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Abstract

Persistent homology has proven to be a useful tool to extract information from data
sets. Its method can be summarised by a standard workflow: start with data, build the
chain complex of a simplicial complex modelling the data, apply homology obtaining
the so-called persistent module, and retrieve topological information using invariants.
Complete, and thus most discriminative, invariants are given by the indecomposables
of the persistent modules. However, such invariants can be retrieved only for the
objects of finite representation type whose decomposition is efficiently computed. In
addition, homology might be an overkill, and some information may be lost while
applying it to the chain complexes. The starting point of our investigation is the
idea that a direct study of the chain complex can address these issues. Therefore,
we investigate the category of tame parametrised chain complexes, which are chain
complexes evolving according to one real parameter. Such a category is quite rich
and includes many interesting types of objects, such as parametrised vector spaces,
commutative ladders and zigzag modules. We define a model category structure on
the category of tame parametrised chain complexes. This setting is quite natural
since chain complexes admit a model category structure themselves. Moreover, we can
exploit the rich theory of model category to extract invariants. In general, in a model
category, there are special objects called cofibrant objects, that can be used to study
any other object in the category by approximating it through them. After identifying
the cofibrant objects in the category of tame parametrised chain complexes, we study
their indecomposables. We find that, despite in general tame parametrised chain
complexes are of wild representation type, the indecomposables of cofibrant objects
can be fully described. We then approximate every tame parametrised chain complex
using two cofibrant objects, called the minimal cover and the minimal representative.
Such objects are crucial since they are invariants. In particular, the minimal cover is
a homological invariant, and the minimal representative is a homotopical invariant.
Thus, these two objects are retrieving all the topological information of the objects
they are approximating. In conclusion, we prove that it is possible to analyse data
using a new workflow: start with data, build the chain complex of a simplicial complex
modelling the data, associate to it either a minimal cover or a minimal representative,
and decompose the chosen one to retrieve a summary of the information in the data.
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k Field
N Set of natural numbers
ObC Class of objects of a category C
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HomC pX,Y q Subclass of HomC of morphisms of all morphisms X Ñ Y in C
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vectk Category of compact vector spaces
GVectk Category of graded vector spaces
Ch Category of chain complexes
ch Category of compact chain complexes
tame pr0,8q ,vectkq Category of compact parametrised vector spaces
tame pr0,8q , chq Category of tame parametrised chain complexes
ZSC Category of zigzag sequences of zigzag profile C
Zigzag Category of zigzags
C Ó Y (X Ò C) (Co)slice category
rns Poset of the first n natural numbers
r0,8q Poset of nonnegative real numbers
� Terminal object
∅ Initial object
LF Left Kan extension of a functor F
SV Suspension of a graded vector space V
DV Cone of a graded vector space V
ZX Graded vector space of the cycles of a chain complex X
BX Graded vector space of the boundaries of a chain complex X
HX Graded vector space of the homology of a chain complex X
CX Cone of a chain complex X
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Irb,dq Interval vector space
Ih rb, dq Interval sphere of dimension h
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1X Identity morphisms on X
B Boundary map
δ Connecting morphism
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Introduction

Since its first developments, the science of complex systems has been recognised as a
very fruitful, multidisciplinary approach to address theoretical problems and related
applications in many different fields of research, ranging from traffic flow theory to
quantitative biology and social sciences.

Data Science aims at analysing the variety of data produced when studying complex
systems and networks by using more and more advanced modelling and computational
tools. The massive amount of data, however, often goes beyond the capability of existing
computers. Moreover, the effectiveness of standard data analytic tools strongly depends
on the accuracy of the measurements used to obtain the data, making such tools often
not informative enough. In these respects, it has been soon recognised that improved
mathematical tools are necessary to simplify and summarise the features of these huge
data sets. The first need is to convert the data into signatures that are less sensitive
to noise variations and then feed them into the standard machine learning machine.
Algebraic Topology can be used to focus on specific signatures: topological invariants
that depend only on global features of simplicial complexes built from the data. These
signatures are, by definition, less sensitive to local noise. These considerations prompt
the development of a new branch of studies, Topological Data Analysis (TDA), which
has found numerous applications in a diverse range of fields [46].

As described by Carlsson [10], TDA provides four major advantages:

• The capability of highlighting particular large-scale behaviours, allowing for the
extraction of quantitative information, such as connectivity and presence of loops.

• The possibility of ignoring the precise values of the metric involved, while pre-
serving only the vicinity information. Such metrics, especially in the medical and
biological contexts, are often non-intrinsic, and their choice is not always justified
theoretically.

• The study of properties which do not depend on the coordinates. Data coordi-
natisation is often a consequence of the used storage methods and thus does not
carry intrinsic information.

• The possibility of studying the whole range of variation of a parameter and
analysing the interplay between the geometrical objects constructed from data
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while the parameter evolves. This allows not to select a threshold a priori, avoiding
the issue of choosing the right cutoff.

One of TDA’s most successful tools is persistent homology. The underlying idea
traces back to the early 1990s with the works of Frosini [18] and Robins [38]. Persistent
homology studies the homology of a dataset, embodying many of the advantages above
recalled. Indeed, homology catches global information of a data set, studying its loops in
different dimensions. It is called persistent because it analyses the features persisting in
the data when a parameter changes. One of the most used parameters is the reciprocal
distance from the elements of the dataset seen as points in a metric space, and thus it
is possible to study vicinity features without introducing coordinates.

Today, persistent homology profits of techniques from different mathematical dis-
ciplines, such as Morse theory [31] and quiver representation [33]. Moreover, many
algorithms have been developed for persistent homology computation [6, 7], and its
applications vary from medicine to material science [8, 34, 42, 43].

Persistent homology method can be described by a standard workflow: start from
the data, build a simplicial complex, such as the Vietoris-Rips complex, compute its
chain complex describing simplexes adjacency, apply homology obtaining the so-called
persistent module, and retrieve topological information. Such information is summarised
using invariants. Among the various invariants that can be used, the complete ones are
given by the indecomposables decomposing persistent modules. Completeness of the
invariants is useful because it guarantees the maximal discriminative power. However,
it is not always possible to describe the invariants extracted by the indecomposables:
one is limited to the objects of finite representation type, for which it is possible to
list all the indecomposable types [33], and, among them, only to the objects whose
decomposition can be computed algorithmically. For example, a class of objects called
commutative ladders cannot be analysed using its indecomposables because it is of wild
representation type [9]. On the other hand, the indecomposables of another class of
objects, the zigzag modules, are fully described, but so far there is no efficient software
to analyse them [11, 12, 13]. In addition, homology might be an overkill, and some
information may be lost while applying it to the chain complexes. Thus, it would be
desirable to obtain also homotopical invariants, since homotopy is less forgetful about
the shape of data than homology is. Some work has already been done in this direction
[19]. However, homotopy theory is typically harder to be turned into a computable
tool, and this is the reason why TDA has focused more on homology.

The starting point of our investigation is the idea that a direct study of the chain
complex built from data can address these issues. The idea comes from the work of
Dwyer and Spaliński [16], where the study of chain complexes as a model category
provides information not just about the homology but also about the homotopy of the
objects.

Applying the idea of persistence to chain complexes has led us to introduce tame
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parametrised chain complexes: the category at the core of this thesis. They are chain
complexes evolving according to one real parameter. We call them tame since there is
only a finite number of values of the parameter at which the chain complexes change.
It is reasonable to allow only for a finite number of changes because real data are
typically finite. The category of tame parametrised chain complexes is quite rich and
includes many interesting types of objects, such as persistent modules, which we call
parametrised vector spaces, commutative ladders, and zigzag modules, which we call
simply zigzags.

We define a model category structure on the category of tame parametrised chain
complexes. This setting is quite natural since we know that chain complexes admit a
model category structure themselves [16]. Moreover, we can take advantage of the rich
model category theory to extract invariants. In general, in a model category, there are
some special objects called cofibrant objects, over which one has a little bit more control.
These objects can be used to study the other objects in the category by approximating
them through cofibrant objects.

Following this standard path in model category theory, we begin with identifying
the cofibrant objects in the category of tame parametrised chain complexes. They
correspond to chain complexes that grow along with one real parameter, also known
in the literature as filtered chain complexes. Such objects are central in the theory
of persistent homology since one of the most used simplicial complex is the Vietoris-
Rips complex, whose chain complex is filtered. We then study such objects, finding
that, despite in general tame parametrised chain complexes are of wild representation
type, the indecomposables of cofibrant objects can be fully described [5, 30, 44, 45].
One of the reasons why the decomposition of cofibrant objects is crucial is that it is
computable algorithmically [6, 7]. This means that we can use the number and type
of the indecomposables as invariants for the cofibrant objects. These invariants are
in perfect accordance with the previous theory of persistent homology: by applying
homology to the indecomposables of a cofibrant object, we retrieve the decomposition
of the persistent module given by the homology of the cofibrant object.

After studying cofibrant objects, we use them to approximate any other tame
parametrised chain complex. In general, an object admits many cofibrant approxima-
tions but among all of them, two are of particular interest, namely the minimal cover
and the minimal representative. In general, these two objects do not need to exist in
a model category. However, whenever they exist, they are invariants. We prove that,
in the category of tame parametrised chain complexes, both the minimal cover and
the minimal representative exist. The minimal cover is a homological invariant, and
the minimal representative is a homotopical invariant. Thus, these two objects are
retrieving all the topological information of the objects they are approximating. Since
they both are cofibrant, and thus of finite representation type, it is possible to define
invariants for any tame parametrised chain complex using the number and type of the
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indecomposables of its minimal cover and minimal representative.
In conclusion, we prove that it is possible to analyse data using a new workflow:

start with data, build the chain complex of a simplicial complex modelling the data,
associate to it either a minimal cover or a minimal representative, and decompose the
chosen one to retrieve a summary of the information in the data. This method allows
us to extract invariants for any tame parametrised chain complexes.

Outline of the thesis. In Chapter 1, we recall the basic definitions and results
of category theory. We aim for this work to be as much self-contained as possible.
Therefore, we review all the classical results we make use of, providing the pertinent
references.

In Chapter 2, we define the categories that are used throughout the whole thesis,
along with some essential property of them. Part of these results is already well known,
but we decided to prove and include them to comply with our notation. We define the
discretisation of the parametrising poset of a functor category. The definition is crucial
and is used extensively in the thesis. We next study compactness in the category of
interest. Finally, we motivate the study of tame parametrised chain complexes with
three examples. In particular, we prove that parametrised vector spaces, commutative
ladders, and zigzag can be seen as tame parametrised chain complexes.

In Chapter 3, we show how to extend the model structure of a model category to the
category of its tame parametrised objects. Before presenting the result, we introduce
the definition and properties of a model category. Here, we decided to include all the
proofs to keep the work self-contained. We also provide an explicit example of a model
category, the category of compact chain complexes, and we use the model category
setting to prove the standard decomposition of compact chain complexes. Finally, we
define the distinguished classes of morphisms for model categories of tame parametrised
objects, and we prove that they verify the axioms of a model category.

In Chapter 4, we describe the cofibrant objects in the model category of tame
parametrised objects of a given model category. Then we prove the decomposition
theorem for cofibrant objects in the model category of tame parametrised chain com-
plexes. This decomposition theorem is crucial since it provides invariants for cofibrant
objects. Moreover, since the cofibrant objects are used to define invariants for general
parametrised chain complexes, such a decomposition provides information about any
tame parametrised chain complex.

In Chapter 5, we first study invariants of a general model category, describing the
minimal factorisation, the minimal cover and the minimal representative in any model
category. We show that if any of them exists, then it is unique up to isomorphisms.
This in particular shows that they are invariants. We then proceed to study in details
minimality in model categories of tame parametrised objects. In Section 5.2, we show
that if in a model category the minimal factorisation and the minimal cover exist, then
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they do also in the model category of its tame parametrised objects. In Section 5.3, we
study the minimal representative and the minimal cover for compact chain complexes,
showing that they both exist in the category of compact chain complexes. In Section 5.4,
we prove that minimal representatives exist for tame parametrised chain complexes, and
we provide a characterisation for both the minimal cover and the minimal representative
in such a category. Finally, in Section 5.5, we analyse the minimality in the case of
parametrised vector spaces, commutative ladders and zigzags.

Original contributions. In general, the whole approach of the thesis is original
[14]. We are not aware of other authors studying tame parametrised chain complexes
directly or using the model category theory in connection with TDA. The definition of
a model structure on the category of tame parametrised chain complexes, as well as
the proof that such a structure satisfies the axioms of a model category, are original
results. The cofibrant tame parametrised chain complexes are known in the literature
as filtered chain complexes. Even though their decomposition theorem is already known
[5, 30, 44, 45], the method we apply to prove such a decomposition is novel. The
embedding of different classes of objects in the category of tame parametrised chain
complexes is a further original result. While the idea of minimality is not novel in
model category theory [39], the results proving the existence of minimal cover and
minimal representative in the model category of tame parametrised chain complexes,
and their characterisation, are original.



Chapter 1

Preliminaries on category theory

Category theory is the field of mathematics that describes relations between objects,
where objects are intended in the most general terms. The definition of a category
itself asks no conditions on the objects, but it requires some minimal assumptions on
the relations, so-called morphisms. These requirements are the bare minimum that can
be asked, and often they are not enough to guarantee the existence of all the needed
constructions. In these cases, it is necessary to add some additional structure to the
category, such as abelianity or a model structure.

Considering relations, one may want to study relations at a higher level than between
objects, and investigate the relations between categories. In this case, relations are
known under the name of functors, and they must satisfy some essential requirements,
so to transfer the structure of a category correctly to another one.

Moving to an even higher level of abstraction, one may consider relations between
functors. In this case, one talks about natural transformations.

In this chapter, we provide the introductory definitions for the study of category
theory. The chapter is organised as follows. In Section 1.1, we introduce the concepts
of a category and a functor, along with their basic properties. In Section 1.2, we define
abelian categories, and the main constructions allowed therein. Finally, in Section 1.3,
we focus on an example of an abelian category given by the category of chain complexes.

A classical reference for the notions treated in this chapter is [28].

1.1 Categories and functors

Definition 1.1. A category C is given by:

(i) a class ObC of objects;

(ii) a class HomC of morphisms between objects, together with a composition
operation satisfying the following properties:

1



Chapter 1. Preliminaries on category theory 2

 for all f : X Ñ Y and g : Y Ñ Z morphisms in C, the composition g�f : X Ñ

Z of f and g is a morphism in C;

 for all f : X Ñ Y , g : Y Ñ Z and h : Z ÑW morphisms in C, it holds that
h � pg � fq � ph � gq � f ;

 for every object X in C, there exists a morphism 1X : X Ñ X, called the
identity, such that, for all morphisms f : X Ñ Y and g : Y Ñ X, it holds
that 1Y � f � f and g � 1X � g.

A category C is called small if the classes ObC and HomC are sets. The symbol
HomC pX,Y q denotes the subclass of HomC of all morphisms X Ñ Y in C.

If a category has only the identity morphisms is called discrete.

We now present two examples of categories. In both of them, the composition of
morphisms is the standard composition of functions, and the identity is the standard
identity function.

Set: Objects are sets, and morphisms are the functions between them.
Ab: Objects are abelian groups, and morphisms are the group homomorphisms

between them.

If C is a category, the opposite category Cop has the same objects as C and opposite
morphisms. This means that a morphism X Ñ Y in Cop is given by a morphism
Y Ñ X in C, and the composition of morphisms g � f in C is the composition f � g in
Cop.

To handle categories in less abstract terms, we can ask them to be small. However,
this is a strong requirement. For example, Set is not small. The following definition
provides a less strict condition.

Definition 1.2. A category C is said to be locally small if HomC pX,Y q is a set, for
all objects X and Y of C.

Set is locally small. All the considered categories in this thesis are locally small.

Considering morphisms, one may need to generalise the notion of invertibility in
categorical language. The two-sided invertibility has a direct correspondence to the idea
of isomorphism. The one-sided invertibility corresponds to the notion of being a section
or a retraction. Typically, they are more restrictive than being an epimorphism or a
monomorphism. As a consequence, every isomorphism is, in particular, an epimorphism
and a monomorphism, but the converse is not valid in general.

Definition 1.3. A morphism f : X Ñ Y in a category C

• is an isomorphism if it admits a two-sided inverse, which is a morphism g : Y Ñ X

in C such that g � f � 1X and f � g � 1Y ;
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• has a section if it admits a right-inverse, which is a morphism s : Y Ñ X such
that f � s � 1Y ;

• has a retraction if it admits a left-inverse, which is a morphism r : Y Ñ X such
that r � f � 1X .

Having a section implies the right-cancellative property, and having a retraction
implies the left-cancellative property. The notion of monomorphism and epimorphism
is more general than the notion of a section and a retraction.

Definition 1.4. Let f : X Ñ Y be a morphism in a category C.

• f is an epimorphism if it is right-cancellative, i.e. if it holds that g1 � f � g2 � f

implies g1 � g2, for all morphisms g1, g2 : Y Ñ Z in C;

• f is a monomorphism if it is left-cancellative, i.e. if it holds that f � g1 � f � g2

implies g1 � g2, for all morphisms g1, g2 : Z Ñ X in C. Monomorphisms are
denoted by the symbol �.

The notion of isomorphism leads to an equivalence relation on objects, where two
objects are equivalent if there is an isomorphism between them.

Let Y be an object in the category C. Consider the category C Ó Y , whose objects
are morphisms X Ñ Y in C. A morphism in C Ó Y between X Ñ Y and X 1 Ñ Y is a
morphism X Ñ X 1 in C such that the following diagram commutes:

X X 1

Y

In this category, two objects f : X Ñ Y and g : X 1 Ñ Y are isomorphic if there exists
an isomorphism h : X Ñ X 1 in C such that f � g � h. For two such isomorphic objects,
one is an isomorphism (resp. epimorphism, monomorphism) if and only if so is the
other one.

Definition 1.5. A subobject of an object Y in a category C is the equivalence class of
a monomorphism f : X Ñ Y with respect to the isomorphism relation in C Ó Y .

Dually, fix an object X in the category C, and consider the category X Ò C, whose
objects are morphisms X Ñ Y in C. A morphism in X Ò C between X Ñ Y and
X Ñ Y 1 is a morphism Y Ñ Y 1 such that the following diagram commutes:

X

Y Y 1
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In this category, two objects f : X Ñ Y and g : X Ñ Y 1 are isomorphic if there exists
an isomorphism h : Y Ñ Y 1 in C such that g � h � f . For two such isomorphic objects,
one is an isomorphism (resp. epimorphism, monomorphism) if and only if so is the
other.

Definition 1.6. A quotient of an object X in a category C is the equivalence class of
an epimorphism f : X Ñ Y with respect to the isomorphism relation in X Ò C.

We can now describe morphisms between categories, which are called functors.

Definition 1.7. Given two categories C and D, a functor F : C Ñ D associates

(i) with each object X in C an object F pXq in D;

(ii) with each morphism f : X Ñ Y in C a morphism F pfq : F pXq Ñ F pY q in D,
such that:

 for every object X in C, F p1Xq � 1F pXq;

 for all morphisms f : X Ñ Y and g : Y Ñ Z in C, it holds that F pg � fq �
F pgqF pfq;

We use the symbol F : HomC pX,Y q Ñ HomC pF pXq , F pY qq to denote the func-
tion between the sets of morphisms. We say that the objects in D are indexed, or
parametrised, by C. We refer to C as the source category, and to D as the target
category.

As first examples of a functor, we define the hom-functors. Recall our global
assumption that C is locally small.

Definition 1.8. Let C be a category and X an object in C.

• The functor HomC pX,�q : C Ñ Set associates

(i) to each object Y the set of morphisms HomC pX,Y q;

(ii) to each morphism f : Y Ñ Z the morphism HomC pX, fq : HomC pX,Y q Ñ

HomC pX,Zq that maps g in HomC pX,Y q to f � g.

• The functor HomC p�, Xq : Cop Ñ Set associates

(i) to each object Y the set of morphisms HomC pY,Xq;

(ii) to each morphism f : Y Ñ Z the morphism HomC pf,Xq : HomC pZ,Xq Ñ

HomC pY,Xq that maps g in HomC pZ,Xq to g � f .

One may need a functor to satisfy specific properties. In particular, we are interested
in two properties: being full and being faithful.

Definition 1.9. A functor F : C Ñ D is
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• full if, for every pair of objects X, Y in C, the function F : HomC pX,Y q Ñ

HomC pF pXq , F pY qq is surjective;

• faithful if, for every pair of objects X, Y in C, the function F : HomC pX,Y q Ñ

HomC pF pXq , F pY qq is injective.

A functor which is both full and faithful is called fully faithful.

Example 1.10. A poset is a category I such that:

(i) for every pair of objects X,Y in I there is at most one morphism from X Ñ Y ;

(ii) if there is a morphism from X Ñ Y and a morphism from Y Ñ X in I, then
X � Y .

This definition is the categorical interpretation of the definition of a partially ordered
set, which is a set endowed with a reflexive, antisymmetric, and transitive binary
relation. Two types of posets are of interest in our work: the poset of nonnegative real
numbers, denoted by r0,8q, and the poset of the first n natural numbers, denoted by
rns. To describe a functor rns Ñ r0,8q it is enough to specify a sequence of numbers
0 � t0 ¤ t1 ¤ � � � ¤ tn of r0,8q. Such a functor is fully faithful if the sequence is
strictly increasing. From now on, we identify functors rns Ñ r0,8q with such sequences,
and denote them by rns � r0,8q. �

Functors themselves form a category, where morphisms are given by natural trans-
formations.

Definition 1.11. Let F and G be functors between the categories C and D. A natural
transformation η : F Ñ G assigns to every object X in C a morphism ηX : F pXq Ñ
G pXq in D (called the component of η at X) such that for any morphism f : X Ñ Y

in C, it holds that ηY � F pfq � G pfq � ηX .

Let η : F Ñ G and µ : G Ñ H be natural transformations between the functors
F,G,H : C Ñ D. The composition µη is defined to be a natural transformation from F

to H given by the collection of all morphisms µXηX : F pXq Ñ H pXq, for every object
X in C. This composition fulfils all the requirements needed to define a category. We
use the symbol fun pC,Dq to denote the category whose objects are functors from C
to D and whose morphisms are natural transformations with the composition defined
above. We say that the objects in fun pC,Dq are functors indexed by C with values
in D. Even if C and D are locally small, this category may fail to be locally small.
To assure local smallness of fun pC,Dq, we need to assume C to be small. In our
work, we study the functor categories where C is a poset, specifically r0,8q. Denote
by fun pr0,8q ,Dq the category of objects in D parametrised by r0,8q. Since r0,8q is
small, if D is locally small, so is fun pr0,8q ,Dq.
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Limits and colimits

Limits and colimits are important constructions in category theory. Constructions such
as pushouts, pullbacks, and initial and terminal objects are examples of limits and
colimits.

Definition 1.12. Let F : J Ñ C be a functor. A cone to F is an object N of C
together with a family ψI : N Ñ F pIq of morphisms indexed by the objects I of J,
such that, for every morphism f : I Ñ J of J, it holds that ψJ � F pfq � ψI .

Dually, a cocone of F is an object N of C together with a family ψI : F pIq Ñ N of
morphisms indexed by the objects I of J, such that for every morphism f : I Ñ J in J,
it holds that ψI � ψJ � F pfq.

We can now define limits and colimits.

Definition 1.13. Let F : J Ñ C be a functor. A limit of F is a terminal cone pL,ϕq to
F , i.e. a cone such that for any other cone pN,ψq to F there exists a unique morphism
u : N Ñ L such that ϕI � u � ψI for all I in J. Dually, a colimit of F is an initial
cocone pL,ϕq of F , i.e. a cocone such that for any other cocone pN,ψq of F there exists
a unique morphism u : LÑ N such that u � ϕI � ψI for all I in J

In the previous definition, a (co)limit is called small (resp. finite) whenever J is
so. A category C is said to have small (co)limits if all small (co)limits exist in C. In
the notation of the (co)limit, if the morphisms of the (co)cone are clear, we avoid to
specify them and simply write the (co)limit as L.

Remark 1.14. In general, it is not always true that (co)limits exist in a category C.
However, by (co)cone universality, for any two (co)limits, there is a unique isomorphism
between them.

In a functor category fun pC,Dq, if D has (co)limits, then so does fun pC,Dq, and
they are computed objectwise.

As examples of limits, we present three constructions.
Terminal object. Let J be the empty category. For any category C, there is a

unique functor index by J with values in C. Its limit is called the terminal object of C.
An object � is terminal if and only if there is a unique morphism from X to � for every
object X in C.

Product. Let J be a discrete category and C a category. A functor indexed by J
with values in C is a collection of objects tXjuj of C. The limit of such a functor is
called product and denoted by

±
j X

j .
Pullback. Let f : X Ñ Z and g : Y Ñ Z be morphisms in C. We can think of the

commutative square
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P Y

X Z

g

f

as the cone of f and g. If such a cone is terminal, the commutative square is called a
pullback square. We also refer to the limit of the diagram X Z Y

f g as the
pullback of f and g. A morphism given by the universal property of the pullback is
called mediating morphism of pullback.

As examples of colimits, we present four constructions.
Initial object. Let J be the empty category. Recall the unique functor indexed by

J with values in C. Its colimit is called the initial object of C. An object ∅ is initial if
and only if there is a unique morphism from ∅ to X for every object X in C.

Coproduct. Let J be a discrete category and C a category. Recall that a functor
indexed by J is a collection of objects tXjuj of C. The colimit of such a functor is
called coproduct and denoted by

²
j X

j .
Pushout. Let f : Z Ñ X and g : Z Ñ Y be morphisms in C. We can think of the

commutative square

Z Y

X Q

g

f

as the cocone of f and g. If such a cocone is initial, the commutative square is called
a pushout square. We also refer to the colimit of a diagram X Z Y

f g as the
pushout of f and g. A morphism given by the universal property of the pushout is
called mediating morphism of pushout.

Directed colimit. Let J be a directed set, i.e. a set endowed with a preorder in
which any finite subset has an upper bound, and C a category. A functor whose source
category is a directed set J and taget category is C is called a directed system over J
in C. The colimit of a directed system in C is called directed colimit.

Fix a category C and a directed set J. A directed system in C is also denoted
by tXiu. A morphism of directed systems f : tXiu Ñ tY iu in C over J consists
of morphisms tf i : Xi Ñ Y iuiPJ such that the following diagram commutes for all
j ¤ i P J:

Xj Xi

Y j Y i

Xj i

fj f i

Y j i
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It is then possible to define the category DSC of directed systems over J in C. The
objects of the category are directed systems over J in C, and the morphisms are the
above-defined morphisms between them. The composition is defined pointwise and
satisfies the axioms of a category.

Proposition 1.15. If the category C admits all directed colimits, then there exists
a functor dcolim: DSC Ñ C, sending each directed systems to its directed colimit,
and each morphism of directed systems to the unique morphism given by the universal
property of colimit.

Proof. We need to prove that the assignment dcolim satisfies the axioms of a functor.
Consider the identity morphism 1tXiu : tXiu Ñ tXiu and the colimit pdcolimX,ϕiq of
a directed system tXiu. Then we have that dcolim 1tXiu�ϕi � ϕi and dcolim 1dcolimX �

ϕi � ϕi. By uniqueness of the colimit, it follows that dcolim 1tXiu � 1dcolimX . Con-
sider now three directed systems tXiu, tY iu and tZiu, with morphisms f : tXiu Ñ

tY iu and g : tY iu Ñ tZiu, such that the composition g � f is defined. We show
that dcolim

�
gi � f i

�
� dcolim

�
gi
�

dcolim
�
f i
�
. Let pdcolimX,ϕq, pdcolimY, ψq and

pdcolimZ, ζq be the colimits of tXiu, tY iu and tZiu respectively. Then

dcolim
�
gi � f i

�
� ϕi � ζi �

�
gi � f i

�
�

�
ζi � g

i
�
� f i �

�
dcolim gi � ψi

�
� f i

� dcolim gi �
�
ψi � f

i
�
� dcolim gi dcolim f i

where at each step we are using the commutativity of the cocones. This proves the
claim.

By Remark 1.14, for any two initial (resp. terminal) objects there is a unique
isomorphism between them. In general, the initial and terminal objects do not coincide.
When they do, they are called the zero object, denoted by 0. As for initial and terminal
objects, for any two zero objects there is a unique isomorphism between them.

Consider the following commutative diagram:

X1 X2

Y1 Y2

f g

Suppose it is a pullback square. A morphism property P is said to be stable under
pullback if whenever g has P then also f has it. Dually, suppose the diagram is a
pushout square. A morphism property P is said to be stable under pushout if whenever
f has property P then also g has it. The following proposition provides an example of
stability. For a proof, see [32].

Proposition 1.16. Isomorphisms are stable under pushout.
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The following proposition is known as the pasting law for pullbacks (resp. pushouts),
and relate the pullback (resp. pushout) of two juxtaposed diagrams. For a proof, see
Chapter 5 of [4].

Proposition 1.17. Let the following diagram be commutative in a category C:

X1 X2 X3

Y1 Y2 Y3

If the right square is a pullback, then the outer square is a pullback if and only if the
left square is a pullback.
If the left square is a pushout, then the outer square is a pushout if and only if the right
square is a pushout.

The notion of a kernel of a morphism in category theory generalises the idea of
kernels in algebra. There are categories for which kernels do not exist.

Definition 1.18. Let C be a category with initial object ∅. The kernel of a morphism
f : X Ñ Y is an isomorphism equivalence class in C Ó X represented by an object
ker f Ñ X that fits in a pullback square:

ker f ∅

X Y
f

The existence of kernels depends on the existence of pullbacks and the initial object.

Another important notion is the notion of a cokernel of a morphism, which generalises
the idea of cokernels in algebra. There are categories for which cokernels do not exist.

Definition 1.19. Let C be a category with terminal object �. The cokernel of a
morphism f : X Ñ Y is an isomorphism equivalence class in Y Ò C represented by an
object Y Ñ coker f that fits in a pushout square:

X Y

� coker f

f

The existence of cokernels depends on the existence of pushouts and the terminal
object.
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Adjoint functors

The following relation between two functors F : C Ñ D and G : D Ñ C has proved to
be important.

Definition 1.20. F : C Ñ D and G : D Ñ C are called adjoint functors (F left-adjoint
to G and G right-adjoint to F ), if there exists a natural isomorphism between the
hom-functors

HomD pF p�q ,�q � HomC p�, G p�qq

Explicitly, a right-adjoint to F : C Ñ D is a functor G : D Ñ C together with a
natural transformation 1 Ñ GF such that for any morphism X Ñ G pY q in C there is
a unique morphism F pXq Ñ Y in D such that the following diagram commutes

X G pY q

GF pXq

As an example, colim: fun pCop,Dq Ñ D is the right-adjoint of the constant functor
∆: D Ñ fun pCop,Dq, which sends every object of D to the diagram functor constant
on this object.

Left Kan extension

In this section, we discuss the left Kan extension, which is the most fundamental notion
in category theory. As MacLane said, ‘The notion of Kan extensions subsumes all the
other fundamental concepts of category theory’[28].

Let G : C Ñ C1 be a functor, and D a category. The induced functor between
functor categories G� : fun pC1,Dq Ñ fun pC,Dq sends each functor H : C1 Ñ D to
the composition HG.

Definition 1.21. The left adjoint of G� is called the left Kan extension along G.

Explicitly, the left Kan extension of a funtor F : C Ñ D with respect to a functor
G : C Ñ C1 is a functor LF : C1 Ñ D together with a natural transformation η : F Ñ

pLF qG such that η satisfies the following property: for every functor M : C1 Ñ D
and natural transformation α : F Ñ MG, there is a unique natural transformation
γ : LF ÑM that fits in the following commutative diagram:

pLF qG

F MG

γ

α

η
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1.2 Abelian categories

To be able to use algebraic techniques, we need to put additional structure on a category.

Definition 1.22. A category C is pre-additive if, for each pair of objects X and Y in
C, HomC pX,Y q is an additive abelian group, and the composition of morphisms is
bilinear with respect to this addition.

Definition 1.23. An abelian category C is a pre-additive category satisfying the
following conditions:

(i) C has the zero object;

(ii) C has all finite products and coproduts;

(iii) Every morphism in C has a kernel and cokernel;

(iv) Every monomorphism is a kernel, and every epimorphism is a cokernel.

One of the examples we have presented before, Ab, is in particular an example of
an abelian category.

Remark 1.24. For every abelian category A, the following properties hold:

1. Finite coproducts coincide with finite products and are called direct sums. This
allows us to talk about the decomposition of objects;

2. If J is an arbitrary small category, then fun pJ,Aq is abelian. This property
provides a condition for functor categories to be abelian, and it is extremely useful
for us. In fact, all the functor categories of our interest fulfil this condition and
thus are abelian;

3. In A, all finite limits and colimits exist.

In particular, the first property leads to the following definition:

Definition 1.25. An object in an abelian category A is indecomposable if it is not
isomorphic to a direct sum of at least two non-zero objects of A.

The following result shows that isomorphisms, epimorphisms and monomorphisms
are stable under pushouts and pullbacks. For the proof, see Section 13 of [32].

Proposition 1.26. Consider the following diagram in an abelian category A:

X Y

Z W

g

g1

(1.2.1)
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If (1.2.1) is a pushout and g is a monomorphism (resp. an epimorphism), then
g1 is a monomorphism (resp. an epimorphism). Moreover, the induced morphism
coker pgq Ñ coker pg1q is an isomorphism.
If (1.2.1) is a pullback and g1 is an epimorphism (resp. a monomorphism), then
g is an epimorphism (resp, a monomorphism). Moreover, the induced morphism
ker pgq Ñ ker pg1q is an isomorphism.

Definition 1.27. In an abelian category A, let � � � Xj Xj�1 � � �
fj�1 fj fj�1

be a possibly infinite sequence of morphisms fj : Xj Ñ Xj�1. Such a sequence is
said to be exact if im pfj�1q � ker pfjq, for all j. An exact sequence of the form

0 X2 X1 X0 0f2 f1 is called short.

In a short exact sequence, the morphism f2 is a monomorphism, and the morphism
f1 is an epimorphism.

In the following proposition, we define and characterise the split exact sequences.
For a proof, see Chapter 1 of [29].

Proposition 1.28. In an abelian category A, the short exact sequence

0 X Y Z 0i p

is said to split if any of the following equivalent conditions holds:

 There exists a section of p, i.e. a monomorphism s : Z Ñ Y such that p � s � 1Z ;

 There exists a retraction of i, i.e. an epimorphism r : Y Ñ X such that r�i � 1X ;

 There exists an isomorphism f : Y Ñ X ` Z such that the following diagram
commutes:

0 X Y Z 0

0 X X ` Z Z 0

i

1

p

f 1

i1 p1

where i1 is the inclusion into the first factor, and p1 is the projection onto the
second factor.

The two following results are fundamental lemmas about exact sequences. For their
proofs, we refer to Chapter 5 of [40].

Lemma 1.29 (Five lemma). In an abelian category A, consider the commutative
diagram with exact rows

X1 X2 X3 X4 X5

Y1 Y2 Y3 Y4 Y5

f1 f2 f3 f4 f5
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 If f2 and f4 are epimorphisms and f5 is a monomorphism, then f3 is an epimor-
phism.

 If f2 and f4 are monomorphisms and f1 is an epimorphism, then f3 is a monomor-
phism.

 If f1, f2, f4, and f5 are isomorphisms, then f3 is an isomorphism.

Lemma 1.30 (Short five lemma). In an abelian category A, consider the commutative
diagram with exact rows

0 X1 X2 X3 0

0 Y1 Y2 Y3 0
f1 f2 f3

if f1 and f3 are monomorphisms, then f2 is a monomorphism; if f1 and f3 are
epimorphisms, then f2 is an epimorphism.

The following two propositions state some properties of kernels and cokernels. For
the proof, we refer to [41].

Proposition 1.31. Given the following commutative solid diagram with exact rows in
an abelian category A

0 X1 X2 X3

0 Y1 Y2 Y3

f

there exists a unique morphism f : X1 Ñ Y1, making the whole diagram commute.

Proposition 1.32. Given the following commutative solid diagram with exact rows in
an abelian category A

X1 X2 X3 0

Y1 Y2 Y3 0
f

there exists a unique morphism f : X3 Ñ Y3, making the whole diagram commute.

To conclude the section, we present a proposition that combines exact sequences
and pushouts.

Proposition 1.33. In an abelian category A, if the following diagram is commutative
with exact rows, then the left square is a pushout:

0 X1 X2 X3 0

0 Y1 Y2 X3 0

i1

f1

p1

f2 1
i2 p2
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Proof. Since the rows are exact sequences, i1 and i2 are monomorphisms and p1 and p2

are epimorphisms. To prove the claim, we consider the pushout P of i1 and f1 and show
it is isomorphic to Y2. The pushout P fits into the following commutative diagram:

0 X1 X2 X3 0

P

0 Y1 Y2 X3 0

i1

f1

p1

f2

f3

1
v

i2

i3

p2

where v is the mediating morphism induced of the pushout P , and i3 is a monomorphism
by Proposition 1.26. Moreover, since p1 is an epimorphism and the diagram commutes,
also p2 � v is an epimorphism. We can expand the diagram as follows, ensuring the
exactness of rows and the commutativity:

0 X1 X2 X3 0

0 Y1 P X3 0

0 Y1 Y2 X3 0

i1

f1

p1

f3 1
i3

1

p2�v

v 1
i2 p2

By Lemma 1.30, v is an isomorphism, proving the claim.

We now present a detailed example of an abelian category, the category of vector
spaces. We are especially interested in vector spaces because they are the building
blocks of the other categories we are working with.

Vector spaces

Let us fix a field k. For the rest of the work, all vector spaces are defined over k.
The category of Vectk is the category whose objects are vector spaces, and whose
morphisms are linear transformations. The composition is the standard composition of
linear transformations, and it satisfies the axioms of a category. Moreover, Vectk is
abelian. The zero object is the trivial vector space. Note that Vectk is not small, but
it is locally small [27]. The indecomposable objects in Vectk admit a straightforward
characterisation: an object V in Vectk is indecomposable if and only if dimV � 1 or
dimV � 0. From Remark 1.24, it follows that pushouts and pullbacks exist in Vectk.
Moreover, they admit an explicit description. We describe the pullback construction
first.

Let W1, W2 and U be vector spaces in Vectk. Let g1 : W1 Ñ U and g2 : W2 Ñ U

be two morphisms in Vectk. Define P :� tpw1, w2q | g1 pw1q � g2 pw2qu � W1 `W2.
The pullback of g1 and g2 is pP, π1, π2q, where πi, i � 1, 2, are the projections onto the
first and the second component respectively. As a pullback diagram:
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P W2

W1 U

π2

π1 g2

g1

(1.2.2)

We describe now the pushout construction. Let W1, W2 and V be vector spaces
in Vectk. Let f1 : V Ñ W1 and f2 : V Ñ W2 be two morphisms in Vectk. Define
Q :�W1 `W2��, where � is the equivalence relation given by pf1 pvq , 0q � p0, f2 pvqq

for all v P V . The pushout of f1 and f2 is pQ, ι1, ι2q, where ιi, i � 1, 2, are the inclusions
into the first and the second component respectively. As a pushout diagram:

V W2

W1 Q

f2

f1 ι2

ι1

(1.2.3)

In Vectk, the pullback and the pushout of a square are linked by the following
proposition. Let the following be a commutative diagram of vector spaces:

V W2

W1 U

f2

f1 g2

g1

(1.2.4)

Lemma 1.34. Let P and Q be respectively the pullback and the pushout of g1, g2 and
f1, f2 in diagram (1.2.4), with f and g the unique mediating morphisms of P and Q:

V

P W2

W1 U

f2
f

f1 g2

g1

V W2

W1 Q

U

f2

f1
g2

g1

g

Then f : V Ñ P is an epimorphism if and only if g : QÑ U is a monomorphism.

Proof. Suppose that f is an epimorphism and g is not a monomorphism. Then
there exists w � pw1, w2q � 0 in Q, such that g pw1, w2q � 0. Since the diagram
with the mediating morphism g commutes, we have g1 pw1q � �g2 pw2q � g2 p�w2q.
Thus, pw1,�w2q P P . Since f is an epimorphism, there exists v P V such that
f pvq � pw1,�w2q. Since the diagram with the mediating morphism f commutes,
w1 � f1 pvq and �w2 � f2 pvq. In other words, pw1, 0q � p0,�w2q, and pw1, w2q � 0 in
Q, which is a contradiction. Thus g is a monomorphism.

Suppose now that g is a monomorphism and f is not an epimorphism. Then there
exists pw1, w2q P P such that pw1, w2q R im pfq. Since pw1, w2q P P , g1 pw1q � g2 pw2q P

U . Since pw1, w2q R im pfq, pw1, 0q � p0, w2q. It follows that the equivalence classes
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pw1, 0q and p0, w2q are two distinct elements in Q such that g pw1, 0q � g p0, w2q, which
is a contradiction. Thus, f is an epimorphism.

Often, we do not deal with single vector space, but rather with a family of vector
spaces, indexed by natural numbers. We define then the category GVectk of graded
vectors spaces. An object in GVectk is a k-vector space graded over the natural
numbers N, which is a sequence of vector spaces V � tVhuhPN. A morphism between
graded vector spaces is a sequence of linear transformations tVh ÑWhuhPN, and the
composition is the composition of linear transformations degreewise. Such a composition
fulfils the axioms of a category. Moreover, GVectk is abelian. The zero object is the
graded vector space which is zero in all degrees. A graded vector space V is said to be
concentrated in degree n P N if Vh � 0 for all h � n. There is a fully faithful functor
Vectk Ñ GVectk that maps vector spaces to graded vector spaces concentrated in
degree 0.

We introduce now a construction over graded vector spaces that will be useful in
the decomposition of chain complexes in Section 3.2.

Construction 1.35. Let us consider a graded vector space V . Define SV to be the
graded vector space given by:

SVh :�

$&
%0 if h � 0

Vh�1 if h ¥ 1

Such graded vector space is called the suspension of V . �

Let V � k. The h-fold suspension of V is a graded vector space concentrated in
degree h. Such a graded vector space is called h-sphere, or simply sphere, and denoted
by Sh. Explicitly, the h-sphere Sh is depicted in the following diagram:

� � � 0 k 0 � � �

��� h�1 h h�1 ���

1.3 Chain complexes

A (non-negatively graded) chain complex is a sequence of linear transformations
X � tBh�1 : Xh�1 Ñ XhuhPN, called differentials, such that Bh � Bh�1 � 0 for every
degree h P N. In the notation of the differentials, we often ignore their indexes
and simply denote them by B, or BX to indicate which complex we are considering.
A morphism of chain complexes f : X Ñ Y is a sequence of linear transformations
tfh : Xh Ñ YhuhPN such that fh � BX � BY � fh�1 for every h P N. We also refer to a
morphism of chain complexes as a chain map. We denote by Ch the category whose
objects are chain complexes and whose morphisms are chain maps. A classical result
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shows that Ch is abelian [47]. The zero object is given by the chain complex zero in
all degrees. The direct sum of chain complexes is given degreewise. In particular, let
Y �

�
Yh, B

Y
h

�
and Z �

�
Zh, B

Z
h

�
be two chain complexes, their direct sum is the chain

complex X �
�
Xh, B

X
h

�
with Xh � Yh ` Zh and BXh � BYh ` BZh . Note that Ch is not

small, but it is locally small.
There is a fully faithful functor GVectk Ñ Ch that maps graded vector spaces

to chain complexes with all trivial differentials. Recall the fully faithful functor
Vectk Ñ GVectk that we defined in Section 1.2. The composition of these two
functors is a fully faithful functor Vectk Ñ Ch that maps vector spaces to chain
complexes nontrivial only in degree 0.

Let V be a graded vector space, and consider the chain complex associated to it by
the functor GVectk Ñ Ch. The same symbol V is also used to denote such a chain
complex, i.e. the chain complex t0: Vh�1 Ñ VhuhPN with trivial differentials.

We present three functors that map from chain complexes to graded vector spaces.
The following graded vector spaces are called respectively the cycles and the boundaries
of a chain complex X:

ZhX :�

$&
%X0 if h � 0

ker pBh : Xh Ñ Xh�1q if h ¥ 1
, BhX :� im pBh�1 : Xh�1 Ñ Xhq

Since Bh � Bh�1 � 0, the space of h-th boundaries BhX is a vector subspace of the
h-th cycles ZhX. The quotient ZhX{BhX is called the h-th homology of X and is
denoted by HhX. We write ZX, BX and HX to denote the non-negatively graded
vector spaces tZhXuhPN, tBhXuhPN, and tHhXuhPN. A chain map f : X Ñ Y maps
boundaries (resp. cycles) in X to boundaries (resp. cycles) in Y . As a consequence, the
assignments X ÞÑ BX, X ÞÑ ZX and X ÞÑ HX define three functors B,Z,H : Ch Ñ

GVectk. Given a chain map f : X Ñ Y , the induced map in homology is denoted by
Hf : HX Ñ HY .

Homology admits a more general description. In fact, homology is a functor
Hh : Ch Ñ Ab, which associates to a chain complex X in Ch the vector space
HhX � coker pim Bh�1 Ñ ker Bhq, for all h P N. As shown in Chapter 1 in [47],
homology is functorial and it preserves direct sums. See [29] for extended discussion
and proof.

Definition 1.36. A chain complex X is bounded if there exists m P N such that
Xh � 0 for all h ¡ m, and degreewise finite dimensional if for all h P N, Xh is a
finite-dimensional vector space.

Construction 1.37. [Cone and Path] Let X be a chain complex in Ch. We define
two chain complexes CX and PX over X, together with the morphisms i : X � CX

and p : PX Ñ X, as follows:
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PX � � � X4 `X3 X3 `X2 X2 `X1 X1

X � � � X3 X2 X1 X0

CX � � � X3 `X2 X2 `X1 X1 `X0 X0

p

�
��B5 �1

0 B4

�
��

�
��B4 1

0 B3

�
��

�
0 1

�

�
��B3 �1

0 B2

�
��

�
0 1

�

�
B2 1

�

�
0 1

�
B1

i

B4 B3

�
��1

0

�
��

B2

�
��1

0

�
��

B1

�
��1

0

�
�� 1

�
��B4 �1

0 B3

�
��

�
��B3 1

0 B2

�
��

�
��B2 �1

0 B1

�
��

�
B1 1

�

The assignements X ÞÑ CX and X ÞÑ PX define two functors Ch Ñ Ch. The chain
complex CX is called cone of X and the chain complex PX is called the path of X.
Note that HPX � HCX � 0. �

As an example of the cone construction, we present the cone of graded vector spaces.
Let V be a graded vector space. The cone of V is denoted by DV , and it is explicitly
described in the following diagram:

V � � � V3 V2 V1 V0

DV � � � V3 ` V2 V2 ` V1 V1 ` V0 V0

SV � � � V2 V1 V0 0

i

0 0
�
��1

0

�
��

0
�
��1

0

�
��

0
�
��1

0

�
�� 0

p

�
��0 �1

0 0

�
��

�
0 1

�

�
��0 1

0 0

�
��

�
0 1

�

�
��0 �1

0 0

�
��

�
0 1

�

�
0 1

�

0

0 0 0 0

The morphisms i : V � CV and p : PSV Ñ SV defined in Construction 1.37 coin-
cide with respectively i : V � DV and p : DV Ñ SV . Moreover, i : V � DV is a
monomorphism and p : DV Ñ SV is an epimorphism, and they form an exact sequence:

0 V DV SV 0i p

Note that HhDV � 0 for all h P N, HhSV � Hh�1V � Vh�1 for all h ¥ 1, and
H0SV � 0.

If V � k, the h-fold suspension of DV is a chain complex trivial in all degrees
except for degrees h, h� 1, with identity as boundary map in degree h. It is called the
h-disk, or simply disk, Dh. Explicitly:

� � � 0 k k 0 � � �

��� h�1 h h�1 h�2 ���

1
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Note that, when h � 0, D0 � S0.

Construction 1.38. [Mapping cylinder] Given a chain map f : X Ñ Y in Ch, we
construct the mapping cylinder MC pfq of f as follows:

� � � X2 `X1 ` Y2 X1 `X0 ` Y1 X0 ` Y0

�
�����
BX

3 1 0

0 BX
2 0

0 f2 BY
3

�
�����

�
�����
BX

2 �1 0

0 BX
1 0

0 f1 BY
2

�
�����

�
��B

X
1 1 0

0 f0 BY
1

�
��

Define the morphism p : MC pfq Ñ Y to be the projection on the last component. In
particular, p is an epimorphism and induces an isomorphism in homology. Define the
morphisms i : X ÑMC pfq as the inclusion into the first component. In particular, i
is a monomorphism. �

A proof of the following theorem can be found in Chapter 5 of [40].

Theorem 1.39. Let the following be a commutative diagram with exact rows in Ch:

0 X Y Z 0

0 X 1 Y 1 Z 1 0

i

f

p

f 1 f2

i1 p1

Then there is a commutative diagram in homology with exact rows:

� � � HhX HhY HhZ Hh�1X � � �

� � � HhX
1 HhY

1 HhZ
1 Hh�1X

1 � � �

Hi

Hfh

Hp

Hf 1h

δh

Hf2h Hfh�1

Hi1 Hp1 δ1h

The morphisms δ and δ1 are called connecting morphisms, and for every cycle z P ZhX
and z1 P ZhX 1, they are given by

δh rzs ÞÑ
�
i�1
h�1 � B

X
h � p�1

h pzq
�

δ1h
�
z1
�
ÞÑ

�
i1�1
h�1 � B

X 1

h � p1�1
h

�
z1
�� (1.3.1)

We conclude these preliminaries describing two particular types of chain complexes.
Let h be a natural number. A chain complex X is concentrated in degree h if Xl � 0
for all l �� h. Note that any such chain complex is isomorphic to a direct sum `Sh of a
certain number of h-dimensional spheres [25]. A chain complex is concentrated in one
degree if, for some natural number h1, it is concentrated in degree h1.

A chain complex X is concentrated in degrees th, h�1u if Xl � 0 for all l R th, h�1u.
Note that any such chain complex is a direct sum

�
`Sh

�
`
�
`Sh�1� ` �

`Dh�1� of
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certain number of complexes Sh, Sh�1 and Dh�1 [25]. A chain complex is concentrated
in two consecutive degrees if, for some natural number h1, it is concentrated in degrees
th1, h1 � 1u. Note that any complex concentrated in one degree is also concentrated in
two degrees, and the zero chain complex is concentrated in degree h and in degrees
h, h� 1, for any h in N.

Let X be a chain complex concentrated in degree h, Y a chain complex concentrated
in degrees th, h� 1u and Z a chain complex concentrated in degrees th� 1, hu, with
h ¡ 0. Then the following morphisms are bijections:

Homch pX,Y q Ñ Homvectk pXh, Yhq f ÞÑ fh

Homch pZ, Y q Ñ Homvectk pZh, Yhq f ÞÑ fh

Homch pZ,Xq Ñ Homvectk pZh, Xhq f ÞÑ fh



Chapter 2

Parametrised objects

In this chapter, we are going to discuss functors indexed by the posets r0,8q and the
poset of the first n natural numbers, denoted by rns. A functor indexed by rns with
values in a category C is a sequence of n composable morphisms X0 Ñ X1 Ñ � � � Ñ Xn

in C. If C is the category of finite-dimensional vector spaces, then specifying such
a functor requires only a finite amount of information. A functor indexed by r0,8q
consists of an infinite collection of morphisms Xs t : Xs Ñ Xt indexed by any pair of
numbers s   t in r0,8q, such that the following diagram commutes for any s   t   r

in r0,8q:

Xs Xt XrXs t

Xs r

Xt r

Describing a functor parametrised by r0,8q requires an infinite amount of information.
Such functors can be very complicated, in general. For data analysis purposes, however,
we do not need to deal with intricacies of arbitrary functors indexed by r0,8q. Since
our work is driven by the goal of analysing data through computable descriptors, we
focus on functors indexed by finite subposets of r0,8q. Note that any finite subposet
of r0,8q is of the form rns, for various n. Thus, the category of functors indexed by
r0,8q provides a convenient universe containing functors indexed by rns for all n. After
the general discussion about parametrised objects in a category C, we describe two
categories of parametrised objects: the category of parametrised vector spaces and the
category of parametrised chain complexes.

We then characterise the compact objects in the categories of interest. The compact
parametrised chain complexes are called tame, and they form the central category of
our work. The study of compact objects is motivated in data analysis since data are
finite, but it also has a theoretical motivation: in the abelian categories of compact
objects, every object admits a unique decomposition into indecomposables.

Finally, we motivate the study of tame parametrised chain complexes showing
that they include three important classes of objects. Such classes are the category of

21
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parametrised vector spaces, known in the literature as persistent modules and central
objects of study in persistent homology, the category of commutative ladders, introduced
in the contest of TDA in [9, 17], and the category of zigzag, known in the literature
as zigzag modules. The zigzag modules are proven to be engaging in TDA, but their
signatures are not yet efficiently computable [11, 12, 13].

2.1 From finite posets to r0,8q

In this section, we discuss a standard way of extending a functor indexed by rns to a
functor indexed by r0,8q along an inclusion rns � r0,8q, called the left Kan extension
(Definition 1.21). In general, the existence of the left Kan extension depends on the
properties of the category in which the considered functors take values. In spite of
this, in the case of a functor indexed by rns the left Kan extension along an inclusion
rns � r0,8q always exists. It is important to note that no condition is required on the
target category C for existing the left Kan extension in this setting. The category C
does not need to admit colimits, nor to have any other specific property: the left Kan
extension along rns � r0,8q exists and is explicitly described by virtue of the total
order of r0,8q. Therefore, for an inclusion rns � r0,8q, instead of defining its left Kan
extension using universal property, we give its explicit description.

Let X �
�
X0 Ñ X1 Ñ � � � Ñ Xn

�
be a functor indexed by a finite subposet t0  

t1   � � �   tn of r0,8q. For t in r0,8q set

LXt :� Xmaxti | ti¤tu

Note that if s   t, then maxti | ti ¤ su ¤ maxti | ti ¤ tu, and hence we can define
LXs t : LXs Ñ LXt to be the composition of the morphism Xmaxti | ti¤su Ñ � � � Ñ

Xmaxti | ti¤tu. We also refer to LX as the extension of the n composable morphisms
X �

�
X0 Ñ X1 Ñ � � � Ñ Xn

�
along the sequence t0   t1   � � �   tn. The left Kan

extension L : fun prns ,Cq Ñ fun pr0,8q ,Cq is left adjoint to the restriction functor
fun pr0,8q ,Cq Ñ fun prns ,Cq that maps i to ti along the inclusion rns � r0,8q.
This means that to describe a natural transformation η : LX Ñ Y from such a Kan
extension to any other functor Y : r0,8q Ñ C it is enough to specify a sequence of
morphisms

 
f ti : LXti Ñ Y ti

(
i�0,...,n for which the following diagram commutes, for

all i � 0, . . . , n:

LXti LXti�1

Y ti Y ti�1

LXti ti�1

f ti f ti�1

Y ti ti�1

In particular L : fun prns ,Cq Ñ fun pr0,8q ,Cq is fully faithful.
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Remark 2.1. Let LX be the left Kan extension of an object X in fun prns ,Cq along
the sequence 0 � t0   � � �   tn. LX satisfies the following property: LXs t may fail
to be an isomorphism only if there is an i such that s   ti ¤ t. In particular, the
restrictions of the transitions of X to the left-closed and right-open intervals rt0, t1q,
. . ., rtn�1, tnq , rtn,8q are isomorphisms.

2.2 Discretisation

In this section, we describe the full subcategory of fun pr0,8q ,Cq given by the union
of the images of the left Kan extensions along all inclusions of the form rns � r0,8q,
for all n. These are the functors we focus on in our work. A fundamental property of
such functors is described in Remark 2.1.

Definition 2.2. An object X in fun pr0,8q ,Cq is called discretisable if there exists
a sequence 0 � t0   t1   � � �   tn in r0,8q such that each transition morphism
Xs t : Xs Ñ Xt may fail to be an isomorphism only when there exists i P t1, . . . , nu
such that s   ti ¤ t. The sequence 0 � t0   t1   � � �   tn is said to discretise X.

Discretising sequences have the following properties. Given a sequence 0 � t0   t1  

� � �   tn in r0,8q discretising X, every finite refinement is also a discretising sequence
for X. Moreover, any finite collection of discretisable objects in fun pr0,8q ,Cq admits
a common discretising sequence. Such a sequence is given by the union of elements of
the discretising sequences, which is a refinement of all of them.

Theorem 2.3. Let Y : r0,8q Ñ C be a functor. Then Y is isomorphic to a left Kan
extension LX along some inclusion rns � r0,8q if and only if it is discretisable.

Proof. If Y is isomorphic to a left Kan extension LX along some inclusion rns � r0,8q,
by Remark 2.1 it is discretisable.

If Y is discretisable it admits a discretising sequence 0 � t0   t1   � � �   tn.
We identify such a sequence with an inclusion rns � r0,8q (Example 1.10). Let X
be the restriction of Y along this inclusion. Explicitly, X : rns Ñ C is Xi � Y ti ,
i � 0, . . . , n with transition morphisms Xi i�1 :� Y ti ti�1 . Let LX Ñ Y be the
adjoint to 1 : X Ñ X. This is an isomorphism.

2.3 Relevant categories

In this section, we describe the functor category fun pr0,8q ,Chq, whose objects are
functors indexed by r0,8q taking values in the category of chain complexes. We
introduce the discussion presenting the category of parametrised vector spaces.
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Parametrised vector spaces

Recall that a parametrised vector space is an object in the category fun pr0,8q ,Vectkq.
Such a category is abelian by Remark 1.24. Its zero object is the functor mapping to
the zero vector space at every step. We start describing indecomposable objects in
fun pr0,8q ,Vectkq. Choose b in r0,8q. Consider the inclusion 0 Ñ b. Let k : r0s Ñ
Vectk be a functor sending 0 to the one dimensional vector space. We use the symbol
Irb,8q to denote the left Kan extension of this functor along the inclusion b : r0s � r0,8q.
Explicitly:

Itrb,8q �

$&
%k if t ¥ b

0 otherwise

Choose two elements b   d in r0,8q. The morphism b   d in r0,8q induces the
inclusion r1s � r0,8q. Consider the functor k Ñ 0: r1s Ñ Vectk, sending 0 to k and 1
to 0. We use the symbol Irb,dq to denote the left Kan extension this functor along this
inclusion. Explicitly:

Itrb,dq �

#
k for t P rb, dq
0 otherwise

Is¤trb,dq �

#
1 if s ¤ t P rb, dq

0 otherwise

We call the functor Irb,8q and Irb,dq interval vector spaces. Interval vector spaces
are indecomposables. Indeed, consider, with a little abuse of notation, b   d ¤ 8 and
e   f ¤ 8. The morphisms between Irb,dq and Ire,fq are either zero or one dimensional:

Homfunpr0,8q,Vectkq

�
Irb,dq, Ire,fq

�
is

$&
% 1-dimensional if e ¤ b and f ¤ d

0-dimensional otherwise

It follows that the endomorphism ring of an interval vector space is local, and thus the
object is indecomposable.

Parametrised chain complexes

A parametrised chain complex is an object in the functor category fun pr0,8q ,Chq.
The category fun pr0,8q ,Chq is abelian by Remark 1.24. Its zero object is the functor
whose values are the chain complex trivial in all degrees. The category fun pr0,8q ,Chq
is of wild representation type (see Section 2.5 - Commutative ladders). Thus, it is not
possible to list all its indecomposables. Among its indecomposables, three families of
functors play an essential role in our work. The elements of these families are called
interval spheres.

The first two families are parametrised by b in r0,8q and h P N. Consider the
induced functor b : r0s Ñ r0,8q and the inclusion b : r0s � r0,8q.
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• Ih rb,8q denotes the left Kan extension of the functor Sh : r0s Ñ Ch along the
inclusion b : r0s � r0,8q, assigning 0 ÞÑ Sh;

• Ih rb, bq denotes the left Kan extension of the functor Dh�1 : r0s Ñ Ch along the
inclusion b : r0s � r0,8q, assigning 0 ÞÑ Dh�1.

Explicitly, these functors can be depicted as follows:

LSh � Ih rb,8q LDh�1 � Ih rb, bq

0 � � � 0 � � �

0 � � � k � � �

0 � � � 0 � � �

0 ��� b ���

1
h

0 � � � 0 � � �

0 � � � k � � �

0 � � � k � � �

0 � � � 0 � � �

0 ��� b ���

1

1

h�1

1
h

The third family is indexed by pairs of elements in r0,8q and h P N. Consider the
functor b   d : r1s Ñ r0,8q, and the induced inclusion b   d : r1s � r0,8q.

• Ih rb, dq denotes the left Kan extension of the functor Sh Ñ Dh�1 : r1s Ñ Ch,
sending 0 to Sh and 1 to Dh�1, along the inclusion b   d : r1s � r0,8q.

Such a functor can be graphically described as follows:

0 � � � 0 � � � 0 � � �

0 � � � 0 � � � k � � �

0 � � � k � � � k � � �

0 � � � 0 � � � 0 � � �

0 ��� b ��� d ���

1

1

h�1

1 1 1
h

Homology provides a relation between the objects Ih rb, dq and the objects Irb,dq:

• The parametrised vector space HhI
h rb,8q is isomorphic to Irb,8q;

• The parametrised vector space HhI
h rb, bq is isomorphic to 0;

• The parametrised vector space HhI
h rb, dq is isomorphic to Irb,dq.
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Consider Homfunpr0,8q,Chq

�
Ih rb, dq , Ih

1

re, fq
	
, where, with a little abuse of nota-

tion, d and f can be infinite. We have:

Homfunpr0,8q,Chq

�
Ih rb, dq , Ih

1

re, fq
	
is

$'''&
'''%
1-dimensional if h � h1 and e ¤ b ¤ f ¤ d

1-dimensional if h � h1 � 1 and f ¤ b

0-dimensional otherwise

Thus, the endomorphism ring of every interval sphere is local, and hence interval spheres
are indecomposable. Here, there are some examples of the morphisms of interval spheres.
Between Ih rb, dq and Ih rb, bq there is a morphism i : Ih rb, dq Ñ Ih rb, bq, induced by
the following diagrams:

Ih rb, dq Ih rb, bq Ih rb,8q

Ih rb, dq

Ih rb, bq

i

0 Sh Dh�1

0 Dh�1 Dh�1

i

i

1

1

0 Dh�1

0 Dh�1

1

0 Sh

0 Dh�1

i

2.4 Compactness

In this section, we discuss the notion of compactness in the categories of interest. For a
reference of compactness in category theory, see [1].

Definition 2.4. Let C be a category where all directed colimits exist. An object X in
C is called compact if HomC pX,�q commutes with all directed colimits. Explicitly,
X is compact if the natural map colim HomC pX,Y q Ñ HomC pX, colimY q is an
isomorphism for every functor Y indexed by a directed set with values in C.

More in details, an object X in a category C is compact if and only if for each
colimit

�
colimD, di

�
of a directed system tDiu over J in C, and each morphism

f : X Ñ colimD there exists i P J such that

• f factorises through di, i.e. f � di � g, for some g : X Ñ Di;

• the factorisation is essentially unique, in the sense that if f � di � g � di � g1, then
Di¤j � g � Di¤j � g1, for some i ¤ j P J.

The notion of compactness is crucial, as we will see in Remark 2.17. Moreover, it
allows the following definition.

Definition 2.5. Let C be a category. The functor X : r0,8q Ñ C is called tame if it
is discretisable and Xt compact for each t in r0,8q.

Remark 2.6. The full subcategory of an abelian category consisting of all its compact
objects is abelian.
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We now characterise the compact objects in Vectk, Ch, fun pr0,8q ,Vectkq and
fun pr0,8q ,Chq.

Compact vector spaces

We begin characterising compact vector spaces.

Proposition 2.7. An object V in Vectk is compact if and only if its dimension is
finite.

Proof. Suppose V is compact. Since every vector space is the directed colimit of all its
finite dimensional linear subspaces, the linear transformation 1V : V Ñ V factorises
through the inclusion into a finite dimensional linear subspace. Hence, V is finite
dimensional.

Suppose V is finite dimensional. Let B be a basis of V in Vectk. Let
�
colimW,wi

�
be the colimit of a directed system tW iu over J, and f : V Ñ colimW a linear
transformation. For each element v P B there exists iv P J such that f pvq lies in the
image of wiv . Since V is finite dimensional and J is directed, there exists an upper
bound i P J of all iv, v P B. Thus, f pV q � wi

�
W i

�
and f factorises through wi. The

essential uniqueness follows from the fact that, for vector spaces, two elements are
equal in the directed colimit if and only if they eventually become equal.

We denote by vectk the full subcategory of Vectk whose objects are compact vector
spaces and whose morphisms are linear maps between them. By Remark 2.6, vectk is
abelian. The category vectk has some nice properties. For example, in vectk, every
section is a monomorphism, and every retraction is an epimorphism. Moreover, every
monomorphism has a retract, and every epimorphism has a section.

Compact chain complexes

To study compact chain complexes, recall Definition 1.36 of bounded and degreewise
finite dimensional chain complexes.

Remark 2.8. In Ch, the functor colim is exact.

Proposition 2.9. An object X in Ch is compact if and only if it is degreewise finite
dimensional and bounded.

Proof. Suppose X compact. By Proposition 2.7, if there exists a degree in which X is
not finite dimensional, then X is not compact, which is a contradiction. Assume then
that X is degreewise finite dimensional. From a direct computation, it follows that X
can be written as the directed colimit of the family of chain complexes tXi

uiPN where
X
i
h � Xh for all h ¤ i P N, and zero otherwise, for all i P N. Then, by compactness,

the chain map 1X : X Ñ X factorises through Xi for some i P N. Since Xi is bounded,
the claim follows.
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Suppose X is degreewise finite dimensional and bounded. Let
�
colimY, yi

�
be the

colimit of a directed system tY iu over J in Ch, and f : X Ñ colimY a chain map.
By Proposition 1.15 and Remark 2.8, colimY can be computed degreewise, using the
differentials as morphisms of directed systems. Then, by Proposition 2.7, it follows
that, in each degree h, there exists an essentially unique factorisation of fh for some
ih P J. Since X is bounded, there exists m P N such that Xh � 0 for all h ¡ m. Since J
directed, there exists an upper bound i P J of all ih, 0 ¤ h ¤ m. We claim that then the
chain map f factorises through Y i. To see it, it is enough to check the commutativity
degreewise, for all 0 ¤ h ¤ m, as shown in the following diagram:

Y ih
h Y i

h

Xh pcolimY qh

Y
ih¤i

h

yih

yi

fh

g

By Proposition 2.7, fh � yih � g, and by definition of cocone yih � yi � Y ih¤i
h . Thus,

fh � yi � Y ih¤i
h � g and fh factorises through Y i

h . The essential uniqueness follows from
Proposition 2.7, since it is can be verified degreewise.

We denote by ch the full subcategory of compact objects of Ch. By Remark 2.6,
ch is abelian.

Remark 2.10. In algebra, ascending and descending families of subobjects are proved
to be interesting. One can define the ascending and the descending chain condition
on subobjects, and these notions are related to being Artinian and Noetherian. We
then can study the ascending chain condition and the descending chain condition on
compact chain complexes. Since they are finitely dimensional and bounded, they satisfy
both conditions. For a general discussion about these properties, see Chapter 6 of [3].

Compact parametrised vector spaces

To explicitly characterise compact objects in fun pr0,8q ,Vectkq, we define a finiteness
condition for parametrised vector spaces.

Definition 2.11. In fun pr0,8q ,Vectkq, an object V is said to be pointwise finite
dimensional if V t is a finite dimensional vector space for all t in r0,8q.

Proposition 2.12. An object V of fun pr0,8q ,Vectkq is compact if and only if it is
pointwise finite dimensional and discretisable.

Proof. Suppose V compact. By Proposition 2.7, if there exists a step in which V is
not finite dimensional, then it cannot be compact. Assume then that V is pointwise
finite dimensional. Let J be the directed poset of finite subsets of r0,8q. An element
s of J is a set ts1, s2, . . . , snu. Define a functor Ws as W t

s � V si for all t P rsi, si�1q,
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and W t
s � 0 for all t P r0, s1q, if s1 � 0. Define fsr : Wr ÑWs and ϕs : Ws Ñ V , for all

r ¤ s P J, as:

f tsr :�

$'''&
'''%

0 if W t
r � 0

1 if W t
r � V t

s

V t1¤t
s if W t

r � V t1
s

ϕts :�

$'''&
'''%

0 if W t
s � 0

1 if W t
s � V t

V t1¤t if W t
s � V t1

A direct computation shows that pV, ϕsq is the colimit of the directed system tWsu over
J. Thus, by compactness, the morphism 1 : V Ñ V factorises through Vs, for some
s P J, and V is discretisable.

Suppose V pointwise finite dimensional and discretisable, with discretising sequence
0 � t0   � � �   tn. Let

�
colimW,wi

�
be the colimit of a directed system tW iu over J,

and f : V Ñ colimW a morphism of parametrised vector spaces. By Proposition 1.15,
colimW can be computed pointwise, using the transition morphisms W ti ti�1 , for
i � 0, . . . , n� 1, as morphisms of directed systems. Then, by Proposition 2.7, it follows
that there exists a factorisation of f ti in each step ti for some jti P J. Since V is
discretisable and J directed, there exists an upper bound j P J of all jti , i � 0, . . . , n.
Then the morphism f factorises through W j . The argument for the factorisation and
its essential uniqueness is similar to the case of Proposition 2.7 and Proposition 2.9,
and we omit the details.

We denote by tame pr0,8q ,vectkq the full subcategory of fun pr0,8q ,Vectkq

whose objects are compact. We refer to these compact objects as tame parametrised
vector spaces. By Remark 2.6, tame pr0,8q ,vectkq is abelian. We often depict an
object in this category as follows:

V 0 V t1 � � � V tn

We now recall the decomposition theorem for objects in tame pr0,8q ,vectkq. For
a proof, see [15].

Theorem 2.13. Every object in tame pr0,8q ,vectkq is a direct sum of interval vector
spaces. Furthermore, such a decomposition are unique up to an isomorphism.

The previous result is a milestone in topological data analysis, providing invariants
for parametrised vector spaces. Such invariants are given by the number and type of
the indecomposables.

Compact parametrised chain complexes

We now define a finiteness condition for parametrised chain complexes, to explicitly
characterise compact objects in fun pr0,8q ,Chq.
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Definition 2.14. In fun pr0,8q ,Chq, an object X is said to be stepwise bounded if,
for all t in r0,8q, Xt is a bounded chain complex, and pointwise finite dimensional, if
for all t in r0,8q and for all h P N, Xt

h is a finite dimensional vector space.

Proposition 2.15. In fun pr0,8q ,Chq, an object X is compact if and only if it is
pointwise finite dimensional, stepwise bounded and discretisable.

Proof. Suppose X compact. By Proposition 2.12, if X is not discretisable, then it is
not compact, which is a contradiction. By Proposition 2.9, if for at least one step t
in r0,8q, Xt is not bounded, then it cannot be compact. By Proposition 2.7, if for at
least one step t in r0,8q and one degree h, Xt

h is not finite dimensional, then it is not
compact, which is a contradiction.

Suppose X is stepwise bounded, pointwise finite dimensional, and discretisable, with
discretising sequence 0 � t0   � � �   tn. Let

�
colimY, yi

�
be the colimit of a directed

system tY iu over J, and f : X Ñ colimY a morphism of parametrised chain complexes.
By Proposition 1.15, colimY can be computed along the discretising sequence, using the
transition morphisms Y ti ti�1 , for i � 0, . . . , n� 1, as morphisms of directed systems.
Then, by Proposition 2.9, it follows that there exists a factorisation of f ti in each
step ti for some jti P J. Since X is discretisable and J directed, there exists an upper
bound j P J of all jti , i � 0, . . . , n. Then the morphism f factorises through Y j .
The commutativity follows by similar arguments to the ones used in Proposition 2.9.
The essential uniqueness of the factorisation is verified stepwise, using the result of
Proposition 2.7 and Proposition 2.9. We omit the details.

We denote by tame pr0,8q , chq the full subcategory of fun pr0,8q ,Chq whose
objects are compact. We call the objects in tame pr0,8q , chq tame parametrised chain
complexes. By Remark 2.6, tame pr0,8q , chq is an abelian category.

Here is a graphical representation of a tame parametrised chain complexes, discre-
tised by 0   t1   t2   t3   t4:

...
...

...
...

...

X0
2 Xt1

2 Xt2
2 Xt3

2 Xt4
2 � � �

X0
1 Xt1

1 Xt2
1 Xt3

1 Xt4
1 � � �

X0
0 Xt1

0 Xt2
0 Xt3

0 Xt4
0 � � �

0 t1 t2 t3 t4

B0
3 B

t1
3 B

t2
3 B

t3
3 B

t4
3

X
0 t1
2

B0
2

X
t1 t2
2

B
t1
2

X
t2 t3
2

B
t2
2

X
t3 t4
2

B
t3
2 B

t4
2

1

X
0 t1
1

B0
1

X
t1 t2
1

B
t1
1

X
t2 t3
2

B
t2
1

X
t3 t4
2

B
t3
1 B

t4
1

1

X
0 t1
0 X

t1 t2
0 X

t2 t3
0 X

t3 t4
0 1
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Krull-Schmidt categories

In the categories of compact objects we studied, it is possible to prove a generalisation
of the Krull-Schmidt theorem. We refer to [24] for a proof of the Krull-Schmidt theorem
for modules, and to [2, 26, 35] for its generalisation in abelian categories.

Definition 2.16. Let C be a preadditive category which admits finite coproducts. C
is a Krull-Schmidt category if every object in C decomposes uniquely up to isomorphism
into a finite direct sum of indecomposables.

Explicitly, let C be a category as in Definition 2.16. Every non-zero object X in
C can be written as X1 ` � � � ` Xl, where Xi is indecomposable, for all i � 1, . . . , l.
Moreover, if X � X1 ` � � � ` Xl and X � X 1

1 ` � � � ` X 1
l1 , where Xi and X 1

j are
indecomposable for all i � 1, . . . , l and j � 1, . . . , l1, then l � l1 and, Xi � X 1

σpiq, for
some permutation σ.

Remark 2.17. The categories vectk, tame pr0,8q ,vectkq, ch and tame pr0,8q , chq
are Krull-Schimdt categories. This follows from the characterisation of Krull-Schmidt
categories proven in [2].

2.5 Motivational examples

Parametrised vector spaces

Recall the standard workflow of persistent homology. When applying the homology func-
tor in degree h to a tame parametrised chain complex, we obtain a tame parametrised
vector space. This is the reason why tame parametrised vector spaces are widely studied
in TDA. In this subsection, we show that any tame parametrised vector space can be
seen as a special type of tame parametrised chain complex.

Consider functor E : tame pr0,8q ,vectkq Ñ tame pr0,8q , chq that maps every
tame parametrised vector space into a tame parametrised chain complex nonzero only
in degree 0. Such a functor is fully faithful. We describe explicitly how it acts. Let
V be an object in tame pr0,8q ,vectkq, and f a morphism in tame pr0,8q ,vectkq.
Then

E pV q :� X where
Xt
h �

#
V t for h � 0 and for all t in r0,8q

0 otherwise

Xs t
h �

#
V s t for h � 0 and for all s   t in r0,8q

0 otherwise

E pfq :� ϕ where ϕth �

#
f t for h � 0 and for all t in r0,8q
0 otherwise



Chapter 2. Parametrised objects 32

Commutative ladders

In this subsection, we show that commutative ladders can be seen as parameterised
chain complexes. We refer to [17] for the applications of commutative ladders in
topological data analysis. Commutative ladders of length ¥ 5 are of wild representation
type [9]. This means that, while looking for computable invariants for them, we cannot
rely on their decomposition and we need to find alternative ways. In this work, we
consider commutative ladders of any finite length, but with all forward maps.

Let J � t0   1u be a poset with only two elements. The arrow category of vectk,
denoted by Arr pvectkq, is the functor category fun pJ,vectkq. Explicitly, an object d
in Arr pvectkq is a linear transformation, and a morphism pf0, f1q in Arr pvectkq is a
commutative square

V V 1

W W 1

f1

d d1

f0

Let 0 � t0   t1   � � �   tn be a sequence in r0,8q. A tame commutative ladder is the
left Kan extension of a functor CL : rns Ñ Arr pvectkq along the inclusion rns � r0,8q.
We often depict a tame commutative ladder as follows:

V 0 V t1 � � � V tn

W 0 W t1 � � � W tn

d0 dt1 dtn

Denote by tame pr0,8q ,Arr pvectkqq the functor category of tame commutative lad-
ders. Consider a functor E : tame pr0,8q ,Arr pvectkqq Ñ tame pr0,8q , chq that
maps every tame commutative ladder to a tame parametrised chain complex nonzero
only in degree 0, 1. Such a functor is fully faithful. To describe how E maps, consider
an object CL and a morphism f � pf0, f1q in tame pr0,8q ,Arr pvectkqq. Then we
have:

E pCLq :� X where

Xt
h �

$''&
''%
W t for h � 0 and for all t in r0,8q

V t for h � 1 and for all t in r0,8q

0 otherwise

Xs t
h �

$''&
''%
W s t for h � 0 and for all s   t in r0,8q

V s t for h � 1 and for all s   t in r0,8q

0 otherwise

Bth �

#
dt for h � 1 and for all t in r0,8q

0 otherwise
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E pfq :� ϕ where ϕth �

#
f th for h � 0, 1 and for all t in r0,8q
0 otherwise

Zigzags

The goal of this section is to translate zigzag modules to objects in tame pr0,8q , chq.
We begin introducing the zigzag sequences and how to construct them using stackable
directed linear transformations. We then define chain complex parametrised by rns
and how to constructed them using the concatenation of chain complexes and directed
linear transformations. The procedure mirrors the construction of zigzag sequences.
Finally, we extend over r0,8q the chain complexes parametrised over rns, using the
results of Section 2.2.

A directed linear transformation by definition is a pair pf, cq consisting of a linear
transformation f between finite dimensional vector spaces over a fixed field k, and an
element c in the set tr, lu called the direction of f . We are going to use the following
symbols to depict a directed linear transformation depending on its direction:

• pf, lq is depicted as f
ÐÝ;

• pf, rq is depicted as f
ÝÑ.

Two directed linear transformations pf, cq and pg, c1q are said to be stackable if one
the following conditions is satisfied:

• c � r, c1 � r, and the codomain of f coincide with the domain of g. The linear
transformations f and g are then composable, and we can form their composition
gf . We depict this case graphically as f

ÝÑ
g
ÝÑ.

• c � r, c1 � l, and the codomain of f coincide with the codomain of g. We depict
this case graphically as f

ÝÑ
g
ÐÝ.

• c � l, c1 � r, and the domain of f coincide with the domain of g. We depict this
case graphically as f

ÐÝ
g
ÝÑ.

• c � l, c1 � l, and the codomain of g coincide with the domain of f . The linear
transformations f and g are then composable, and we can form their composition
fg. We depict this case graphically as f

ÐÝ
g
ÐÝ.

A sequence tpfi, ciqu1¤i¤m of directed linear transformations is called a zigzag
sequence if, for every 1 ¤ i   m, the directed linear transformations pfi, ciq and
pfi�1, ci�1q are stackable. Here are some graphical illustrations of zigzag sequences:
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ÑÐÑÐÑ � � � ÐÑÑÐÑÑ � � � ÑÑÐÐÑ � � �

Let tpfi, ciqu1¤i¤m be a zigzag sequence where every linear transformation belongs
to the set t0 Ñ 0, 0 Ñ k, k Ñ 0,1ku, and such that

(i) There exists at most one pfi, ciq P tp0 Ñ k, rq , pk Ñ 0, lqu. If there exists such a
pfi, ciq, then set s � i, otherwise set s � 0;

(ii) There exists at most one pfi, ciq P tpk Ñ 0, rq , p0 Ñ k, lqu. If there exists such a
pfi, ciq, then set e � i, otherwise set e � m;

(iii) For all i   s and i ¡ e� 1, fi : 0 Ñ 0 and for all s   i   e, fi � 1k.

Such a zigzag sequence is called interval zigzag sequence and denoted by tpfi, ciqus,e1¤i¤m.

Definition 2.18. A zigzag profile C is a sequence of directions tciu1¤i¤m.

Note that, while specifying a zigzag profile, we are fixing the number of directed
transformations and the directions of a zigzag sequence. Once a zigzag profile C �
tciu1¤i¤m is fixed, we denote a zigzag sequence simply by tfiu.

Definition 2.19. Fix a zigzag profile C, and let tfiu and tgiu be two zigzag sequences.
A morphism ϕ : tfiu Ñ tgiu of zigzag sequences is a collection of morphisms tϕi : fi Ñ
giu1¤i¤m, such that, if ci � r (resp. ci � l), the diagram

fi

ϕi ϕi�1
gi

�
����resp. ϕi

fi

ϕi�1
gi

�
���

commutes, for i � 1, . . . ,m� 1.

Once we fix a zigzag profile C, we can define the category ZSC whose objects are
zigzag sequences of zigzag profile C and whose morphisms are given by Definition 2.19.
The composition of morphisms is defined pointwise, and since the zigzag profile is fixed,
it fulfils the axioms of a category. Note that the category ZSC admits the construction
of the direct sum: given tfiu and tgiu two zigzag sequences in ZSC , their direct sum is
defined as tfiu ` tgiu � tpfi, giqu. The direct sum construction allows us to decompose
zigzag sequences using the following theorem. For a proof, see [11].

Theorem 2.20. Every zigzag sequence can be written as a finite direct sum of interval
zigzag sequences. Moreover, such a decomposition is unique up to isomorphisms.

We illustrate now how to concatenate chain complexes and directed linear transfor-
mations. Recall the considerations about chain complexes concentrated in one or two
degrees we made at the end of Chapter 1.
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Construction 2.21. Under some circumstances we can concatenate a functorX : rns Ñ
ch and a directed linear transformation pf, cq to form a new functorX�pf, cq : rn� 1s Ñ
ch. Here is a description of this procedure and when it is allowed. Let the chain complex
Xn be concentrated in degree h:

• Suppose that c � r and the domain of f coincide with Xn
h . In this case, X �

pf, cq : rn� 1s Ñ ch is given by the sequence of n� 1 chain maps:

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
Shf
ÝÝÑ

where Shf is the h-th suspension of f . Graphically, this is depicted as

...

� � � Xn
h ùñ

� � � 0

n

...
...

� � � Xn
h Xn�1

h

� � � 0 0

n n�1

f

• Suppose that c � l and the codomain of f coincides with Xn
h . In this case, put

Xn
h�1 equal to the domain of f , and BXn

h�1 � f , so that Xn is now concentrated
in degrees h, h � 1. Note that we are modifying Xn. For n ¡ 0, the transition
morphism Xn�1 n remains unchanged in degree h and it is set to zero otherwise.
Then define Y as the chain complex concentrated in degree h � 1, where it is
equal to Xn

h�1, and the map g : Xn Ñ Y as the chain map which is the identity in
degree h� 1 and zero otherwise. Define X � pf, cq : rn� 1s Ñ ch to be given by:

g
ÝÑ if n � 0

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
g
ÝÑ if n ¡ 0

Graphically, this is depicted as

� � � 0

� � � Xn
h ùñ

� � � 0

n

...
� � � Xn

h�1 Xn�1
h�1

� � � Xn
h 0

� � � 0 0

n

...

n�1
...

1

f

�

Note that, in both cases, pX � pf, cqqn�1 is concentrated in one degree, and thus the
construction is iterable.
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The previous construction is a central passage to describe zigzag sequences as
objects in tame pr0,8q , chq. It required some choices, which we are going to motivate
in Section 5.5.

Definition 2.22. The functor X : rns Ñ ch is called a discrete chain zigzag if it
satisfies the following requirements:

• Xi is either concentrated in one degree or two consecutive degrees for all 0 ¤ i ¤ n;

• if Xi is concentrated in degree h, then Xi�1 is either concentrated in degree h or
it is concentrated in degrees th, h� 1u for all 0 ¤ i   n;

• if Xi is concentrated in degrees th, h� 1u, then Xi�1 is concentrated in degree
h� 1 and Xi i�1 � 1, for all 0 ¤ i   n.

Assume we are given a zigzag sequence tfiu. We can use this information to
inductively construct a discrete chain zigzag as follows.

Construction 2.23. Consider a zigzag sequence tfiu. Let X : r0s Ñ ch be given by
the chain complex concentrated in degree 0 for which:

X0
0 �

$&
% the domain of f1 if c1 � r

the codomain of f1 if c1 � l

Assuming we have constructed X : ris Ñ ch, for 0 ¤ i ¤ m � 1, we can now define
X : ri� 1s Ñ ch by X �pfi�1, ci�1q, according to Construction 2.21. We can then write
the following discrete chain zigzag

X � pf1, c1q � � � � � pfm, cmq

induced by the above data. �

By Construction 2.23, from any zigzag sequence we obtain a discrete chain zigzag.
The viceversa is also true: any discrete chain zigzag can be obtained from a zigzag
sequence using Construction 2.23. Such a correspondence between zigzag sequences and
discrete chain zigzags is bijective and preserves direct sums. A discrete chain zigzag
given by an interval zigzag sequence is called interval chain zigzag.

We can now use the results of Section 2.1 to translate discrete chain zigzag into tame
parametrised chain complexes. An object X in tame pr0,8q , chq is called a zigzag if it
is isomorphic to the left Kan extension of a discrete chain zigzag X : rns Ñ ch along
some inclusion rns � r0,8q. We use the symbol ZigZag to denote the full subcategory
of tame pr0,8q , chq whose objects are zigzags. To illustrate how our construction
works, consider the following zigzag sequence:
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Z0 Z1 Z2 Z3 Z4 Z5f1 f2 f3 f4 f5

Such a zigzag sequence gives the following object in ZigZag:

0 0 0 0 Z5 Z5 � � �

0 0 0 Z4 Z4 0 � � �

0 Z2 Z2 Z3 0 0 � � �

Z0 Z1 0 0 0 0 � � �

0
...

t1

...

t2

...

t3

...

t4

...

t5

...
1

f5

1

f4

1

1

f2

f3

f1

where we used the shadowed squares to remark the nontrivial boundary maps. We
call interval zigzag, denoted again by Zrts,tes, an object of ZigZag whose discrete chain
zigzag is an interval chain zigzag Zrs,es.

Once we fix a zigzag profile C, we can use the bijective correspondence of Construc-
tion 2.23 to obtain the following corollary of Theorem 2.20, since the left Kan extension
preserves direct sums.

Corollary 2.24. Every object X in Zigzag decomposes uniquely up to isomorphisms
into a finite direct sum of interval zigzags.



Chapter 3

Parametrised objects in model
categories

In this chapter, we introduce model category theory, and we show how to extend the
model structure of a categoryM to the category tame pr0,8q ,Mq of tame parametrised
objects of M. We start recalling the definition and properties of a model category.
Although the definitions and the results in Section 3.1 are classic (for references see [16,
36]), we decide to present all the proofs to keep the work self-contained. In Section 3.2,
we recall an example of a model category, the category of compact chain complexes.
Such an example is originally presented in [36]. In Section 3.3, we prove the main result
of this chapter: the category of tame parametrised objects of a model category can be
endowed with a model structure. This is a special case of the notion of a projective
model structures on a tame subcategory of functor categories (for a reference, see for
example [22], or chapter 11 of [23]). In the case of tame parametrised objects of a
model category, such abstract structure can be explicitly described, and the axioms of
a model category directly proven.

3.1 Introduction to model categories

Definition 3.1. A morphism f : X1 Ñ Y1 is called a retract of a morphism g : X2 Ñ Y2

if there is a commutative diagram

X1 X2 X1

Y1 Y2 Y1

f

1

g f

1

Definition 3.2. A model category structure on a category M is a choice of three
distinguished classes of morphisms: weak equivalences (denoted by �

ÝÑ), fibrations

38
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(denoted by �), and cofibrations (denoted by ãÑ), such that the following axioms are
satisfied:

A1. Finite limits and colimits exist inM.

A2. If f and g are morphisms inM such that g � f is defined, and if two of the three
morphisms f, g, g � f are weak equivalences, then so is the third (two out of
three property).

A3. If f is a retract of g and g is a weak equivalence, fibration, or a cofibration, then
so is f .

A4. In the two following solid commutative diagrams inM the dotted arrows exist
and make the diagrams commute:

X Z

Y W

� (S1)
X Z

Y W

� (S2)

A5. Every morphism f : X Ñ Y inM can be factorised in two ways:

X 1

X Y

p

f

�
c (F1)

Y 1

X Y

�
p

f

c (F2)

In the rest of the chapter, the symbolM denotes a category with a fixed model
structure.

Axiom A1 guarantees the existence of initial and terminal objects, pushouts, pull-
backs, and therefore of kernels and cokernels. Axiom A3, together with axiom A4,
provides a characterisation of (co)fibrations. Axiom A4 states that morphisms that are
cofibrations and weak equivalences have the left lifting property with respect to any
fibration, and that morphisms that are fibrations and weak equivalences have the right
lifting property with respect to any cofibration. Note that neither the lifts in axiom A4
nor the factorisations in axiom A5 are required to be unique. The axioms only require
their existence.

We now characterise cofibrations and fibrations using axioms A3 and A4.

Lemma 3.3. InM, the following statements hold:

1. Cofibrations that are also weak equivalences are exactly the morphisms with left
lifting property w.r.t. fibrations;



Chapter 3. Parametrised objects in model categories 40

2. Cofibrations are exactly the morphisms with left lifting property w.r.t. fibrations
that are also weak equivalences;

3. Fibrations that are also weak equivalences are exactly the morphisms with right
lifting property w.r.t. cofibrations;

4. Fibrations are exactly the morphisms with right lifting property w.r.t. cofibrations
that are also weak equivalences.

Proof. Axiom A4 implies that a (co)fibration that is also a weak equivalence has the
right (left) lifting property with respect to any (co)fibration. We need to prove the
converse. Let f : X Ñ Y be a morphism inM.

(1) Suppose that f has the left lifting property w.r.t. to all fibrations. Factor f
as in (F1). Then, by A4, there exists a morphism g, shown as dotted in the following
diagram, such that the entire diagram commutes:

X X 1

Y Y

c
�

f p

1

g

Hence, the following diagram commutes, i.e. f is a retract of c:

X X X

Y X 1 Y

1

f

1

1

� c f

g

1

p

Then, by axiom A3, f is also a cofibration and a weak equivalence. To prove (2), factor
f as in (F2) and use the same argument.

(3) Suppose that f has the right lifting property w.r.t. to all cofibrations. Factor f
as in (F2). Then, by lifting axiom A4, there exists a morphism g, shown dotted in the
following diagram, such that the entire diagram commutes:

X X

Y 1 Y

1

c f

p
�

g

Hence, the following diagram commutes:
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X Y 1 X

Y Y Y

c

f

1

g

p� f

1

1

1

i.e. f is a retract of p. Then, by axiom A3, f is also a fibration and a weak equivalence.
To prove (4), factor f as in (F1) and use the same argument.

There is a relation between weak equivalences and isomorphisms. All isomorphisms
are weak equivalences, but the converse is not valid in general. Moreover, isomorphisms
are also fibrations and cofibrations.

Proposition 3.4. InM, isomorphisms are weak equivalences, fibrations and cofibra-
tions.

Proof. Let f : X Ñ X be an isomorphism inM. We prove that f is a weak equivalence
and a fibration by showing that it is the retract of a weak equivalence and a fibration.
Consider the identity morphism 1 : X Ñ X. By axiom A5, we have the factorisation
1 � p � c, where c is a cofibration and p a fibration and a weak equivalence. Then the
following diagram commutes:

X X 1 X

X X X

c

f

1

1

�
p

� p f

f�1

1

f

Thus, by axiom A2, also f is a weak equivalence and a fibration.
We prove that f is a cofibration, showing that it is the retract of a cofibration.

Consider the identity morphism 1 : X Ñ X. By axiom A5, we have the factorisation
1 � p � c, where c is a cofibration and p a fibration and a weak equivalence. Then the
following diagram commutes:

X X X

X X 1 X

f

f

1

f�1

c 1
f

c

1

p

Thus, by axiom A2, also f is a cofibration.
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We know that, in a model category, pushouts and pullbacks exist. We are interested
in how they interact with the distinguished classes of morphisms. As the following
proposition shows, cofibrations are stable under pushout, and fibrations are stable
under pullback. In general, weak equivalences are not stable under neither pushout
or pullback. Here, we see a difference between isomorphisms and weak equivalences.
Indeed, as shown in Proposition 1.16, isomorphisms are stable under pushout. If a
morphism is not only a weak equivalence but also a (co)fibration, then it is stable under
pullback (resp. pushout).

Proposition 3.5. InM, the following statements hold:

1. Cofibrations are stable under pushout;

2. Morphisms that are weak equivalences and cofibrations are stable under pushout;

3. Fibrations are stable under pullback;

4. Morphisms that are weak equivalences and fibrations are stable under pullback.

Proof. We prove (1). The proof of (2), (3), and (4) are similar.
By Lemma 3.3, it is enough to show that the pushout of a cofibration has the left

lifting property w.r.t. morphisms that are weak equivalences and fibrations. Suppose
we have the following commutative solid diagram:

Z X V

Y P W

i
j

� fg h

where f is a fibration and a weak equivalence, i is a cofibration and j is the pushout
morphism. The morphisms g : Y Ñ V is given by the left lifting property of i w.r.t. f .
Since both X and Y map to V , by the universal property of pushout, there exists a
morphism h : P Ñ V , such that the diagram commutes. Thus, the morphism j has
the left lifting property w.r.t. morphisms that are fibrations and weak equivalences,
proving the claim.

From axiom A2, it follows in particular that the composition of two weak equivalences
is a weak equivalence. The following proposition assures that also the composition of
(co)fibrations is a (co)fibration. In general (co)fibrations do not have the two out of
three property.

Proposition 3.6. InM, fibrations and cofibrations are stable under composition.

Proof. Since the proof of the stability of fibrations is dual to the one of cofibrantions, we
present only the details of the latter. Let f : X Ñ Y and g : Y Ñ Z be two cofibrations
in M such that their composition g � f exists. Let h : V Ñ W be a fibration and a
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weak equivalence inM such that the solid diagram (3.1.1) commutes, for some suitable
morphisms X Ñ V and s : Z Ñ W . By Lemma 3.3, it is enought to show that g � f
has the left lifting property w.r.t. h.

X V

Y

Z W

f

h�

g

j

s

i (3.1.1)

In diagram (3.1.1), the morphism j is given by the left lifting property of f with respect
to h. Then, by the left lifting property of g with respect to h, there exists a morphism
i : C Ñ V such that the whole diagram commutes. Hence, g � f is a cofibration.

Recall that a model category contains an initial and a terminal object. In general,
they do not coincide. Initial and terminal objects are useful in model category theory
because they are used to define fibrant and cofibrant objects. These are the objects
whose behaviour with respect to weak equivalences is more controllable. Since they are
more controllable, one can try to use them to study other objects.

Definition 3.7. An object X inM is called fibrant if the unique morphism X Ñ � is
a fibration.

Definition 3.8. An object X inM is called cofibrant if the unique morphism ∅Ñ X

is a cofibration.

3.2 The model category of compact chain complexes

In this section, we endow the category of compact chain complexes with the structure of
a model category, and then we use such a structure to prove the standard decomposition
of compact chain complexes.

In [16], Dwyer and Spaliński provide a model structure for Ch. Our interest is
in the subcategory ch rather than in the whole Ch. Thus, we want to prove that,
restricting the model structure defined by Dwyer and Spaliński on Ch to compact
objects, we obtain a model structure on ch. This result is originally contained in [36],
in a more abstract setting. Here, we present another, more explicit, proof. We now
recall the definition of the three classes of morphisms from [16].

Definition 3.9. A morphism f : X Ñ Y in ch is called:

- weak equivalence if Hfh : HXh Ñ HYh is an isomorphism for all degree h ¥ 0;
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- fibration if fh : Xh Ñ Yh is an epimorphism for all degrees h ¥ 1 (no assumption
is made for h � 0);

- cofibration if fh : Xh Ñ Yh is a monomorphism for all degrees h ¥ 0.

To show that ch endowed with such a structure is a model category, we need to
prove that the axioms A1-A5 are satisfied. Axioms A1-A4 are satisfied in ch as a
direct consequence of the fact they are satisfied in Ch [16]. It remains to show that
every morphism in ch factorises according to (F1) and (F2) through a compact chain
complex. We prove it explicitly constructing two such factorisations.

Proposition 3.10. Axiom A5 holds ch.

Proof. Let X and Y be compact chain complexes, and f : X Ñ Y a morphism between
them. To get the factorisation in (F1), we use the path Construction 1.37. Take
X 1 � X ` PY . Define the morphism c : X Ñ X 1 as the inclusion into the first factor,
and the morphism p1 : X 1 Ñ Y as p1 :�

�
f p

�
, where p : PY Ñ Y is the morphism

defined in Construction 1.37. The path of a compact chain complex is compact, and
its direct sum with X is again compact. The morphism c is a monomorphism in all
degrees, and thus a cofibration. Moreover, since HPY � 0, c induces an isomorphism
in homology. Thus, c is also a weak equivalence. The morphism p1 is an epimorphism
in all degrees h ¥ 1, and thus it is a fibration. By construction, f � p1 � c, and (F1)
holds.

To verify the factorisation (F2), we use the mapping cylinder Construction 1.38.
Take Y 1 � MC pfq. Recall the morphisms i and p defined in Construction 1.38. p
is a fibration and a weak equivalence. Define the morphism c : X Ñ MC pfq as

c :�
�
i

f

�
. By construction, c is a cofibration and f � p � c. The mapping cylinder of a

morphisms between compact chain complexes is a compact chain complex. This proves
the claim.

Corollary 3.11. ch, with the model structure defined in Definition 3.9, is a model
category.

From now on, we use the symbol ch to denote the category of compact chain
complexes endowed with the model structure of Definition 3.9.

Remark 3.12. In ch, there is the zero object, the chain complex zero in each degree.
Then, from the definition of fibrations and cofibrations in ch, it follows that all
compact chain complexes are both cofibrant and fibrant. Indeed, all objects receive
a monomorphism from the trivial chain complex, and all objects map epimorphically
onto it.
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Standard decomposition of ch

In this subsection, we use the model category setting to prove the standard decom-
position of a chain complex. This result is already know in the literature (see for
example [25]), but here it is presented in the setting of model category. Let X be a
chain complex. Use Construction 1.37 to build two chain complexes out of it, denoted
by DBX and SBX. Recall that the chain complex BX is the graded vector space of
the boundaries of X. SBX is the suspension of BX, and DBX is the cone over BX,
given by:

� � � DB2X `DB1X DB1X `DB0X DB0X

�
��0 1

0 0

�
��

�
��0 �1

0 0

�
�� �

0 1
�

Recall the epimorphism p : DBX Ñ SBX defined in Construction 1.35. Since in ch
all epimorphisms are fibrations, p is a fibration. Consider then B : X Ñ SBX, the
boundary morphism of X. Also B : X Ñ SBX is an epimorphism in all degrees, and,
thus, also B is a fibration. The morphism 0 DBX� is a cofibration since all the
objects in ch are cofibrant, and a weak equivalence, since HhDBX � 0 for all h � N.
Hence, axiom A4 guarantees the existence of a morphism ϕ : DBX Ñ X making the
following diagram commute:

0 X

DBX SBX

� B

p

ϕ

The restriction of any such ϕ to i : BX ãÑ DBX is the standard inclusion BX ãÑ

ZX ãÑ X, where i is the morphism defined in Construction 1.35. To see it, consider the
morphism ψ : BX Ñ ZX such that the following diagram commutes, whose existence
is ensured by Proposition 1.31:

0 BX DBX SBX 0

0 ZX X SBX 0

i

ψ

p

ϕ 1
B

(3.2.1)

Since HhBX � BhX, HhZX � ZhX, HhSBX � Bh�1X, and HhDBX � 0, applying
the long exact sequence in homology (Theorem 1.39) to the rows of (3.2.1) gives:

� � � 0 BhX BhX 0 Bh�1X � � �

� � � Hh�1X BhX ZhX HhX Bh�1X � � �

δ

1 ψ

0 δ1 0

where δ and δ1 are the connecting homomorphisms. The induced homomorphism in
homology Hψ is ψ itself, since HBX � BX and HZX � ZX. Moreover, we have
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δ � 1. A direct computation of the connecting homomorphisms (1.3.1) shows that δ1

is the standard inclusion. Then, by commutativity of the the diagram, also ψ is the
standard inclusion. Finally, by commutativity of (3.2.1) the restriction of ϕ to i is the
standard inclusion. By Proposition 1.33, the morphism ϕ leads therefore to a pushout
square:

BX DBX

ZX X

i

ϕ

SinceBX ZX is a monomorphism and thus a cofibration in ch, by Proposition 3.5,
the morphism ϕ is a cofibration, as depicted in the diagram. Since k is a field, and all
the differentials in BX, ZX and HX are trivial, there exists a chain map s : HX Ñ ZX

whose composition with the quotient ZX � HX is the identity on HX. For any such
s, the morphism

�
i s

�
: BX `HX Ñ ZX is an isomorphism. To see it, note that the

morphism s is a section, and thus the short exact sequence BX ãÑ ZX � HX splits by
Proposition 1.28. Hence, the morphism

�
i s

�
: BX `HX Ñ ZX is an isomorphism.

We claim that also the morphism
�
ϕ s

�
: DBX ` HX Ñ X is an isomorphism,

where the symbol s denotes the composition of s : HX Ñ ZX and the inclusion
ZX ãÑ X. The claim follows from the fact that isomorphisms are stable under pushout
(Proposition 1.16), and that X is the pushout of

�
i 1

�
: BX `HX Ñ DBX `HX

and
�
i s

�
: BX `HX Ñ ZX.

We call DBX `HX the standard decomposition of the chain complex X.

Every chain complex decomposes into direct sum of disks and spheres. Indeed,

HX has all trivial differentials, and thus HX � `h

dimHhXà
i�0

Sh. On the other hand,

by definition of DBX (Construction 1.35), we have DBX � `h

dimBhXà
i�0

Dh. Since

Sh and Dh are indecomposable, by Remark 2.17 such a decomposition is unique up
to isomorphisms. Moreover, as a direct corollary of the decomposition, we get the
following property.

Corollary 3.13. A chain complex has trivial homology if and only if it is a direct sum
of disks.

3.3 Model category of tame parametrised objects

In this section, we prove one of our main result: the category of tame parametrised
objects of a model category admits a model category structure.
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Definition 3.14. Let X and Y be objects in tame pr0,8q ,Mq, and 0 � t0   t1  

� � �   tn in r0,8q a sequence discretising both of them. A morphism f : X Ñ Y in
tame pr0,8q ,Mq is

- a weak equivalence if f t : Xt Ñ Y t is a weak equivalence inM, for every t P r0,8q;

- a fibration if f t : Xt Ñ Y t is a fibration inM, for every t P r0,8q;

- a cofibration if

(i) f0 : X0 Ñ Y 0 is a cofibration inM;

(ii) f̂ ti : P ti Ñ Y ti�1 is a cofibration inM for all i � 0, . . . , n� 1, where f̂ ti is
the mediating morphism of the pushout of Xti ti�1 and f ti , depicted in the
following diagram:

Xti Xti�1

Y ti P ti

Y ti�1

Xti ti�1

f ti f ti�1

f̂ ti

In what follows, we use ˆ to indicate the mediating morphism of a pushout. Note
that ˆ is functorial.

We verify axioms A1-A3. Recall that limits and colimits are formed objectwise in
functor categories, and that any finite collection of objects in tame pr0,8q ,Mq admits
a common discretising sequence. Then axiom A1 is verified in tame pr0,8q ,Mq since
all finite limits and colimits exist inM. Axiom A2 is valid in tame pr0,8q ,Mq because
it is verified objectwise and M is a model category. Axiom A3 is verified for weak
equivalences and fibrations because it is verified pointwise andM is a model category.
Axiom A3 is verified for cofibrations by functoriality of ˆ , and by the fact thatM is a
model category.

The converse to the following lemma is not valid in general.

Lemma 3.15. If f : X Ñ Y is a cofibration in tame pr0,8q ,Mq, then f t : Xt Ñ Y t

is a cofibration inM for every t in r0,8q.

Proof. Let 0 � t0   � � �   tn be a sequence that discretises both X and Y . We prove the
claim by induction on the steps of the sequence. For t0, the claim holds by definition
of cofibration in tame pr0,8q ,Mq. Suppose now the claim holds for all ti, for all
i � 0, . . . , j. We show it is also true in j � 1. Consider the following pushout diagram:
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Xtj Xtj�1

Y tj P tj

Y tj�1

Xtj tj�1

f tj f
1tj�1

f tj�1

Xtj tj�1

f̂ tj

where f tj is a cofibration by inductive hypothesis, f 1tj�1 is a cofibration since it is
the pushout of a cofibration in M (Proposition 3.5), and f̂ tj is a cofibration by
definition of cofibrations inM. Since the composition of cofibrations is a cofibration
(Proposition 3.6), f tj�1 is a cofibration.

We are now ready to show that axiom A4 is satisfied. We use the previous lemma
as key argument.

Proposition 3.16. Let c : X Ñ Y and p : Z ÑW be morphisms in tame pr0,8q ,Mq,
such that the following solid diagram commutes:

X Z

Y W

c p
f

where c is a cofibration, p is a fibration, and one of them is also a weak equivalence.
Then the lift morphism f : Y Ñ Z exists, making the diagram commute.

Note that, by the model structure onM and Lemma 3.15, such a lift exists when
we restrict on any t in r0,8q. We need to find a compatible lift for all t in r0,8q.

Proof. Let 0 � t0   t1   � � �   tn be a common discretising sequence of X, Y , Z
and W . We construct a compatible lift f by induction on the sequence. At step 0,
let f0 : Y 0 Ñ Z0 be a lift given by axiom A4 inM. Suppose we have constructed a
compatible family of lifts tf tiu for i � 0, . . . , n. We now construct a compatible lift
f tj�1 . Consider the following solid diagram:

Xtj Ztj

Y tj W tj

Xtj�1 Ztj�1

Y tj�1 W tj�1

ctj ptj
f tj

ptj�1

f tj�1
ctj�1
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where ctj and ctj�1 are cofibrations by Lemma 3.15. Take the following pushout:

Xtj Xtj�1

Y tj P tj

Y tj�1

ctj c1tj
ctj�1

ĉtj

where c1tj is a cofibration being a pushout of a cofibration (Proposition 3.5). By the
same proposition, c1tj is also a weak equivalence when ctj is a weak equivalence. The
morphism ĉtj is a cofibration by Definition 3.14. Moreover, whenever ctj and ctj�1 are
weak equivalences, by axiom A2 also ĉtj is a weak equivalence. Since both Xtj�1 and
Y tj map to Ztj�1 , by the universal property of pushout there is a map P tj Ñ Ztj�1 .
Applying the A4 to the solid square

P tj Ztj�1

Y tj�1 W tj�1

ĉtj ptj�1
f tj�1

we obtain the compatible lift f tj�1 .

Consider the morphism f : X Ñ Y in the model category tame pr0,8q ,Mq. We
want to build a general construction to iteratively find a factorisation f � p � c, where
c is a cofibration, p is a fibration and one of them is also a weak equivalence. This
construction is providing one of the possible factorisations. The reason why we opted
to present this factorisation is because it is useful in the construction of the invariants
in tame pr0,8q , chq in Chapter 5. Note that, by the model structure on M and
Lemma 3.15, the factorisations exists when we restrict to any t in r0,8q. Our goal is
to explain why it is possible to choose such factorisations to be compatible.

Construction 3.17 (Iterative factorisation). Let 0 � t0   � � �   tn be a sequence
discretising both X and Y . We build the factorisations inductively. By axiom A5 in
M, for t0 � 0 there exists a factorisation of f0 : X0 Ñ Y 0:

Z0

X0 Y 0

p0

f0

c0

where c0 is a cofibration, p0 is a fibration and one of them is also a weak equivalence.
Assume that we have defined cti , pti and Zti for all i ¤ j, such that cti is cofibration,
pti fibration and one of them, consistenly for each i, is also a weak equivalence. Then
we can use the following construction to build ctj�1 , ptj�1 and Ztj�1 . First, define P tj

to be the pushout of ctj and Xtj tj�1 in the following diagram:
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Xtj Ztj

Xtj�1 P tj�1

ctj

Xtj tj�1 ptj

c1tj�1

Next, consider the following commutative solid diagram:

Xtj Ztj Y tj

Ztj�1

Xtj�1 P tj�1 Y tj�1

f tj

ctj

Xtj tj�1

ptj

Y tj tj�1
ptj�1

c1tj�1

f tj�1

ctj�1

f̂ tj�1

c2tj�1

where the left square is the previously defined pushout and the morphism f̂ tj�1 is the
unique mediating morphism induced by the universal property of the pushout. The
morphisms c2tj�1 and ptj�1 form a factorisation of f̂ tj�1 and are given by axiom A5
inM. Ztj�1 and ptj�1 are respectively the object and one of the morphism we aimed
to build. The other morphism is ctj�1 , given by the composition c2tj�1 � c1tj�1 . Note
that, by Proposition 3.5, c1tj�1 is a cofibration. Thus, by Proposition 3.6, ctj�1 is a
cofibration. Moreover, if ctj is a weak equivalence, by Proposition 3.5 also c1tj�1 is weak
equivalence. Choosing c2tj�1 to be a weak equivalence, by Proposition 3.6 also ctj�1

becomes a weak equivalence. On the other hand, if ptj is a weak equivalence, we can
choose ptj�1 to be a weak equivalence. Then cti and pti are compatible factorisation of
f ti , for i � 0, . . . j � 1.

Finally, define Z to be the left Kan extension along 0 � t0   � � �   tn of the sequence 
Zti ti�1

(
0¤i¤n�1. Let c : X Ñ Z and p : Z Ñ Y be the natural transformations in-

duced by the sequences of morphisms
 
cti : Xti Ñ Zti

(
1¤i¤n and

 
pti : Zti Ñ Y ti

(
1¤i¤n.

Then Z, c and p give the wanted factorisations. �

We can now prove axiom A5 in tame pr0,8q , chq. The above construction shows
that any morphism in tame pr0,8q ,Mq factorises as in (F1) and (F2).

Corollary 3.18 (A5). The morphisms of Definition 3.14 in tame pr0,8q ,Mq satisfy
axiom A5.

We then obtain as a corollary the main results of this chapter: tame pr0,8q ,Mq

admits a model category structure. In Chapter 4 and Chapter 5, we make extensive
use of such a model category structure in the particular case of tame pr0,8q , chq, to
retrieve invariants describing tame parametrised chain complexes.
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Corollary 3.19. tame pr0,8q ,Mq, endowed with the structure described in Defini-
tion 3.14, is a model category.

For the rest of the work, we use the symbol tame pr0,8q ,Mq to denote the
category of tame parametrised objects of M endowed with the model structure of
Definition 3.14.



Chapter 4

Decomposition of cofibrant
objects

The goal of this chapter is to prove a decomposition theorem for cofibrant objects
in tame pr0,8q , chq. We have more control over cofibrant objects than over other
objects. This is well displayed in this chapter because, despite tame pr0,8q , chq is of
wild representation type (Section 2.5 - Commutative ladders), we can fully describe the
indecomposables of cofibrant objects.

The chapter is structured as follows. In Section 4.1, we describe the cofibrant
replacement in model category. Next, we characterise the cofibrant objects in general in
tame pr0,8q ,Mq. In Section 4.2, we characterise the cofibrations in tame pr0,8q , chq.
Finally, in Section 4.3, we present the decomposition theorem for cofibrant objects in
tame pr0,8q , chq.

4.1 Cofibrant objects in tame pr0,8q ,Mq

We begin introducing the notion of cofibrant replacement. For every object X in
a model category M, there exists at least one cofibrant object X 1 that maps to X
as a weak equivalence and a fibration X 1 X� . Indeed, consider an object X in
tame pr0,8q ,Mq and factorise the unique morphism ∅Ñ X with (F2). Any fibration
and weak equivalence that fits into the following diagram is a cofibrant replacement.

X 1

∅ X

�

For documentation about cofibrant replacement, see for example [21]. Note that
the isomorphism type is not determined, and there are many not isomorphic cofibrant
replacements of an object.

52



Chapter 4. Decomposition of cofibrant objects 53

We next characterise the cofibrant objects in tame pr0,8q ,Mq.

Proposition 4.1. Let 0 � t0   � � �   tn be a sequence that discretises an object X in
tame pr0,8q ,Mq. Then X is cofibrant if and only if X0 is cofibrant in M and the
transition morphism Xti ti�1 : Xti Ñ Xi�1 is a cofibration for every i � 0, . . . , n� 1.

Proof. From Definition 3.14 of cofibrations in tame pr0,8q ,Mq, it follows that if
the morphism f : ∅ X is a cofibration, then X0 is cofibrant, since it receives a

cofibration from ∅. Thus, X0 being cofibrant is a necessary condition for f : ∅ X to
be a cofibration.

Let 0 � t0   � � �   tn be a sequence that discretises X. By definition, ∅Ñ X is a
cofibration if ∅Ñ X0 and P ti Ñ Xti�1 are cofibrations inM for all i � 0, . . . , n� 1. In
this case P 0 � ∅, P t1 � X0, . . . , P tn � Xtn�1 , and the morphisms P ti � Xti�1 Ñ Xti

are the transition morphisms in X. The claim follows.

Note that, in the above proposition, we made no assumptions on M. Thus, the
characterisation we presented holds in the general case of tame pr0,8q ,Mq. Since
we are interested in tame pr0,8q , chq, we would like to study further the cofibrations
and the cofibrant objects therein. To start, note that, since in ch the cofibrations
are given by the monomorphisms, Proposition 4.1 is stating that the cofibrant objects
in tame pr0,8q , chq are the tame parametrised chain complexes whose transition
morphisms are monomorphisms.

4.2 Characterisation of cofibrations in tame([0, 8), ch)

By Lemma 3.15, we know that a cofibration in tame pr0,8q , chq is pointwise a cofibra-
tion in ch. This is not enough for a morphism to be a cofibration. Here, we prove some
useful characterisations of cofibrantions. These characterisations are fundamental in the
proof of the decomposition theorem of cofibrant objects. Recall that tame pr0,8q , chq
and ch are abelian categories as well as model categories.

Proposition 4.2. The following statements are equivalent for a morphism f : X Ñ Y

in tame pr0,8q , chq:

(i) f is a cofibration;

(ii) For all t in r0,8q, f t : Xt Ñ Y t is a cofibration in ch, and Y {f pXq is cofibrant;

(iii) For all t in r0,8q, f t : Xt Ñ Y t is a cofibration in ch, and, for all s   t in
r0,8q, the following is a pullback square:

Xs Y s

Xt Y t

Xs t

fs

Y s t

f t
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Proof. (i) ùñ (ii)
The morphisms f t are monomorphisms for all t in r0,8q by Lemma 3.15. By Defini-
tion 1.19, we have the following pushout square:

X Y

0 Y {f pXq

f

If f is a cofibration, then also 0 Ñ Y {f pXq is a cofibration by Proposition 3.5, and
thus Y {f pXq is cofibrant.
(ii) ùñ (iii)

For all s   t in r0,8q, we have the following commutative diagram with exact rows:

Xs Y s Y s{f pXqs

Xt Y t Y t{f pXqt

fs

Xs t Y s t

f t

(4.2.1)

where the morphism Y s{f pXqs Ñ Y t{f pXqt is a cofibration by Proposition 4.1. In
particular, such a morphism is a monomorphism. Our goal is to prove that the left
inner square in (4.2.1) is a pullback. Consider then the following commutative diagram
where both inner squares are pullback:

P Xt 0

Y s Y t Y t{f pXqt

f t

Y s t

Then, by the pasting law of pullback (Proposition 1.17), also the outer diagram is
a pullback. It follows that P is isomorphic to the kernel of the composition of Y s t

and Y t Y t{f pXqt . Since Y s{f pXqs Y t{f pXqt is a monomorphism, the

kernel of the composition Y s Y t Y t{f pXqtY s t

coincides with the kernel of
Y s � Y s{f pXqs which, by exactness of the row, is Xs. Consequently, the left square
of (4.2.1) is a pullback and the claim is proved.
(iii) ùñ (i)

Let 0 � t0   t1   � � �   tn be a sequence discretising both X and Y . We need to
show that f̂ ti : P ti Ñ Y ti is a cofibration for all i � 0, . . . , n. We prove the claim by
induction on i. The morphism f0 : X0 Ñ Y 0 is a cofibration by assumption. Assume
now that the claim is true for all i � 0, . . . , j. We show it is valid also at step i � j � 1.
Consider the following pushout diagram:
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Xtj Xtj�1

Y tj P tj

Y tj�1

Xtj tj�1

f tj f tj�1

Y tj tj�1

f̂ tj

Since by hypothesis the outer square is a pullback, its mediating morphism is the identity.
Then, applying the Lemma 1.34, we obtain that the morphism f̂ tj : P tj Ñ Y tj�1 is a
monomorphism, i.e. a cofibration in ch. This proves the claim.

4.3 Decomposition of cofibrant objects in tame pr0,8q , chq

In this section, we prove the decomposition theorem of cofibrant objects. As shown in
Proposition 4.1, the transition morphisms of a cofibrant object are monomorphisms.
In the literature, such objects are known as filtered chain complexes. Their structure
theorem has been already proven in different contexts [5, 30, 44, 45], but never, at the
best of our knowledge, in the model category setting.

To prove the decomposition theorem, we split the interval sphere according to a
specific order. Such an order is given by Proposition 4.2, studying the cofibration out
of interval spheres using the pullback. To explain how to enumerate such cofibrations,
we analyse first how morphisms out of an interval sphere behave. We begin by studying
morphisms out of Ih rb,8q.

Remark 4.3. Let b be in r0,8q. A morphism f : Ih rb,8q Ñ X leads to a linear
transformation f bh : Ih rb,8qbh � k Ñ Xb

h. Let x :� f bh p1q in Xb
h. Note that x satisfies

the equation B pxq � 0 since Ih rb,8q is concentrated in degree h. This means that
x belongs to the cycles ZXb

h. Choosing an element in ZXb
h is all what is needed to

describe a morphism out of Ih rb,8q. For any x in ZXb
h, there is a unique morphism

I pxq : Ih rb,8q Ñ X such that x � I pxqbh p1q. The association f ÞÑ f bh p1q describes a
bijection between the set of morphisms Homtamepr0,8q,chq

�
Ih rb,8q , X

�
and the set

of cycles ZhXb.

We study now the morphisms out of Ih rb, dq.

Remark 4.4. Let b ¤ d be in r0,8q. A morphism f : Ih rb, dq Ñ X leads to two linear
morphisms

f bh : Ih rb, dqbh � k Ñ Xb
h

f bh�1 : In rb, dqdh�1 � k Ñ Xd
h�1
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Define two elements x :� f bh p1q in Xb
h and y :� fdh�1 p1q in Xd

h�1. The elements x and
y satisfy the following equations.

B pxq � 0

Xb¤d
h pxq � B pyq

These equations contain all the information needed to describe a morphism from
Ih rb, dq. Moreover, if x in Xb

h and y in Xd
h�1 satisfy the above equations, then there

is a unique natural transformation Ipx, yq : Ih rb, dq Ñ X such that x � Ipx, yqbh p1q
and y � Ipx, yqdh�1 p1q. Therefore, the association f ÞÑ

�
f bh p1q , fdh�1 p1q

�
describes an

isomorphism between the set of morphisms Homtamepr0,8q,chq
�
Ih rb, dq , X

�
and the

pullback P :

P Xd
h�1

ZXd
h Xd

h

B

Xb¤d
h

Our next step it to characterise cofibrations out of Ih rb, dq and Ih rb,8q.

Proposition 4.5. Let X be an object in tame pr0,8q , chq.

1. Consider h P N and b in r0,8q. Choose x in ZhXb. Then I pxq : Ih rb,8q Ñ X

is a cofibration if and only if X is cofibrant and x is not in the image of Xt b
h for

any t   b;

2. Consider h P N and b in r0,8q. Choose x in ZhX
b and y in Xd

h�1 such that
Xb¤d
h pxq � B pyq. Then I px, yq : Ih rb, dq Ñ X is a cofibration if and only if X is

cofibrant, x is not in the image of Xs b
h for any s   b, and y is not in the image

of Xt d
h�1 for any t   d.

Proof. We prove the two claims together. With a little abuse of notation, we are going
to use the symbol Ih rb, dq also for the case d � 8.

First, note that, since Ih rb, dq is cofibrant, if f : Ih rb, dq Ñ X is a cofibration then
X has to be necessary cofibrant. This because any object receiving a cofibration from
a cofibrant object is cofibrant. For the rest of the proof, then, we assume X cofibrant.
This, by Proposition 4.1, implies that the transition morphisms of X are cofibrations.

By extending any sequence that discretises X with elements b and d, if d   8, we
get a sequence that discretises both X and Ih rb, dq. Let 0 � t0   t1   � � �   tn be such
an extended sequence. Consider the diagram:
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Ih rb, dqtj Ih rb, dqtj�1

Xtj Xtj�1

f tj

Ihrb,dqtj tj�1

f tj�1

Xtj tj�1

(4.3.1)

By Proposition 4.2, since X is cofibrant, the morphism f : Ih rb, dq Ñ X is a cofibration
if and only if the diagram (4.3.1) is a pullback for all j � 0, . . . , n � 1. Since the
transition morphisms of Ih rb, dq are 0- or 1-dimensional, we can enumerate the cases
in which they change and study the diagram (4.3.1) in each of them. If d   8, and
tj ¡ d, in degrees l � h, h� 1, and if b ¤ tj   tj�1   d in degree l � h, (4.3.1) becomes

k k

X
tj
l X

tj�1
l

X
tj tj�1
l

and hence it is a pullback square. If tj   b � tj�1, in degree h (4.3.1) becomes

0 k

X
tj�1
h X

tj�1
h

f tj�1

Xtj tj�1

Thus, it is a pullback if and only if f tj�1 pxq is not in the image of Xtj tj�1 . If d   8

and tj   d � tj�1, in degrees h and h� 1 (4.3.1) becomes

k k

X
tj�1
h X

tj�1
h

X
tj tj�1
h

0 k

X
tj�1
h�1 X

tj�1
h�1

f
tj�1
h�1

X
tj tj�1
h�1

The left diagram is pullback square, and the right diagram is a pullback square if and
only if f tj�1

h�1 pyq is not in the image of Xtj tj�1
h�1 . In all other degrees and combinations

of b and d with the discretising sequence, (4.3.1) becomes

0 0

X
tj
l X

tj�1
l

X
tj tj�1
l

for l P N. Hence, it is a pullback square, and the claim is proved.

We are now ready to prove the decomposition theorem of cofibrant objects.

Theorem 4.6. Any cofibrant object in tame pr0,8q , chq is isomorphic to a direct sum
`li�1I

hi rbi, diq, where l could possibly be 0. Moreover, the decomposition is unique up
to isomorphisms.
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Proof. Let X be a cofibrant object in tamepr0,8q, chq, and 0 � t0   t1   � � �   tn

a sequence in r0,8q discretising it. By Proposition 4.1, the morphism Xti�1 ti is a
monomorphism for every i � 1, . . . , n.

Suppose first that all the differentials in Xti are trivial, for every i � 0, . . . , n. In
this case, X is isomorphic to `hPNXh. Let l0h :� dimX0

h and ltih :� dim cokerXti�1 ti
h

for i � 1, . . . , n. Then Xh is isomorphic to:

nà
i�0

l
ti
hà
j�1

Ih rti,8q

and consequently X is isomorphic to:

à
hPN

nà
i�0

l
ti
hà
j�1

Ih rti,8q

and the theorem is proved.
Suppose now that there is a non-trivial differential in X. We can consider the

following values:

(i) Let h be the smallest for which Btih�1 : Xti
h�1 Ñ Xti

h is non trivial for some ti. Note
that then Xti

h � ZhX
ti for any t.

(ii) Let d be the smallest ti for which Btih�1 : Xti
h�1 Ñ Xti

h is non trivial.

(iii) Let b be the smallest ti ¤ d for which the following intersection contains a non
zero element:

im
�
Xti¤d
h : ZXti

h � Xti
h ãÑ Xd

h

	
X im

�
Bdh�1 : Xd

h�1 Ñ Xd
h

	
� 0

We claim that, using these values, it is possible to split the interval sphere Ih rb, dq out
of X and write X � Ih rb, dq `X 1. If our claim is true, then we can apply the same
strategy to X 1. If X 1 has a non-trivial differential, we split out of X 1 another direct
summand of the form Ih

1

rb1, d1q. Since the object X is compact, it is guaranteed that
this process eventually terminates. At the end of the process, we end up with an object
with all the trivial differentials which, by the initial result, can be decomposed as a
finite direct sum of interval spheres, and the theorem is proven.

It remain to show our claim: X is isomorphic to a direct sum Ih rb, dq `X 1. For
that, we make some choices:

1. Choose a non zero vector v in the intersection from step (iii) above;

2. Choose x in Xb
h � ZhX

d and y in Xd
n�1 such that Xb¤d

n pxq � v � B pyq;

3. Use such x and y to choose a morphism I px, yq : Ih rb, dq Ñ X, as described in
Remark 4.4.
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The reason why we make all these choices is to be able to use Proposition 4.5 to
assure that I px, yq : Ih rb, dq Ñ X is a cofibration. Consider now the morphism
ϕ : X Ñ Ih rb, bq that fits into the following commutative diagram. Note that its
existence is guaranteed by axiom A4.

Ih rb, dq Ih rb, bq

X 0

i

Ipx,yq �
ϕ

If ti   d, then, by how we defined d, the differential Btih�1 : Xti
h�1 Ñ Xti

h is trivial. Hence,
for any b ¤ ti   d, the linear transformation ϕtih�1 : Xti

h�1 Ñ Ih rb, bqtih�1 has to be
trivial. A direct computation, then, shows that ϕ : X Ñ Ih rb, bq factors as:

Ih rb, dq

X Ih rb, bq

i

ϕ

ψ

Therefore, the following composition is the identity:

Ih rb, dq X Ih rb, dq
Ipx,yq

1

ψ

and consequently X is isomorphic to a direct sum Ih rb, dq `X 1, proving the claim and
thus the decomposition.

Since the interval spheres are indecomposable, by Remark 2.17 such a decomposition
is unique.

As a consequence of Theorem 4.6, we obtain the following characterisation of
cofibrant tame parametrised chain complexes with trivial homology.

Corollary 4.7. A cofibrant object in tame pr0,8q , chq has trivial homology if and
only if it is the direct sum of interval spheres Ih rb, bq, for various h P N and b in r0,8q.

In this chapter, we proved the decomposition theorem for cofibrant objects. With
it, we can associate for at least this class of tame parametrised chain complexes the
invariants provided by the number and type of their indecomposables. Now we aim to
extract invariants for any tame parametrised chain complexes by approximating them
with cofibrant objects.



Chapter 5

Invariants for tame parametrised
objects in model categories

The goal of this chapter is to define invariants for tame parametrised chain complexes
using the model structure introduced on tame pr0,8q , chq. To obtain such invariants,
we are going to approximate any tame parametrised chain complex with a cofibrant
object. In general, an object in a model category admits many possible cofibrant
approximations. Using the concept of minimality, it is possible to choose some cofibrant
approximations uniquely. We concentrate on two such approximations, called minimal
cover and minimal representative. Minimal covers and minimal representatives do not
need to exist in general in a model category. We show, however, that they both exits
in tame pr0,8q , chq.

The chapter is structured as follows. In Section 5.1, we define two notions of
minimality. In Section 5.2, we show how to use the existence of the minimal cover inM
to prove the existence of minimal cover in tame pr0,8q ,Mq. In Section 5.3, we study
the minimality in the category of compact chain complexes. In Section 5.4, we build
and characterise the minimal cover in tame pr0,8q , chq, and we prove the existence of
the minimal representative in tame pr0,8q , chq. Finally, in Section 5.5, we study the
minimality for the three classes of objects presented in Section 2.5.

Throughout this chapter, the symbol M denotes a category with a fixed model
structure.

5.1 Minimality in a model category

In model category theory, the idea of minimality is used to uniquely determine some
particular morphisms, such as minimal (co)fibrations. Typically, minimality is expressed
by the property that any weak equivalence between minimal (co)fibrations is an
isomorphism. In general, a model category does not need to admit minimal morphisms.

60
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Thus, the discussion of minimality is usually restricted to specific model categories. See
for example [39].

Axiom A5 guarantees the existence of factorisations of morphisms in a model
categoryM, but it does not specify any uniqueness. A morphism may admit many
such factorisations. There are model categories in which among all these factorisations
there are canonical ones called minimal.

Definition 5.1. Let f : X Ñ Y be a morphism inM. A factorisation f � p � c, where
c is cofibration, and p is a fibration and a weak equivalence, is called minimal if every
morphism ϕ which makes the diagram commute is an isomorphism:

X Z

Z Y

c

c p�

p
�

ϕ

The fibration and weak equivalence in the minimal factorisation of ∅Ñ X is called
a minimal cover of X.

According to the above definition, we can think about a minimal cover of X as a
morphism π : X 1 Ñ X such that:

(i) X 1 is cofibrant,

(ii) π is both a fibration and a weak equivalence

(iii) every morphism ϕ which makes the following diagram commute is an isomorphism:

X 1

X 1 X

π�

π
�

ϕ

Proposition 5.2. Let f : X Ñ Y be a morphism in M. Assume that p � c � f �

p1 � c1 are minimal factorisations, through Z and Z 1, respectively. Then there is an
isomorphism ϕ making the following diagram commute:

X Z 1

Z Y

c1

c p1�

p
�

ϕ

Proof. Let ϕ and ψ be morphisms making the following diagram commute, which exist
by the lifting axiom A4:
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X Z 1

Z X

c1

c p1�

ψ

p
�

ϕ

Since the diagram commutes, by definition of minimal factorisation both the composi-
tions ϕ � ψ and ψ � ϕ are isomorphisms. Consequently, so are ϕ and ψ.

As a direct consequence, we have the following result, showing that minimal covers
are invariants in the model categories where they exist.

Corollary 5.3. If a minimal cover exists, then it is unique up to isomorphisms.

Moreover, the minimal factorisation is an invariant for morphisms.

Proposition 5.4. Let f : X Ñ Y and f 1 : X 1 Ñ Y be two isomorphic morphisms in
M Ó Y . Then the minimal factorisations of f and f 1 are isomorphic.

Proof. Let X Z Yc p and X 1 Z 1 Yc1 p1 be the minimal factorisations of f
and f 1. Let i : X Ñ X 1 be an isomorphism between f and f 1 in M Ó Y . Then the
following solid diagrams commute:

X Z 1

Z Y

c1�i

c � p1

�
p

ϕ

X Z

Z 1 Y

c�i�1

c1 � p

�

p1

ψ

The dotted arrows ϕ and ψ exists by axiom A4. By definition of minimal factorisa-
tion, both the compositions ϕ � ψ and ψ � ϕ are isomorphisms, thus also ϕ and ψ are
isomorphisms, proving the claim.

We now introduce another notion of minimality called minimal representative. We
first recall:

Definition 5.5. Two objects X and Y inM are called weakly equivalent if there is a
finite sequence of weak equivalences of the form:

X A0 A1 � � � An Y� � � � �

Remark 5.6. Being weakly equivalent is an equivalence relation. The identity is a
weak equivalence by Proposition 3.4, and thus every object is weakly equivalent to
itself. From the definition, it follows that if X is weakly equivalent to Y then also Y is
weakly equivalent to X. Finally, the juxtaposition of the sequence connecting X and Y
and the sequence connecting Y and Z gives a sequence of weak equivalences connecting
X and Z.
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Similarly to the classes of factorisations of morphisms, the classes of weakly equiva-
lent objects are large. There are model categories, however, where these classes contain
a canonical object called a minimal representative.

Definition 5.7. An object X inM is called minimal if it is cofibrant, fibrant, and
every weak equivalence X �

ÝÑ X is an isomorphism.

Definition 5.8. Let X and Y be two object inM. Y is called minimal representative
of X if it is minimal and weakly equivalent to X.

The isomorphism type of minimal representatives depends on the homotopy type.

Proposition 5.9. Let X and X 1 be weakly equivalent objects inM. If Y is a minimal
representative of X and Y 1 is a minimal representative of X 1, then Y and Y 1 are
isomorphic.

To prove this proposition, we use two lemmas.

Lemma 5.10. Let X be a fibrant object and let X A B� � a sequence of weak
equivalences inM. Then there exists an object C inM with a weak equivalence and a
fibration which is also a weak equivalence that fits in the following diagram:

X C B� �

Proof. Complete the diagram X A B� � to a commutative square with the
terminal object. Since X is fibrant, the morphism X Ñ � is a fibration. Take now
the pullback of X � B. Then, drawing all these constructions, we have the
following diagram:

A

X P B

�

��
f

p1 p2

where the morphism f is induced by the universal property of pullback. The morphism
p2 is a fibration by Proposition 3.5. By axiom A5.(F2), f factorises through an object
C as p � c, where c is a cofibration and a weak equivalence, and p is a fibration. By
axiom A2, the compositions p1 � p and p2 � p are weak equivalences. Moreover, by
Proposition 3.6, the composition p2 � p is also a fibration. Thus, we have the claimed
morphisms: X C B.�

p1�p
�
p2�p

Lemma 5.11. Consider the following sequence of weak equivalences, where the second
morphism is also a fibration:
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A0 A1 A2 A3 A4
� � � �

Then there exists an object P and two weak equivalences in the form:

A0 P A4
� �

Proof. Compute the pullback of A1 A2 A3,
� � and consider the resulting

diagram:

P

A1 A3

A0 A2 A4

�
p1

�
p0

�
a0 � �

�
a3

where, by Proposition 3.5, the morphism p1 is a fibration and a weak equivalence. By
axiom A2, the morphism a3 � p1, the morphism p0, and hence the morphism a0 � p0

are weak equivalences. Thus, we obtain the following diagram, proving the claim:
A0 P A4.�

a0�p0
�

a0�p0

We are now ready to prove Proposition 5.9.

Proof of Proposition 5.9. Let Y and Y 1 be minimal representative of weakly equivalent
objects X and X 1. Since they are weakly equivalent, there exists a sequence of weak
equivalences connecting them:

X A0 A1 � � � An Y� � � � �

Note that n is even. By applying repeatetly n

2 times Lemma 5.10 and Lemma 5.11,

we obtain Y Z Y 1.� � Complete this sequence to a commutative square with
the terminal object. Since Y and Y 1 are fibrant, the morphisms Y Ñ � and Y 1 Ñ �

are fibrations. Consider then the pullback of Y � Y 1. We depict all the
constructions in the following diagram:

Z

Y P Y 1

�

�� f

p1 p2

where the morphism f is the mediating morphism of pullback. The morphisms p1

and p2 are fibrations by Proposition 3.5. By axiom A5.(F2), f factorises through an
object C as p � c, where c is a cofibration and a weak equivalence, and p is a fibration.
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By axiom A2, the composition p1 � p and p2 � p are weak equivalences. Moreover, by
Proposition 3.6, they are also fibrations. Thus, by axiom A4.(S2), the dotted arrows in
the following diagrams exist.

∅ C

Y Y

c p1�p�

1

g

∅ C

Y 1 Y 1

c1 p2�p�

1

g1

where the morphisms c and c1 are cofibrations because Y and Y 1 are cofibrant. By
Proposition 3.4 and axiom A2, both g and g1 are weak equivalences. Then we have
two morphisms ϕ � p2 � p � g : Y Ñ Y 1 and ψ � p1 � p � g

1 : Y 1 Ñ Y . By axiom A2,
ϕ and ψ are weak equivalences. Since both Y and Y 1 are minimal, the compositions
ϕ � ψ : Y Ñ Y and ψ � ϕ : Y 1 Ñ Y 1 are isomorphisms. Consequently, so are ϕ and ψ,
and the claim is proved.

Corollary 5.12. The minimal representatives of weakly equivalent objects inM are
isomorphic.

In particular, if two objects are isomorphic, then their minimal representatives are
isomorphic.

Proposition 5.2 and Proposition 5.9 ensure the uniqueness of minimal factorisations,
minimal covers and minimal representatives up to isomorphisms. However, they do
not imply the existence of any of them. Existence has to be proven separately, and it
depends on the considered model category.

Definition 5.13. A model category satisfies the minimal factorisation axiom if minimal
factorisations exist in the category. A model category satisfies theminimal representative
axiom if minimal representatives exist in the category.

5.2 Minimal factorisation in tame([0, 8), M)

We now explain how to build minimal factorisation in tame pr0,8q ,Mq, provided
thatM satisfies the minimal factorisation axiom. Let f : X Ñ Y be a morphism in
tame pr0,8q , chq, and 0 � t0   � � �   tn a sequence discretising X and Y . Consider
the factorisation built in Construction 3.17, with the following choices:

(i) at step 0, take the minimal factorisation of f0;
(ii) at step tj , take the minimal factorisation of f̂tj .

Proposition 5.14. Assume thatM satisfies the minimal factorisation axiom. Then
steps (i) and (ii) give a minimal factorisation in tame pr0,8q ,Mq.
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Proof. The choises (i) and (ii) in Construction 3.17 give a factorisation f � p� c, where
c is a cofibration and p is a fibration and a weak equivalence. It is left to show that
such a factorisation is minimal. Consider ϕ in the following commutative diagram:

X Z

Z Y

c

c p�

p
�

ϕ

Let 0 � t0   � � �   tn be a common discretising sequence for X, Y and Z. We prove
that ϕt is an isomorphism for each t in such a sequence. SinceM satisfies the minimal
factorisation axiom, the claim is true for ϕ0. Consider now any j P t1, . . . , nu. Draw
the following diagram:

Ztj�1 Ztj

Xtj�1 P tj�1 Y tj

Xtj Ztj

Ztj�1 tj

ptjctj�1

Xtj�1 ti

c2tj

c2tj

ctj

c1tj

ptj

ϕtj

where the left side is a pushout, and the morphisms ctj and ptj are given by Construc-
tion 3.17. Since both Ztj�1 and Xtj maps to Ztj , by universal property of the pushout
there exists a morphism P tj�1 Ñ Ztj . By uniqueness of the mediating morphism,
such a morphism is precisely the morphism c2tj of Construction 3.17, and it holds
c2tj � ϕtj � c2tj . Hence, the middle inner diagram commutes. Then by minimality of
the factorisation of f̂ tj inM, ϕtj is an isomorphism, proving the claim.

Note that we need to know the explicit minimal factorisation of morphisms inM
to apply this construction and build the minimal factorisation in tame pr0,8q ,Mq.

Corollary 5.15. IfM satisfies the minimal factorisation axiom, then every object in
tame pr0,8q ,Mq admits a minimal cover.

In particular, ifM satisfies the minimal factorisation axiom, the minimal cover of
any cofibrant object X in tame pr0,8q ,Mq is 1 : X Ñ X.

5.3 Minimality in ch

Our next task is to present an explicit construction for the minimal representative and
minimal factorisation in ch. Recall that all objects in ch are fibrant and cofibrant. It
follows that the minimal cover of any object X in ch is 1 : X Ñ X.
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Minimal representative

Let V be a chain complex with trivial differentials. In this case, HV � V and hence
every weak equivalence ϕ : V Ñ V is an isomorphism. More generally, we have the
following result.

Theorem 5.16. An arbitrary chain complex X is minimal if and only if all its differ-
entials are trivial.

Proof. If all the differentials are trivial, then X � HX. Hence, by Definition 3.9, it
follows that every weak equivalence ϕ : X Ñ X is an isomorphism. On the other hand,
suppose X is minimal and it has at least one nontrivial differential in some degree h.
Then, considering the decomposition (3.2) of X, at least one direct summand is a disk:
X � `li�0D

h ` `h1S
h1 , with l ¡ 0. Define ϕ : X Ñ X as the projection onto `h1Sh

1 .
The morphism ϕ is a weak equivalence since `li�0D

h has trivial homology, but it is not
an isomorphism. This is a contradiction since X is minimal.

We can now use this result to describe the minimal representatives in ch. It follows
that ch satisfies the minimal representative axiom.

Proposition 5.17. The minimal representative of an object X in ch is HX.

Proof. By definition, HX has all trivial differentials, and thus, by Theorem 5.16 is
minimal. Recall the morphism s : HX Ñ X defined in Section 3.2. Such a morphism is
in particular a weak equivalence, and thus HX is the minimal representative of X.

Theorem 5.16 can be generalised to the following proposition.

Proposition 5.18. Let f : X Y be a cofibration in ch such that the chain complex
Y {fpXq has all trivial differentials. Then f satisfies the following minimality condition:
every weak equivalence ϕ : Y Ñ Y for which ϕ � f � f is an isomorphism.

Proof. Consider the following solid diagram with exact rows.

0 X Y Y�f pXq 0

0 X Y Y�f pXq 0

f

1 ϕ�

f

(5.3.1)

The dotted arrow is given by Proposition 1.32 and makes the diagram commute.
Theorem 1.39 applied to (5.3.1) gives the following long exact sequences in homology:

� � � Hh�1X Hh�1Y Hh�1Y {fpXq HhX HhY � � �

� � � Hh�1X Hh�1Y Hh�1Y {fpXq HhX HhY � � �

1 � 1 �
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By the Five Lemma 1.29, the central morphism in the above diagram is an isomorphism.
Thus, the morphism Y {fpXq Ñ Y {fpXq is a weak equivalence. Since Y {fpXq has
all trivial differentials, by Theorem 5.16 it follows that Y {fpXq Ñ Y {fpXq is an
isomorphism. Then, by applying Lemma 1.30 to the diagram (5.3.1), we have that ϕ is
an isomorphism.

Minimal factorisation

The goal of this subsection is to build the minimal factorisation of a chain map.

Construction 5.19. Let f : X Ñ Y be a morphism of chain complexes. To construct
its minimal factorisation we perform the following steps:

1. Take the kernel κ : K ãÑ X of f ;

2. Choose an isomorphism K
�
ÝÑ DBK `HK, which exists because of the standard

decomposition of chain complexes (Section 3.2);

3. Consider the composition:

α : K DBK `HK DBK `DHK
�

�
��1 0

0 i

�
��

where i is defined in Construction 1.35. Note that α is a cofibration, since it is
the composition of cofibrations;

4. use axiom A4 to construct a morphism ϕ : X Ñ DBK `DHK which fits into
the following commutative diagram:

K DBK `DHK

X 0

κ

α

�ϕ

Note that the morphism
�
ϕ

f

�
: X Ñ pDBK `DHKq ` Y is a cofibration. �

Proposition 5.20. The following factorisation is minimal:

pDBK `DHKq ` Y

X Y

�
0 1

�

�

f

�
��ϕ
f

�
��



Chapter 5. Invariants for tame parametrised objects in model categories 69

Proof. The morphism
�
ϕ

f

�
is a cofibration, and the morphism

�
0 1

�
is a fibration and

a weak equivalence, since DBK `DHK has trivial homology. We need to show that
the factorisation is minimal. Consider a morphism

ψ �

�
ψ11 ψ12

ψ21 ψ22

�
: pDBK `DHKq ` Y Ñ pDBK `DHKq ` Y

such that the following diagram commutes:

X pDBK `DHKq ` Y

pDBK `DHKq ` Y Y

�
��ϕ
f

�
��

�
��ϕ
f

�
��

�
0 1

�
�

�
0 1

��

ψ

Commutativity of the bottom triangle implies that ψ21 � 0 and ψ22 � 1. Since K is
the kernel of f , commutativity of the top triangle implies commutativity of

K DBK `DHK

DBK `DHK

α

ϕ�κ�α
ψ11

A direct computation shows that the quotient pDBK `DHKq{α pKq is SHK, which
has all trivial differentials. Thus, the morphism ψ11 : DBK `DHK Ñ DBK `DHK

is an isomorphism by Proposition 5.18. It follows that also ψ �

�
ψ11 ψ12

0 1

�
is an

isomorphism, proving the claim.

5.4 Minimality in tame([0, 8), ch)

In this section, we present an explicit construction of minimal covers in tame pr0,8q , chq.
Moreover, we provide a characterisation for them, and we prove that tame pr0,8q , chq
satisfies the minimal representatives axiom.

Note that every object in tame pr0,8q , chq is fibrant. Recall that, by Propo-
sition 4.1, an object is cofibrant in tame pr0,8q , chq if and only if its transition
morphisms are monomorphisms for every s   t in r0,8q.

Minimal cover

By Proposition 5.14, we know that the minimal cover exists in tame pr0,8q , chq. We
illustrate here some of its properties and how to construct it.
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Proposition 5.21. In tame pr0,8q , chq, the minimal cover preserves direct sums.

Proof. Let X1, . . . , Xn be objects in tame pr0,8q , chq, and denote by X their direct
sum X � X1`� � �`Xn. Since a minimal cover is unique up to isomorphism, it is enough
to show that π : MCX1`� � �`MCXn Ñ X is a minimal cover of X, where the map π is
given by the direct sum of the minimal covers πi : MCXi Ñ Xi. MCX1`� � �`MCXn

is cofibrant being the direct sum of cofibrant objects. π is a fibration because it is
the direct sum of epimorphisms, and a weak equivalence since homology preserves
direct sums. It is left to prove that any morphism ϕ in the following diagram is an
isomorphism.

MCX1 ` � � � `MCXn

MCX1 ` � � � `MCXn X1 ` � � � `Xn

�
���������

π1 0 ��� 0

0 π2 ��� 0
... . . . ...
0 ��� 0 πn

�
���������

ϕ

�
���������

π1 0 ��� 0

0 π2 ��� 0
... . . . ...
0 ��� 0 πn

�
���������

This follows by commutativity and minimality condition on πi, for all i � 1, . . . , n.

We describe now the steps to build the construction of the minimal cover of an
object X in tame pr0,8q , chq. Let us consider a discretising sequence 0 � t0   � � �   tn

for X. At step 0, the minimal factorisation of 0 Ñ X0 is 1 : X0 Ñ X0. According to
Proposition 5.14, we build the following diagram:

X0 X0

Zt1

X0 Xt1

1
�

X0 t1
pt1

X0 t1

ct1

(5.4.1)

The morphisms ct1 and pt1 are given by the minimal factorsation of X0 t1 (Construc-
tion 5.19). By Proposition 5.14, we can iterate the process for every ti, i � 0, . . . , n. In
particular, at step tj the diagram (5.4.1) takes the form:

Ztj Xtj

Ztj�1

Ztj Xtj�1

ptj

�

Xtj tj�1
ptj�1

ptj �Xtj tj�1

ztj�1



Chapter 5. Invariants for tame parametrised objects in model categories 71

Note that the construction is heavily based on the minimal factorisation in ch.

We now present a characterisation of minimal covers in tame pr0,8q , chq. Before
presenting the characterisation, we prove the following lemma.

Lemma 5.22. Let X be in tame pr0,8q , chq. Let ϕ : X Ñ X be an endomorphism.
Then the decreasing sequence im pϕq � im

�
ϕ2� � � � � , where ϕi is the i-th composition

of ϕ with itself, stabilises.

Proof. Since X is an object in tame pr0,8q , chq, there exists a sequence 0 � t0   t1  

� � �   tn discretising it. We claim that the sequence discretises also imϕi, for all i P N.
To see it, consider s   t P rtj , tj�1q, for all j � 0, . . . , n. Since the transition morphism
Xs t is an isomorphism, also the morphism im pϕsqi Ñ im

�
ϕt
�i is so, and the claim is

proved.
We then need to verifies that the sequence im pϕq � im

�
ϕ2� � � � � stabilise on each tj ,

j � 0, . . . , n. This follows from the compactness of the objects in ch (Remark 2.10).

Proposition 5.23. Let X be in tame pr0,8q , chq. Let Y be a cofibrant object in
tame pr0,8q , chq, and f : Y X� a fibration and a weak equivalence. Then f is a
minimal cover if and only if no direct summand Ih rb, bq of Y is mapped to zero under
f .

Proof. Assume f is the minimal cover of X, and suppose there exists a direct summand
Ih rb, bq of Y such that f

�
Ih rb, bq

�
� 0. Decompose Y as Y � Y 1 ` Ih rb, bq. Define

the endomorphism ϕ : Y 1 ` Ih rb, bq Ñ Y 1 ` Ih rb, bq as

ϕ :�
�

1 0
0 0

�

Since f
�
Ih rb, bq

�
� 0, the following diagram commutes:

Y 1 ` Ih rb, bq Y ` Ih rb, bq

X

f
�

ϕ

�
f

Since ϕ is not an isomorphism, f : Y X� is not minimal.
Assume now that Y does not contain any summand Ih rb, bq, for b in r0,8q. We

need to show that f is minimal, i.e. that every endomorphism ϕ : Y Ñ Y such that
f � f �ϕ is an isomorphism. By Lemma 5.22, there exists m such that imϕm � imϕm

1

for all m1 ¡ m. Define ψ :� ϕm. By compactness, to prove that ϕ is an isomorphism is
equivalent to prove that ψ is a monomorphism. Since imψ � imψ2, the map ψ|I in
the following commutative diagram is an isomorphism:
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Y Y Y

imψ imψ

ψ ψ

ψ|I

Thus, imψ is a direct summand of Y . We can write:

imψ ` kerψ imψ ` kerψ

X

f

�

�
�� ψI 0

0 0

�
��

�

f

Note that kerψ is still a cofibrant object in tame pr0,8q , chq. Moreover, since f is a
weak equivalence and f � f � ψ, kerψ has trivial homology. By Corollary 4.7, kerψ is
a sum of interval spheres Ih rb, bq. From f � f � ψ, it follows that kerψ � ker f . This
means that, if kerψ is not trivial, there is some direct summand Ih rb, bq sent to zero
under f . This is a contradiction, hence ψ is a monomorphism, proving the claim.

Minimal representative

In this section, we prove the existence of minimal representatives in tame pr0,8q , chq.

Proposition 5.24. Let X and Y be objects in tame pr0,8q , chq, such that Y is
fibrant, cofibrant and weakly equivalent to X. Let `b,dIh rb, dq be the decomposition of
Y according to Theorem 4.6. Y is the minimal representative of X if and only if it
holds b   d, for all Ih rb, dq in `b,dIh rb, dq.

Proof. Suppose that Y is the minimal representative of X and has a direct summand
isomorphic to Ih rb, bq, for some b in r0,8q and h P N. Decompose Y as Y � Y 1`Ih rb, bq.
Define the endomorphism ϕ : Y 1 ` Ih rb, bq Ñ Y 1 ` Ih rb, bq as

ϕ :�
�

1 0
0 0

�

Since Ih rb, bq has trivial homology, ϕ is a weak equivalence, but it is not an isomorphism.
Hence, Y is not minimal, which is a contradiction.

Assume now b   d, for all Ih rb, dq in the decomposition of Y . We prove that Y is
minimal, i.e. that every weak equivalence f : Y Ñ Y is an isomorphism. By Lemma 5.22,
there exists m such that im fm � im fm

1 for all m1 ¡ m. Define ψ :� fm. By axiom
A2, ψ is a weak equivalence. By compactness, to prove that f is an isomorphism is
equivalent to prove that ψ is a monomorphism. Since imψ � imψ2, the map ψ|I in
the following commutative diagram is an isomorphism:
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Y Y Y

imψ imψ

ψ ψ

ψ|I

Thus, imψ is a direct summand of Y . We can write:

imψ ` kerψ imψ ` kerψ

�
�� ψI 0

0 0

�
��

Note that kerψ is a cofibrant object in tame pr0,8q , chq. Moreover, since ψ is a weak
equivalence, kerψ has trivial homology. By Corollary 4.7, kerψ is a sum of interval
spheres Ih rb, bq. This is a contradiction. Then kerψ is trivial and ψ is a monomorphism,
proving the claim.

This characterisation provides a method to construct the minimal representative of
an object X of tame pr0,8q , chq, using the following two steps:

(i) take the cofibrant replacement f : Y Ñ X of X;
(ii) decompose Y into interval spheres by Theorem 4.6, and retain only the summands

Ih rb, dq such that b   d.

Proposition 5.25. Steps (i) and (ii) give minimal representatives in tame pr0,8q , chq.

Proof. Let X be an object in tame pr0,8q , chq. Perform step (i) and (ii) on it
and obtain a cofibrant object Y , weakly equivalent to X. Recall that all objects
in tame pr0,8q , chq are fibrant. Note that, since the interval sphere Ih rb, bq are
contractible, for every h P N and b in r0,8q, step (ii) does not change the homology.
By Proposition 5.24, f is the minimal cover of X.

Corollary 5.26. The category tame pr0,8q , chq satisfies the minimal representative
axiom.

In particular, in tame pr0,8q , chq the minimal representative of an object X can
be obtained splitting out of the summands Ih rb, bq, for some b in r0,8q, from the
minimal cover of X.

5.5 Minimality in the motivational examples

Minimality for parametrised vector spaces

Let V be a parametrised vector space. Since V is a tame parametrised chain complex
concentrated in degree 0 in r0,8q, it follows that its minimal cover cannot contain any
Ih rb, bq summand. Since, by Proposition 5.24, the minimal representative of an object
in tame pr0,8q , chq can be obtained by splitting out the direct summands Ih rb, bq
from its minimal cover, we have the following proposition:
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Proposition 5.27. For parametrised vector spaces, the minimal cover and the minimal
representative are isomorphic.

Let b   d be in r0,8q. The minimal cover of Irb,dq is I0 rb, dq. Recall that
H0

�
I0 rb, dq

�
� Irb,dq. It follows

Theorem 5.28. Minimal covers and minimal representatives are complete invariants
for parametrised vector spaces.

We present an example. Let V be the parametrised vector space shown in the
following diagram.

0 t1 t2

k2 k 0

�
1 0

	

Its minimal cover, and thus also its minimal representative, is depicted in the following
diagram.

0 t1 t2

0 k k2 � � �

k2 k2 k2 � � �

�
1 0

	
�

1 0
	 1

1

1 1 1

We obtain the decomposition I0 r0, t1q`I0 r0, t2q of the minimal cover. By Theorem 2.13,
V decomposes as Ir0,t1q ` Ir0,t2q.

Minimality for tame commutative ladders

As opposed to what happens for tame parametrised vector spaces, neither minimal
covers nor minimal representatives are complete invariants for tame commutative
ladders. As an example, let X and Y be two commutative ladders described graphically
as:

X :�
k k 0 0 0 � � �

k k 0 k k � � �

1

1 1
1 1 1

0 t1 t2 t3 t4

Y :�
k 0 0 0 0 � � �

k 0 0 k k � � �

1
1 1

Both their minimal covers are:
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k k k k k � � �

k k k k2 k2 � � �

0 t1 t2 t3 t4

1

1

1

1

1

1

1�
1

0

� 1�
1

0

�

1 1

�
1

0

�
1 1

And both their minimal representatives are:

0 0 0 0 0 � � �

0 0 0 k k � � �

0 t1 t2 t3 t4

1 1

Although not complete, both the minimal cover and the minimal representative are
invariants for commutative ladders. Thus, we can associate to X and Y either the
decomposition of their minimal cover, given by I0 r0, 0q`I0 rt3,8q, or the decomposition
of their minimal representative, given by I0 rt3,8q. Note that the difference between
the two is in the contractible summand I0 r0, 0q.

Minimality for zigzags

We describe now a strategy to retrieve minimal covers and minimal representatives of
zigzags. Such a strategy is based on the decomposition Theorem 2.20 and thus does
not provide an efficient implementation. We present it to show a theoretical method to
retrieve these invariants. We defer to future investigations the study of a constructive
way to compute minimal covers and minimal representatives of zigzags.

To retrieve the minimal cover of an object X in ZigZag, decompose X into the
direct sum of interval zigzags using Corollary 2.24, and compute the minimal covers of
each interval zigzag sequence. Since, by Proposition 5.21, the minimal cover preserves
direct sums, this strategy provides the minimal cover of X. Moreover, to prove the
completeness of the minimal cover in ZigZag, it is enough to verify it for interval
zigzags. Note that, to be able to apply this strategy, it is necessary to fix the type C.

Once the minimal cover of a zigzag is built, we can apply Proposition 5.25 to it
and retrieve the minimal representative of the zigzag. However, since the minimal
representative does not preserve direct sums, showing that the minimal representative
is a complete invariant for interval zigzags is not enough to prove that the minimal
representative is a complete invariant in ZigZag.

Using Construction 2.21 and Construction 2.23, we translate zigzag sequences into
discrete chain zigzags. There is not a natural way to obtain this. We present here other
possibilities, highlighting their drawbacks and thus motivating our original choice.
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Counterexample 5.29. Consider the following concatenation of a functor X : rns Ñ
ch and a directed linear transformation pf, cq:

• Assume the chain complex Xn is concentrated in degree g:

– If c � r and the domain of f coincide with Xn
h , then X �pf, cq : rn�1s Ñ ch

is given by the sequence of n� 1 chain maps:

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
Shf
ÝÝÑ

where Shf is the h-th suspension of f .

– If c � l and the codomain of f coincide with Xn
h , set Xn

h�1 equal to the
domain of f , and BXn

h�1 � f , so that Xn is concentrated in degrees h, h� 1.
If n ¡ 0, the transition morphism Xn�1 n remains unchanged in degree h
and it is set to zero otherwise. Note that, in this case, we are redefining the
functor X : rns Ñ ch by modifying its last chain complex.

• Assume the chain complex Xn is concentrated in degrees th, h�1u, c � r and the
domain of f coincide with Xn

h�1. Define Y to be the chain complex concentrated
in degree h� 1 such that Yh�1 is the codomain of f . Let g : Xn Ñ Y be the chain
map which in degree h� 1 is given by f . Define X � pf, cq : rn� 1s Ñ ch to be
given by the sequence of n� 1 chain maps:

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
g
ÝÑ

Note that, in this case, according to the direction of pf, cq the concatenation varies in
length. Moreover, it is not allowed a zigzag sequence where there exists i such that
ci � ci�1 � l, because, since there is not guarantee that fi�1 � fi � 0, we would not
obtain a chain complex. Applying Construction 2.23 to this concatenation. Taking the
left Kan extension, we get a zigzag from each zigzag sequence.

The interval zigzag sequences tpk Ñ 0, rq , p0 Ñ 0, lqu and tp1k, rq , p1k, lqu, along
the inclusion r1s � r0,8q: i ÞÑ i for i � 0, 1, correspond to the interval zigzags:

0 0 � � �

k 0 � � �

0 1

0 k � � �

k k � � �

0 1
1

1
1 1

Both have I0 r0, 1q as minimal cover and minimal representative, but they are not
isomorphic. Note that the zigzag sequences are of the same zigzag profile. Thus,
fixing the zigzag profile is not enough for turning the minimal cover or the minimal
representative into a complete invariant. �
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Counterexample 5.30. Consider the following concatenation of a functor X : rns Ñ
ch and a directed linear transformation pf, cq:

• Assume the chain complex Xn is concentrated in degree g:

– If c � r and the domain of f coincide with Xn
k , then X �pf, cq : rn�1s Ñ ch

is given by the sequence of n� 1 chain maps:

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
Shf
ÝÝÑ

where Shf is the h-th suspension of f .

– If c � l and the codomain of f coincide with Xn
h , then define a chain complex

Y to be concentrated in degrees th, h � 1u and such that Yh � Xn
h , Yh�1

is the domain of f and BYh�1 � f . Define the map g : Xn Ñ Y as the
chain map which is the identity in degree h and zero otherwise. Define
X � pf, cq : rn� 1s Ñ ch to be given by:

g
ÝÑ if n � 0

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
g
ÝÑ if n ¡ 0

• Assume the chain complex Xn is concentrated in degrees th, h�1u, c � r and the
domain of f coincide with Xn

h�1. Define Y to be the chain complex concentrated
in degree h� 1 such that Yh�1 is the codomain of f . Let g : Xn Ñ Y be the chain
map which in degree h� 1 is given by f . Define X � pf, cq : rn� 1s Ñ ch to be
given by the sequence of n� 1 chain maps:

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
g
ÝÑ

Note that, as in Construction 2.21, the result of a concatenation is a functorX : rn� 1s Ñ
ch, and it is possible to concatenated two directed transformations with direction l.
Applying Construction 2.23 to this concatenation, and taking the left Kan extension,
we obtain a zigzag from each zigzag sequence.

The interval zigzag sequences tp1k, rq , pk Ñ 0, rqu and tp1k, rq , p1k, lqu, along the
inclusion r2s � r0,8q: i ÞÑ i for i � 0, 1, 2, correspond to the interval zigzags:

0 0 0 � � �

k k 0 � � �

0 1 2

0 0 k � � �

k k k � � �

0 1 2
1

1
1 1 1

Both have I0 r0, 2q as minimal cover and minimal representative, but they are not
isomorphic. �
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Counterexample 5.31. Consider the following concatenation of a functor X : rns Ñ
ch and a directed linear transformation pf, cq. Assume Xn is concentrated in one
degree.

• Suppose that c � r and the domain of f coincides with Xn
h . In this case, put

Xn
h�1 � Xn

h , and BX
n

h�1 � 1, so that Xn is concentrated in degrees h, h � 1. If
n ¡ 0, the transition morphism Xn�1 n remains unchanged in degree h, and it is
set to zero otherwise. Then define Y as the chain complex concentrated in degree
h�1, where it is equal to the codomain of f , and the map g : Xn Ñ Y as the chain
map which is f in degree h�1 and zero otherwise. Define X �pf, cq : rn�1s Ñ ch
to be given by:

g
ÝÑ if n � 0

X0 1
ÝÝÝÑ � � �

Xn�1 n

ÝÝÝÝÝÑ
g
ÝÑ if n ¥ 1

• Suppose c � l and the codomain of f coincide with Xn
h . In this case, one

may choose any of the concatenation described previously (Construction 2.21,
Counterexample 5.29, Counterexample 5.30). According to this choice, one may
need to define also the case in which Xn is concentrated in two degrees and c � r.

According to the choice for the direction c � l, we obtain functor of, possibly, different
lengths with different properties, but the following example disproves the completeness
of the minimal cover using simply a directed transformation with direction c � r,
regardless of the behaviour of the directed transformations with c � l.

According to this concatenation, the zigzag sequences tp1k, rqu and tpk 0
ÝÑ k, rqu,

along the inclusion r1s � r0,8q: i ÞÑ i for i � 0, 1, correspond to the zigzags:

k k � � �

k 0 � � �

0 1
1

1

1 k k � � �

k 0 � � �

0 1
0

1

1

Both have I0 r0, 0q`I1 r1,8q as minimal cover, and I1 r1,8q as minimal representative,
but they are not isomorphic. Note that also in this case the zigzag sequences are of the
same zigzag profile, and thus it is not enough to fix the zigzag profile for turning the
minimal cover or the minimal representative into a complete invariant. �



Conclusions

In this thesis, we have described a novel approach for the study of topological invariants
of data, showing that, using model category theory, it is possible to retrieve homological
and homotopical invariants from the simplicial complex modelling a point cloud. We
proved that this approach encloses many classes of objects that have demonstrated
to be engaging in TDA. Moreover, we showed that the retrieved invariants are in
perfect accordance with the complete invariants of persistent homology. These results
are exciting and open the way for new investigations. We list here some of the open
problems that this approach prepared.

Completeness of the invariants

In Section 2.5, we described a strategy to retrieve a complete invariant for zigzags,
namely the minimal cover. Since zigzags already admit a complete invariant in persistent
homology theory, it is important to have a complete invariant also in our novel approach.
However, such a strategy has the drawback of relying on the structure theorem of zigzag
sequences. This means that it has a theoretical relevance, but it does not produce
a constructive way of retrieving the invariants. In particular, it does not provide an
efficient algorithm, leaving thus open the computational problem. Therefore, we need an
alternative way of proving the completeness of the minimal cover of zigzags, hopefully
leading to efficient computation.

Stability

A crucial aspect that we did not address in this work is the stability. We described a
process that assigns to a set of points in a metric space the indecomposables of the
cofibrant approximations of the tame parametrised chain complex induced by the points.
For applying this process to real data, we need it to be stable. We have some preliminary
results on one of the passages, namely the assignment of the indecomposables of the
cofibrant objects. However, these results depend on the chosen metrics, and we would
prefer to use a different strategy, not to be forced to pick the distances a priori. In
particular, we would like to adopt a technique similar to the one used in [20, 37]. In
these works, the idea is to define discrete invariants and to stabilise them using a
so-called hierarchical stabilisation, instead of proving some stability results for different
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metrics. The reason for this choice is that information inside different datasets is
summarised at best by different invariants. Thus, instead of choosing an invariant a
priori and finding the best distances that stabilise it, it is more convenient to have
a general method to ensure stability for any discrete invariant. Using this strategy,
we can cherrypick the most meaningful invariant for each point cloud, tailoring the
analysis of the data, still ensuring the stability of the result.

Implementation

Another crucial aspect is the implementation of the results we found. Recall the
original workflow of this thesis: start with data, build the chain complex of a simplicial
complex modelling the data, associate to it its minimal cover (resp. representative),
decompose the minimal cover (resp. representative), and use its indecomposables to
define invariants. The next goal would be to prove such a workflow to be computable.
Some passage has already been implemented. In particular, the decomposition of
cofibrant objects can be achieved by previously existing software, for example [6, 7].
Moreover, we remark that we have implemented an algorithm for the decomposition of
cofibrant objects, that we aim to release soon. What is left is the computation of minimal
covers and minimal representatives of simplicial complexes which are not cofibrant. To
prove the workflow to be computable, one could start studying the implementation
of this last passage, constructing the minimal cover (resp. representative). Another
possibility is to consider the whole workflow as a single step and compute the minimal
cover (resp. minimal representative) of a simplicial complex directly as the direct sum
of interval spheres. In this case, one cannot rely on the existing software, but one could
benefit from a more direct, and, hopefully, more efficient, algorithm.

Additional invariants

Another direction to explore is the definition of new invariants. In this work, we
based the extraction of invariants one the cofibrant replacement, since cofibrant tame
parametrised chain complexes are of finite representation type. Since all objects in
tame pr0,8q , chq are fibrant, the study the fibrant replacement does not provide more
insightful information. But model category theory is much richer, leaving room for the
study of other theoretical tools for retrieving invariants.

In conclusion, there are multiple directions that this work opened we believe are
worth studying, both from the theoretical and the algorithmic point of view.
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