sputum cultures turned from positive to negative. Moreover, bacterial clearance occurred earlier in those patients receiving bedaquiline in combination with the first-line antibiotic pyrazinamide, thus shortening the treatment of patients with MDR-TB [192-194]. Diarylquinolines are characterized by a dual bactericidal activity, being able to inhibit both replicating and dormant M. tuberculosis bacilli. This unique feature distinguishes this class of drugs from all the presently used antibacterials, such as INH and Rif [192]. Moreover, they display bactericidal activity outweighing the effects of actual first-line antimycobacterial antibiotics, as demonstrated by in vivo experiments in mouse models [192-195].

Although bedaquiline has remarkable potential for shortening the tuberculosis therapy duration, several side effects such as nausea, chest pain, and headache have been observed, thus suggesting further clinical evaluation of new ATP synthase inhibitors without any possible adverse effect [7].

Taking advantage of the diarylquinolines structure, novel quinoline derivatives with significant in vitro bactericidal activity on M. tuberculosis have been synthesized [195, 196]. Several efforts led to the development of even more potent, orally bioavailable and ATP synthase inhibitors; the quinolone class of aryloolidines compounds [197] SAR studies identified...
low nanomolar FtsZ inhibitors of the M. smegmatis ATP synthase with IC_{50} values ranging from 0.36 to 5.45 μM. Among these, the 4-(2R)-4-(chloroamino) valinedipeptide compound (Fig. 23) displayed IC_{50} value of 0.51 μM and led to promising results in mice infected with M. tuberculosis H37Rv (197). The binding mode of the compound at the active site of homology modeled M. tuberculosis ATP synthase revealed H-bonds formation similar to that of bedaquiline (197). The in vitro efficacy of this compound doubled that of etiamate, and its activity against both replicating and dormant M. tuberculosis bacteria is comparable to that of bedaquiline (197). For these reasons, this lead compound is considered a candidate molecule for deeper preclinical investigations.

![Figure 24](https://example.com/image24.png)

Fig. (24). Bend view of the Z-ring X-ray structure showing the interaction of bedaquiline with Phe59 and Gln65 (PDB 4V1F).

4.5. FtsZ

Filament-forming temperature-sensitive genes “Fts” were identified in 1980 in E. coli as genes encoding for proteins involved in septum formation (198). The bacterial cell division machinery remained unexplored for therapeutic purposes for several years, and it was only in 1991 that the FtsZ protein was discovered to be involved in the initiation of cell division (199, 200). When GTP is present, FtsZ protein cooperatively polymerizes on the inner membrane at the center of the cell, growing bidirectionally and tracking in a head to tail fashion, with GTP located between two FtsZ subunits, thus forming a highly dynamic helical structure called the “Z-ring.” Moreover, a link between GTP hydrolysis and polymerization dynamics was first shown when the formation of FtsZ polymers in solution was found to be coupled with GTP hydrolysis, since polymer loss co-occurred with GTP depletion (201, 202). FtsZ was shown to form straight filaments when bound to GTP, while FtsZ bound to GDP forms highly curved filaments (203). This transition from straight filaments to curved conformation suggests that GTP hydrolysis provides the energy for generating the mechanical force for cell division (203). Other cell division proteins are then recruited, causing Z-ring contraction, septum formation and eventually cell division (204-208).

With FtsZ inactive, septum formation is impaired (Fig. 25). Accordingly, FtsZ represents a very promising target for new antimicrobial drug discovery because of its known biochemical activity and its central role in cell division (199). Being a novel drug target, new compounds targeting FtsZ would not be affected by already known drug-resistance mechanisms caused by the use of current anti-TB drugs (209).

![Figure 25](https://example.com/image25.png)

Fig. (25). Z-ring formation is impaired in the presence of FtsZ inhibitors.

The identification of the short amino acid sequence GGGGTGG from the crystal structure of the M. tuberculosis FtsZ led to the identification of FtsZ as a homologue of tubulin, being virtually identical to the motif sequence, (G/A)GGGTSG, found in all α-, β-, and γ-tubulins (210).

Although sequence similarity is limited to 10%, FtsZ and tubulin share a common fold made up of two domains linked by a β-helix (211, 212). Both tubulin and FtsZ polymerize in the presence of GTP into protofilaments while depolymerizing following GTP hydrolysis (206). GTP hydrolysis represents the major rate-limiting step, and phosphate release rapidly follows. Polymers bound to GTP tend to curve, leading to constriction of the Z-ring in cell division. GDP release from the polymer might be partially rate limiting. Depolymerization and GDP release then occur, followed by nucleotide exchange in the monomers (213, 214).
Structural and functional homology suggests that drugs affecting the assembly of tubulin into microtubules can be used as lead targeting FtsZ assembly. Furthermore, the very low sequence homology at the protein level gives the opportunity to investigate drugs that are FtsZ specific with limited cytotoxicity to eukaryotic cells [208].

FtsZ protein from M. tuberculosis (MtbFtsZ) crystallized as a tightly associated dimer in solution, with the A and B subunits associated to form an arc-shaped dimer (Fig. 26) [215-217]. The GTPase domain is located in the N-terminal domain, which is connected to the C-terminal sH-domain by a central helix H10. The structures of the two subunits are quite identical, except for an unexpected secondary structural switch at the subunit interface, in subunit A, the H2 helix adopts a helical conformation, whilst the H2 helix of subunit B assumes a β-strand conformation instead. This secondary structural switch is located in the GTPase domain, forming most of the dimer interface [205].

FtsZ is pathogen specific, essential, and highly conserved in prokaryotes, thus potential FtsZ inhibitors may be developed as broad-spectrum antibacterial agents to which acquiring resistance by mutations in the protein may be demanding for bacteria [218, 219]. Drug development is still at an early stage, nevertheless several classes of compounds have been already found effective against M. tuberculosis: FtsZ, some of these being classified as promising leads.

Several benzimidazoles, pyrrolopyrazine and pyridazine-based FtsZ inhibitors have been screened and identified as potential powerful antibacterials [209, 216, 220-224]. Other reported antibacterial agents are benzimidazole derivatives, responsible for a delay in the M. tuberculosis cell division process, but very little is known so far (Fig. 27) [225].

Zetacin Z3 (Fig. 27) was discovered through a high-throughput screening of inhibitors of the GTPase activity of FtsZ. It was shown to be uniquely active and selective in its inhibition of FtsZ when compared to other molecules. It has an off-scaling electrophilic or phenolic functionality and is the best in terms of overall performance against the protein from multiple species of bacteria under a variety of conditions. Ideally, SAR studies will allow identification of a compound with significantly better inhibition for both cell-based studies and crystallography [226]. Recent SAR studies showed that the introduction of a smaller quinazoline ring, instead of the benzimidazole, retains the potency of the compound, whilst the incorporation of a small and positively charged side chain improved activity [227].

Taking into account the structural similarity of the pyrrolopyrazine moiety, pyridazine moiety, alviamidazole, and thalidomide, it has been hypothesized that the benzimidazole scaffold would be a good starting point for the development of novel FtsZ inhibitors, with good activity against both drug-sensitive and drug-resistant M. tuberculosis strains [228]. Specifically, the activity of benzimidazole derivatives (Fig. 27) against M. tuberculosis clinical strains has been reported [229]. Docking, synthesis, structure elucidations, in vivo antibacterial activity and cytotoxicity assay against VERO cells of benzimidazole derivatives led to compounds with good in vitro antibacterial activity [225]. The potency, selectivity and low cytotoxicity of these compounds make them valid leads for improved anti- tubercular developments [222].

However, investigations of the benzamide family molecules led to the development of PC190723 (Fig. 27) [229], which was the first non-nucleotide inhibitor to be co-crystallized with FtsZ [230]. This compound activates the GTPase activity and alters the cooperativity of the FtsZ monomer, as demonstrated by crystallographic studies. Being active in vivo, PC190723 is considered the best inhibitor of FtsZ to date, although actually limited to Staphylococcus aureus.

4.6. CTP Synthetase (PyrG)

The biosynthetic and salvage pathways of pyrimidines represent a central point of interest in terms of antibacterial drug development [231]. Among the enzymes involved in that pathway, the CTP synthase is the most attractive, being recognized as a target of antibacterial [232] and antiviral agents [233, 234] and, recently, of antifungal and anti-bacterial compounds [235].
The mycobacterial CTP synthetase PyrG is an essential enzyme that catalyzes the production of CTP starting from UTP and glutamine in an ATP-dependent manner. It represents a key player for several biological processes, such as DNA, RNA and phospholipids biosynthesis [236]. The crystal structure of M. tuberculosis PyrG has been recently solved on a 2.0 Å resolution data set, highlighting the presence of two domains that organize in a tetramer: a synthetase domain located at the N-terminus, and a glutamine amidotransferase domain located at the C-terminus [235].

Through whole cell screening of a 594 compounds chemical library, two M. tuberculosis PyrG inhibitors, named 7947883 and 7904668 (Fig. 28) have been identified. These inhibitors are both products intercellularly activated by FAD-dependent monooxygenase EhaA. The EhaA mechanism of activation of these compounds has been defined and was similar to that performed for ETH activation (Fig. 29). The active S-dioxide metabolite of 7947882 has been synthesized (11426026 compound) and demonstrated to be a competitive inhibitor towards ATP (K_i 10 μM) [235].

This behavior was in accordance with the position of the residues mutated in the resistant mutant, located in the proximity of the ATP-binding site of the enzyme. Metabolomic studies revealed that, by blocking PyrG, the nucleotide metabolism is significantly damaged, thus confirming its central role in several cellular processes where nucleotides are involved, as well as its strong potentiality as cellular target for new antimycobacterials [235].

Fig. (27). FnrZ inhibitors divided by their mechanism of action.

Fig. (28). M. tuberculosis PyrG inhibitors.

Afterwards, the virtual screening on PyrG of the Collaborative Drug Discovery (CDD) compounds database identified further compounds, with already...
known antitubercular activity, which could likely bind PyrG. Four compounds with high docking score have been identified, and one of them, the CDD-823953, resulted to be active against PyrG activity in vitro (G	extsubscript{50} of 88.9 µM) [235].

Although the CDD-823953 is a weak PyrG inhibitor, it remains a new antitubercular not correlated with the previous ones that inhibits PyrG enzyme activity. All these results suggest that PyrG is a good target for new antitubercular compounds. Identification of inhibitors of CTP-synthase from other organisms [232-234] makes PyrG a very promising target. Consequently, it could be useful to utilize M. tuberculosis PyrG enzyme to screen several other chemical libraries of compound having lincomycin antitubercular activity, in order to find new potential compounds for antitubercular treatments.

![Fig. (29). Mechanism of EtIA mediated activation of 7947823 compound.](image)

CONCLUSION

There has been considerable progress in the discovery of new lead compounds for treating tuberculosis.

Among the newly identified antitubercular compounds, novel derivatives have been synthesized starting from already known inhibitors of old repurposed targets such as DNA gyrase and RNA polymerase.

A target-based approach can be a faster and more efficient method for drug identification compared to the traditional de novo drug-discovery. However, antitubercular compounds often show limited efficacy against M. tuberculosis, because of its thick cell wall and its efflux systems, but biochemistry and structural biology are now promoting new drug and target discoveries. For these reasons, preclinical ITT for the identification of scaffolds, followed by target identification and then optimization against the target, remains the best strategy to fight this pathogen.

Clearly, the growing reports of MDR-TB and XDR-TB strains is pointing out the acute need for new cell-wall targets. Nevertheless, some of the newly identified inhibitors are considered good candidates and have now entered clinical trials. FBTZ169 is one of the most effective inhibitors against the EpyEII promising target and is planned to enter human clinical trials in 2016. Phenotypic screening has allowed the characterization of new potential drug targets, highlighting the importance and essentiality of some processes, such as coenzyme A biosynthesis, nucleotide biosynthesis, cellular division and energy metabolism. Although the current situation of lead generation against TB has improved in recent years, it is still too slow and extremely wanting in success. Relevant changes are needed in order to shorten TB treatment duration and to produce novel regimens with higher efficacy against drug-resistant TB.

CONFLICT OF INTEREST

The authors confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

All individuals listed as authors have contributed substantially to the collections and discussions of the reported published work. This work was supported by European Community’s Seventh Framework Program (Grant 266872) and “Univerismo – Tuberculosis: un killer riemergente” (University of Parma, Italy).

REFERENCES

List of original manuscripts

List of original manuscripts
List of original manuscripts

[References to manuscripts]
List of original manuscripts

Nov and Old Hot Drug Targets in Tuberculosis

Se benzothiourea-induced killing of Mycobacterium in vivo

List of original manuscripts
List of original manuscripts

New and Old Hot Drug Targets in Tuberculosis

List of original manuscripts

List of original manuscripts

 DISCLAIMER: The above article has been published in English (head of print) on the basis of the manuscript provided by the author. The Editorial Department reserves the right to make minor modifications for further improvement of the manuscript.