
Faculty of Engineering

Department of Electrical, Computer and Biomedical Engineering

Ph.D. Thesis

Self-configuring Robotic Systems: the use of

Deep Reinforcement Learning as a tool for Industrial Manipulators

A.Y. 2019/2020

Cycle XXXIII

Candidate: Advisor:

Bianca Sangiovanni, M.Eng. Professor Antonella Ferrara, Ph.D.

Abstract

The present Thesis aims to present different examples of self-configuring systems

involving robotic manipulators. With self-configuring systems, we refer to systems

featuring the ability to autonomously adapt their control strategy or general

configuration in order to overcome possible limitations encountered during their

operation. To this end, the use of Deep Reinforcement Learning (DRL), a type of

machine learning that enables the system to autonomously discover the best strategy

to solve a task, is discussed as a tool for decision making or for controlling robotic

systems in situations in which a model-based solution is not readily achievable.

End-to-End, model-free control approaches are studied and used contextually with

- or alternatively to - model-based control and decision strategies. Specifically, the

work focuses on industrial manipulators operating in uncertain environments to

perform motion and collision avoidance tasks.

For robot motion, a novel switched-structure scheme to achieve both centralized

and decentralized control, using the perturbation estimation feature of the Integral

Sliding Mode controller, is presented and discussed in detail. Different approaches

for decision-making are illustrated.

For collision avoidance, a framework enabling end-to-end, model-free control of

robotic manipulators operating in cluttered environments is introduced and tested

on several case studies. A novel hybrid algorithm combining DRL-based strategies

and conventional planning methods is proposed. The presented approaches are

then deployed on different robotic systems, and experimental results are reported.

i

Sommario

Lo scopo della presente Tesi è quello di presentare diversi esempi di sistemi

autoconfiguranti (self-configuring) che coinvolgono manipolatori robotici. Con

sistemi autoconfiguranti, si intendono sistemi che hanno la capacità di adattare la

propria strategia di controllo, o la propria configurazione generale, per superare

eventuali limitazioni incontrate durante il loro funzionamento. A questo scopo,

l’uso del Deep Reinforcement Learning (DRL), un tipo di machine learning che

permette al sistema di scoprire autonomamente la strategia migliore per compiere

un determinato task, viene introdotto e discusso come strumento per prendere

decisioni o per controllare sistemi robotici in situazioni in cui una soluzione con

controlli convenzionali model-based non è facilmente raggiungibile. Gli approcci

di controllo end-to-end, model-free, sono studiati e utilizzati contestualmente - o

alternativamente - a strategie di controllo e decisione convenzionali. Il lavoro si

concentra, in particolare, su manipolatori industriali che operano in condizioni

incerte, per eseguire operazioni di moto e collision avoidance.

Per il controllo del moto, viene presentato e discusso in dettaglio un nuovo schema

a struttura switched per ottenere un controllo sia centralizzato che decentralizzato,

utilizzando la proprietà di stima delle perturbazioni del controllore basato su Integral

Sliding Mode. Vengono illustrati diversi approcci per il processo decisionale, con

cui si determina la scelta del controllore.

Per la collision avoidance, viene introdotto un framework per il Deep Reinforce-

ment Learning che permette il controllo end-to-end e model-free di manipolatori

robotici che operano in ambienti occupati da ostacoli. L’approccio proposto viene

testato su diversi casi di studio. Viene proposto inoltre un nuovo algoritmo ibrido

che combina strategie basate su DRL e metodi di pianificazione convenzionali. Le

soluzioni presentate sono poi testate su diversi sistemi robotici reali, per cui vengono

alcuni risultati sperimentali.

iii

Acknowledgements

This manuscript represents the culmination of my three-years journey as a Ph.D.

student, a journey that allowed me to mature as a scholar and as a human. This would

have not been possible without the many people that I met and those who supported me.

First and foremost, I wish to express the most profound gratitude to my Ph.D. advisor

Professor Antonella Ferrara for her mentorship and for allowing me to pursue my

doctoral studies, but mostly for her support and inspiration. I wish to deeply thank

Professor Gian Paolo Incremona and Professor Marco Piastra for the very meaningful

collaborations during these years and for being great examples of professionalism and

competence. Thank you to all the incredible lab mates at the ICDS Lab for sharing all

the laughs, struggles, many memorable moments, and overall great days. Massimo,

Giulia, Emanuele, Andrea, Alessandro, but also Federica, Enrico, Eleonora, Jack, Alessio,

Francesca, Giacomo, Diego and Behrouz, you are all incredibly brilliant and I wish you

all the best. Special thanks to Professor Chiara Toffanin for always being so patient, lab

technician Gianluca De Felici for his assistance, and Nikolas Sacchi for his support in

setting up the experiments and the fun times discussing robotics. I wish to thank all the

students I had the honor to co-tutor: Simone Colosi, Alessio Stefanini and Marco Guido.

I also wish to express sincere gratitude to all the members of the Robotics and Perception

Group at the University of Zurich/ETH, especially Professor Davide Scaramuzza, Mrs.

Tamar Tolcachier, Davide Falanga, and Antonio Loquercio for our collaboration during

my visiting semester: it was a pleasure and an honor for me to join such incredible lab.

Furthermore, I would like to thank Professor Paolo Rocco and Professor Matteo

Rubagotti for agreeing to review my thesis and providing valuable feedback and

suggestions to improve the manuscript.

Last but not least, I want to thank with all my heart my wonderful friends and family

for always supporting me during the pursuit of my Ph.D.; honorable mention to Fra,

Alesja, Angelo, Zambi, and Max for the epic moments, and to my mom, dad and sister

Sonia for being amazing. Finally, my most profound acknowledgement goes to Cre:

thank you for always being with me. You are the love and joy of my life.

v

Contents

Abstract i

Sommario iii

Acknowledgements v

I Introduction and Background 1

1 Introduction 3

1.1 Deep Reinforcement Learning for Robotics 5

1.2 Thesis contribution . 7

1.3 Thesis structure . 8

1.4 List of peer-reviewed scientific publications 10

2 Preliminaries of Robotics 11

2.1 Basic Definitions . 11

2.2 Kinematic Model . 13

2.2.1 Direct Kinematics . 14

2.2.2 Inverse Kinematics . 16

2.2.3 Differential Kinematics . 17

2.3 Dynamical Model . 18

2.3.1 Lagrangian formulation . 18

2.4 Motion Planning . 20

2.4.1 Motion planning in the joint space 22

2.4.2 Motion planning in the operative space 25

vii

3 Preliminaries on Deep Reinforcement Learning 29

3.1 General overview on Machine Learning 29

3.2 Reinforcement Learning . 31

3.2.1 Reward . 32

3.2.2 Markov Decision Process . 33

3.2.3 Policy . 33

3.2.4 Value function . 33

3.2.5 Q-learning . 35

3.3 Deep Reinforcement Learning . 37

3.3.1 Normalized Advantage Function 38

3.3.2 Hyperparameters . 39

II Self-configuring control schemes for robot motion 41

4 Motivation and state of the art 43

4.1 Structure . 45

5 Switched Structure Control Scheme for Robot Manipulators 47

5.1 Basics of Sliding Mode Control . 48

5.2 Problem formulation . 50

5.3 Self-configuring switched structure scheme 51

5.3.1 Decentralized Control Scheme 51

5.3.2 Centralized Control Scheme 54

5.3.3 Switching Block . 55

5.4 Integral Sliding Mode Control design 56

5.4.1 Stability proof . 57

5.4.2 Perturbation Estimator and Chattering Alleviation 58

5.5 Case studies . 60

5.5.1 Case study 1: Variable Gear Actuators 60

5.5.2 Case study 2: Industrial Robot Comau Smart3-S2 64

5.5.3 Results . 69

5.6 Comparison with ADRC . 72

5.7 Conclusions . 72

viii

6 DRL-based Switching Rule for Motion Control 75

6.1 Problem formulation . 75

6.2 Self-configuring switched structure scheme 76

6.2.1 Decentralized Control Scheme 76

6.2.2 Centralized Control Scheme 78

6.2.3 DRL-based Switching Block 78

6.3 RL Framework for Self-Configuring Motion Control 79

6.3.1 State space . 79

6.3.2 Action space . 80

6.3.3 Reward . 80

6.4 Case study . 81

6.4.1 System specifications . 82

6.4.2 Results . 82

6.5 Conclusions . 83

7 Conclusions 87

III Self-configuring approaches for robot collision avoid-

ance 89

8 Motivation and state of the art 91

8.1 Structure . 92

9 Deep Reinforcement Learning for Collision Avoidance 95

9.1 Problem definition . 95

9.1.1 Robot model . 96

9.1.2 Collision avoidance problem 96

9.2 RL Framework for Collision Avoidance 97

9.2.1 State Space . 97

9.2.2 Action Space . 98

9.2.3 Reward Function . 98

9.2.4 Hyperparameters . 102

9.3 Environment description and setup 102

9.3.1 System specifications . 103

ix

9.4 Case studies . 105

9.4.1 Results . 107

9.5 Conclusions . 110

10 Transfer Learning for DRL-Based Collision Avoidance 113

10.1 Transfer learning for improved performances 114

10.2 Transfer learning for scalability . 116

11 Self-configuring Motion Planning and Obstacle Avoidance 123

11.1 Hybrid Dual-Mode Strategy . 124

11.2 Motion Planning . 125

11.3 End-to-end control . 127

11.4 Case studies . 127

11.4.1 System specifications . 128

11.4.2 Results . 128

11.4.3 Comparison with a model-based approach 132

11.5 Conclusions . 132

12 DRL for Teleoperated Robots 135

12.1 Problem definition . 136

12.2 DRL Framework . 136

12.2.1 System specifications . 137

12.3 Case study . 138

12.3.1 Results . 139

12.4 MPC as an alternative approach . 140

12.5 Experimental Results . 142

12.5.1 System specifications . 142

12.5.2 Results . 143

12.6 Conclusions . 145

13 Experiments on the Epson VT6 industrial manipulator 151

13.1 System Setup . 151

13.1.1 Epson VT6 Industrial Manipulator 152

13.1.2 Proprietary interfacing software Epson RC+ 156

13.1.3 Virtualized environment . 157

x

13.2 Case study . 158

13.2.1 Interfacing between components 159

13.2.2 Experimental results . 160

14 Conclusions 163

IV Conclusion 165

15 Concluding remarks 167

15.1 Future work . 168

V Appendices 169

A Comau Smart3-S2 model 171

B Epson RC+ motion commands 177

xi

List of Figures

1.1 The worldwide operational stock of industrial robots 3

1.2 Industrial manipulators working in a factory (photo credits to KUKA

Roboter GmbH, Bachmann) . 4

1.3 A human operator working closely with a KUKA cobot (photo credits

to the International Federation of Robotics) 5

2.1 Main elements of the mechanical structure of an industrial manipulator. 12

2.2 (a) Anthropomorphic robot, with an open kinematic chain (b) Par-

allel robot, with a closed kinematic chain. 13

2.3 Direct Kinematics . 14

2.4 Base reference frame and tool reference frame on a 6-DoF robot

Epson VT6 . 15

2.5 Inverse Kinematics . 16

2.6 Differential Kinematics . 17

2.7 Robot control scheme with external motion planner 21

2.8 Trajectories in the joint space (left) and in the operative space (right) 21

2.9 Example of a cubic trajectory with conditions qi = 0, qf = 30 deg,

q̇i = 0, q̇f = 0 deg/s, tf = 1 s . 23

2.10 Example of a quintic trajectory with conditions qi = 0, qf = 30 deg,

q̇i = 0, q̇f = 0 deg/s, q̈i = 0, q̈f = 0 deg/s2, tf = 1 s 24

2.11 Example of a TVP trajectory with conditions qi = 0, qf = 60 deg,

q̇c = 66 deg/s, tf = 1 s . 25

2.12 Parametric curve in the cartesian space 26

3.1 Classification of machine learning types 31

3.2 Reinforcement learning framework 32

3.3 Graphic rendering of a Deep Neural Network 38

xiii

5.1 State trajectories for c1 = 1 (a) and c1 = 10 (b) 49

5.2 The proposed switched structure control scheme 51

5.3 Planar manipulator with 2 revolute joints equipped with Variable

Gears Actuators. 60

5.4 Position and velocity with references in the joint space 62

5.5 Variation of reduction ratios in time (top), for both joints; metric

I(η̂σ) used for switching (middle); switching signal σ: 1 for the

decentralized approach, 2 for centralized approach (bottom) 63

5.6 Time evolution of the auxiliary sliding variable Σ, the sliding variable

s and the integral term ϕ for joint 1 and joint 2. 64

5.7 Trajectory profiles in the joint space. Joints must reach π/2, π/2

and 0 until 7/8 of the simulation duration, and then revert the motion 66

5.8 Time evolution of the sliding variables Σj, j = 1, 2, 3 66

5.9 Trajectory tracking in the operative space (top left); metric I and

switching thresholds Pτ and Pq̈ with a close-up when the switching

occur at 13.125 s (top right); control torques τ for each joint (bottom

left); switching signal σ: 1 for the decentralized approach, 2 for

the centralized approach (bottom right). In this case, switching is

required towards the end of the simulation due to a rapid variation

of the reference trajectory. 67

5.10 Profiles of velocity q̇ and acceleration q̈ references (red) and measured

signals (blue) . 68

5.11 Trajectory profiles in the joint space for Example 2. Joints must

reach π/2, π/2 and 0 until 1/2 of the simulation duration, and then

revert the motion. 69

5.12 Trajectory tracking in the operative space (top left); metric I and

switching threshold Pq̈ (top right); control torques τ for each joint

(bottom left); switching signal σ: 1 for the decentralized approach, 2

for the centralized approach (bottom right). In this case, no switching

is required. 70

5.13 Time evolution of the sliding variables Σj, j = 1, 2, 3 for Example 2 70

5.14 Graphical rendering of Table 5.5 . 71

xiv

6.1 The proposed multi-loop switching ISM control scheme with a DRL

based switching rule . 77

6.2 Scheme of the DRL based Switching Block. 79

6.3 Example of trajectory followed by the robot joints during a training

episode. In this case, q∗0 = [0, 0, π/2]>, q∗tm = [π/8, π/8, 0]> and

tm = 2.5 s (i.e., half of the simulation duration). The robot’s initial

configuration is q0 = [π/15, 0, π/2]>. 81

6.4 Polynomial interpolation of the cumulative rewards obtained when

training the agent using a cost parameter in the reward function

equal to 0, 50, and 200. 82

6.5 Policy on a validation trajectory, with cost parameters equal to 0,

50 and 200 (from top to bottom). 84

6.6 Torques exerted by the three joints during the execution of a valida-

tion trajectory using the policy with cost = 200 85

9.1 3D rendering of the reward function on the planar section of the

considered environment for target positions 100

9.2 The RT and RO components of the reward function computed on a

planar cross-section of the environment, where the target point is

placed in (0, 0). The surface in light gray corresponds to RT while

the surface in cyan corresponds to krRT. The net surface in blue

corresponds to the maximal value of RO, i.e., in case of collision

with the obstacle, when c2 = 1; farther from the target, the relative

proportion RO/RT is constant and equal to kr. 101

9.3 V-Rep scene with the virtual Comau Smart3-S2, a spherical obstacle

moving along a linear path (red arrow) and target (black circle) . . 103

9.4 Results for Case 1 . 105

9.5 Results for Case 2 . 106

9.6 Results for Case 3 . 106

9.7 Results for Case 4 . 107

9.8 Evolution of performances in terms of tracking error (top) and

collision count during training. Values are averaged over 30 test

simulation every 10 episodes. 109

xv

9.9 Reward functions comparison for Case 2 and Case 4 using for trainings

with a fixed initial robot configuration and a randomized one. . . . 110

9.10 Screenshots from the simulation of the obtained policy in V-Rep. . 111

10.1 V-Rep scenarios for experiments on transfer learning. The black line

in Case 5 represents the movement of the target. The red planes in

Case 6 and case 7 represent the area in which the obstacle moves

randomly. 117

10.2 Comparison of reward functions, reaching performance, and collision

count over episodes between ex-novo training and model transfer

training. 119

10.3 Comparison of reward functions, reaching performance, and colli-

sion count over episodes between ex-novo training and experience

transfer training. 120

10.4 Comparison of reward functions, reaching performance, and collision

count over episodes between ex-novo training and both types of

transfer training. 121

10.5 Comparison of reward functions between different types of training

for Case 5 . 122

10.6 Comparison of reward functions between different types of training

for Case 6 . 122

10.7 Comparison of reward functions between different types of training

for Case 7 . 122

11.1 Comparison of computational times of the motion planning algorithm

with and without an obstacle placed in the operative space 126

11.2 Indexes averaged for 30 simulations per target position of the trained

policy with (a) end-to-end approach and (b) proposed hybrid ap-

proach for Case A . 129

11.3 Indexes averaged for 30 simulations per target position of the trained

policy with (a) end-to-end approach and (b) proposed hybrid ap-

proach for Case B . 130

xvi

11.4 Indexes averaged for 30 simulations per target position of the trained

policy with (a) end-to-end approach and (b) proposed hybrid ap-

proach for Case C . 131

11.5 Distance from target d, distance from obstacles doi, i = 1, 2, and

threshold ε, in case of end-to-end strategy (a), and of hybrid approach

(b), with DRL used when m = mini{doi} < ε) 131

11.6 Virtual environment for the welding task 133

11.7 Hybrid approach deployed to perform a spot-welding task 133

11.8 Distance from target d, distance from obstacles doi, i = 1, 2, in case

of (a) a model-based strategy (Artificial Potential Fields), and (b) a

DRL-based strategy . 134

12.1 The experimental setup used in the case study, made of UR5 manip-

ulator and obstacles . 136

12.2 Virtualization of the experimental setup in V-Rep. The red box

represents the obstacle placed on the table, while the green dot is

a visual rendering of the moving point to be tracked. The white

squares on the table only serve as a reference for the starting and

finishing positions . 138

12.3 DRL reward curve for the UR5 case study 139

12.4 Time evolution of the components of joint angular speed reference

vector q̇∗ for the first set of experiments 146

12.5 Time evolution of the xyz components of reference p∗, and corre-

sponding values of pe for DRL and MPC, in the first set of experiments147

12.6 Time evolution of the components of joint angular speed reference

vector q̇∗ for the second set of experiments 148

12.7 Time evolution of the xyz components of reference p∗, and cor-

responding values of pe for DRL and MPC, in the second set of

experiments . 149

13.1 Interfacing between the robot and the control units 152

13.2 Photo of the Epson VT6 industrial manipulator 153

13.3 Epson VT6 motion ranges . 154

xvii

13.4 Trapezoidal velocity profile when imposing continuous motion be-

tween two points . 156

13.5 Epson RC+ GUI showing the IDE with a program script to be

executed on a simulated robot. 157

13.6 Virtualization of the Epson VT6 robot with the V-Rep robotic simulator158

13.7 Cumulative reward function for training on the Epson VT6 159

13.8 Position of the end-effector of the Epson VT6 industrial manipulator:

virtual (blue) and real (cyan) with respect to the reference position

(red) . 161

13.9 Distances between end-effector and target point (black) and robot

and obstacle (red). 161

13.10Some frames of the experiment described. On the monitor on the

left, the virtual robot controlled by the algorithm in Chapter 11 is

performing the task, while the real robot mimics it. 162

A.1 Graphic representation of the Comau Smart3-S2 and its degrees of

freedom. 172

A.2 Schematic representation of the planar model of the Comau Smart3-S2172

B.1 3D Gate motion . 178

xviii

List of Tables

5.1 Planar 2 DoF Robot Parameters . 61

5.2 Control Parameters for Case Study 1 62

5.3 Control Parameters for Case Study 2 65

5.4 Result comparison with ISM control for Example 1 67

5.5 Percentage improvements obtained with the proposed switched ap-

proach for different velocity profiles 71

5.6 Result comparison with ADRC . 72

9.1 Hyperparameter values for the experiments 104

9.2 Values for average converged reward function and tracking error. . . 108

10.1 Values of average cumulative reward and average RMS of the target

distance for different types of training. Variations with respect to

the ex-novo training are computed according to (10.1) and (10.2). . 116

10.2 Effects of transfer learning on cumulative reward functions in case of

increased complexity in scenarios. 118

12.1 DRL hyperparameter values . 137

12.2 Performance of DRL and MPC algorithms for 25 real-time experi-

ments with a duration of 40 s: Rn (left) and R̂n (right) 143

12.3 Performance of DRL and MPC algorithms for real-time experiments

with a duration of 40 s and with reference mutually recorded (Set 1

and Set 2): Rn (left) and R̂n (right) 144

13.1 Epson VT6 joint specifications . 153

A.1 Estimated values for dynamical parameters 173

xix

Part I

Introduction and Background

1

Chapter 1

Introduction

Since the development of the first industrial manipulators in 1959 by George

Devol and Joseph Engelberger, robots have seen an ever-increasing presence in

industries: the consistent development in the automation field has, indeed, created

a fertile environment for the deployment of robotics solutions that are now able to

perform a plethora of tasks, both independently and alongside humans. As reported

by the International Federation of Robotics (IFR), in 2019, a record of 2.7 million

robots were operative in factories worldwide [1]: this is consistent with the trend of

the last 10 years (Figure 1.1), in which the operational stock of industrial robots

has seen a steady rise, accelerated by the advent of the fourth industrial revolution

(Industry 4.0). Furthermore, although still in its early stages, the application of

collaborative robotics (cobots) in industry is on the rise, with a 4.8% market share of

newly installed industrial robots of 2019, still according to the IFR World Robotics

Report 2020 [1].

Figure 1.1: The worldwide operational stock of industrial robots

3

Figure 1.2: Industrial manipulators working in a factory (photo credits to KUKA

Roboter GmbH, Bachmann)

Indeed, as robots and automated systems see increasing popularity, there is

a necessity for them to coexist and adapt to other elements in the environment,

such as humans, machinery, or, more generally, to unpredictable variations of their

working conditions. As such, a high degree of flexibility is required in order to

guarantee satisfactory performance during operations. For these reasons, many

proposals have been made available by research on collaborative robotics: the

requirements for human-robot interaction ensuring safety are discussed in [2]; in

[3], then, several approaches are presented to ensure safety during the robot’s task

execution, as well as in [4], where a framework for maximizing the productivity of

collaborative robotics while enforcing safety is introduced; in [5] instead the problem

is tackled from a task-allocation perspective, proposing a hierarchical framework in

which humans and machines coexist.

Besides the vast dedicated research field of collaborative robotics, an interesting

perspective on systems flexibility, even when the system is not natively designed

for cooperation like ‘classical’ manipulators, can be given by the concept of self-

configuring systems. Generally speaking, with self-configuring systems we refer

to those systems that can autonomously adapt their control strategy or general

configuration (such as morphology or type of operation). The research field of

hybrid control and switched systems, for example, presents extended literature on

the matter: in [6] a general strategy to control different types of hybrid systems as

optimal control problems is introduced; again in [7], a switching logic is implemented

4

Figure 1.3: A human operator working closely with a KUKA cobot (photo credits to

the International Federation of Robotics)

in order to choose among different controllers, depending on arbitrary metrics, while

in [8] a switching control framework is designed to stabilize a system with changing

dynamics. Apart from hybrid control or dynamics, robots that self-configurate

by autonomously changing their shape to adapt to environments are then vastly

researched in the fields of soft robotics, as in [9], where a robot can change its shape

to achieve locomotion over different types of surfaces, or exploration, such as in [10]

where aerial robots are designed in order to adapt their morphology during flight.

Although many notable examples and contributions using state of the art

methodologies are provided in the very lively and broad field of robotics, it is

not always possible to have an accurate enough knowledge of the system into

consideration or the environment in which it operates. Thus, conventional model-

based methods can present shortcomings when facing behaviors that were not taken

into account during the control or model design phase. To this end, in recent

years, the field of Reinforcement Learning, and its evolution in Deep Reinforcement

Learning, has been gaining significant momentum in robotic applications. In fact,

thanks to its generalization capabilities, it enables model-free, end-to-end control

of systems without the need to hand-engineer specific procedures.

1.1 Deep Reinforcement Learning for Robotics

Deep Reinforcement Learning (DRL), following the work of Mnih et al. in 2015

[11], has been researched as a promising approach for solving hard to hand-engineer

tasks, such as cases where it is difficult to have an accurate enough model description

5

of the considered system. For robotic applications, this translates into letting the

robot interact with its environment so that, for any given control operation, it

is possible to find an (ideally) optimal strategy to conclude the task successfully.

Similarly to conventional optimal control, Reinforcement Learning also aims to

solve the problem of finding the optimal policy to maximize a given cost function (or

reward), relying on measured data [12, 13]. Nevertheless, many challenges rise when

dealing with reinforcement learning for systems that have a high number of states

and actions: the so-called curse of dimensionality [14] refers to the infeasibility to

map every state and action to their values, needed to find the policy to be used.

Furthermore, although RL approaches have been successfully applied to systems

with discrete action space, many real-world applications require an agent to select

optimal actions from continuous spaces. Indeed, discrete actions could not be

adequate for devising strategies where a tiny change in action can significantly

affect the outcome. A possible solution to some problems arising with the use

of reinforcement learning in robotics is given by Deep Learning [15], which can

be used to train general-purpose deep neural networks in place of hand-defined

policies. Thanks to this, and the improved computational capabilities available,

in recent years reinforcement learning has been successfully adapted to systems

featuring continuous state and action spaces. Actor-critic, model-free methods built

on Q-learning have been proposed, such as Deep Deterministic Policy Gradient

(DDPG) [16], Twin Delayed DDPG (TD3) [17] and Normalized Advantage Function

(NAF) [18], which have since been employed for end-to-end control of robotics

systems. In [19, 20], for instance, such algorithms have been used to train the agent

to grasp sparse objects via convolutional neural networks for pose estimation. In

[21], and then in [22], data-efficient methodologies for dexterity operations have

been applied. In [23], further improvements have been made for enabling a robot

to accomplish a stacking task by using soft Q-learning. Yet, despite the recent

improvements, DRL for robotics systems raises concerns over safety issues: long

training times are required, and a high level of domain randomization is needed to

prevent undesirable effects and unexpected behaviors due to the systems’ complexity,

which could enter a combination of states and actions that were not explored during

training, entailing unpredictable outcomes. Nevertheless, training on a physical

system is often impossible due to possible damages caused by hardware wearing

6

and significant energy consumption. For this reason, also known as the curse of

real-world samples [12], the majority of the research in the field is carried out in

simulation [24]. Therefore, despite the recognized potential, it is still difficult and

expensive to achieve near-optimal behaviors using fully autonomous, end-to-end

control strategies with DRL. A possible solution to alleviate these problems and

obtain “the best of both worlds” - in which the “worlds” are standard, conventional

control and decision methods and model-free, end-to-end control with DRL - would

be to find a way to combine different approaches, using DRL as a tool to support

conventional methods, and vice-versa.

1.2 Thesis contribution

The aim of this Thesis is to present and discuss different ways in which robotic

applications, with a focus on robotic manipulators, can be adapted so that the

system achieves self-configuring capabilities; more specifically, the topics of motion

control and collision avoidance will be explored in this context, as summarized in

the following subsections. Furthermore, Deep Reinforcement Learning is applied

in the proposed studies in order to enable both decision and control of systems

operating under uncertain conditions.

Robot Motion

A novel switched structure control scheme based on Integral Sliding Mode

control is presented and discussed in detail. Specifically, the designed architecture

allows switching between a centralized approach and a decentralized one in order

to control the motion of a robot manipulator. Two case studies, one involving a

variable-gear-actuator robotic model and one including a robot identified on the

basis of real data, are presented and the results are discussed. The same switched-

structure control scheme is then adapted in order to enable online decision-making

with an agent trained with DRL.

Collision Avoidance

A novel approach based on DRL, which allows end-to-end, model-free control

of a robot operating in a cluttered environment is introduced and discussed in

7

detail. The elements of the DRL framework and the training procedures are

illustrated, discussing the effects of the so-called transfer learning applied to the

considered scenarios. Simulation results for different case studies are reported and

commented on. In addition to the end-to-end strategy, a hybrid dual-mode algorithm

that combines conventional motion planning techniques and DRL-based control

is introduced. The proposed solution aims to improve the tracking performances

of the robot manipulator while allowing model-free control for collision avoidance.

A switching metric, which confers self-configuring capabilities to the considered

robotic system, is introduced, and results are discussed for different case studies.

The proposed end-to-end framework is then applied to a teleoperation application.

The manipulator is tasked with tracking a trajectory generated in real-time by a

human operator while avoiding obstacles encountered during motion; experimental

results are compared with a Model Predictive Control (MPC) approach. Lastly,

the interface built in order to deploy the proposed approaches to an industrial

manipulator present at the University of Pavia is introduced and described with

preliminary experimental results.

1.3 Thesis structure

This dissertation, divided into four Parts, is structured as follows.

(I) Introduction: preliminary concepts on the main topics of interest of this

Thesis are introduced. A background on robot models, motion planning, and

the basics of Deep Reinforcement Learning are briefly discussed.

(II) Self-configuring control schemes for robot motion: the self-configuring,

switched structure control architecture for motion control of robot manip-

ulators is introduced and discussed in detail. Different applications of the

proposed approach and the use of DRL for decision-making are presented.

This Part of the thesis is based on the results published in the following

papers.

• A. Ferrara, G.P. Incremona, and B. Sangiovanni. Integral sliding mode

based switched structure control scheme for robot manipulators. In 2018

15th International Workshop on Variable Structure Systems (VSS), pages

8

168–173. Graatz, Austria, 2018.

• B. Sangiovanni, G.P. Incremona, A. Ferrara, and M. Piastra. Deep

reinforcement Learning based self-configuring integral sliding mode con-

trol scheme for robot manipulators. In 2018 57th IEEE Conference on

Decision and Control (CDC), pages 5969–5974, Miami Beach (FL), USA,

December 2018.

• A. Ferrara, G. P. Incremona, and B. Sangiovanni. Tracking control via

switched integral sliding mode with application to robot manipulators.

Control Engineering Practice, 90, pages 257–266, 2019.

(III) Self-configuring approaches for robot collision avoidance: the pro-

posed DRL framework for robot collision avoidance and its applications are

introduced and discussed. The framework is then used in the context of a

self-configuring approach to motion planning with obstacle avoidance, which

combines conventional planning methods with end-to-end control. This Part

of the thesis, especially Chapters 9, 10, 11, is based on the results published

in the following papers.

• B. Sangiovanni, A. Rendiniello, G.P. Incremona, A. Ferrara, and M.

Piastra. Deep reinforcement learning for collision avoidance of robotic

manipulators. In 2018 16th European Control Conference (ECC), pages

2063–2068. Lymassol, Cyprus, July 2018.

• B. Sangiovanni, G. P. Incremona, M. Piastra, and A. Ferrara. Self-

configuring robot path planning with obstacle avoidance via deep rein-

forcement learning. IEEE Control Systems Letters, 5(2), pages 397–402,

2021.

The work presented in Chapter 12 was developed in collaboration with the

Astana Laboratory for Robotic and Intelligent Systems of the Nazarbayev

University, Nur-Sultan, Kazakhstan.

(IV) Conclusion: some concluding remarks are gathered, and some insights on

possible future work stemming from the research presented are proposed.

9

1.4 List of peer-reviewed scientific publications

The complete list of peer-reviewed publications produced during the Ph.D.

course as of January 2021 is reported.

Conference proceedings

• B. Sangiovanni, A. Rendiniello, G.P. Incremona, A. Ferrara, and M. Piastra.

Deep reinforcement learning for collision avoidance of robotic manipulators. In

2018 16th European Control Conference (ECC), pages 2063–2068. Lymassol,

Cyprus, July 2018.

• A. Ferrara, G.P. Incremona, and B. Sangiovanni. Integral sliding mode

based switched structure control scheme for robot manipulators. In 2018 15th

International Workshop on Variable Structure Systems (VSS), pages 168–173.

Graatz, Austria, 2018.

• B. Sangiovanni, G.P. Incremona, A. Ferrara, and M. Piastra. Deep reinforce-

ment Learning based self-configuring integral sliding mode control scheme for

robot manipulators. In 2018 57th IEEE Conference on Decision and Control

(CDC), pages 5969–5974, Miami Beach (FL), USA, December 2018.

Journals

• A. Ferrara, G.P. Incremona, and B. Sangiovanni. Tracking control via switched

integral sliding mode with application to robot manipulators. Control Engi-

neering Practice, 90, pages 257–266, 2019.

• B. Sangiovanni, G. P. Incremona, M. Piastra, and A. Ferrara. Self-configuring

robot path planning with obstacle avoidance via deep reinforcement learning.

IEEE Control Systems Letters, 5(2), pages 397–402, 2021.

Book chapters

• A. Ferrara, G.P. Incremona, B. Sangiovanni, Sliding Mode Fault Diagnosis

with Vision in the Loop for Robot Manipulators, New Trends in Robot Control,

pages 81-105, Springer, 2020.

10

Chapter 2

Preliminaries of Robotics

In this Chapter, preliminaries on the theory of robot modeling and planning

will be introduced. First, basic definitions will be recalled in Section 2.1. Then,

a more detailed description of a robotic model will be given in Sections 2.2 and

2.3, where basic concepts on both kinematic and dynamical modeling are provided.

Then, the main concepts on the topic of motion planning for robots will be recalled

in Section 2.4.

2.1 Basic Definitions

A Robot is a servo-mechanical system able to perform complex operations, often

heavy, repetitive, or dangerous for human beings. There are different kinds of

robots, [25], but a first distinction can be made between manipulation (industrial)

robots and mobile robots. The former feature a fixed base and a certain Degree

of Freedom (DoF), that is the number of independent parameters that define its

physical configuration; fixed robots are typically designed to fit into industrial

settings to perform tasks such as grasping and assembling. Mobile robots, on the

contrary, are not linked to the ground and are designed to move around, using

wheels, mechanical legs, rotors (in case of aerial robotics), or thrusters (in case

of ROVs) to perform navigation tasks; they are usually employed for search and

rescue operations, exploration, and surveillance tasks. The focus of this dissertation

will be on industrial manipulators.

The main elements composing the mechanical structure of a robot manipulator,

such as the one represented in Figure 2.1, are:

11

Figure 2.1: Main elements of the mechanical structure of an industrial manipulator.

• Joints: actuated elements that allow the mobility of the manipulator, and

each joint confers a degree of freedom; they can be revolute, for rotational

movements, or prismatic, for translations along the axes. Joints can be

implemented with different types of actuators (i.e. DC, AC or brushless

motors, depending on the application).

• Links: rigid elements composing the overall robot body, connected through

joints.

• End-effector: the utensil at the tip of the structure, connected to the wrist,

that is the last joint of the kinematic chain, conferring dexterity.

It is then possible to describe a robot using a kinematic model, which represents

the relations between the end-effector and the joints configuration, or a dynamical

model, which details the equations that describe the robot motions in terms of forces

acting on its body and actuators. Whether a kinematic or dynamic representation

is required usually depends on the specific application considered. In the following

sections, both robot’s kinematic and dynamical models will be introduced and

described.

12

Figure 2.2: (a) Anthropomorphic robot, with an open kinematic chain (b) Parallel

robot, with a closed kinematic chain.

2.2 Kinematic Model

The mechanical structure of a robot manipulator can be represented by a

kinematic chain, which describes the connection of each rigid link of the robot with

its joints, in relation to the pose of the end-effector: the composition of the motion

of each joint and the connected links, thus, results in the overall motion of the

whole structure. The number of joints influencing the motion is called the Degree

of Freedom (DoF) of the robot. The kinematic chain can be either open, if a single

sequence of links connects the base and the tip of the robot, or closed, if the links

describe a ring (i.e., more kinematic chains connect the base to the end-effector).

In Figure 2.2 two robots with an open and closed kinematic chain are represented,

respectively. The focus of this work will be on robots featuring an open kinematic

chain. To this end, let us introduce, for a generic n-DoF manipulator, the vector of

the joint variables

q(t) =


q1(t)

q2(t)
...

qn(t)



13

which contains the values of each joint composing the kinematic chain (expressed in

radians/degrees or meters, depending on whether the joint is revolute or prismatic),

and the end-effector’s pose

xe(t) =

pe(t)
ϕe(t)


where pe(t) represents the position O − xyz of the end-effector in the cartesian

space with respect to a base reference frame, and ϕe(t) is the orientation of the

end-effector, expressed in Euler angles (or quaternions). Intuitively, the velocities

and accelerations of the robots’ joints can be expressed as q̇(t) = dq
dt

and q̈(t) = d2q
dt2

.

For the sake of convenience, the dependence of variables on time t will be omitted

when obvious.

The operative space (or working space) is the portion of the surrounding space

that is accessible to the manipulator (i.e., where xe(t) exists). The manipulator’s

physical structure, namely the length of each link and its joints ranges, must be

known to define the operative space.

To determine the position and orientation of the end-effector in an operative

space ∈ R3 we generally need 6 DoF: 3 to move the object in the desired point

in space, and 3 to orient it with respect to a reference frame. If the robot has

more degrees of freedom than the ones required to accomplish the task, it is called

redundant.

In the following, different ways to express the robot kinematics are recalled from

[26] by B. Siciliano, L. Sciavicco, and L. Oriolo, and briefly discussed.

2.2.1 Direct Kinematics

Figure 2.3: Direct Kinematics

The goal of direct kinematics (Figure 2.3) in robotics is to determine the position

and orientation of the end-effector as a function of the joint variables i.e., it computes

a transformation from the robot’s joint space to the robot’s operative space. Taking

14

Figure 2.4: Base reference frame and tool reference frame on a 6-DoF robot Epson VT6

as an example the robot illustrated in Figure 2.4, let us define a base reference

frame Ob − xb, yb, zb and an end-effector frame (or tool frame) Oe − n, s, a , where

Oe is placed on the last virtual joint of the end-effector and the orthogonal axes n,

s, a ∈ R3 represent the normal, sliding and approach vectors, respectively. Then,

the direct kinematics can be expressed as the homogeneous transformation

T be (q) =

n(q) s(q) a(q) pe(q)

0 0 0 1

 (2.1)

where q is the vector of the joint variables and pe the position of the end-effector with

respect to the base frame. The matrix T be (q) ∈ R4×4 can be obtained by recursively

compute the transformation matrix between each element of the kinematic chain,

up to the tool frame. Therefore, by considering the individual reference frames

Oi, i = 0...n attached to each link of the robot, it is possible to compute the

transformations

T 0
n(q) = A0

1(q1)A
1
2(q2) ... A

n−1
n (qn), (2.2)

where

Ai−1i =

Ri−1
i (qi) pi(qi)

0 1

 (2.3)

contains the rotation matrix Ri−1
i ∈ R3×3 and the position pi ∈ R3 of a reference

Oi with respect to the previous one Oi−1. The direct kinematic is then

T be (q) = T b0 T
0
n(q)T ne . (2.4)

15

One way to assign reference frames Oi to each component of the robot in order

to compute the transformation matrix is by applying the Denavit-Hartenberg (DH)

convention [27]. For the sake of simplicity, in the following, let us express the direct

kinematic as a non-linear function

xe = k(q). (2.5)

2.2.2 Inverse Kinematics

Figure 2.5: Inverse Kinematics

As opposed to the direct kinematics, the goal of inverse kinematics (Figure 2.5)

is to define the joint variables q given the pose of the end-effector xe. It performs a

transformation from the operating space to the joint space. The computation of

inverse kinematics is a crucial aspect for robotic applications, especially for tasks

that require motion planning for reaching and manipulation, in which the desired

trajectory is naturally expressed in the cartesian space. While the computation of

the direct kinematics is generally easy and feasible, for inverse kinematics a series

of complications arise:

1. Multiple solutions exist: a point in space can be reached by the end-

effector with many (potentially infinite) possible configurations, especially if

the manipulator is redundant.

2. No solution exists: it is possible that a given position and orientation does

not belong to the operative space, and therefore can not be reached by any

configuration.

3. High complexity of computation: equations can be non-linear and a

solution in closed form may not always exists.

.

16

2.2.3 Differential Kinematics

Figure 2.6: Differential Kinematics

Similarly to direct kinematics, differential kinematics (Figure 2.6) establishes a

relation between the joint velocities q̇ and the velocity of the robot’s end-effector.

To this end, let v ∈ R3 be the end-effector’s velocity, such that

v =

ṗe
ω

 (2.6)

where ṗe ∈ R3 and ω ∈ R3 denote its translation and rotational velocities, respec-

tively. Note that said quantities are referred to the reference frame Oe − n, s, a ,

previously introduced for the discussion of direct kinematics. The relation between

q̇ and v can then be expressed as

v =

Jp(q)
Jo(q)

 q̇ = J(q) q̇ (2.7)

where the matrix J(q) ∈ R6×n is the so-called geometric Jacobian of the manipulator.

More in detail, Jp(q) ∈ R3×n encapsulates the contribution of the joints velocities

to the end-effector’s linear velocity, while Jo(q) that of the angular one. Thus,

each joint contributes to the end-effector velocity, and the result is the total roto-

translational velocity component in the operating space. Specifically, for each joint

i, each column of the geometric Jacobian matrix can be computed as

Ji =

jpi
joi

 =

zi−1
0

 (2.8)

if the joint is prismatic, otherwise

Ji =

jpi
joi

 =

zi−1 × (pe − pi−1)
zi−1

 (2.9)

17

if the joint is revolute. In the previous equations, zi refers to the axis and pi to the

position vector of the i-th joint, respectively. As it can be noted, similarly to the

transformation matrix (2.1), the Jacobian strictly depends on the structure of the

manipulator, and specifically on the type of its joints. Alternatively, the Jacobian

can be computed analytically as the time derivative of the direct kinematics. The

so-called analytical Jacobian JA is then computed as

ẋe =

 ṗe
ϕ̇e

 =

∂pe∂q q̇
∂ϕ
∂q
q̇

 (2.10)

hence

ẋe = JA(q)q̇. (2.11)

It is worth noticing that not always one has JA = J , as it can be that ω 6= ϕ̇

2.3 Dynamical Model

Let us now introduce the dynamical equations that regulate the behavior of

a robotic system in the joint space. As a first definition, the dynamical model of

the robot expresses the relation between the forces τ , acting on the joints, and the

motion of the overall arm, as in

τ = D(q, q̇, q̈) (2.12)

where D(q, q̇, q̈) generically describes the robot’s dynamics. The focus of this

Thesis is primarily on motion tasks performed by an industrial manipulator. It is

assumed, therefore, that the end-effector does not actively come in contact with

the environment. Furthermore, the closed-form of the dynamical model based on

the Lagrangian formulation is considered. In the following subsections, making

reference to the theory in [26] (Chapter 7) by B. Siciliano, L. Sciavicco, and L.

Oriolo and the references therein, the main steps to describe the model of a generic

industrial manipulator will be reported.

2.3.1 Lagrangian formulation

Let us assume that the robot is composed of rigid links, and let q ∈ Rn be the

generalized coordinates describing the motion of said links in a n-DoF manipulator.

18

In the case of an open-chain manipulator, those refer to the joint variables. The

Lagrangian of the system is generally defined as

L = T − U (2.13)

where T and U are the total kinematic and potential energy of the system, respec-

tively. In the case of an actuated manipulator, the kinematic energy is expressed in

a quadratic form as

T =
1

2
q̇>B(q)q̇ (2.14)

where B(q) ∈ Rn×n is the inertia matrix, which is dependant on the masses, the

lengths, and the inertias of the links in the manipulator, and represents the inertial

contribute of each joint to the motion of the manipulator.

The potential energy, instead, is expressed as

U = −
n∑
i=1

(mlig
>
0 pli +mmig

>
0 pmi) (2.15)

where mli and mmi represent the masses of the i-th link and rotor, respectively,

g0 ∈ R3 is the vector of gravitational torques, and pli and pmi are the position of

the center of gravity of the i-th link and the rotor.

Let us now introduce the Lagrange equations, expressed as

d

dt

(
L

∂q̇

)>
−
(
L

∂q

)>
= ξ (2.16)

where ξ ∈ Rn is the vector of generalized forces associated with the coordinates q.

By substituting Eq. (2.14)-(2.15) into (2.16) and computing the derivatives, one

obtains

B(q)q̈ + n(q, q̇) = ξ (2.17)

n(q, q̇) = Ḃ(q)q̇ − 1

2

(
∂

∂q

(
q̇>B(q)q̇

))>
+

(
∂U(q)

∂q

)>
(2.18)

Omitting further computation, for which the reader is referred to [26], assuming

no physical interaction with the environment is performed, one obtains the dynamical

model expressed as

19

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssign(q̇) + g(q) = τ (2.19)

in which

• B(q) ∈ Rn×n is the inertia matrix introduced in (2.14).

• C(q, q̇) ∈ Rn×n represents the centripetal and Coriolis torques and depends

on the robot’s configuration and the angular velocities of the links. Like for

the inertia matrix, masses, lengths, and inertias of rigid bodies composing

the manipulator should be known or suitably estimated.

• Fv ∈ Rn×n and Fs ∈ Rn×n represent the viscous and static frictions, respec-

tively.

• g(q) ∈ Rn is the vector of gravitational torques. It is especially relevant for

the dynamical behavior of the system, as it needs to be compensated if the

robot stops in a specific configuration. It depends on mass and length of the

links.

• τ ∈ Rn represents the motor torques.

2.4 Motion Planning

Motion planning and control is a crucial aspect of robotic applications. Its

goal is to generate suitable reference signals for the system to obtain a predefined

motion, required to perform a task. More specifically, it provides the robot with

a time sequence of values that result in continuous motion from a starting point

to a final one, in a finite time interval. Preliminary concepts on how to generate

suitable references to perform robot motion will be presented in the context of

robot manipulators, although many of the presented concepts are valid in general.

The following subsections attain their content from the theory in [26] (Chapter

4) by B. Siciliano, L. Sciavicco and L. Oriolo and the references therein. To this

end, the first important distinction to make is that of trajectory generation in the

joint space and in the operative space. As the name suggests, the first approach

deals with the generation of reference signals for each joint of the robot, while the

latter allows the definition of a trajectory in the operative (cartesian) space for

20

Figure 2.7: Robot control scheme with external motion planner

Figure 2.8: Trajectories in the joint space (left) and in the operative space (right)

the robot’s end-effector, as exemplified in Figure 2.8. Depending on the problem

to solve, one approach might be preferable to the other. In any case, trajectory

generation should be of light computational load, ensure continuity of position,

velocity, and acceleration profiles as not to damage the robot, and present low

oscillatory behavior. Thus, given a set of requirements, which are usually defined

a-priori during the design phase, a motion planner computes the desired trajectory

and feeds it to the system under control (Figure 2.7).

21

2.4.1 Motion planning in the joint space

The goal of trajectory planning in the joint space is to generate the desired

joint positions q∗(t) to obtain a coordinated motion of the robot, respecting the

imposed constraints. As trajectories for each joint can be computed independently,

it does not require performing online kinematic inversion, which allows for more

accountability of kinematic singularities. Different approaches may be adopted for

motion planning, but all fall into two classes:

1. Point-to-point: only the initial and the final points are specified.

2. Interpolation of intermediate points: throughout the motion, several

waypoints are specified between the starting one and the goal.

In the following, some of the most common approaches are presented and briefly

discussed to provide a general overview. The work presented in this Thesis will

primarily deal with point-to-point trajectories, so a more in-depth discussion will

be given on this topic. For the sake of simplicity, and without loss of generality

since planning in the joint space allows to manage each joint independently, all

trajectories hereafter refer to a single joint.

Polynomial functions

Given an initial position qi, a final position qt, an initial time ti and a time

instant tf such that q(tf) = qf , one possible way to define the reference sequence

for the joint is by using a polynomial function of the type

q(t) =
n∑
j=0

aj(t− ti)j (2.20)

with n being the degree of the polynomial. If one wishes to ensure the minimum

dissipated energy, it can be demonstrated that a quadratic velocity profile (and

thus, a cubic position profile) allows a movement of a joint from qi to qf in time tf

that also minimizes the cost ∫ tf

ti

τ 2(t)dt. (2.21)

Therefore, it is possible to choose a trajectory defined by a cubic polynomial (n = 3)

such as

22

Figure 2.9: Example of a cubic trajectory with conditions qi = 0, qf = 30 deg, q̇i = 0,

q̇f = 0 deg/s, tf = 1 s

q(t) = a0 + a1(t− ti) + a2(t− ti)2 + a3(t− ti)3 (2.22)

with boundary conditions on positions and velocities

q(ti) = qi q̇(ti) = q̇i q(tf) = qf q̇(tf) = q̇f . (2.23)

Trajectory profiles for a cubic polynomial are reported in Figure 2.9. As it can

be noted, this type of trajectory causes high discontinuities in acceleration at

boundaries. This behavior is generally undesired, as it can damage the actuators.

Such issue can be solved by imposing boundary conditions on the acceleration as

well. This, however, requires to increase the degree and use a quintic polynomial

(n=5) such as

q(t) = a0 + a1(t− ti) + a2(t− ti)2 + a3(t− ti)3 + a4(t− ti)4 + a5(t− ti)5 (2.24)

with boundary conditions on positions, velocities and accelerations:

q(ti) = qi q̇(ti) = q̇i q(tf) = qf q̇(tf) = q̇f q̈(ti) = q̈i q̈(tf) = q̈f . (2.25)

This results in a smoother acceleration profile, as can be seen in Figure 2.10

Trapezoidal Velocity Profile (TVP)

An alternative way to generate a joint trajectory is to use the so-called trapezoidal

velocity profiles. The position profile q(t) obtained is constituted by two parabolic

arcs, at the beginning and end of the trajectory, connecting a linear segment, during

which the joints move at a constant cruise velocity q̇c. Before reaching cruise

velocity, the joint moves at constant acceleration q̈c and, when approaching the

23

Figure 2.10: Example of a quintic trajectory with conditions qi = 0, qf = 30 deg, q̇i = 0,

q̇f = 0 deg/s, q̈i = 0, q̈f = 0 deg/s2, tf = 1 s

goal position qf , constantly decelerates with equal magnitude. More in detail, the

trapezoidal velocity trajectory can be described by the equations

q(t) =


qi + 1

2
q̈ct

2, 0 ≤ t ≤ tc

qi + q̈c(t− tc
2

), tc < t ≤ tf − tc

qf − 1
2
q̈c(tf − t)2 tf − tc < t ≤ tf

(2.26)

where tc is the time instant at which q̇(tc) = q̇c. Specifically, given initial and final

conditions qi, qf and tf , one can impose the cruise velocity q̇c such that

|qf − qi|
tf

< |q̇c| ≤
2|qf − qi|

tf
. (2.27)

Furthermore, it can be determined

tc =
qi − qf + q̇ctf

q̇c
(2.28)

and, consequently,

q̈c =
q̇2c

qi − qf + q̇ctf
. (2.29)

Alternatively, one can directly impose the desired acceleration q̈c such that

q̈c ≥
4|qf − qi|

t2f
. (2.30)

An example of a TVP trajectory is reported in Figure 2.11.

Polynomial interpolation

In some applications, in order to obtain the desired motion, it might be necessary

to define a sequence of intermediate waypoints that the joint need to pass through

24

Figure 2.11: Example of a TVP trajectory with conditions qi = 0, qf = 60 deg, q̇c = 66

deg/s, tf = 1 s

before reaching the final position qf . This might be the case in settings where

the robot is required to perform especially precise motion or adjust itself to be

compliant with the environment. One possibility to achieve this is to perform

cubic interpolation between each waypoint qk. The goal is then to define a suitable

sequence of cubic polynomials Πk(t), k = 1...N such that

q1 = qi, qN = qf , t1 = ti, tN = tf , q(tk) = qk. (2.31)

Moreover, the sequence needs to present a continuous velocity profile. To this end,

intermediate velocities can be imposed arbitrarily or according to specific criteria.

Nevertheless, as observed in point-to-point motion, one limitation in the use of

cubic polynomials is that it presents acceleration discontinuities at boundaries. One

way to solve this problem is by using a spline curve, which ensures the continuity

of the trajectory in its derivatives by using virtual points used to impose continuity

in the acceleration profile artificially.

2.4.2 Motion planning in the operative space

Alternatively to planning in the joint space, motion planning in the operative

space allows for the definition of trajectories of the end-effector, instead of joints.

Therefore, the goal is now to define a sequence of the desired end-effector configu-

rations x∗e(t) in order to generate the required motion. This approach is perhaps

the most common when defining industrial tasks, such as pick and place, reaching,

spot welding, etc., as it provides a more natural definition of the trajectory for

humans, who also operate in the same space, and allows for easier accountability

of environmental constraints (such as obstacles or prohibited areas). Nevertheless,

once the trajectory is defined, it is necessary to perform real-time kinematic inver-

25

Figure 2.12: Parametric curve in the cartesian space

sion in order to convert each point to a suitable joint reference: this, besides being

computationally expensive, may lead to the occurrence of kinematic singularities,

which cause unexpected behavior from the manipulator. Great attention must then

be posed to the definition of the trajectory, especially in those configurations that

might cause singularities. In the following, the main concepts on planning for both

position and orientation trajectories of the end-effector are introduced and briefly

discussed.

Path primitives

Before discussing planning methods, let us recall the concepts of parametrization

of a curve, in order to define the path primitives that describe the desired motion.

Let us consider a curve Γ in the cartesian space, as represented in Figure 2.12.

Then, let us consider an initial point pi ∈ Γ and a generic point p ∈ Γ. The arc

length s of a point p represents the length of Γ between pi and p. Therefore, one

can write a parametrization of the curve Γ through s as

p = f(s). (2.32)

Specifically, to each point p correspond three unit vectors, which are related to the

representation of Γ as a function of s, defined as

t =
dp

ds
, n =

d2p∥∥∥d2pds2

∥∥∥ds2 , b = t× n (2.33)

where t is the tangent, n is the normal and b is the binormal vector.

26

Position planning

We wish to generate a reference trajectory p∗e(t) for the position of the end-

effector (i.e., regardless of its orientation). Specifically, the trajectory is defined by

a starting position p∗i , a goal position p∗f and a finishing time tf , so that it can be

written as

p∗e = f(s(t)) (2.34)

where s(t) is a specific timing law, which can be chosen, for instance, as one of

those introduced for the discussion of trajectories in the joint space in Subsection

2.4.1, such as polynomials or TVP. Intuitively, one has that s(0) = 0 in point p∗i

and s(tf) = sf in point p∗f .

Considering a linear trajectory (i.e., a segment connecting the initial and final

point), given a timing law s (time dependence omitted for clarity), the motion can

then be defined as

p∗e =
s∥∥p∗f − p∗i∥∥(p∗f − p∗i) + p∗i (2.35)

ṗ∗e =
ṡ∥∥p∗f − p∗i∥∥(p∗f − p∗i) (2.36)

p̈∗e =
s̈∥∥p∗f − p∗i∥∥(p∗f − p∗i) (2.37)

Orientation planning

Similar consideration as those made for position planning can be made for

orientation planning, i.e., the sequence ϕ∗e that moves the robot’s end-effector from

an initial configuration ϕ∗i to a goal configuration ϕ∗f . In order to avoid violating

the orthonormality condition of the three unit vectors ne, se, ae that describe the

orientation of the end-effector with respect to a base frame, one can define the

robot’s orientation through Euler angles

ϕe = [φ, ϑ, ψ]. (2.38)

27

Then, one can proceed by designing a linear trajectory connecting ϕ∗i to ϕ∗f , with a

suitable timing law, resulting in a trajectory defined as

ϕ∗e =
s∥∥ϕ∗f − ϕ∗i∥∥(ϕ∗f − ϕ∗i) + ϕ∗i (2.39)

ϕ̇∗e =
ṡ∥∥ϕ∗f − ϕ∗i∥∥(ϕ∗f − ϕ∗i) (2.40)

ϕ̈∗e =
s̈∥∥ϕ∗f − ϕ∗i∥∥(ϕ∗f − ϕ∗i) (2.41)

where the vectors ne, se, ae can then be computed using the ZYZ angles.

28

Chapter 3

Preliminaries on Deep

Reinforcement Learning

In this Chapter, the basic concepts behind Machine Learning and Reinforcement

Learning will be recalled. Specifically, more focus will be dedicated to the topic of

Deep Reinforcement Learning and the available algorithms adapted to the domain

of control problems, in order to highlight the aspects relevant to the content of this

Thesis.

3.1 General overview on Machine Learning

In computer science, Machine learning (ML), as introduced by Arthur Samuel in

1959 [28], is the field that gives computers the ability to learn and accomplish a task

without being explicitly programmed to do so, by the construction of algorithms that

can learn from and make predictions on data. Thanks to increased computational

power and availability of massive quantities of data, machine learning today finds

application in many different domains, such as computer vision, natural language

processing, identification, marketing analysis, or robotics. Its popularity is mostly

due to its appealing property of being able to encode solutions for problems that

are difficult to program explicitly. Furthermore, the same models can be adapted

to different domains to solve other problems, with minimal hand-engineering.

Nevertheless, one of the main drawbacks of machine learning is that it mostly works

as a black box, meaning that given its probabilistic nature, it is hard to interpret its

results, which may lead to unexpected outcomes. Furthermore, the quality of a ML

29

model greatly depends on the quality of the data used for training, which may not

always be available: one of the most critical features of machine learning is indeed

that of generalization, i.e., the ability to perform with acceptable results even on

data that were never explored during training, which is only possible if a proper

data selection was made a-priori. Therefore, despite its promising potential, great

care must be taken before applying machine learning to more critical domains.

Generally, the goal of a ML model M is to represent the relation between some

input data x and an output y, by means of a parametric function

Mθ(x) = y. (3.1)

The process of training is then the computation of the parameters θ of M in order

to steer the output of the ML model as close as possible to the desired outcome.

Usually, this happens through a loss function, used to quantify such divergence.

Machine learning can then be divided into three main categories, summarized in

Figure 3.1. Specifically:

• Supervised learning is obtained by training the model using labeled data,

meaning that at each learning iteration, the output of the model is compared

against the actual expected output, using some predefined metric; parameters

are then updated and the procedure repeated until satisfactory results are

obtained, and the model can correctly predict results for new data. The main

applications of supervised learning are classification and data regression for

model identification.

• Unsupervised learning, as the name suggests, is obtained by training the

model with unlabeled data. Its main goal is to find common structures and

repeated patterns in the input data, meaning it finds application in clustering,

density estimation, or anomaly detection.

• Reinforcement learning is a type of machine learning in which, differently

from the previous two, usually no dataset is built a-priori, meaning that the

model autonomously collects its data for training by interacting with the

environment and observing the outcome of its action.

In the following sections, a more in-depth discussion on the basic concepts

of reinforcement learning will be provided before moving onto the topic of Deep

30

Figure 3.1: Classification of machine learning types

Reinforcement Learning (DRL), which is of interest for the work presented in this

Thesis.

3.2 Reinforcement Learning

As anticipated in the previous section, Reinforcement Learning (RL) [29], is

a branch of machine learning that, inspired by behavioral psychology, does not

need a supervisor or a pre-built dataset in order to autonomously discover an

optimal outcome for a specific task. The training process can be summarized by

“learning by doing”, and the results are achieved through iterative trial and error

while interacting with an environment. Specifically, the RL framework, summarized

in Figure 3.2, relies on the concept that an agent, at any given time t, observes the

environment, represented by a certain state xt ∈ X, with X being the state space,

and according to a certain policy π(u|x) performs a certain action ut ∈ U, with U

being the action space, thus changing the environment’s state. When entering a

new state, the agent receives a reward rt, that is a scalar indicator on ‘how well’

the agent has performed.

The framework is abstract and flexible: the action space and the state space

are entirely arbitrary to the designer’s discretion and can take a variety of forms

with different degrees of complexity. The policy π, which serves as a mapping from

states to action, can be either deterministic or probabilistic. For a given control

task, the learning process is divided into episodes, where the agent interacts with

31

Figure 3.2: Reinforcement learning framework

the environment for either a complete attempt to perform a goal task or a fixed

number of time-steps before being reset. The whole training process includes a

typically large number of such episodes, up to a predefined maximum.

In the following, the main elements involved in the process of reinforcement

learning, based on the theory introduced in [29] by R. Sutton and A. Barto and

the references therein, will be recalled and briefly discussed.

3.2.1 Reward

A reward rt is a scalar feedback signal that indicates “how well” an agent has

done at step t. The agent’s goal is to maximize the (expected) cumulative reward

it receives in the long run. In case of episodic tasks with finite horizon T , the

expected cumulative reward Rt is defined as

Rt =
T∑
k=0

γkrt+k+1 (3.2)

where the term 0 ≤ γ ≤ 1 is the discount rate, used to prioritize earlier rewards

over later ones: if γ is close to 0, the agent will preferably choose actions that

maximize immediate rewards, while a value of γ close to 1 will more likely result

in the selection of a sequence of actions that will lead to long term maximization,

despite possible immediate drawbacks. The reward function is perhaps the most

crucial design element when setting a reinforcement learning framework, as it is the

only form of ‘supervision’ in the training process: therefore, it must be designed

32

with great care in order to properly represent the desired behavior that the agent

must accomplish.

3.2.2 Markov Decision Process

Given any state x and action u, the transition probability (or model) of the

process is the distribution of each possible successive state x′ and reward r, i.e.,

p(x′, r|x, u) = P (x′, r|x, u). (3.3)

Given any time t, a process is said a Markov process if and only if it satisfies the

Markov property

P (xt+1, rt+1|xt, ut) = P (xt+1, rt+1|xt, ut, xt−1, ut−1, ..., x0, u0) (3.4)

meaning that the environment’s state at time t + 1 depends only on the current

state and action (“memorylessness” property). In RL, a task in which the transition

probability of the environment satisfies the Markov property (3.4) is called a Markov

Decision Process (MDP)

< X,U, r, p, γ > (3.5)

Therefore, given the current state x, action u and the next state x′, the expected

value of the reward is defined as:

r(x, u, x′) = E [ri+1|xt, ut, xt+1] . (3.6)

3.2.3 Policy

The policy π(u|x) defines the agent’s behavior in the environment, and is the

probability that the agent will perform an action u while in state x. Depending on

the task, the policy can be represented as a simple function or look-up table, or

as a more complex deterministic or probabilistic function that requires extensive

computation.

3.2.4 Value function

A value function V π is an estimate of the value of moving into a certain state

following an action provided by the policy π. Specifically, the value of a state is

33

the expected cumulative reward the agent can gain over time, starting from that

state and following the policy π thereafter, i.e.,

V π(x) = Eπ [Rt|xt = x] = Eπ

[
T∑
k=0

γkrt+k+1|xt = x

]
. (3.7)

V π(x) is the state-value function for the policy π. Furthermore, the value of a

given state can be expressed in relation to the subsequent states by the so-called

Bellman Equation

V π(x) = Eπ [Rt|xt = x]

= Eπ

[
rt+1 + γ

∞∑
k=0

γkrt+k+2|xt = x

]

=
∑
u

π(x, u)
∑
x′

P u
xx′

[
Ru
xx′ + γEπ

[
∞∑
k=0

γkrt+k+2|xt+1 = x′

]]
=
∑
u

π(x, u)
∑
x′

P u
xx′ [R

u
xx′ + γV π(x′)]

(3.8)

in which P u
xx′ and Ru

xx′ are (3.3) and (3.6), respectively. In a similar manner to the

value function (3.7), one can define the action-value function Qπ (also known as

Q-function) as

Qπ(x, u) = Eπ [Rt|xt = x, ut = u] = Eπ

[
T∑
k=0

γkrt+k+1|xt = x, ut = u

]
(3.9)

representing the expected cumulative reward of taking action u while in state x,

and following π thereon.

Since the goal of reinforcement learning is to find an optimal policy that can

maximize the cumulative reward, let us define π∗ such that

π∗(x) = argmax
π

V π ∀x ∈ X. (3.10)

Therefore, one can define the optimal value function

V ∗(x) = max
π

V π(x). (3.11)

and, recalling the expression of the action-value function, one can express the

Bellman equation for V ∗ as

34

V π(x) = max
u∈U

Qπ∗(x, u)

= max
u

Eπ∗

[
rt+1 + γ

∞∑
k=0

γkrt+k+2|xt = x, ut = u

]
= max

u
E [rt+1 + γV ∗(xt+1)|xt = x, ut = u]

= max
u

∑
x′

P u
xx′ [R

u
xx′ + γV ∗(x′)] .

(3.12)

Intuitively, the Bellman optimality equation for Q∗ is obtained by substituting

V ∗(x′) with Q∗(x′, u′). This equation expresses that, under an optimal policy, the

value of the state is equal to the expected reward obtained after performing the

best action from thereon. Furthermore, since (3.12) is a system of N equations

in N unknowns, given an environment with known dynamics, one can solve the

value of V ∗ for each state, and then determine the optimal policy π∗ to solve a task.

However, the model of the environment is not always available upfront.

3.2.5 Q-learning

When dealing with complex systems, such as those found in robotic applica-

tions, the complete transition probability of the environment may not be available,

requiring the use of model-free learning approaches. One way to achieve this is

through Q-learning, introduced by C. Watkins [30], which enables the direct ap-

proximation of the optimal action-value function Q∗ independently of the policy

being applied. Specifically, the algorithm, summarized in Algorithm 1, performs

a step-wise update of the approximator Q̂, by computing a temporal difference

between two consecutive values and updating the value of Q̂ according to a learning

rate α ∈ [0, 1]. Furthermore, as demonstrated by Watkins in [30], the following

result holds:

Theorem 1. Under the assumption of performing each action infinitely often, and

visiting each state infinitely often, with α→ 0, then

Q̂(x, u)→ Q∗(x, u) (3.13)

with probability 1. �

Simply put, it means that given infinite steps, it is guaranteed the convergence

of the approximator Q̂ to the optimal action-value function Q∗.

35

Algorithm 1 Q-learning algorithm

1: Randomly initialize Q̂(xt, ut)

2: for each episode do:

3: for t = 0 to T do:

4: select with probability (1 − ε) u = argmaxu Q̂(xt, ut), otherwise select u

randomly

5: step xt+1 ← Environment (xt, ut), collect r

6: Q̂(xt, ut)← Q̂(xt, ut) + α
[
r + γ maxu Q̂(xt+1, ut+1)− Q̂(xt, ut)

]
7: xt ← x

8: end for

9: end for;

Making reference to Line 4 of Algorithm 1, let us introduce the concepts of

exploration and exploitation in reinforcement learning.

• Exploration: during training, the agent tends to transition to other states

regardless of policy optimization. Exploration is usually achieved by either

randomizing actions entirely or by adding noise to the selected action u. This

enables the agent to explore states that would otherwise risk never getting

evaluated, thus preventing finding a possible better policy.

• Exploitation: on the contrary, the agent uses already acquired data in order

to make decisions. Although this may lead to finding a policy faster, it usually

results in suboptimal outcomes, as the agent does not know of other possibly

better solutions.

A policy that only uses exploitation is called greedy. Typically, one design

element in a reinforcement learning framework is the balance between exploration

and exploitation, in order to ensure fast convergence and fair coverage of all actions,

states, and rewards of the environment.

Although Q-learning seemingly facilitates the learning procedure for the agent

as it bypasses the knowledge of the model, it may become infeasible when dealing

with large state and action spaces, especially if these are continuous. As this is often

the case in robotic applications, alternative approaches for representing policies

and value functions need to be considered.

36

3.3 Deep Reinforcement Learning

In case of problems with an overwhelmingly large number (possibly infinite) of

possible states, one way to overcome the issue of mapping the relationships between

states and actions is to use Deep Neural Networks (DNNs) to build a parametric

approximator of the Q-function. The most notable example of DNNs being used

to solve reinforcement learning problems is the work of Mnih et al. [11], where

superhuman performances were achieved when training an agent to play Atari

videogames. DNNs, represented for instance in Figure 3.3 are powerful parametric

functions capable of modeling complex nonlinear relationships between inputs and

outputs by means of neurons, to which certain weights w are assigned, connected in

k layers; the term deep refers to the level of composition of the parameters and the

use of multiple hidden layers between the input and output ones. Let us assume to

have a generic target function

y = f(x), x ∈ Rn.

Then, a parametric representation of the function with a DNN is expressed as

ŷ = W · g(W (1) · g(W (2) · g(...g(W (k) · x+ b(k))...) + b(2)) + b(1)) + b (3.14)

where W (k) is the set of weights associated with neurons of the k-th layer, g is an

activation function, and b(k) is the set of biases associated with the output of the

k-th layer. Generally speaking, the aim of training a DNN is that of updating the

set of parameters θ (i.e., the weights and bias) so that the output of the network

matches the desired one.

Making now reference to Q-learning, let us consider a parametrized Q-function

Q̂(x, u|θQ). Then, let us impose a stochastic behavior policy β such that ut = β(xt),

with a state visitation frequency ρβ (i.e., the number of times a state is visited

using stochastic policy β). Under these assumptions, the goal is now to minimize a

loss function

L(θQ) = E

[(
Q̂(xt, ut|θQ)− yt

)2]
(3.15)

where the term yt is the target function such that

yt = r(xt, ut) + γQ̂(xt+1, µ̂(xt+1)|θQ) (3.16)

37

Figure 3.3: Graphic rendering of a Deep Neural Network

and

µ̂(xt) = argmax
ut

Q̂(xt, ut|θQ). (3.17)

Several algorithms have been proposed with promising results for solving (3.17),

such as Deep Deterministic Policy Gradients [16], T3D [17], or Soft Actor-Critic

[31]. Nevertheless, when dealing with a very large number of continuous states and

actions, it is especially useful to be able to rephrase the optimization problem so

that the computation of the policy can be performed more efficiently. This can be

achieved by the Normalized Advantage Function (NAF) algorithm, introduced in

[18]; the algorithm, which will be introduced and briefly discussed in the following

subsection, is the method of choice for training agents in all applications of DRL

methods presented in this Thesis. The reason for this is its superior performance

with respect to the state of the art method (DDPG) and its computational efficiency,

which allowed training to be also performed on unoptimized hardware.

3.3.1 Normalized Advantage Function

Making reference to [18], let us consider the Q-learning problem, and let us

consider a parametrized Q-function Q̂
(
xt, ut|θQ

)
such that

Q̂
(
x, u|θQ

)
= Â

(
x, u|θA

)
+ V̂

(
x|θV

)
(3.18)

where Â and V̂ are DNN approximators of the so-called advantage function

Aπ(xt, ut) = Qπ(xt, ut)−V π(xt) and the value function V π(xt), respectively. Specif-

ically, the advantage term is expressed as the quadratic function

38

Â
(
x, u|θA

)
= −1

2
(u− µ̂(x|θµ)>P (x|θP)(u− µ̂(x|θµ). (3.19)

The function P (x|θP) is a positive-definite square matrix such that

P (x|θP) = L(x|θP)L(x|θP)> (3.20)

with L(x) lower triangular and with entries derived from the outer layer of the

dedicated neural network. The policy (3.17) can then be computed as

∂

∂u
Q̂
(
x, u|θQ

)
=

∂

∂u
Â
(
x, u|θA

)
+

∂

∂u
V̂
(
x, u|θV

)
= −(u− µ̂(x|θµ))>P (x|θP).

(3.21)

By imposing equality to 0, one gets

∂

∂u
Q̂
(
x, u|θQ

)
= 0 ⇒ u = µ̂(x|θµ). (3.22)

Therefore, the action maximizing the Q-function is always u = µ̂(x|θµ). The NAF

algorithm is summarized in Algorithm 2.

3.3.2 Hyperparameters

In machine learning there are predefined parameters, called hyperparameters,

whose values are not learned during the training process but rather decided upfront

during the design phase. In practice, these values are determined through a

preliminary search activity aiming to identify the most effective combination. When

training an agent with NAF, the following hyperparameters have to be set before

initiating the process.

Exploration

• Noise type D: the type of stochastic process that fosters exploration by

adding noise, at each time step, to the action determined by the agent, in

order to keep exploring the environment.

• Noise scale: scaling factor for noise values.

• Noise decay factor: it rules the speed at which the absolute noise value

decays during the training activity.

39

Algorithm 2 NAF algorithm for continuous Q-learning

Randomly initialize Q̂(x, u|θQ) θQ = (θµ, θP , θV)

Initialize the target network with θQTAR ← θQ

Initialize replay buffer RB ← 0

for each episode do:

Initialize random process D for action exploration

x0 ← Environment (reset)

for t = 0 to T do:

ut ← µ (xt|θµ) + Dt

rt← r(xt, ut)

xt+1← Environment (xt, ut)

RB ← RB ∪ {(xt, ut, rt, xt+1)} store transition in RB

Sample at random and normalize the mini batch MB

for each sample i = (xi, ui, ri, xi+1) in MB

yi = ri + γV̂
(
xi+1|θVTAR

)
Compute gradients

∂
∂θQ

(
yi −Q

(
xi, ui|θQ

))2
(Loss functionL(θQ))

θQ ← θQ − η
(

∂
∂θQ

L(θQ)
)

θQTAR ← τθQ + (1 + τ)θQTAR

end for

end for

end for

Learning

• Update factor τ : soft target update at the end of each step.

• Discount factor γ: how much the future rewards are valued with respect

to the present one.

• Learning rate η: learning rate for stochastic gradient descent.

40

Part II

Self-configuring control schemes

for robot motion

41

Chapter 4

Motivation and state of the art

Motion planning and control are among the classical problems encountered

when designing robotics systems [32, 26]. As anticipated in Chapter 2.4, motion

planning consists of defining the necessary reference trajectories in terms of positions,

velocities, and accelerations in order to define the desired motion of the robot. Once

a suitable reference is defined for the motion task we need to solve, it is necessary to

design and implement a control structure that is capable of generating the required

control inputs (i.e., joint torques or accelerations) to feed the actuator in order to

ensure that the motion of the robot is executed in the desired manner. Several

aspects must be taken into account during the design phase when controlling a robot

to perform motion, such as the robot’s mechanical structure, hardware constraints,

and the effect of unmodeled dynamics that may affect the way a system behaves

under different conditions. In the case of industrial robotic manipulators, two

approaches can be adopted depending on the type of operation required, the desired

performances, and the type of actuators employed. Specifically, a decentralized

control structure or a centralized one can be used. Although the main difference

between the two methodologies is, respectively, whether the robotic system is

regarded as a composition of linear and decoupled Single-Input-Single-Output

(SISO) systems (one for each actuator), or as Multi-Input-Multi-Output (MIMO),

other aspects influence the choice of the control structure to be applied to the

robotic system. The decentralized approach is generally employed in applications

where low performances in terms of velocity and acceleration are required, and the

joints present high transmission ratios (i.e., the systems are naturally decoupled);

in this case, non-linearities and coupling effects are regarded as disturbances acting

43

on each system [33]. On the other hand, the centralized approach is used when the

manipulator’s joints have low transmission rates and there is a higher demand in

terms of velocity and acceleration performances; such control structure usually relies

on the inverse dynamics control approach, that allows to eliminate the nonlinear

dynamics acting on the system, which in this case are non-negligible and must be

taken into account during the design of the controllers: in fact, dynamic inversion

allows to perform a global feedback linearization, resulting in a decoupling of the

considered system [26].

Although the decentralized approach presents several advantages due to its

simple structure and light computational weight in contrast with the centralized

approach, which instead requires the extensive online computation of the inverse

dynamics, it is not always suitable when high precision, high-velocity performances

during the operation are needed. On the other hand, it is not always possible to

have an accurate enough system model to perform the inverse dynamics exactly,

resulting in unmodeled disturbances further affecting the robot’s performance.

Nevertheless, the system might present a non-fixed structure, such as when the

robot present Variable Gear-ratios Actuators (VGA) to achieve a broader range of

speed, impedance, and forces [34, 35, 36].

Because of the above reason, an a-priori choice of the control structure may result

in degraded performances if the operating conditions of the industrial manipulator

change during the execution of the task. The choice of the controllers employed in

the control structure also plays a critical role in the resulting performances. Sliding

Mode Control (SMC) [37, 38, 39] has been used in robotics from the early 1980’s

[40, 41, 42, 43], although with severe limitation due to the presence of chattering

effects, incompatible with electro-mechanical systems. With the introduction of

Higher Order Sliding Mode (HOSM) controllers in the last decades, that allow one

to confine the effects of discontinuity of the control law to higher order derivatives

of the sliding variable, the problem of chattering alleviation could be solved without

loss of robustness [44, 45, 46, 47], thus making the application of Sliding Mode

Control feasible for robotic systems. For example, [48, 49] present the design of

Suboptimal Second Order Sliding Mode (SSOSM) control algorithm, while in [50]

a third order switched SMC scheme is proposed. Chattering alleviation can also

be successfully achieved with Integral Sliding Mode (ISM) [51]. Besides chattering

44

alleviation, ISM enforces robustness to the controlled system starting from the

initial time instant and provides the interesting feature of “perturbation estimation”,

which allows one to estimate the effects of coupling and unmodeled dynamics on

the controlled system. For all these reasons, ISM is the control approach adopted

in our application.

The main contribution illustrated in this Part of the thesis is the design of

a self-configuring switched structure control architecture, implementing both the

centralized and the decentralized approaches, so that the system can autonomously

select the most suitable control methodology at any given time, based on an

arbitrary metric. The proposed approach is introduced and discussed in detail,

presenting two possible methodologies adopted for the switching rule: one based on

fixed thresholds [52, 53] and one based on a policy trained with DRL for decision

making [54].

4.1 Structure

This Part of the thesis is structured as follows.

• Chapter 5 introduces the design procedure of the novel switched-structure

control scheme, which is presented in detail along with the discussion of two

case studies.

• Chapter 6 presents and discusses an alternative approach based on Deep

Reinforcement Learning for the proposed switched-structure control scheme:

elements of the framework are detailed and preliminary results are illustrated

for the considered case study.

• Chapter 7 gathers some concluding remarks.

45

Chapter 5

Switched Structure Control

Scheme for Robot Manipulators

In this Chapter, the switched structure scheme for motion control of industrial

robot manipulators is introduced and discussed. To overcome the issues deriv-

ing from choosing a-priori a specific control scheme, which can result in limited

performances when the operating condition of the system varies, the proposed

architecture implements both a decentralized approach, suited for lower perfor-

mance requirements and high transmission ratios, and the inverse dynamics based

centralized approach, suited for higher performances in terms of velocity and ac-

celeration. In both cases, the Integral Sliding Mode (ISM) [51] algorithm is used

to control the manipulator and compensate matched disturbances. Furthermore,

the perturbation estimation capability of the ISM controller is used to retrieve an

estimate of unmodelled dynamics. This is used to design a switching rule which,

based on the perturbations estimated by the ISM controllers, allows to switch from

a decentralized control architecture, which typically requires high control gains,

to a centralized one with reduced control gains and beneficial effects in terms of

chattering and actuator saturation. The implementation of the switching rule

thus gives the overall system a self-configuring capability. Such approach can then

be applied to systems presenting VGAs or requiring a wider range of trajectory

variations.

47

5.1 Basics of Sliding Mode Control

Sliding Mode Control (SMC) is a nonlinear control method, part of the so-called

Variable Structure Control Systems (VSCS) theory, vastly explored in [39, 43, 37].

Let us consider a nonlinear affine system (i.e., nonlinear with respect to the state

and linear with respect to the control variable) having state-space equation as

ẋ(t) = f(x(t)) + g(x(t))u(t) (5.1)

where x(t) ∈ Rn and u(t) ∈ Rm are the state and input, respectively. The main

objective of SMC is to lead the state trajectories onto a so-called sliding surface

s(x(t)) = 0 ∈ Rn−m, where the system enters sliding mode in a finite time, by

designing a discontinuous control input. When the sliding mode is enforced, one

can obtain an equivalent system. While in sliding mode, the equivalent system

features reduced order (from n to n−m) and robustness to matched disturbances

(i.e., disturbance acting on the control variable). The dynamics of the equivalent

systems are defined by the design of (i) the sliding manifold and, consequently, (ii)

the control law.

Example: double integrator

Let us assume a SISO system, written as a perturbed double integrator as

follows 
ẋ1(t) = x2(t)

ẋ2(t) = u(t) + η(t)

y(t) = s(x(t))

(5.2)

where x ∈ Ω ⊂ R2 is the state vector with x(t0) = x0, u(t) ∈ R is the input and

η(t) ∈ H is a bounded matched uncertainty, with H being a compact set containing

the origin, and Hsup known. The output function s(x) : Ω → R is of class C(Ω)

and represents the so-called sliding variable, that has to be steered to zero in finite

time. Furthermore, s(x) has to be selected such that if u(t) is designed in a way

that guarantees s(x(tr)) = 0 ∀x0 ∈ Ω and s(x(t)) = 0 ∀ t > tr, where tr is the ideal

reaching time, then ∀ t ≥ tr the origin is an asymptotically stable equilibrium point

of (5.2), constrained to s(x(t)) = 0. From here on, dependency on time is omitted

when obvious, for the sake of simplicity.

48

(a) (b)

Figure 5.1: State trajectories for c1 = 1 (a) and c1 = 10 (b)

A typical choice for the sliding variable is that of a linear combination of the

states. Therefore, let us select the sliding variable s = c1x1 + x2, with c1 > 0 so

that the sliding manifold is

s = c1x1 + ẋ1 = 0. (5.3)

Then, let us consider the discontinuous control law as

u =

−1, if s > 0

1, if s < 0
(5.4)

The behavior of the controlled system, for different choice of c1, is as depicted in

Figure 5.1.

When Sliding Mode is enforced, the equivalent system obtained is

x1(t) = x1(tr)e
−c1(t−tr). (5.5)

As in this case, a typical choice for the control law is a relay form, i.e.

u(t) = −K · sign(s(x(t), t)), (5.6)

where K > 0 is a design parameter that, like the sliding variable, has to be properly

selected. Despite its desirable properties, due to non-idealities in the switch when

sliding mode is enforced, SMC presents the so-called chattering effect [55]: in

practical applications, the state trajectory does not lie precisely on the sliding

49

manifold, but in the so-called boundary layer, which depends on the actual (finite)

switching frequency. In electromechanical systems, this may lead to hardware

degradation or undesirable effects. One approach to overcome this issue is the use of

Integral Sliding Mode (ISM) control, which besides chattering alleviation, presents

other desirable features, such as matched uncertainties rejection, perturbation

estimation and the enforcement of sliding mode from the initial time instant. More

details are provided in the context of the proposed approach, in Section 5.4.

5.2 Problem formulation

Let us consider a n-joints robot. As detailed in Chapter 2.3, the equations

representing the dynamics of the manipulator can be described as the following

MIMO nonlinear coupled model

B(q)q̈ + n(q, q̇) = τ (5.7)

n(q, q̇) = C(q, q̇)q̇ + Fvq̇ + g(q) (5.8)

where B(q) ∈ Rn×n is the inertia matrix, C(q, q̇) ∈ Rn×n represents centripetal

and Coriolis torques, Fv ∈ Rn×n is the viscous friction matrix, g(q) ∈ Rn is the

vector of gravitational torques, and τ ∈ Rn represents the motor torques. In the

following, the time dependency of the joint variables q(t) and q̇(t) is omitted for

the sake of simplicity.

Given the robot manipulator model in (5.7)-(5.8), let us assume that q∗ and q̇∗

∈ Rn are pre-specified reference signals for the joint variables and their first time

derivative, respectively. It is assumed that the components of q∗ are bounded and

q̇∗ is Lipschitz continuous. The tracking errors are then defined as

e(t) = q∗ − q, ė(t) = q̇∗ − q̇ , (5.9)

where e1 = e and e2 = ė represent the position error and the velocity error,

respectively.

50

−
+

q∗, q̇∗
ISMc

e
B(q)

u2 +
−

SWr
uσ q, q̇

n̂(q,q̇)

I2

−
+

q∗, q̇∗
ISMd

e
u1, I1

Figure 5.2: The proposed switched structure control scheme

5.3 Self-configuring switched structure scheme

The control structure used in this work is illustrated in Figure 5.2. The first

loop implements the decentralized control approach described in Subsection 5.3.1;

the second loop implements instead the inverse dynamics based centralized control

structure, illustrated in Subsection 5.3.2. For each structure, an ISM controller,

described in detail in Section 5.4, is designed to regulate the system and perform a

perturbation estimation, thus producing the signals used for the switching criteria.

Remark. Since the uncertainties include centrifugal and Coriolis effects, they

could be unbounded due to the quadratic dependence on the joint velocities. In

order to guarantee the stability results detailed hereafter, limited velocities are

considered, such that the assumptions made in the following subsections on the

perturbations acting on the system hold.

5.3.1 Decentralized Control Scheme

As previously anticipated, when using a decentralized approach the robot

manipulator is regarded as the composition of n linear and decoupled SISO systems.

For the considered case, let us assume that a motor acts on each joint of the

manipulator. For the sake of simplicity, let us define the dynamics of the joint

motors as the effects related to the spinning of the motor around its own axis.

Taking into account a single joint, let Jmj be the motor inertia, Dmj the coefficient

51

of viscous friction of the motor, and let τlmj be the load torque at the axis of the

j-th motor, such that

τlmj =
τj
krj

(5.10)

with krj being the reduction ratio defined as

krj =
qmj
qj

=
q̇mj
q̇j

. (5.11)

The equation of the jth motor is

Jmj q̈mj +Dmj q̇mj = τmj − τlmj , (5.12)

where τmj is the torque exerted by motor j. Substituting (5.7)-(5.8) to τlm in (5.12)

for each joint, considering Dmj, and posing

Jm =


Jm1 0 · · · 0

0 Jm2 · · · 0
... · · · . . .

...

0 0 · · · Jmn

 , Kr =


kr1 0 · · · 0

0 kr2 · · · 0
... · · · . . .

...

0 0 · · · krn

 (5.13)

one obtains

Jmq̈m = τm −K−1r (B(q)q̈ + C(q, q̇)q̇ + Fvq̇ + g(q)) (5.14)

Equivalently, one can write

(
Jm +K−1r B(q)K−1r

)
q̈m = τm −K−1r C(q, q̇)K−1r q̇m −K−1r FvK

−1
r q̇m −K−1r g(q)

(5.15)

The above equations can be interpreted as those of a linear and completely decoupled

system, subjected to a disturbance deriving from the nonlinear and coupled terms

of the dynamic model, i.e.,

M(q)q̈m = τm − d , (5.16)

where

M(q) = Jm +K−1r B(q)K−1r

and

d = K−1r C(q, q̇)K−1r q̇m −K−1r FvK
−1
r q̇m −K−1r g(q)

52

As can be noted, the larger are the reduction rations krj, the smaller is the

impact of the disturbance term d on the system. The control torque τ in (5.7) can

then be computed as

τ = KrM(q)Kru1, (5.17)

such that system (5.16) becomes

q̈ = u1 −K−1r M−1(q)d = u1 − η1 . (5.18)

where u1 is the control law to be designed. Letting x1 = e1 and x2 = e2, consider

now a Proportional-Derivative (PD) controller defined as

u1 = q̈∗ +KD1x2 +KP1x1 , (5.19)

with KD1 and KP1 positive definite diagonal matrices (see [25, Chapter 6] for further

details). Combining the previous equations it holds

ẋ2 +KD1x2 +KP1x1 − η1 = 0 . (5.20)

Finally, the state space representation of the closed-loop system becomes

ẋ1 = x2

ẋ2 = −KD1x2 −KP1x1 + η1 .
(5.21)

which is characterized by the matched uncertain terms η1 such that the following

assumption holds.

Assumption 1. The uncertainty η1 is such that

‖η1‖∞ ≤ β1 (5.22)

with β1 being a positive constant.

In order to reject η1, a decentralized ISM (ISMd) control of the type

u1 = q̈∗ +KD1x2 +KP1x1 + u11 , (5.23)

is designed, where u11 is typically a discontinuous control action. As a consequence,

the equivalent controlled dynamics becomes

ẋ(t) =

 0 I

−KP1 −KD1

x(t) (5.24)

53

or, in a compact way,

ẋ(t) = A1x(t), x(0) = x0 (5.25)

with A1 being the closed-loop dynamics matrix. Then, it is possible to conclude

that the error is governed by an asymptotically stable second order dynamics that

can be arbitrarily assigned, on each joint, by suitably selecting the gains in the

diagonal matrices KD1 and KP1.

5.3.2 Centralized Control Scheme

In the absence of decoupling effects given by the high reduction ratios (for

instance in case of direct drive motors), the use of a centralized control strategy

might turn out to be the only viable solution. In the proposed scheme, the

centralized approach relies on the so-called inverse dynamics controller. Let us

assume again to exactly estimate the inertia matrix B(q) and to have a replica of

the vector n(q, q̇), such that n̂(q, q̇) 6= n(q, q̇). Moreover, let u2 be an auxiliary

control vector such that the control torque is selected as

τ = B(q)u2 + n̂(q, q̇) . (5.26)

Substituting (5.26) into model (5.7)-(5.8), one has

B(q)q̈ + n(q, q̇) = B(q)u2 + n̂(q, q̇) , (5.27)

which is a chain of n decoupled double integrator systems of the type

q̈ = u2 − η2 . (5.28)

Letting again x1 = e1 and x2 = e2, consider a PD controller defined as

u2 = q̈∗ +KD2x2 +KP2x1 , (5.29)

with KD2 and KP2 positive definite diagonal matrices, which substituted to the

previous equation gives

ẋ2 +KD2x2 +KP2x1 − η2 = 0 . (5.30)

The state space representation of the closed-loop system is

ẋ1 = x2

ẋ2 = −KD2x2 −KP2x1 + η2 .
(5.31)

54

This system is characterized by the matched uncertain terms η2 such that the

following assumption holds.

Assumption 2. The uncertainty η2 is such that

‖η2‖∞ ≤ β2 . (5.32)

with β2 being a positive constant.

In order to reject η2, a centralized ISM (ISMc) control of the type

u2 = KD2x2 +KP2x1 + u12 (5.33)

is designed, where u12 is a discontinuous control action. As a consequence, the

equivalent controlled dynamics becomes

ẋ(t) =

 0 I

−KP2 −KD2

x(t) (5.34)

or in a compact way

ẋ(t) = A2x(t), x(0) = x0 (5.35)

with A2 being the closed-loop dynamics matrix. Then, one can conclude again that

the error is governed by an asymptotically stable second order dynamics that can

be arbitrarily assigned, on each joint, by suitably selecting the gains in the diagonal

matrices KD2 and KP2.

Note that the choice of the PD controller is not mandatory, in the sense that

any other stabilizing control law can be used as high level controller. Nevertheless,

the use of PD controllers is quite common in robotics. As for the ISM control

component, it is preferred to other sliding mode control solutions for its capability

to make the controlled system insensitive to the matched uncertain terms since the

initial time instant, thus eliminating the so-called reaching phase [51].

5.3.3 Switching Block

Let us introduce a switching block (SWr) embedding a switching rule that

enables the changes between the decentralized and the centralized control scheme

for the manipulator. Specifically, it relies on a given metric Iσ(t), where σ ∈ {1, 2} is

the so-called switching signal related to the decentralized control and the centralized

55

one, respectively. For the proposed approach, the switching metric Iσ(t) is chosen

as a function of the matched unknown terms η1 and η2, i.e.,

Iσ(t) =

I(η1), if σ(t) = 1

I(η2), if σ(t) = 2
. (5.36)

The reason for this is due to the fact that the dynamics of the controlled

system are affected by uncertain terms, which in turn depend on the velocity

and acceleration required to the robot, affecting the performance. The logic of

the switching rule then is as follows: if, while using a decentralized approach,

the coupling terms are greater than a given threshold P (i.e., high velocity and

acceleration performance are required), switch to the centralized control. Vice

versa, if the centralized control is active and the uncertain terms are lower than P

(i.e., high velocity and acceleration performance are not required), switch to the

decentralized control. Therefore, the rule can be written as

Iσ∈{1, 2} ≷ P . (5.37)

Note that P is a suitably selected threshold, the value of which is determined, for

instance, through a trial and error procedure, or by the knowledge of the physical

quantities involved in the system and provided by the robot data sheet. Specifically,

for the proposed approach, the choice for the metric Iσ(t) is the Root Mean Square

(RMS) value of η1 and η2 of the considered joints, since it represents the deviation

of the input signal from a given baseline, which corresponds to the case without

uncertain terms.

5.4 Integral Sliding Mode Control design

It is now possible to design the ISM controllers to be used in the decentralized

and centralized case, respectively. ISM is typically characterized by a control

variable uσ, σ ∈ {1, 2} depending on the used structure, split into two parts, i.e.,

uσ(t) = u0σ(t) + u1σ(t) (5.38)

where u0σ is generated by a suitable PD controller designed relying on the nominal

system model, while u1σ is the sliding mode control action, used in order to reject

the uncertainties affecting the system.

56

The u1σ component has to be designed relying on the errors states x1, x2

previously defined. Thus, the integral sliding manifold is defined as

Σ(t) = s(t) + ϕ(t) = 0 (5.39)

where Σ is a vector of the auxiliary sliding variables, while s = Sx, with S being

a matrix of positive coefficients, is the actual sliding variable. Furthermore, the

integral term ϕ is given by

ϕ(t) = −s(0)−
∫ t

0

S[x2(z), u0σ(z)]>dz (5.40)

with the initial condition ϕ(0) = −s(0). Then, the discontinuous control law is

defined as

u1σ(t) = −Kσsgn (Σ(t)) , (5.41)

with Kσ being the ISM control gain.

5.4.1 Stability proof

The considered system, controlled by the selected controller, can be described

by the following dynamics

ẋ(t) = Aσ(t)x(t), x(t0) = x0 (5.42)

where σ(t) is admissible, meaning that in finite time only a finite number of

switchings can occur, by virtue of the presence of a predefined dwell-time. Necessary

condition for stability under the switching signal σ(t) is that all matrices Ai, i = 1, 2

are Hurwitz [56]. Moreover, the dwell-time Tdw is such that the equilibrium point

x = 0 of the system (5.42) is asymptotically stable with the switching signal

σ(t) = i ∈ {1, 2}, t ∈ [tk, tk+1) where tk and tk+1 are successive switching times

with tk+1 − tk ≥ Tdw, for all k ∈ N and index i ∈ {1, 2}.
Let us prove that the ISM component allows to achieve autonomous systems

(5.42) where each matrix Ai is Hurwitz in spite of the uncertainties.

Theorem 2. Given the error system (5.21) (or (5.31)) such that Assumption 1 (or

2) hold, controlled via (5.38) with a ISM controller uσ(t) as in (5.41) and sliding

variable Σ as in (5.39)-(5.40), if ‖K1‖∞ > β1 (or ‖K2‖∞ > β2), then a sliding mode

Σ = 0 is enforced ∀ t ≥ 0.

57

Proof. For the sake of simplicity, let σ = 1 (without loss of generality for the case

of σ = 2). Consider system (5.21) expressed as

ẋ(t) = A1x(t) +B(u11 + η1), x(t0) = x0 . (5.43)

Let us define the Lyapunov function candidate as

V =
1

2
Σ>Σ . (5.44)

Then, let us compute its first time derivative

Σ>Σ̇ =Σ>S(A1x+B(u11 + η1)− A1x)

=Σ>SB (u11 + η1)

=− Σ> (K1sgn (Σ)− η1)

<− (‖K1‖∞ − β1) ‖Σ‖ (5.45)

Hence, V̇ is negative definite if and only if ‖K1‖∞ > β1, thus implying that there

exists a reaching time t̄r > 0 such that Σ(t) = 0, ∀ t ≥ t̄r. Since, by construction in

(5.39)-(5.40), Σ(0) = 0, then Σ(t) = 0, ∀ t ≥ 0, which concludes the proof.

5.4.2 Perturbation Estimator and Chattering Alleviation

By virtue of Theorem 2, it is now possible to formulate the result assessing the

perturbation estimation capability of the algorithm, which will be used to retrieve

the necessary information to enforce the switching rule (5.37). Let us introduce the

following:

Theorem 3. Given the error system (5.21) (or (5.31)) such that Assumption 1 (or

2) holds, controlled via control law (5.38) with (5.41) and sliding variable as in

(5.39)-(5.40), if Σ = 0 is enforced ∀ t ≥ 0 solving u11 (or u12) from Σ̇ = 0, then

the equivalent control is such that u11eq = −η1 (or u12eq = −η2). Moreover, the

equivalent system is Hurwitz and invariant with respect to the uncertainties.

Proof. For the sake of simplicity, let σ = 1 (with no loss of generality for σ = 2)

and consider system (5.21) expressed as

ẋ(t) = A1x(t) +B(u11 + η1), x(t0) = x0 . (5.46)

58

By virtue of Theorem 2, with ‖K1‖∞ > β1 an integral sliding mode is enforced

since the initial time instant t = 0, i.e., Σ(t) = 0 and Σ̇(t) = 0, ∀ t ≥ 0. The latter

implies that

Σ̇ =ṡ+ ϕ̇

=S(A1x+B(u11 + η1)− A1x)

0 =u11 + η1 . (5.47)

By definition of equivalent control [37, 39], solving u11 from (5.47) allows one to

obtain u11eq, i.e.,

u11eq(t) = −η1(t), ∀ t ≥ 0 . (5.48)

Finally, by substituting the equivalent control u11eq(t) in (5.21), one directly achieves

system (5.25) which is Hurwitz and invariant with respect to the uncertainties,

concluding the proof.

This way, the ISM controller is able to estimate the uncertain and coupling

terms if the equivalent control is available. In actuality, an approximation of the

equivalent control can be obtained via a first order linear filter [51] with the real

discontinuous control (5.41) as input signal, i.e.,

ũ1σeq(t) =
1

µ

∫ t

0

e−
1
µ
(t−z)u1σ(z)dz (5.49)

where µ is the time constant of the filter. It should be set such that the linear filter

does not distort the slow component of the switching action. Furthermore, the

integral term in (5.40) has to be redesigned as

ϕ(t) = −s(0)−
∫ t

0

S[x2(z), uσ(z)− u1σ(z)]>dz (5.50)

with initial condition ϕ(0) = −s(0). By virtue of Theorem 3, one has that ũ1σeq(t)

is a good estimate of ησ. This quantity is then used to compute the metric

I(η̂σ) in (5.37), which allows to realize the switching mechanism illustrated in

Subsection 5.3.3. Moreover, due to the presence of the filter, the control law in

(5.49) is continuous now a continuous signal provided to the plant, thus ensuring a

chattering alleviation feature. Note that, having in mind a robotic application, in

the following the equivalent control computed as in (5.49) with the integral term

designed as (5.50) will be used.

59

Figure 5.3: Planar manipulator with 2 revolute joints equipped with Variable Gears

Actuators.

5.5 Case studies

In the following subsections, two different examples will be illustrated. The first

one is an academic example (see [26]) where the case with a robot implementing

Variable Gear Actuators (VGA) is presented and the proposed strategy is successfully

applied. The second one is carried out on a robot Comau Smart3-S2, the model of

which was realized on the basis of real data (Appendix A).

5.5.1 Case study 1: Variable Gear Actuators

Let us consider a 2-axis planar manipulator, represented in Figure 5.3 and

featuring parameters summarized in Table 5.1 ([26, Chapter 7]). The example is

intended to show the behavior of the strategy in presence of VGA at both joints,

which are not identified by the inverse dynamics. Indeed, the feedback linearization

takes into account the dynamics of the robot at a given constant nominal value of

the motors reduction ratios. Therefore, the addition of VGA at the joints, in this

case, aims to show the effects on the unmodeled dynamics caused by the variation

of reduction ratios, and how the proposed strategy could handle such a situation.

The switched structure control scheme has been applied to track a reference q∗

in the joint space equal to a constant signal with an amplitude of 10 rad. During

operation, the reduction ratios at the joints evolve in time between 1 and their

nominal value krn1,2 = 100 as a sinusoidal function, starting at a value kr1,2 = 50.

60

Table 5.1: Planar 2 DoF Robot Parameters

Parameter Value

a1 [m] 1

a2 [m] 1

l1 [m] 0.5

l2 [m] 0.5

ml1 [Kg] 50

ml2 [Kg] 50

Il1 [Kg ·m2] 10

Il2 [Kg ·m2] 10

kr1 [1; 100]

kr2 [1; 100]

In this case, the switching rule introduced in Subsection 5.3.3 is defined so that

P = 5. A dwell time of Tdw = 2 s has been imposed, to avoid high frequency

switching, and the simulation has a timestep duration T = 5× 10−4 seconds. Both

joints start with an initial position q1,2(0) = 0 rad.

In Figure 5.4 the results for the tracking of the reference signals for joint 1

and joint 2 are reported. As can be observed, both joints manage to maintain the

position stably, despite the changes in the reduction ratios and uncertainties acting

on the system. By virtue of the ISM component, the coupling terms are rejected,

making the two joints decoupled and behave consistently.

In Figure 5.5 the profile of the reduction ratio variation, valid for both joints of

the manipulator, is reported alongside the metric I compared to the threshold P and

the corresponding switching signal σ. As it can be observed in the evolution of the

switching signal (Figure 5.5, bottom image), the control architecture is initialized

as the centralized one (σ = 2) and after Tdw = 2 s, since the metric I2 is below P , it

switches to the decentralized structure (σ = 1). After 5 seconds the index increases

up to the threshold and, since the dwell-time has expired, σ switches again to 2 (i.e.,

centralized). Before the time instant 10 s, the index I2 is below P and σ becomes

1, but the index I1 again abruptly increases up to the threshold. Although the best

solution would be the centralized one, the switching signal σ remains equal to 1

61

Figure 5.4: Position and velocity with references in the joint space

Table 5.2: Control Parameters for Case Study 1

Parameter Dec. (σ = 1) Cen. (σ = 2)

K1σ 100 100

K2σ 100 100

KP1σ 100 100

KP2σ 100 100

KD1σ 10 10

KD2σ 10 10

due to the dwell-time. After 2 seconds σ becomes 2 but the index decreases below

P , causing another switch to the decentralized architecture, as expected.

The evolution of the sliding variables for both joints is reported in Figure 5.6. As

it can be observed, sliding mode is always enforced, despite switches in the control

structure. Due to the presence of a first order filter to generate the equivalent

control, an overshoot is present at the beginning in the time interval when the

system is still sensitive to the uncertainties and (5.49) has to converge. Control

parameters used for the design of the ISM controller are summarised in Table 5.2.

62

Figure 5.5: Variation of reduction ratios in time (top), for both joints; metric I(η̂σ)

used for switching (middle); switching signal σ: 1 for the decentralized approach, 2 for

centralized approach (bottom)

63

Figure 5.6: Time evolution of the auxiliary sliding variable Σ, the sliding variable s and

the integral term ϕ for joint 1 and joint 2.

5.5.2 Case study 2: Industrial Robot Comau Smart3-S2

In the following, simulation results carried out relying on a realistic model

of a robot manipulator Comau Smart3-S2, identified on the basis of real data

[57, 58] (see Appendix A), are presented. For the sake of simplicity, only vertical

planar motion of the robot has been enabled. The control structure has been

applied to a motion control problem that requires the tracking of pick-and-place

trajectories in the operative space. The reference signal for each joint are shaped

as a sequence of Trapezoidal Velocity Profiles (TVP) trajectories. The simulation

timestep has a duration of T = 5 × 10−5 s. It is assumed that the joint velocity

q̇ is measurable or estimated using a Levant’s differentiator [44], as successfully

shown in [59]. Two examples with two different trajectories are discussed in detail,

before a comprehensive discussion on the results and a comparison with an Active

Disturbance Rejection Control (ADRC) scheme.

Note that, since an estimation procedure was used to find the robot parameters

[49], and this was based on the maximum likelihood approach applied to a suitable

parametrized model, the switching mechanism in Subsection 5.3.3 was suitably

adapted. For this reason two different thresholds Pτ and Pq̈ were specified, based

on estimates of the uncertain terms acting on the torques for the decentralized case

and on the acceleration for the centralized one, respectively. This way, when the

metric overcomes Pτ , the centralized architecture is activated; when the metric Iσ(t)

is instead below Pq̈, the decentralized architecture is activated. The value of the

thresholds, which are related to the uncertain terms, have been suitably selected

on the basis of the data collected from the real plant.

64

Table 5.3: Control Parameters for Case Study 2

Parameter Dec. (σ = 1) Cen. (σ = 2)

K1σ 1000 2

K2σ 500 2

K3σ 500 2

KP1σ 2.5× 104 200

KP2σ 2.5× 104 200

KP3σ 2.5× 104 200

KD1σ 5× 103 100

KD2σ 5× 103 100

KD3σ 5× 103 100

The Proportional-Derivative parameters used for the nominal control in the

regulators and the control gains for the sliding mode components are reported in

Table 5.3. The metric Iσ (see (5.37)), it is recalled, has been chosen as the RMS

value of the output of the perturbation estimator of the three considered joints,

provided by the ISM controller. Thresholds for the switching logic have been set

equal to Pτ = 150 and Pq̈ = 0.08. The dwell-time has been set equal to Tdw = 2 s.

Example 1

The joint position reference signals fed to the plant, represented in Figure 5.7,

are generated from a TVP with initial position q∗0 = [0, 0, π/2]> and final position

of q∗ = [π/2, π/2, 0]> up until t = 13.125 seconds (i.e., 7/8 of a total simulation

time of 15 seconds). The trajectory is then inverted for the remaining portion of

time. The robot’s initial joint configuration is q0 = [π/15, 0, π/2]> (hence, the

transient present at the first joint). In Figure 5.9, the corresponding reference

signal p∗e and the actual trajectory pe of the end-effector in the operative space

are represented. The torques exerted by each joint are also reported in the same

picture in order to highlight their smoothness due to the chattering alleviation

features provided by the ISM component. Note that, due to the large initial error in

the position of the first joint, the computed control torque τ1 presents large initial

values, but quickly adjusts. On the right, the metric Iσ is illustrated. Specifically,

65

Figure 5.7: Trajectory profiles in the joint space. Joints must reach π/2, π/2 and 0

until 7/8 of the simulation duration, and then revert the motion

Figure 5.8: Time evolution of the sliding variables Σj , j = 1, 2, 3

the first part of the picture is a close-up of the metric when the decentralized

architecture is used (switching signal σ = 1, as I1 < 150 and I2 > 0.08). As it

can be noticed, the system runs on the decentralized loop while following a “slow”

trajectory, and changes when a sudden variation occurs at 13.125 s, requiring

higher velocity performances that can be guaranteed by the centralized approach

(switching signal σ = 2, I1 > 150). The evolution of the auxiliary sliding variables

Σj, j = 1, 2, 3 is shown in Figure 5.8, where it can be seen that a sliding mode is

always ensured despite changes in the control scheme. Finally, joint velocity and

acceleration tracking performances are reported in Figure 5.10.

Results of simulations using all three approaches (decentralized only, centralized

only, and the proposed self-configuring switched approach) are reported in Table

5.4. The RMS values of the position error eRMS, of the torque τRMS, and of the

estimated uncertainties η1RMS and η2RMS have been computed for each joint. The

RMS values obtained through the switching scheme are comparable with the other

ones. The proposed approach is then suitable for motion operations and enables

the robot to track a wider range of varying trajectories, which require both high

and low performances in terms of velocity and acceleration. Nevertheless, it allows

the use of lower control gains when possible, with benefits in terms of saturation or

wear of the actuators.

66

Figure 5.9: Trajectory tracking in the operative space (top left); metric I and switching

thresholds Pτ and Pq̈ with a close-up when the switching occur at 13.125 s (top right);

control torques τ for each joint (bottom left); switching signal σ: 1 for the decentralized

approach, 2 for the centralized approach (bottom right). In this case, switching is required

towards the end of the simulation due to a rapid variation of the reference trajectory.

Table 5.4: Result comparison with ISM control for Example 1

Joint i eRMS τRMS η1RMS η2RMS

Sw.

1 0.0177 206.30 141.65 0.2375

2 0.0007 122.92 126.95 0.2615

3 0.0006 9.2403 6.917 0.2346

Dec.

1 0.0176 208.031 146.22 –

2 0.00036 123.00 120.47 –

3 0.00003 9.2396 7.988 –

Cen.

1 0.0270 171.76 – 0.407

2 0.00085 122.48 – 0.336

3 0.00085 8.167 – 0.33

67

Figure 5.10: Profiles of velocity q̇ and acceleration q̈ references (red) and measured

signals (blue)

68

Figure 5.11: Trajectory profiles in the joint space for Example 2. Joints must reach

π/2, π/2 and 0 until 1/2 of the simulation duration, and then revert the motion.

Example 2

Another example is given by the trajectory reported in Figure 5.11, where

joint position reference signals fed to the plant are so that the joints must reach

a final position of q∗ = [π/2, π/2, 0]> up until t = 7.5 seconds (i.e., 1/2 of a total

simulation time of 15 seconds), before reverting motion back to their initial position

in the last portion of time. In this case, as can be seen in Figure 5.12, the use of

the centralized approach can be avoided entirely due to the low demanding nature

of the trajectory given as reference which, contrary to the one reported in Example

1, does not require abrupt inversion of motion in a short time interval. The control

is then maintained on the decentralized approach, as desirable. Again, auxiliary

sliding variables Σj, j = 1, 2, 3 are shown in Figure 5.13.

5.5.3 Results

In order to obtain a validation of the proposed approach, ten different trajectories

with different velocity profiles have been generated, and the benefits of the proposal

have been measured according to the RMS value of the uncertain terms suitably

estimated by ISM control. Table 5.5 reports the results achieved comparing the

two approaches chosen ‘a-priori’ with the switched methodology. Indeed, the latter

results more robust with respect to the decentralized approach and the centralized

one, as shown by the tests showing an improvement in terms of disturbance reduction

equal to 14.873% and 40.612%, respectively. A graphical rendering of the results is

also reported in Figure 5.14.

69

Figure 5.12: Trajectory tracking in the operative space (top left); metric I and switching

threshold Pq̈ (top right); control torques τ for each joint (bottom left); switching signal

σ: 1 for the decentralized approach, 2 for the centralized approach (bottom right). In

this case, no switching is required.

Figure 5.13: Time evolution of the sliding variables Σj , j = 1, 2, 3 for Example 2

70

Table 5.5: Percentage improvements obtained with the proposed switched approach for

different velocity profiles

q̈max η1RMS Dec. η1RMS Sw. ∆η1RMS% η2RMS Cen. η2RMS Sw. ∆η2RMS%

0.0475 206.0 190.0 7.86 0.291 0.169 42.1

0.0845 236.0 218.0 7.88 0.339 0.168 50.5

0.19 286.0 264.0 7.85 0.42 0.167 60.4

0.601 84.3 64.7 23.2 0.206 0.157 23.7

0.76 133.0 92.6 30.5 0.357 0.166 53.4

1.35 101.0 79.5 21.7 0.374 0.146 61.0

3.04 134.0 121.0 9.98 0.871 0.787 9.6

5.41 142.0 113.0 20.4 0.849 0.819 3.48

12.2 128.0 117.0 9.07 0.532 0.399 24.9

48.7 211.0 190.0 10.4 0.744 0.17 77.1

Figure 5.14: Graphical rendering of Table 5.5

71

Table 5.6: Result comparison with ADRC

Joint i eRMS τRMS η1RMS η2RMS

Sw.

1 0.0182 206.57 80.881 0.096

2 0.0026 122.75 63.850 0.101

3 0.0001 9.358 3.914 0.204

Dec.

1 0.0180 207.76 85.436 –

2 0.0024 122.95 60.974 –

3 0.00016 9.355 4.421 –

Cen.

1 0.0270 180.01 – 0.578

2 0.0013 122.79 – 0.007

3 0.0027 8.244 – 1.756

5.6 Comparison with ADRC

Considering Case Study 2, the proposed ISM control approach has been com-

pared with an Active Disturbance Rejection Control (ADRC) method based on an

External State Observer (ESO), as discussed in [60]. Results are summarized in

Table 5.6 where it can be noticed that the performance is comparable, with the

ISM control allowing to achieve a slightly better precision, as denoted by the RMS

error. Yet, as discussed in this paper, the ISM control does not require the use of

any ESO to achieve a satisfactory performance. This makes the proposal appealing

for practical applications where the use of a low complexity but effective control

scheme is required.

5.7 Conclusions

In this Chapter, a self-configuring approach for robot motion has been introduced.

Specifically, by exploiting the perturbation estimation property of the ISM control

law and suitably defining a switching metric, it is possible to decide whether a

decentralized or a centralized approach is best for controlling the system at any given

time of the operation and switch accordingly. This enables the system to operate

under a broader range of conditions without the need for an a-priori choice. This

72

can be an advantage in the case it is not possible to precisely estimate the inverse

dynamics (for example, when in the presence of VGA) or when abrupt changes in

the performance requirements arise. The proposed ISM based switching structure

approach has been validated on an academic example of a robot with unmodeled

dynamics and on the realistic model of a Comau Smart3-S2 anthropomorphic robot

manipulator identified based on real data, showing improvements in the amount of

disturbance acting on the plant under different motion requirements.

73

Chapter 6

DRL-based Switching Rule for

Motion Control

This Chapter deals with the preliminary design of an intelligent self-configuring

control scheme for robot manipulators, in which the switching rule regulating the

self-configuration during motion is based on a policy obtained by training an agent

with Deep Reinforcement Learning. Similarly to the self-configuring motion scheme

introduced in Chapter 5, the proposed approach features two control structures: one

of centralized type, implementing the inverse dynamics approach, and the other of

decentralized type. Again, both control structures feature an Integral Sliding Mode

controller, so that matched disturbances and uncertain terms caused by unmodelled

dynamics or couplings effects are suitably compensated. The main contribution,

with respect to the self-configuring approach based on fixed thresholds, relies on

the design of an ‘intelligent’ switching module that has been trained on a variety of

trajectories in order autonomously choose one of the two control structures present

in the scheme, depending on the requested robot performances. The assessment

of our proposal has been carried out relying on a model of the industrial robot

manipulator Comau Smart3-S2, identified on the basis of real data.

6.1 Problem formulation

In this Section, let us recall for the convenience of the reader the main concepts

behind the elements of the control scheme that will be described in the following.

Let us consider a MIMO nonlinear coupled model for the industrial manipulator

75

used for the proposed approach. Given a n-joints robot, its dynamical model can

be described as

B(q)q̈ + n(q, q̇) = τ (6.1)

n(q, q̇) = C(q, q̇)q̇ + Fvq̇ + Fs sgn(q̇) + g(q). (6.2)

For a detailed description of the elements, the reader is reminded to Section 5.2 of

the previous Chapter. In the following, the time dependence of the control variables

will be omitted for the sake of simplicity (q = q(t) and q̇ = q̇(t)).

Given the robot manipulator model in (6.1)-(6.2), assume that q∗ and q̇∗ ∈ Rn

are the reference signals for the joint variables and their first time derivative,

specified a priori. It is assumed that the components of q∗ are bounded and q̇∗ is

Lipschitz continuous. The tracking errors are defined as

e1 = q∗ − q (6.3)

e2 = q̇∗ − q̇ (6.4)

so that e =
[
e1 ė1

]>
=
[
e1 e2

]>
. In the following, let ej =

[
e1j e2j

]>
be the

position error and the velocity error of joint j, j = 1, ..., n, with n number of joints

in the manipulator.

6.2 Self-configuring switched structure scheme

In this Section, the elements of the self-configuring scheme, represented in Figure

6.1 are briefly recalled and the DRL based switching block is introduced. In depth

discussion on the decentralized and centralized control schemes can be found in

Section 5.3 of the previous chapter.

6.2.1 Decentralized Control Scheme

Let us consider the robot as the composition of n linear and decouped SISO

systems. The system can be represented by

M(q)q̈m = τm − d , (6.5)

where

76

−
+

q∗, q̇∗
ISMc

e
B(q)

u2 +
−

SWrDRL
uσ q, q̇

n̂(q,q̇)

Observations xt

−
+

q∗, q̇∗
ISMd

e
u1

Figure 6.1: The proposed multi-loop switching ISM control scheme with a DRL based

switching rule

M(q) = Jm +K−1r B(q)K−1r

and

d = K−1r C(q, q̇)K−1r q̇m −K−1r FvK
−1
r q̇m −K−1r g(q)

with Jm ∈ Rn×n and Kr ∈ Rn×n being the motor inerita matrix and the gear ratios.

As can be noted, the larger are the reduction rations krj, the smaller the impact of

the disturbance term disturbance term d on the system. The control torque τ in

(6.1) can be then computed as

τ = KrM(q)Kru1 (6.6)

such that system (6.5) becomes

q̈ = u1 −K−1r M−1(q)d = u1 − η1 (6.7)

where η1 is an uncertainity that can be rejected by a control law u1 designed as an

ISM controller, in the form of

u1 = q̈∗ +KD1e2 +KP1e1 + u11 , (6.8)

with

u11(t) = −K11sgn (Σ(t)) , (6.9)

as discussed in Chapter 5, Section 5.4.

77

6.2.2 Centralized Control Scheme

Let us assume again to precisely estimate the inertia matrix B(q) and a quite

accurate estimation of n(q, q̇), such that n̂(q, q̇) 6= n(q, q̇). Moreover, let u2 be an

auxiliary control vector such that the control torque is selected as

τ = B(q)u2 + n̂(q, q̇) . (6.10)

Substituting (6.10) into model (6.1)-(6.2), one has

B(q)q̈ + n(q, q̇) = B(q)u2 + n̂(q, q̇) , (6.11)

which is a chain of n decoupled double integrator plants of the type

q̈ = u2 − η2 (6.12)

where the matched uncertain terms η2 are rejected by a control law u2 designed as

an ISM controller, in the form of

u2 = q̈∗ +KD2e2 +KP2e1 + u12 , (6.13)

with

u12(t) = −K12sgn (Σ(t)) , (6.14)

again as discussed in Chapter 5, Section 5.4.

6.2.3 DRL-based Switching Block

The decision to switch to the decentralized structure (Mode 1) or to the cen-

tralized one (Mode 2) is made by an agent trained with a Deep Reinforcement

Learning algorithm. Specifically, for this work, the Normalized Advantage Function

algorithm [18] was used for training, as it is suitable for continuous variables, both

observed and controlled, and does not require discretization. Once trained, the

deployed policy, given a set of observations xt at step t of the simulation, is able

to generate an action ut = σ with σ = 1, 2 for selecting either the decentralized

controller or the decentralized one, as summarized in Figure 6.2. The framework

used for training the agent will be detailed in the following Section 6.3.

78

Figure 6.2: Scheme of the DRL based Switching Block.

6.3 RL Framework for Self-Configuring Motion

Control

In this Section, the elements composing the reinforcement learning framework

used for training will be detailed. Given any trajectory in the joint space, the

learning process aims to find an optimal strategy for deciding which control structure

present in the scheme is most suitable for meeting the demands in terms of tracking

performances, while keeping into consideration that frequent variations of the

control structure may cause excessive stress on the mechanical system.

6.3.1 State space

The state space X is defined as

X , {e, ė, ë, η, τ} , (6.15)

where the elements are defined as follows:

• e ∈ R3, ė ∈ R3 and ë ∈ R3 are the joints position, velocity and accelerations

errors retrieved during the robot’s motion.

• η ∈ R3 are the value of the coupling effects on each joint, estimated by the

ISM controller.

• τ are the torques exerted by each joint.

Each element of the state space is sampled at any time t of a given episode,

having a finite duration T . Note that, although one could measure position and

velocity errors through the use of encoders, the acceleration error is, in this case,

79

computed numerically. This is done to feed the DRL framework with as much

information as possible, which was believed to facilitate the learning process.

6.3.2 Action space

The action space U is defined as

U , {σ} , (6.16)

The action, in this case, is only a flag that determines on which control structure

should be used at a given time instant; more specifically, the action equals 1 for

the decentralized structure and 2 for the centralized one.

6.3.3 Reward

Since the decision procedure must be transparent with respect to the motion

control problem that must be solved, in the sense that it should not have a negative

impact on the robot performances, the reward function is defined in a way that

encourages the least possible tracking error and a smooth transition between one

scheme to the other, depending on the status of the robot. In this case, the reward

is defined as:

r = −(c1rtorque + c2re + c3rė + c4rë + cost) (6.17)

where rtorque, re, rė and rë are computed as the Euclidean norm of the normalized

values of the torques, the position errors, the velocity errors and the acceleration

errors of each joint, respectively. The terms c1 = 50, c2 = 500, c3 = 1000 and

c4 = 100 are the weights associated to each component. The set of weights described

has been defined via repeated experiments. As a matter of fact, the experiments

showed that velocity errors are relatively more relevant than others for the overall

performance, and are thus weighted more. The cost parameter is representative

of the extra computational workload that the centralized scheme may entail, due

to the presence of the inverse dynamics described in Section 6.2.2. Clearly, such

cost may well depend on the specific application scenario considered; hence, the

values described here are just exemplificative. In other words, in the proposed

DRL framework, the computational cost is a parameter that can be adapted to

the specific case study. It is worth noting that given the negativity of the overall

80

Figure 6.3: Example of trajectory followed by the robot joints during a training episode.

In this case, q∗0 = [0, 0, π/2]>, q∗tm = [π/8, π/8, 0]> and tm = 2.5 s (i.e., half of the

simulation duration). The robot’s initial configuration is q0 = [π/15, 0, π/2]>.

function, the maximization of the reward function in terms of reinforcement learning

means, in this case, the minimization of the absolute value of the cumulative reward

per episode (i.e., we want the values of all terms to be as low as possible), steering

the function to zero.

6.4 Case study

In this section, the results obtained from training the switching block will be

illustrated. The experiments were carried out on the simulated model of a Comau

Smart-S2 identified on the basis of real data [57, 58] (Appendix A). During each

episode, the robot has to track a pick-and-place trajectory in the operative space

defined by a random Trapezoidal Velocity Profile (TVP), such as the one in Figure

6.3. Specifically, the TVP is such that, given a random initial position q∗0, a random

intermediate position q∗tm and a random time tm ∈ [0, Tf], with Tf = 5 s being the

total duration of each episode, the joint must reach q∗tm by time tm, after which the

joint reverts its motion, back to the initial position q∗0. Initial and intermediate

positions are sampled from a uniform distribution within the motion range of the

respective joints. The control structure selected at the initial time instant is chosen

randomly as well. The policy derived from a learning session is then validated using

a set of predefined trajectories characterized by different TVP profiles. Results

refer to a policy obtained after 500 episodes, each consisting of 100 steps of 0.05

s each. Notice that, although the framework elements are retrieved every 0.05,

the simulation runs with a timestep T = 5× 10−5 s. In Figure 6.4, a polynomial

interpolation of the cumulative rewards obtained for different cost parameters

(i.e., the penalty for using the computationally expensive centralized control) are

81

Figure 6.4: Polynomial interpolation of the cumulative rewards obtained when training

the agent using a cost parameter in the reward function equal to 0, 50, and 200.

reported; as it can be observed, all rewards present a growing trend, indicating

that the training is leading to an optimization of the selected reward. Due to

internal memory management, training times become infeasibly long after about

500 episodes. For this reason, it is stopped at this point. Control parameters are

the same as the ones employed in the threshold-based approach in Chapter 5.

6.4.1 System specifications

The experiments have been carried out in simulation using Simulink for MAT-

LAB. The NAF algorithm is implemented in TensorFlow and suitably interfaced

with a MATLAB 2017a script, controlling and sampling the Simulink model en-

capsulating the environment. The solver used for solving the model dynamics was

chosen as ode1. The training sessions have been carried out on a machine mounting

a 8x intel(R) Xeon(R) CPU E5-1620 v3 @ 3.50GHz with a 32GB RAM and a

NVIDIA Quadro k5000 GPU with 4GB DRAM.

6.4.2 Results

Considering the trajectory previously introduced in Figure 6.3, deploying the

policy obtained after training yelds to results reported in Figure 6.5.

As expected, when the cost parameter of the centralized scheme is set to zero,

the policy obtained through DRL at the end of a training session tends to that of a

82

fixed centralized approach, since such control scheme guarantees best performances

in terms of velocity and acceleration, thus reducing the impact of terms rė and

rë on the episodic reward. With increasing values of the cost parameter for the

centralized approach, the agent becomes more leaning towards a decentralized one,

thus entailing more switching actions, as reported in Figure 6.5. With all non-zero

values of the cost parameter, the actual amount of switching actions performed

by the DRL agent can be controlled by acting on the c1 in Eq. (6.17), since each

switch between the two structures inevitably causes a peak in the torques exerted

by the joints, as can be noted for example in Figure 6.6.

6.5 Conclusions

This Chapter presented preliminary results obtained for a DRL-enabled self-

configuring motion control scheme for robot manipulators, based on the switched

use of a decentralized control structure and a centralized inverse dynamics based

control. The rule relies on the policy obtained by training and agent through the

NAF algorithm for DRL. The proposal, which is then a combination of classical

control concepts and machine learning elements, allows one to extend the operative

velocity and acceleration range in which the robot manipulator can work. The

proposed approach has been tested on a model of an industrial Comau Smart3-S2

anthropomorphic robot manipulator identified on the basis of real data.

83

Figure 6.5: Policy on a validation trajectory, with cost parameters equal to 0, 50 and

200 (from top to bottom).

84

Figure 6.6: Torques exerted by the three joints during the execution of a validation

trajectory using the policy with cost = 200

85

Chapter 7

Conclusions

This Part of the Thesis dealt with the design of a self-configuring approach

for motion control of industrial manipulators. The considered robot is tasked to

follow different types of trajectories in the joint space. In typical applications,

whether to perform the control task using a decentralized approach or a centralized

one is one of the design choices that need to be made a-priori. Nevertheless, the

circumstances under which the robot operates may vary unexpectedly, resulting in

degraded performance, should the adopted control structure not successfully handle

them. To this end, a novel switched structure control system, implementing both

a decentralized control structure and a centralized one based on the computation

of the inverse dynamics of the robot, is proposed with a switching block that

enables any of the two control strategies. The logic behind the switch is arbitrary,

depending on the specific application, and for this work, the following approaches

were explored:

1. The switching block operates on the basis of the unmodelled dynamics affecting

the system at any given time, suitably estimated by the Integral Sliding Mode

controller.

2. The switching block implements a policy obtained after training an agent

through Deep Reinforcement Learning, intending to minimize tracking errors,

which selects at any given time the most suitable control structure depending

on the observed variables.

The first approach has been tested on a manipulator featuring Variable Gears

Actuators and an industrial manipulator Comau Smart3-S2 identified based on

87

real data. In both cases, tracking performances with the proposed approach are

satisfactory, and a decrease in the effects of unmodelled dynamics are observed

with respect to the stand-alone approaches. Finally, some preliminary results for

the DRL enabled switching block are briefly discussed applied to the model of the

Comau Smart3-S2, effectively showing that the agent can successfully learn to select

the strategy that guarantees higher tracking performances. Nevertheless, by adding

a measure of each control choice’s computational cost, the agent also learns to take

it into account when making decisions.

From a qualitative point of view, some considerations can be made about the

choice of the switching rule in cases such as the ones presented in the previous

chapter. Indeed, the capability of Deep Reinforcement Learning to obtain an

(ideally) optimal policy starting from observed data would reduce the amount

of hand-engineering dedicated to the selection of the suitable thresholds for the

switching metrics: although the considered case only includes two control approaches,

the proposal to switch among different controllers could well be extended to a higher

number of methodologies. In this case, it might be desirable to let the decision-

making process be handled by an ‘intelligent’ agent, suitably trained to select

the best approach. On the other hand, the amount of time and data required to

train such agents could, in some cases, overcome the advantages provided. Making

reference to the presented work, it was observed that sometimes the differences in

performance between the decentralized control scheme and the centralized one, over

certain trajectories, was not substantial enough to clearly select a controller over

the other: this could indeed lead to mixed results, as the agent is unable to classify

the different methodologies. Nevertheless, the idea could be worthy of investigation

for more sophisticated scenarios in future work.

For what concerns physical implementations of the presented framework, the

deployment of the DRL agent is not believed to entail any specific problems, since

it does not perform any end-to-end control that could lead to abrupt reactions.

Nevertheless, from a practical point of view, the estimation of the disturbance

requires filtering the discontinuous signal. Such a filter should be then carefully

designed in order to take into account the time to converge, without losing any

information on the perturbation shape provided by the high-frequency switching

typical of Sliding Mode Controllers.

88

Part III

Self-configuring approaches for

robot collision avoidance

89

Chapter 8

Motivation and state of the art

As anticipated in the Thesis introduction, since robots are required to perform

increasingly demanding tasks in different and complex environments, significant

focus is put in robotics research to ensure that such systems are able to move

and interact with the surroundings without endangering equipment and, most

importantly, humans [3]. For this reason, in the context of the so-called physical

Human-Robot Interaction (pHRI), or in the case of robots operating alone in

cluttered environments, obstacle detection and avoidance remains a core issue [61, 4].

A number of contributions document the interest in handling physical interaction

between the robots and the environment, and especially on collision avoidance.

Typically, collision avoidance methods consist of three parts: (i) perception of

the environment; (ii) collision avoidance algorithms; and (iii) robot control [62].

These parts and their outputs can be explicated in seven phases (pre-collision,

detection, isolation, identification, classification, reaction and post-collision) over

a collision avoidance pipeline as reported in the survey [63]. An approach based

on Artificial Potential Fields, introduced in [64], allows avoidance of obstacles in

the proximity by generating artificial force fields that are then transformed into

joint torques. This approach was later improved in [65, 66]. Another approach

based instead on kinetostatic safety fields for robot operation is introduced in

[67]. Real-time, adaptive motion planning is explored in [68, 69]. Again in [70],

a trajectory generation approach based on the data provided by depth sensors is

proposed in order to guarantee safety constraints. Many strategies then rely on

Optimal Control Problems (OCPs), such as [71, 72, 73]. It is worth highlighting

that, in order to implement potential fields methods, the dynamical model of the

91

manipulator often must be known or accurately estimated. In contrast, planning

methods require constant sampling and online planning of the trajectory in order

to find an obstacle free path. Both requirements might be hard to satisfy in the

presence of multiple moving obstacles or an unknown environment.

The main contribution illustrated in this Part of the Thesis is the introduction

of an alternative approach based on a Deep Reinforcement Learning framework to

perform end-to-end control for collision avoidance applied to industrial manipulators

[74]. Then, on the topic of self-configuring systems, the proposed end-to-end strategy

is applied in a hybrid control algorithm, which enables the robot to be controlled

by both conventional motion approaches and end-to-end, DRL based ones [75].

Furthermore, the proposed framework is deployed for a case study involving a

teleoperated cooperative robot (an UR5 by Universal Robot) and a case study with

an industrial manipulator (an Epson VT6 by Epson).

8.1 Structure

This Part of the Thesis is structured as follows.

• Chapter 9 introduces and discusses in detail the proposed DRL framework

for collision avoidance of robot manipulators. The elements of the framework

are described in detail, together with the setup used for the experiments.

Preliminary results on preliminary case studies are reported and commented

on.

• Chapter 10 introduces the concept of transfer learning and discusses its

effects on the considered scenarios in terms of its impact on the agent’s

performance and the possibility of reusing previous knowledge to obtain a

policy for more complex environments.

• Chapter 11 Chapter 3 discusses a novel hybrid approach for motion and

collision avoidance of industrial manipulators, which allows the robot to be

controlled by both conventional methods and end-to-end ones, conferring the

system a self-configuring capability.

• Chapter 12 illustrates the application of DRL for collision avoidance to a

teleoperated robot, which has to track a reference originated from a human op-

92

erator while avoiding obstacles present in its working space. The performance

of DRL is compared to that of an MPC with the same settings. Experimental

results are reported.

• Chapter 13 discusses the deployment and reproduction of a trained DRL

policy to an industrial manipulator. The interfacing between the components

is described, and preliminary experimental results are reported.

• Chapter 14 gathers some concluding remarks.

93

Chapter 9

Deep Reinforcement Learning for

Collision Avoidance

This Chapter presents the design of a real-time collision avoidance approach for

industrial manipulators exploiting machine learning techniques. Specifically, Deep

Reinforcement Learning (DRL) methods are applied to robots whose working space

is invaded by moving obstacles with unpredictable direction changes. Motivated

by the system’s complexity, featuring states and inputs defined in the continuous

space, the Normalized Advantage Function (NAF) [18] algorithm is used to train

the agent for end-to-end, model-free control. The proposal is assessed relying on the

virtualized model of an anthropomorphic robot manipulator, a Comau Smart3-S2,

interfaced with external tools for evaluation, control, and automatic training.

9.1 Problem definition

Let us consider a situation in which a robot manipulator is requested to operate

in a populated industrial environment, possibly invaded by obstacles. During the

motion, the robot could collide with other entities while reaching its target or

executing a specific task. Furthermore, assume that the objects move randomly so

that physical interaction between the environment and the robot can unexpectedly

happen. To this end, let us introduce a simplification of the robot model and the

definition for the collision avoidance control problem considered for this work; this

is useful in order to recast the problem formulation into the reinforcement learning

framework introduced in Chapter 3.

95

9.1.1 Robot model

Let us consider an industrial manipulator with an open kinematic chain, and

let q ∈ Rn be the joint variables related to the motor positions, with n being the

number of degrees of freedom. Given the end-effector’s pose vector xe =
[
pe ϕe

]>
,

with pe being the position, and ϕe the orientation in the operative space, the direct

kinematics [26] is indicated as

xe = k(q), (9.1)

with k(q) ∈ Rm, where m is the dimension of the operative space, being a nonlinear

function depending on the joint variables. Since, in practice, it is convenient to

provide joint position and/or velocity references to the internal control loops, the

dynamic model of the robot can be expressed as

q̈ = f(q, q̇) , (9.2)

where f : Rn ×Rn → Rn is a function of path coordinates and its time derivatives.

9.1.2 Collision avoidance problem

Let us now consider model (9.2) where q̇ is assumed to be the input action,

namely u in the following. Furthermore, the operative space strictly depends on the

manipulator’s geometry and the mechanical limits on the joints, so that input and

state constraints are of the form h(q, q̇) ≤ 0 with h : Rn × Rn → R`, and ` being

the number of constraints. Finally, let W(q(t)) ⊂ Rm be the space occupied by the

robot at the instant t, and O ⊂ Rm be the space occupied by the obstacles. Having

in mind to execute a possible industrial task (e.g., spot welding, pick and place,

or point-to-point motions), the goal is now to find a velocity control sequence q̇∗

over the horizon T , which makes the robot end-effector move from the initial state

xe0 to a target point x∗, (eventually following a predefined trajectory x?e), while

avoiding the obstacles O ⊂ Rm with minimum deviation from the target point and

applying minimum control action. Therefore, let us define a finite-horizon Collision

96

Avoidance Optimal Control Problem (CAOCP) as

min
u

∫ T

0

c1RT(xe(q), x
∗) + c2RA(u) dt

s.t. q̈ = f(q, q̇), q̇ = u, xe(q) = k(q)

h(q, q̇) ≤ 0

W(q(t)) ∩ O ≡ ∅

xe(0) = xe0

(9.3)

where RT(xe(q), x
∗) and RA(u) are suitably selected functions to account for the

tracking error (i.e., the current end-effector position and the desired target point x∗

in the operative space) and the system inputs (i.e., the joint velocities q̇). Moreover,

the constants c1 and c2 are suitably selected weights.

The key difficulty in solving (9.3) is given by the presence of the collision

avoidance constraints W(q(t)) ∩ O ≡ ∅, which are in general non-convex and

non-differentiable.

9.2 RL Framework for Collision Avoidance

Making reference to the scenario introduced in Section 9.1, and the CAOCP in

(9.3), let us recast the problem using the RL framework elements. Further, Let us

assume that the dynamical parameters of the considered industrial manipulator are

unknown, and are thus solely relying on observed information. In the same way, it

is not possible to predict the motion of external elements invading the workspace,

with the exception of the specific design parameters during the environment design

phase, which will be detailed in Section 9.4.

9.2.1 State Space

The state space X is defined as

X , {q, q̇, pe, p∗, po, ṗo} , (9.4)

where the elements are defined as follows:

• q ∈ R6 and q̇ ∈ R6 are the vectors of each joint position and velocity, expressed

in rad and rad/s, respectively.

97

• pe ∈ R3 is the robot’s end-effector position pe =
[
pex , pey , pez

]
, expressed in m.

• p∗ ∈ R3 is the target point’s position p∗ =
[
p∗x, p

∗
y, p
∗
z

]
, expressed in m.

• po ∈ R3 is the obstacle’s position po = [pox, poy, poz], expressed in m.

• ṗo ∈ R is the obstacle’s velocity in absolute value, expressed in m/s.

Each element of the state space is retrieved at each time t of the episode during

training. Note that, in a real case, there should be suitable vision sensors that

retrieve the full status of the environment at each step and then, after a series

of image processing operations, extract the relevant information for the training.

For instance, we assume to that the obstacle’s position in space is detected by a

perception system that allows for triangulation (e.g., stereo cameras). For the sake

of simplicity, let us bypass this step for the time being and assume to be instantly

provided with the relevant data about the scenario.

9.2.2 Action Space

The action space U is defined as

U , {q̇∗} , (9.5)

where q̇∗ ∈ R6 is the vector of angular velocity references for each joint. An

action issued at time t means that the robot must reach the requested angular

velocities in the following time step t+1, by applying the maximum torque available.

Tracking of the specified reference is handled by the integrated low-level velocity

controller of the manipulator. Near-perfect tracking performance can be assumed,

without loss of generality.

9.2.3 Reward Function

The reward function, as recalled in Chapter 3, is a scalar function used to define

the desired behavior that one wants to achieve by training the agent. Thus, at each

time instant t, it provides a feedback on “how well” the agent has performed given

the observed state and the performed actions. For the collision avoidance problem

introduced, the reward function is designed as

98

r = −(c1RT + c2RA + c3RO) (9.6)

so that it is the weighted sum of three terms, accounting for different aspects of

the training. Specifically:

1. The distance between the end-effector and the target point. The term RT is

computed using a Huber-Loss function and is defined as

RT = Lδ(d) =


1
2
d2 for |d| < δ

δ
(
|d| − 1

2
δ
)

otherwise
(9.7)

where d is the Euclidean distance between the tip and the target and δ is a

parameter that determines its smoothness.

2. The magnitude of the actions performed by the manipulator, also known as

regularization term, computed as

RA = ‖u‖2 = ‖q̇∗‖2 , (9.8)

which has the purpose of encouraging smaller control actions, i.e., minimize

the requested joint velocities.

3. The obstacle avoidance, computed as

RO =

(
dref

dO + dref

)p
(9.9)

where dO is the minimum distance between the robot’s structure and the

obstacle, dref is a constant parameter ensuring that 0 < RO < 1, and p is a

decay exponent. A limitation in (9.9), however, is that it penalizes to a lesser

relative extent collisions occurring at a greater distance from the target point.

To avoid this undesirable effect, RO is actually computed as follows

RO = max

(
kr
RT

c3
;

(
dref

dO + dref

)p)
(9.10)

where kr is a positive integer that ensures a minimum, fixed proportion

between RO and RT.

The relative weights of the three terms above can be tuned via the constant

parameters c1, c2, c3 .

99

In order to better visualize the behaviour of the considered reward function,

let us consider a planar cross section of the robot’s working space. Such plane is

parallel to the floor and at the same height of the target and the trajectory of the

obstacle. The target point placed in (0.5, 0.5) and the obstacle centered in (0.1, 0).

For the sake of simplicity, let us assume the robot is a point moving in the space

and considered only the RT and RO terms in (9.7) and (9.9), resperctively. As it

can be seen in Figure 9.1, the resulting function is concave with values ≤ 0, and

it reaches its maximum when the tip of the robot is placed on the target point;

moreover, the value diminishes as the robot moves in proximity of the obstacle.

Furthermore, Figure 9.2 shows the 3D graph of the RT and RO components in the

reward function in order to better show the behavior of the improved RO term

introduced in (9.10). As it can be observed, the reward component accounting for

collisions with the obstacle in the proximity of the target point is computed as (9.9),

with a penalty equal to 1. When collisions happen far from the target position, a

steeper variation of RT is used instead.

Given the negativity of the overall function, the maximization of the reward

function in terms of reinforcement learning means, in this case, the minimization

of the absolute value of the cumulative reward per episode (i.e., the values of all

terms need to be as low as possible), steering the function to zero.

Figure 9.1: 3D rendering of the reward function on the planar section of the considered

environment for target positions

100

Figure 9.2: The RT and RO components of the reward function computed on a planar

cross-section of the environment, where the target point is placed in (0, 0). The surface

in light gray corresponds to RT while the surface in cyan corresponds to krRT. The net

surface in blue corresponds to the maximal value of RO, i.e., in case of collision with the

obstacle, when c2 = 1; farther from the target, the relative proportion RO/RT is constant

and equal to kr.

101

9.2.4 Hyperparameters

Besides the hyperparameters needed to be set for the learning algorithms, the

training using the proposed framework also requires the following:

• c1, c2, c3: weights of the three reward function components.

• kr: coefficient on the obstacle avoidance component compared to RT .

• δ: discriminating parameter for the Huber-Loss function in (9.7).

• dref : default minimum distance between the obstacle and the body of the

manipulator.

• p: exponential decay of the avoidance term when the distance from the

obstacle increases.

9.3 Environment description and setup

The initial evaluation of the overall approach involving the application of the

NAF algorithm to obstacle avoidance in the simulated environment was performed

on the scenarios described in the following. The scenes predisposed for the training

process, illustrated in Figure 9.3, all present the following elements:

• Manipulator: the virtual replica of the Comau Smart3-S2. It is dynamic

and respondable with the external elements, and the motors are enabled in

Force/Torque mode, with external position control loops disabled in order to

allow joint velocity control.

• Target: the point in space the robot has to reach with its end-effector. It can

either be fixed or randomly placed at the beginning of each episode during

training.

• Production line: represented by a plane in front of the robot. The target

is placed inside its area. The plane is 2.25 m wide and 0.4 m long. The plane

is set at an height of 0.875 m, parallel to the floor. It is entirely contained in

the robot’s operative space, so that the target is always reachable.

102

Figure 9.3: V-Rep scene with the virtual Comau Smart3-S2, a spherical obstacle moving

along a linear path (red arrow) and target (black circle)

• Obstacle: represented by a sphere with ray 0.25 m that moves along a linear

path. It can either move regularly back and forward or change its direction

randomly, and it can also randomly stop. The shape is respondable, hence

collidable by the manipulator (i.e., the physics engine will handle the collision

reaction). The sphere moves at a velocity of 0.2 m/s.

• Path: the path where the obstacle moves. Its length is 2.25 m and is placed

between the target and the manipulator.

All experiments share the same arrangement of state space, action space, and

reward function, as well as the same hyperparameters discussed in Section 9.2,

summarized in Table 9.1. In the following, it is assumed that, apart from the

encoders fastened on the robot joints, a vision system is present to detect objects’

motions with respect to a given reference frame.

9.3.1 System specifications

The experiments have been carried out in simulation using the general purpose

robotics simulator V-Rep from Coppelia Robotics [76]. The NAF algorithm is

implemented in TensorFlow and suitably interfaced with the simulator encapsulating

103

Table 9.1: Hyperparameter values for the experiments

Parameters Value

number of time steps 360

time step 50 ms

c1 1000

c2 200

c3 60

δ 0.1

p 8

dref 0.2

kr 2

discount factor γ 0.99

update factor τ 0.001

learning rate η 0.001

noise type D Ornstein–Uhlenbeck

noise decay factor 0.01

noise scale 1

104

the environment via the PyRep [77] plugin. The dynamics of the environment are

handled by the ODE Physics engine running with a frequency of 200 Hz. The

training sessions have been carried out on a machine mounting a 8x intel(R) Xeon(R)

CPU E5-1620 v3 @ 3.50GHz with a 32GB RAM and a NVIDIA Quadro k5000

GPU with 4GB DRAM.

9.4 Case studies

In this section, the results obtained from the training of the industrial manipula-

tor will be illustrated. First, the description of the considered scenarios for training

is provided in detail. Then, the results concerning the application of the NAF

algorithm are presented and discussed. For all the experiments, the total reward

and the average loss function per episode were traced. Moreover, data relative to

the distance between the tip and the target, and the distance between obstacle and

manipulator, are collected to better show the behavior of the robot after training;

the results obtained from the trained agent refer to the values obtained over 550

episodes of 360 steps each, with a timestep duration of 50 ms.

Case 1: Fixed target, moving obstacle.

The position of the target point is the same in every episode, and the obstacle

moves from one end to the other of the linear path, at constant velocity. The target

position p∗ to be reached is placed at the center of the production line, at an initial

distance of 60 cm from the end-effector. Results regarding training and testing of

the last episode are reported in Figure 9.4.

Figure 9.4: Results for Case 1

105

Case 2: Fixed target, randomly moving obstacle.

The position of the target point is the same for every episode, and the obstacle

moves randomly along the path: the sphere can change direction at any time or

stop for an interval of time. The target position p∗ to be reached is placed at the

center of the production line, at an initial distance of 60 cm from the end-effector.

Results regarding training and testing of the last episode are reported in Figure 9.5.

Figure 9.5: Results for Case 2

Case 3: Random target, moving obstacle.

The position of the target point is randomly initialized at the beginning of every

episode, and the obstacle moves back and forth in a deterministic way. The position

p∗ of the target point to be reached is chosen with a uniform distribution spacing

the dimensions of the production line. Results regarding training and testing of the

last episode are reported in Figure 9.6.

Figure 9.6: Results for Case 3

106

Figure 9.7: Results for Case 4

Case 4: Random target, randomly moving obstacle.

The position of the target point is randomly initialized at the beginning of

every episode, and the obstacle moves randomly along the path. Results regarding

training and testing of the last episode are reported in Figure 9.7.

9.4.1 Results

As it can be observed in Figures 9.4 - 9.7, in all the experiments the overall

process does not present abrupt variations in the reward values and converges

within acceptable time limits (around 24 hours per run), on the hardware and

software configuration described above. This means that the agent has learned a

way to complete the task as defined by the reward function efficiently. This also

applies to the trend of the average loss function, which presents little variations and

steers towards zero towards the end of the exploration phase, meaning the training

process is effective. Furthermore, as the distance from the obstacle diminishes, the

robot adjusts its position with respect to the target, moving away further until the

obstacle is again at a safe distance. The distance between the tip and the target

point diminishes as the robot approaches the target and maintains its position

until the sphere becomes in close proximity to the body of the robot. Then, the

robot backs off from the target until the obstacle starts moving further away from

the manipulator. The same complementary behavior of the two distance graphs

has been obtained in both the experiments with the deterministic moving obstacle

and random moving obstacle (Figures 9.4 and 9.6), and in the scenarios with the

randomly moving obstacle (Figures 9.5 and 9.7). Quantitative results on both the

reward values of the different scenarios and the performance in terms of tracking

error are reported in Table 9.2. Values for the reward R are computed as the mean

107

R RMS(dt)

Case 1 −6.0566× 103 0.1217

Case 2 −8.9794× 103 0.1567

Case 3 −1.2454× 104 0.1766

Case 4 −1.3873× 104 0.1908

Table 9.2: Values for average converged reward function and tracking error.

of the reward function after convergence (i.e., after 300 episodes), while the tracking

error is computed as the root mean square values of the distance dt between the

end-effector and the target point p∗. Except for Case 1, in which all elements in the

scene maintain a deterministic behavior, values for other cases refer to the averaged

results of 30 simulations of the trained agent with different target positions and/or

obstacle movements. For the considered cases, no collision has occurred.

Remark. Seemingly high values of root mean square values of the distance

from the target are justified by the fact that, during the episode, the robot moves

away from the target every time the obstacles invade its operation space, thus

increasing the distance between the end-effector and the target position.

It is also noteworthy to monitor the behavior of the agent during the training

process. Making reference to Case 4, the training has been stopped every 10 episodes

(i.e., the checkpoint saving frequency) in order to test the policy obtained up to

that point. Both the RMS value of dt and the collision count (i.e., the number of

time steps at which the measured minimum distance do equals 0) are recorded and

averaged for 30 simulations of 360 steps each, randomly initialized. Results are

represented in Figure 9.8. It can be observed that both values decrease steadily

throughout the training process, coherently to what has been observed for the

cumulative reward function. Some screenshots of the simulations are reported in

Figure 9.10, where it can be seen that the robot moves away from the incoming

obstacle before placing its end-effector back in the proximity of the target point.

Random initial configuration

Training for Case 2 and 4 (i.e., those presenting the random motion of the

obstacle) have been additionally carried out introducing the random initialization

108

Figure 9.8: Evolution of performances in terms of tracking error (top) and collision

count during training. Values are averaged over 30 test simulation every 10 episodes.

of the robot’s configuration, contrary to previously described simulations in which

the robot starts every episode in home position (i.e., each joint initialized at 0 rad).

The initial joint position qi0 is initialized by sampling with a uniform distribution

over each joint’s motion range, in order to try and explore as many configurations

as possible.

Switching from a fixed initial configuration of the manipulator to a randomly

perturbed one produces mixed results. In Figure 9.9 the blue line refers to trainings

with fixed initial configuration, whereas red lines refer to randomly perturbed ones:

as it can be seen, the growing trend remains satisfactory but the achieved level of

effectiveness at convergence is not always superior to the former. In particular, for

Case 2 the reward function using the randomly initiated robot is consistently lower

throughout the training, with mean value at convergence equal to −1.244× 104;

for Case 4, perturbed configurations produce slightly better results at convergence,

with mean value at −1.9788 × 104 but the overall process seems less stable and

robust, with many negative peaks during the initial exploration phase. Nevertheless,

starting the training with a randomized robot configuration helps increasing the

109

Figure 9.9: Reward functions comparison for Case 2 and Case 4 using for trainings with

a fixed initial robot configuration and a randomized one.

generalization capabilities of the agent, exploring a higher variety of states.

9.5 Conclusions

In this Chapter, a Deep Reinforcement Learning approach has been proposed

to solve collision avoidance problems in robotics. More specifically, the advantage-

actor critic NAF algorithm has been used for training, due to its advantage of

being a model-free and especially suitable for complex systems with continuous

state and action spaces. The use of an ad hoc simulator has allowed to perform

110

Figure 9.10: Screenshots from the simulation of the obtained policy in V-Rep.

long training sessions and evaluate the performance of the learning process under

different conditions. Simulations performed on a realistic virtual environment show

the effectiveness of the proposed DRL-based collision avoidance approach, proving

that that the algorithm produces a successful learning process and is indeed suitable

for systems with higher degrees of complexity.

111

Chapter 10

Transfer Learning for DRL-Based

Collision Avoidance

The term transfer learning in Deep Reinforcement Learning refers to the possi-

bility of reusing previously acquired knowledge in a particular training scenario for

a different, possibly more complex, one. Making reference to the NAF algorithm

employed for training the agent in the case studies illustrated in this Part, one can

identify three different possibilities to perform transfer learning:

1. Model transfer: at the beginning of the training, the learned parameters θQ

of the action-value function Q̂, obtained at the end of a different training, are

loaded as initializers for the action-value function in the subsequent training

activity. Recalling Algorithm 2 in Chapter 3, this operation happens at the

beginning of the training (line 1).

2. Experience transfer: the set of quadruplets {xt, ut, rt, xt+1} collected during

a previous training are used as initializers for the replay buffer, which collects

all the samples produced by the training process throughout the episodes.

Recalling Algorithm 2, this operation happens before starting the first iteration

of the algorithm (line 3).

3. Model and experience transfer: both of the above procedures at the

same time.

Indeed, being able to use the information obtained by training an agent in a

simpler scenario as a base for facilitating training in scenarios with higher complexity

113

would be beneficial to expand the applications of such end-to-end methodologies.

In this Chapter, some considerations on this approach are made by comparing a

set of trainings performed under different conditions. Specifically, trainings with

transfer learning for the same scenario are compared with the results of the training

conducted ex-novo (i.e., with no pre-loaded initializers) in terms of cumulative

reward function and performance, measured with the RMS value of dt, as introduced

in the previous Chapter. Specifically, the percentage variation of both values is

computed as:

∆R% = 100× Rex−novo −Rtransfer

Rex−novo
(10.1)

where Rex−novo and Rtransfer refer to the mean values of the obtained cumulative

function after convergence, i.e., from episode 250 to 550, and

∆dt% = 100×
dtex−novo − dttransfer

dtex−novo
(10.2)

where again dtex−novo and dttransfer refer to the mean values of the averaged values

of RMS(dt) from episode 250 to 550. Note that, in this case, a positive variation

means that, on average, the policy obtains better results (i.e., a lower value of

RMS(dt) is measured, meaning that the end-effector tends to stay closer to the

target point).

10.1 Transfer learning for improved performances

Making reference to the case studies introduced in Section 9.4, in the following

subsections the effects of different types of transfer learning on the performance

of a training process, both in terms of cumulative reward and tracking precision,

are presented and discussed. To this end, let us consider a scenario involving the

obstacle moving with a fixed motion (specifically, Case 3) and the one involving,

instead, the randomly moving obstacle (Case 4). Indeed, Case 3 presents a more

predictable environment for the agent to train into, and it is of interest to show if

an agent able to avoid an obstacle moving in an expected manner can improve the

behavior of an agent that needs to ensure collision avoidance of obstacles moving

unpredictably. Results are discussed for all cases and summarised in Table 10.1.

114

Model Transfer

The parameters of the DNN Q̂(x, u|θPRED), approximating the Q-function, are

initialized as the ones obtained at the end of the training for Case 3, instead of

randomly, before training the agent to perform the task in Case 4. The resulting

reward function, in comparison with the one obtained with an ex-novo training, is

reported in Figure 10.2 together with the evolution of the reaching performance

and collision count.

As it can be observed, model transfer does not bring beneficial results, both in

terms of cumulative reward R, in which an average variation ∆R% of −276.28% at

convergence is obtained, and tracking error, where a variation ∆dt% of −106.36%

is obtained for the reaching. Such level of performance degradation is believed

to be caused by an overfitting of the DNN weights for a scenario in which the

observations about the obstacle position during an episode do not change throughout

the training, thus making it difficult to generalize for a randomly moving obstacle,

especially in cases where the interaction scenarios are rather basic. Nevertheless,

the problem might be overcome with scenarios with substantially different behavior

of the environment. Training times remain consistent.

Experience Transfer

The content of the Replay Buffer RB is initialized with the quadruplets obtained

at the end of the training for Case 3, instead it being empty, before training the

agent to perform the task in Case 4. The resulting reward function, in comparison

with the one obtained with an ex-novo training, is reported in Figure 10.3 together

with the evolution of the reaching performance and collision count.

As opposed to what was achieved with model transfer, it can be observed that

the learning process using experience transfer improves its performances, obtaining

higher cumulative reward per episode with an average ∆R% value increased by

37.81% at convergence, and faster learning of the reaching task, that presents

a 13.32% improvement ∆dt% on the average values. Differently from the results

of model transfer, the content of the Replay Buffer does not generate overfitting

problems in terms of DNN parameter, instead constituting a starting dataset of

observations that are then used during the learning process. Training time doubles

115

due to the increased size of the Replay Buffer that entails higher computational

costs. Nevertheless, satisfactory performances can be achieved in fewer episodes

when using experience transfer, thus reducing the need for extended training time.

Model and Experience Transfer

Both the content of the Replay Buffer RB and the parameters of the DNN

Q̂(x, u|θPRED) are initialized with those retrieved from the training of Case 3. The

resulting reward function, in comparison with the one obtained with an ex-novo

training, is reported in Figure 10.4 together with the evolution of the reaching

performance and collision count.

Using both model transfer and experience transfer brings a variation ∆R% of

−12.69% and a variation ∆dt% of −26.46%. Given the slightly degraded results and

double training times, due to the initialization of the Replay Buffer, this method

has been discarded in all the following experiments.

Table 10.1: Values of average cumulative reward and average RMS of the target distance

for different types of training. Variations with respect to the ex-novo training are computed

according to (10.1) and (10.2).

Training R RMS(dt)

Ex-novo −1.387× 104 0.1659

Model Transfer −5.22× 104 0.3424

∆R% -276.28% ∆dt% -106.36%

Experience Transfer −8.627× 103 0.143

∆R% 37.81% ∆dt% 13.32%

Both −1.5635× 104 0.2098

∆R% -12.69% ∆dt% -26.46%

10.2 Transfer learning for scalability

The following subsections illustrate the use of transfer learning for training the

agent to accomplish tasks in scenarios featuring environment behavior that was

never explored in previous training. It is observed that reusing the knowledge

116

Figure 10.1: V-Rep scenarios for experiments on transfer learning. The black line in

Case 5 represents the movement of the target. The red planes in Case 6 and case 7

represent the area in which the obstacle moves randomly.

acquired to complete simpler tasks facilitates and improves the learning of more

complex, new tasks. Comparison is made in terms of cumulative reward functions

over episodes between model transfer, experience transfer, and ex-novo training

of the agent. Three case studies are introduced, represented in Figure 10.1, and

detailed in the following. Again, average reward values for comparison are computed

at convergence, i.e., between episode 250 and episode 550. Results are summarized

in Table 10.2.

Case 5: Linear moving obstacle, moving target

Transfer learning is performed from Case 3 (random target, random 1D obstacle

movement) to a scenario in which the target is moving at a fixed speed of 0.15

m/s along a linear path (i.e., as if it was positioned on a conveyor belt), while the

obstacle moves randomly along a linear path (moving target, 1D movement). The

evolution of the cumulative reward functions is reported in Figure 10.5.

Experience transfer is beneficial and produces a 29.35% improvement, while

model transfer is apparently not beneficial at all, as it degrades the performances

by 127.09%.

Case 6: Planar moving obstacle, random target

Transfer learning is performed from Case 2 (fixed target, random 1D obstacle

movement) to a scenario in which the target is kept fixed in a randomly initiated

position, but the obstacle now moves in two directions, on the same plane where

the target is placed (random target, 2D movement). The area in which the obstacle

117

Table 10.2: Effects of transfer learning on cumulative reward functions in case of

increased complexity in scenarios.

Scenario Ex-novo Model Experience

Case 5 −1.24× 104 −2.83× 104 −8.85× 103

∆R% −127.09% 29.35%

Case 6 −2.52× 104 −1.65× 104 −9.05× 103

∆R% 34.56% 64.13%

Case 7 −3.95× 104 −5.05× 104 −1.184× 104

∆R% −27.691% 70.054%

moves is 1.3 m wide and 0.75 m long, overlapping the production line. The evolution

of the cumulative reward functions is reported in Figure 10.6.

Differently from what was observed so far, both transfer learning modes are

beneficial with respect to ex-novo training; experience transfer is substantially

more effective since it yields an improvement (∆R%) of 64.13%, versus the 34.56%

improvement achieved with model transfer.

Case 7: Spatial moving obstacle, fixed target

Transfer learning is performed from Case 2 (fixed target, random 1D obstacle

movement) to a scenario in which the target is kept fixed in a randomly initiated

position, but the obstacle moves in three directions, on the same plane where the

target is fixed (random target, 3D movement). The evolution of the cumulative

reward functions is reported in Figure 10.7.

Similarly to Case 5, again, experience transfer learning results in higher reward

values at convergence, while model transfer degrades performance; experience

transfer yields an improvement (∆R%) of 70.054%, while model transfer brings to

a degradation of 27.691%.

118

Figure 10.2: Comparison of reward functions, reaching performance, and collision count

over episodes between ex-novo training and model transfer training.

119

Figure 10.3: Comparison of reward functions, reaching performance, and collision count

over episodes between ex-novo training and experience transfer training.

120

Figure 10.4: Comparison of reward functions, reaching performance, and collision count

over episodes between ex-novo training and both types of transfer training.

121

Figure 10.5: Comparison of reward functions between different types of training for

Case 5

Figure 10.6: Comparison of reward functions between different types of training for

Case 6

Figure 10.7: Comparison of reward functions between different types of training for

Case 7

122

Chapter 11

Self-configuring Motion Planning

and Obstacle Avoidance

After having introduced the Deep Reinforcement Learning framework for achiev-

ing full-body collision avoidance of robot manipulators (Chapter 9), as well as the

possible ways to facilitate the training through transfer learning (Chapter 10), the

goal of the present Chapter is to present a hybrid dual-mode architecture, which

enables the combined use of motion planning and end-to-end control strategies.

Indeed, it has been observed with the training sessions that, given enough episodes,

the agent is able to find a policy that accomplishes the dual task of (i) reaching

a point in space and (ii) avoiding an obstacle invading the robot’s workspace.

Nevertheless, although the avoidance procedure seems to produce very satisfactory

results, the performance of the target reaching task is suboptimal with respect to

conventional control methodologies, especially when the robot has to maintain its

position for prolonged time: even with good performance indexes, the behavior of

the robot is constantly influenced by the surrounding environment, resulting in

a ‘jittering’ of the end-effector and overall unsteady motion. With the proposed

methodology, the intention is to reduce the level of uncertainties that come with

end-to-end approaches. To this end, a conventional motion planning algorithm is

used to compute the reference trajectory to move the end-effector on the desired

target point, without the burden of taking obstacles into account. On the other

hand, using a policy obtained through DRL to perform the obstacle avoidance

removes the need for model-based approaches to ensure that the robot’s body does

not collide with obstacles, which are hard to hand-engineer. This is convenient

123

Algorithm 3 Hybrid motion planning and obstacle avoidance algorithm

Input: threshold ε, current joint positions q, target pose x∗

Output: a collision-free motion reference for (9.2)

1: repeat

2: compute xe as xe = k(q)

3: compute the metric m(do)

4: if m(do) < ε then

5: use DRL and pose q̇∗ = ut, as in (9.5)

6: else

7: let xe0 = xe

8: use SBL starting from the initial condition xe0 to the final pose x∗

9: let (q∗, q̇∗) = (q∗, q̇∗)�

10: end

11: until xe 6= x∗

12: return (q∗, q̇∗) (SBL) or q̇∗ (DRL)

when obstacles are not known a-priori or we do not have an accurate knowledge of

the system’s dynamics. The use of either approach is determined by a given metric,

which is evaluated at each time step and defines the condition of the switch.

11.1 Hybrid Dual-Mode Strategy

Let us consider the scenario initially introduced in Chapter 9, in which the

robot (i.e., the Comau Smart3-S2) coexists with an obstacle invading its operative

space. The main objective of the proposed strategy, presented in this section and

summarized in Algorithm 3, aims to perform the following motion tasks:

T1) to reach a pre-specified target;

T2) to avoid unexpected obstacles invading the workspace.

To do so, starting from an initial configuration, the motion planner finds a

trajectory that connects the initial pose xe0 of the end-effector with the pose of the

target point x∗. During the execution of the motion solved by the motion planner, if

the metric chosen to evaluate the risk of collision with the obstacles, namely m(do),

is below a fixed threshold ε, suitably selected by the designer for the sake of safety,

124

the system hands over the control to an appropriately selected DRL policy. Once

this condition is no longer satisfied, i.e., the obstacles, which can have different

shape and behavior, are considered at a safe distance, the motion planner is once

again initialized with a starting point as the current end-effector’s pose xe. In this

case, the obvious choice of the switching metric adopted is the measured minimum

distance between the robot and the obstacle. In case of multiple obstacles, the

minimum among all of the measured distances is selected. Furthermore, a short

time transient is imposed between one switch and another to prevent high-frequency

switching.

11.2 Motion Planning

Let us concentrate on a general tracking problem in which we assume that the

robot moves in the free-motion operative space. The goal is to track a smooth

reference trajectory x∗e, starting from xe0 towards the target point at x∗. Relying

on classical approaches, such as those in [26] and as recalled in Section 2.4, motion

planning constitutes a crucial aspect, and, in order to find a collision-free trajectory,

it can be performed in two ways: (i) in the configuration space, by defining motion

independently for each joint from an initial configuration q0 to a final one q∗ or

(ii) in the operative space, by determining x∗e. Although planning trajectories in

the joint space is simpler and computationally lighter, planning trajectories in

the operative space provides a more natural task description and obstacles can be

accounted in the design phase of the path. Nevertheless, if a collision can occur or

the environment is especially cluttered, it entails high computational costs due to

the online calculation of the inverse kinematics to take into account the obstacles

position.

In the hybrid approach, motion planning from the initial pose of the end-effector

to the target point in the operational space is done accordingly to the Single-

Query Bi-Directional Probabilistic Roadmap Planner with Lazy Collision Checking

(SBL) algorithm [78], i.e., a sample based planning algorithm that relies on the

construction of explorable trees in the configuration space. SBL is computationally

light and is prone to find the shortest path [79]. Making reference to the selected

case study, let us assume that the obstacle is randomly placed in the space where

125

the desired target to be reached also lies, and does not move (i.e., it is a static

obstacle): in Figure 11.1, the computational time of the planning algorithm [78]

is measured for cases in which the obstacle presence for trajectory generation is

considered and cases where it is not. The time is computed as the average of 100

simulations with random obstacle and target positions, returning 0.424 s and 0.008

s, respectively.

Figure 11.1: Comparison of computational times of the motion planning algorithm with

and without an obstacle placed in the operative space

As expected, significant improvements in computational times are achieved if the

presence of obstacles is not considered. For this reason, in the proposed approach,

the SBL path (q∗, q̇∗)� is computed without accounting for the presence of obstacles

in the operative space, significantly speeding up calculations and reducing cases

where the planner does not find a feasible trajectory. The rationale behind this

choice is that any interference of obstacles with the robot’s motion would be handled

directly by the end-to-end control strategy from the policy trained with DRL, thus

removing the need to take the presence of obstacles into account a-priori. For the

sake of simplicity and without loss of generality, it is assumed from here on that

local joints controllers are capable to perfectly track the desired joint path, namely

q∗, as well as its derivative q̇∗(t), that is q(t) = q∗(t) and q̇(t) = q̇∗(t), ∀ t ≥ 0.

Remark. Note that we assume that the internal control is ideal. However,

since the proposed learning approach is exclusively based on data from sensors,

independently of the inner control law, a certain degree of robustness is guaranteed

in case of reasonable control errors.

126

11.3 End-to-end control

Collision avoidance is performed using the policy obtained by a suitably trained

agent. The framework used for training the agent is the one illustrated in the

previous Chapters 9 and 10. Hence, at each step, given the observed variables xt as

in (9.4), the policy produces the target velocities q̇∗ for each joint in the next time

step as actions ut, according to (9.5), thus performing end-to-end control at the

joints from the observed variables.

11.4 Case studies

The robot must complete task T1, with random initial conditions. Throughout

its operation, the robot must perform also task T2, with randomly moving obstacles,

with different shapes and behavior. Applications of the algorithm have been

performed on the following scenarios:

A. Single obstacle, planar motion.

B. Single obstacle, spatial motion.

C. Multiple obstacles of different shape, planar motion.

The metric adopted for switching between the policy and planning with SBL is

chosen as m = min{doi}, with threshold ε = 0.16 chosen heuristically.

The proposed approach is validated by testing 500 different target positions,

spanning the workspace of interest, with random initial robot configuration and

random initial obstacle position. This procedure is repeated 30 times, and an

average of the selected performance indexes is computed. More specifically, the two

performance indexes consist of

• the failure rate if computed as the percentage of timesteps over an episode in

which the distance do between an obstacle and the robot is measured equal

to zero (that is, a collision event occurs), i.e.,

if = 100×
∑
n.ofcollisions

T
(11.1)

where T is the number of timesteps in an episode.

127

• the reaching performance it in order to measure the precision of the executed

tracking task, computed as

it = RMS(dt) (11.2)

11.4.1 System specifications

Experiments have been carried out in V-Rep [76], interfaced with TensorFlow,

through the PyRep plugin [77]. The dynamics of the manipulator are handled by

the ODE Physics engine running with a frequency of 200 Hz. The motion planning

is handled by the Reflexxes Type II motion library, integrated within the simulator.

Minimum distances measurements doi, i ∈ N indicating the i-th obstacle, are also

provided by the embedded calculation module of V-Rep. The simulation time step

is equal to 50 ms.

11.4.2 Results

In the following, results from each case study are reported and discussed.

A video showing the simulations of the hybrid approach is at the link: http:

//bit.ly/CH11_HYBRID.

Case A: Single obstacle, planar motion

Assuming a scenario in which a target is randomly placed, and the obstacle

moves planarly, the selected policy to be deployed in the algorithm is the one

achieved after performing experience transfer for Case 6, in Section 10.2. A graphic

rendering of the indexes is reported in Figure 11.2 for both (a) full end-to-end

approach (i.e., both reaching and avoidance are performed entirely using the DRL

policy) and (b) the proposed hybrid strategy. In case of full end-to-end control,

an overall average of 0.36% for the failure rate if is obtained, while as for it the

average is 0.16 m. With the hybrid self-configuring approach, instead, it can be

observed that the average failure rate if is 0.24%, while the average of it is 0.093 m,

showing improvements with respect to the end-to-end approach.

128

http://bit.ly/CH11_HYBRID
http://bit.ly/CH11_HYBRID

(a) end-to-end approach

(b) hybrid approach

Figure 11.2: Indexes averaged for 30 simulations per target position of the trained

policy with (a) end-to-end approach and (b) proposed hybrid approach for Case A

Case B: Single obstacle, spatial motion

The target is randomly placed, and the obstacle moves in three directions

(spatially) within the robot’s workspace. The selected policy to be deployed in

the algorithm is the one achieved after performing experience transfer for Case

7, in Section 10.2. Again, performance improves with respect to the end-to-end

approach, which fares average values if = 0.28% and it = 0.149 m, while using

the proposed approach presents average values if = 0.31% and it = 0.091 m,

significantly improving the reaching precision while maintaining comparable values

of collision avoidance.

Case C: Multiple obstacles, planar motion

The target is randomly placed, and two obstacles moving planarly at different

heights are present in the robot’s working space. The policy used for the end-to-end

control has been obtained by training an agent ex-novo: because the state space

has changed to accommodate a second obstacle, it has not been possible to reuse

previously acquired knowledge. The possibility to enable transfer learning through

129

(a) end-to-end approach

(b) hybrid approach

Figure 11.3: Indexes averaged for 30 simulations per target position of the trained

policy with (a) end-to-end approach and (b) proposed hybrid approach for Case B

different frameworks in this context will be the subject of future work. When

using the end-to-end approach, performance indexes if = 1.13% and it = 0.42 m

are obtained, compared with the hybrid approach that results in if = 1.35% and

it = 0.16 m, showing significant improvements in terms of tracking, and again

maintaining comparable results in terms of obstacle avoidance. This is believed

to be due to the robot being less influenced by the obstacles’ motion during the

reaching phase, when the motion planner is activated, possibly causing occasional

contacts before the system is able to switch control approach. Indeed, values for the

safety threshold ε can be tuned accordingly to different cases, while in the presented

cases, it was kept fixed for the sake of convenience. Nevertheless, the results are

deemed satisfactory.

As an example, in Figure 11.5, the distance between the end-effector and the

target point and distances between the robot and two obstacles are reported in case

of genuine end-to-end DRL (a) and the proposal (b). As expected, when the adopted

metric is below the threshold, the DRL policy is used; otherwise, the motion is

solved by the SBL planner. As expected, differently from the end-to-end method,

the hybrid approach ensures more stable movements during the reaching phase,

130

(a) end-to-end approach

(b) hybrid approach

Figure 11.4: Indexes averaged for 30 simulations per target position of the trained

policy with (a) end-to-end approach and (b) proposed hybrid approach for Case C

Figure 11.5: Distance from target d, distance from obstacles doi, i = 1, 2, and threshold

ε, in case of end-to-end strategy (a), and of hybrid approach (b), with DRL used when

m = mini{doi} < ε)

131

maintaining the position of the end-effector precisely on the target and removing

the ‘jittering’ effect that is present while maintaining position with end-to-end

control.

Example application: spot welding

Finally, in order to show a possible application of the proposal in an industrial

setting, the hybrid self-configuring algorithm has been tested on a spot welding

task (Figure 11.6), in which the robot must follow a target gradually moving on a

circular path (i.e., it advances by a portion of the path once the robot’s end-effector

has reached it), and avoid collisions with two different obstacles of different shapes

and behavior. Specifically, in Figure 11.7, the black line shows the motion of the

robot’s end-effector, while the red and blue plots reproduce the obstacles’ activity.

11.4.3 Comparison with a model-based approach

The proposed hybrid algorithm has also been tested using the model-based

Artificial Potential Fields (APF) approach in [64] for collision avoidance. Figure

11.8 shows that indeed, for the same scenario, both the DRL policy and the APF

algorithm perform successful avoidance. Nevertheless, it is worth noticing that, while

the model-based approach requires the knowledge of the dynamical model of the

manipulator and intensive computation to perform the torque compensation derived

from the artificial potential field, the proposal has the significant advantage of being

model-free and virtually instantaneous output from the DRL strategy. Indeed,

apart from the off-line training phase, it can be deployed in real-time, requiring only

the available sensor measurements from the robot and the surrounding environment

while providing velocity references to the robot joints, thus performing higher-level

control with respect to joint torques.

11.5 Conclusions

In this Chapter, a dual-mode, hybrid control algorithm was proposed for robot

manipulators to perform different tasks while avoiding collisions. The novel approach

consists of a collision-unaware motion planner and a DRL policy trained to avoid

obstacles by directly controlling the joint velocities. The most suitable operation

132

Figure 11.6: Virtual environment for the welding task

Figure 11.7: Hybrid approach deployed to perform a spot-welding task

133

(a) model-based strategy

(b) DRL-based strategy

Figure 11.8: Distance from target d, distance from obstacles doi, i = 1, 2, in case of (a)

a model-based strategy (Artificial Potential Fields), and (b) a DRL-based strategy

mode is determined by a given metric, which confers to the whole system a self-

configuring capability. The aim of this approach is to exploit the advantages of

classical motion planning algorithms and those of end-to-end control based on DRL,

thus limiting both the necessity of hand-engineering control algorithms and the risk

of unexpected behaviors when using a trained policy. This concept could be indeed

extended to solve different problems, where instead of relying entirely on end-to-end

or model-based control, different modules implementing the most suitable approach

can be assembled together.

134

Chapter 12

DRL for Teleoperated Robots

Robotic teleoperation [80, 81] constitutes an interaction paradigm between a

human operator and a robot, with many potential applications [82, 83, 84]. The

use of machine learning for the teleoperation of robot manipulators has been mainly

focusing on imitation learning [85, 86, 87]. Deep Reinforcement Learning and

teleoperation were combined in [88], in which complex dexterous manipulation

tasks were learned by a robot manipulator by using human demonstration to

accelerate the convergence rate of a DRL algorithm. In [89], an open-source

framework is proposed for the control of robot manipulators based on state-of-

the-art distributed reinforcement learning algorithms: among other features, the

framework allowed the use of 3D motion devices to teleoperate the manipulators

and collect human demonstrations. Furthermore, [90] proposed a DRL-based non-

prehensile rearrangement strategy for rearranging objects on a tabletop surface,

including obstacle avoidance.

This Chapter focuses on the application of the proposed DRL framework for

end-to-end control of a teleoperated robot manipulator, in order to automatically

avoid collisions with obstacles in the robot’s operative space. The approach is

compared with a model predictive control (MPC) approach proposed in [91], to

solve the same problem. Results show (based on simulation and experimental data)

that the DRL based end-to-end approach can provide faster computation times,

together with improved performance.

135

Figure 12.1: The experimental setup used in the case study, made of UR5 manipulator

and obstacles

12.1 Problem definition

Let us consider a robot manipulator tasked with tracking, with its end-effector,

a reference position generated online by an operator; while doing so, the robot

has to avoid collisions with obstacles present in its operative space. Differently to

what was proposed in the previous Chapters of this Part of the thesis, the reference

provided to the robot is not fixed or pre-determined, but instead generated at

run-time.

The operator’s hand motion is converted to a suitable reference signal p∗ for

the robot via a custom-made 7-DOF human arm motion tracker system [92].

12.2 DRL Framework

For the proposed problem, some changes are applied to the previously introduced

framework. The state space is defined as

X , {q, pe, p∗, po} . (12.1)

Differently to (9.4), the robot’s joint velocities are no longer observed variables, as

well as the obstacle’s velocity. This is done to facilitate end-to-end control on the

real robot, bypassing the problem of noisy velocity measurements. Again, the robot

136

is controlled by providing joint velocity references, so the action space remains

U , {q̇∗} .

The reward function also is unchanged from the previously introduced framework

in Eq. (9.6), here recalled for the sake of convenience:

r = −(c1RT + c2RA + c3RO) .

The agent is trained using the NAF algorithm introduced in [18] and recalled in

Algorithm 2. The hyperparameters used during the training phase are summarized

in Table 12.1.

Table 12.1: DRL hyperparameter values

Parameters Value

number of time steps 360

time step 50 ms

c1 1000

c2 200

c3 60

δT 0.1

g 8

δO 0.1

discount factor γ 0.99

update factor τ 0.001

learning rate 0.001

noise type N Ornstein–Uhlenbeck

noise decay factor 0.01

noise scale 1

12.2.1 System specifications

The training of the DRL agent is performed in simulation by interfacing the NAF

algorithm, implemented in TensorFlow, with the V-Rep simulator encapsulating

137

Figure 12.2: Virtualization of the experimental setup in V-Rep. The red box represents

the obstacle placed on the table, while the green dot is a visual rendering of the moving

point to be tracked. The white squares on the table only serve as a reference for the

starting and finishing positions

the environment (Figure 12.2), via the PyRep [77] plugin. Synchronous simulations

are run with a sampling interval ts = 50. The dynamics of the simulation hare

handled by the ODE physics engine running at a frequency of 200 Hz.

12.3 Case study

The considered scenario, represented in Figure 12.1, involves a UR5 6-axis robot

manipulator, positioned on a table, that must track the provided trajectory. During

operation, the robot must avoid collisions with a box placed on a table and the

table itself. The trajectories used for training are sampled from the training set

(consisting of a total of 447500 data points) at the beginning of each episode. The

recorded motions consist of movements of the arm from left to right and vice-versa,

while varying the height of the hand. Before starting, the reference idles for 5 s in

order to allow the robot to reach the selected starting point of the randomly chosen

trajectory segment. After each episode, both the trajectory and its starting point

are reset, and the robot is re-initialized in its home configuration. The values of the

reference position is such that p∗ ∈ [−0.57,+0.53]× [−0.15,+0.60]× [−0.23,+0.72]

m, with respect to the robot’s reference frame O − xyz. Note that all trajectories,

138

Figure 12.3: DRL reward curve for the UR5 case study

generated for either training or testing, are such that, if the robot had to perfectly

follow the provided end-effector reference, a collision with the obstacles would

happen at a certain point in time. It is important to notice that, although the

trajectories are pre-recorded and rolled out during the execution, this is transparent

to the agent, which only receives instantaneous observations from the environment.

This way, since the trajectories are obtained through the actual motion sensor, it

is possible to simulate the presence of a human operator generation the target’s

motion during training, so that the teleoperation nature of the problem is not lost.

The training has been executed for 700 episodes. The corresponding learning

curve is reported in Figure 12.3, in which the total reward appears to converge to

an average value of about R = −104.

12.3.1 Results

After completing the training phase, the DRL algorithm was validated in

simulation on a test set consisting of 500 new reference trajectories, spanning the

same range of values used during training, each of them with a total duration of 40

s (i.e., 800 steps). The performance index used for evaluating the performance of

the proposed approach is the episodic cumulative reward, i.e.,

Rn ,
n∑
k=0

rt+k+1 −ROt+k+1
(12.2)

139

the sum of the computed reward function at each step without accounting for the

obstacle component, considering a sequence of n steps. As a result, an average

value of Rn = −1.69× 104 was obtained, with a standard deviation of 2.70× 103.

Furthermore, no collisions were observed between the robot and the obstacles for

this test set. In order to compare these results with those represented in the training

curve, the same metrics have been evaluated in the first 18 s of the simulations

in the test set, obtaining an average value of Rn = −8.26× 103, with a standard

deviation of 1.10 × 103. The result is in line with the final value of Rn = −104

shown in the learning curve, considering the exclusion of RO.

12.4 MPC as an alternative approach

This section summarizes a variation of the MPC approach described in [91] for

comparing with the RL framework of Section 12.2. A finite-horizon optimal control

problem (FHOCP) is solved online to directly determine a different deterministic

policy µ̂(x|θMPC), where θMPC is the set of tuning parameters of the MPC controller

that will be detailed in the following. At any given time instant t, the reward

function is defined as

r̂(xt, ut) , −c1R̂T − c2RA, (12.3)

in which R̂T is a purely quadratic function (needed to be able to efficiently determine

µ̂(x|θMPC) online), defined as R̂T , 1
2
d2. Notice that the penalty for obstacle

collisions is not inserted in the reward function; an explicit constraint on obstacle

avoidance is instead directly inserted in the FHOCP. The cumulative reward for

MPC is thus defined as

R̂t ,
N∑
k=0

r̂t+k+1|t, (12.4)

where N ∈ R>0 is the so-called prediction horizon, while r̂t+k+1|t is the forecast

of r̂ at time t + k + 1, predicted at time t. The FHOCP aims at determining

the optimal realization of the control sequence ut , {ut|t, ut+1|t, . . . , ut+N−1|t},
namely u∗t , based on a prediction of the evolution of the obstacle configuration Ot ,{
Ot+1|t,Ot+2|t, . . . ,Ot+N |t

}
and of the reference p∗t ,

{
p∗t+1|t, p

∗
t+2|t, . . . , p

∗
t+N |t

}
from

the human operator, both predefined at time t. On the other hand, the prediction

of the robot configuration, namely qt ,
{
qt|t, qt+1|t, . . . , qt+N |t

}
, is determined by

140

the predicted realization of the control sequence. The FHOCP formulation is then

as follows:

u∗t = argmax
qt,Ot,p∗t ,ut

R̂t(qt, p
∗
t , ut) (12.5a)

s.t. qt|t = qt (12.5b)

qt+k+1|t = qt+k|t + tsut+k|t, k = 0, . . . , N − 1, (12.5c)

d̂O(qt+k|t,Ot+k|t) ≥ 0, k = 1, . . . , N, (12.5d)

where (12.5b) imposes that the sequence of predicted joint variables qt+k|t starts from

the currently measured value qt, (12.5c) determines a simplified system dynamics (by

assuming that the desired joint velocity, instead of the actual joint velocity, directly

influences the joint position) where ts is the sampling interval, and (12.5d) imposes

obstacle avoidance. More specifically, d̂O(q,O) represents a conservative estimate

of the distance between robot and obstacles O based on an over-approximation of

their space occupancy. Indeed, contrary to the calculation of the distance dO used

in DRL, which can be done through a simulator, an explicit formula is needed to

insert this distance inside the FHOCP. As an example, a number of test points

can be defined on the robot frame and on the obstacles, each of them being at

the center of a sphere with given radius; if the union of the spheres on the robot

includes the whole robot frame, and analogously for the obstacle, then condition

(12.5d) can be imposed by requesting that all distances between each test point on

the robot and each test point on the obstacle are greater or equal than the sum of

the corresponding sphere radii, as detailed in [91].

Once the FHOCP (12.5a)-(12.5d) is solved at time t, only the first element of

the control sequence determines the MPC policy µ̂(x|θMPC) = u∗t|t, and the FHOCP

is then solved at time t + 1, after new measurements are available. The set of

MPC parameters θMPC includes c1 and c2, the parameters of the method used to

formulate (12.5d), and those of the method used to predict future obstacle and

reference positions.

The MPC controller is designed using the same parameters c1 and c2 as in Table

12.1, and a prediction horizon N = 20, corresponding to a total prediction time of

1 s. The prediction of the end-effector position reference p∗ is obtained by linearly

extrapolating the current value of p∗ based on an estimate of its current speed ṗ∗, as

141

in [91]. Also, the avoidance of box and table is obtained similarly to the description

provided in Section 12.4, by defining 7 test points on the manipulator, and the same

number of spheres that cover the whole robot frame. The space occupied by the box

is covered by an ellipsoid, and the condition for imposing absence of intersections

between the spheres on the robot and the ellipsoid is imposed as described in [91,

Sec. II.C]. Finally, the avoidance of the table is also imposed as described in [91,

Sec. II.C], by requiring that all spheres on the robot remain entirely above the

horizontal plane that defined the table surface.

12.5 Experimental Results

In this section, experimental results for the considered UR5 case study are pre-

sented and discussed. In order to compare the proposed approaches, 25 experiments,

each with a duration of 40 s, were executed. In all tests, the same arm tracking

data is provided to both DRL and MPC, by recording the time evolution of the

reference position p∗, and then providing it to both control schemes. In none of the

25 experiments collisions were observed, as it was the case for the DRL simulations:

this confirms the collision avoidance ability of both schemes.

12.5.1 System specifications

Both controllers are implemented in Robot Operating System (ROS) and run

on an Acer laptop with a 2.6GHz Intel Core i7-9750H CPU with 16GB RAM. The

UR5 robot provides, every 50 ms, joints and end-effector positions to the controllers

via TCP/IP communication, and the controllers transmit the control inputs (i.e.,

the joint speed references for the internal control loops) over the same connection

as URScript language commands. The optimization solver for the MPC controller

is generated using the ACADO Toolkit [93], which includes a code generation tool.

The FHOCP (12.5) is formulated via multiple shooting with a discretization interval

coinciding with the sampling interval of 50 ms. A Gauss-Newton approximation

is used to define the Hessian of the Lagrangian, and the problem is solved via

sequential quadratic programming, with each (condensed) quadratic program solved

using the dual active set method implemented by the qpOASES solver [94]. On the

other hand, the DRL controller is written as a ROS integrated Python 3 program.

142

Table 12.2: Performance of DRL and MPC algorithms for 25 real-time experiments

with a duration of 40 s: Rn (left) and R̂n (right)

Rn (×104) R̂n (×104)

mean std. dev. mean std. dev.

DRL −1.70 0.22 −2.24 0.32

MPC −1.84 0.25 −2.48 0.32

Through ROS communication topics, the DRL controller receives both the UR5 joint

positions and the references from the arm tracker system on the human operator.

12.5.2 Results

The two approaches are compared in terms of two episodic cumulative rewards,

computed a-posteriori as Eq. (12.2) and as

R̂n ,
n∑
t=1

r̂t, (12.6)

where r̂t is computed as in Eq. (12.3) (i.e., using a quadratic end-effector penalty

instead of a Huber-Loss). As one can notice in Table 12.2, the DRL approach

provides a performance improvement of about 7%; this result is rather consistent

through the different experimental trials, as the standard deviation is only about 13%

of the mean value of Rn for both experiments using DRL and MPC. Furthermore,

the DRL performance is consistent with results obtained during the testing phase,

as the mean value of Rn is approximately the same. Also in when using the metric

R̂n, DRL consistently outperforms MPC of about 9.7%.

Additionally, two sets of experiments are conducted: in the first set, the DRL

algorithm is executed in real-time on the experimental setup, and the reference signal

recorded for this first experiment is used with the MPC algorithm for comparison.

Conversely, in the second set of experiments, the MPC algorithm is executed with

a real-time reference from the arm tracker, generated by a human operator, and

the same signal is later provided as a reference for the DRL algorithm.

Set 1: Real-Time DRL

The overall performance of the two controllers for the first set of experiments is

shown in Table 12.3. All the results are consistent with those of Table 12.2. The

143

Table 12.3: Performance of DRL and MPC algorithms for real-time experiments with a

duration of 40 s and with reference mutually recorded (Set 1 and Set 2): Rn (left) and

R̂n (right)

Rn (×104) R̂n (×104)

Set 1
DRL real-time −1.91 −2.54

MPC recorded −2.13 −2.85

Set 2
DRL recorded −3.91 −5.40

MPC real-time −4.16 −6.17

evolution of the reference joint speeds q̇∗ for the two control schemes is reported

in Figure 12.4, where it can be seen that the amplitude of the corresponding

control inputs for DRL and MPC are consistent, showing that the tuning of the

two controllers led to a similar trade-off between control energy and tracking error.

The reference tracking for DRL and MPC is reported in Figure 12.5, in which both

controllers also succeed to avoid the obstacles (table and box) in the workspace.

The tracking for the x-component of p? is similar for both controllers, while, for

the y-component of p?, DRL shows better results. The contrary applies for the

z-component, in which MPC showed better results.

Set 2: Real-Time MPC

In the second set of experiments, a reference trajectory is provided with variations

of p∗ in time that are faster, on average, than those present in the training set and

in the test set. This is done to assess the ability of DRL to generalize on different

data. The overall performance is shown in Table 12.3: even though the values of all

costs are about twice those of the first set of experiments, DRL still shows better

results. The corresponding evolution of the joint speeds, which are again in the

same range for DRL and MPC, can be seen in Figure 12.6. Also, the reference

tracking for both controllers is shown in Figure 12.7 to which, in spite of the faster

trajectories, the same comments apply as for Figure 12.5.

144

12.6 Conclusions

The proposed DRL strategy is applied to a teleoperated robot, tasked to

track the movements generated at run-time by a human operator. The proposed

approach succeeds in avoiding obstacles while tracking the provided reference

position with satisfactory results. The observed advantages with respect to MPC

can be summarized as a drastic (and largely expected) reduction in terms of

execution time, and a satisfactory improvement in terms of performance, measured

via the cost functions defined for DRL and MPC. Nevertheless, as compared to

DRL, the MPC approach presents the following main differences:

• MPC aims at tracking the reference while avoiding the obstacles based on an

explicit model-based prediction of the robot motion on a limited time horizon,

while DRL learns its behavior via trial and error (during training).

• MPC is based on a simplified system dynamics in order to limit the computa-

tional complexity of the FHOCP, while DRL can be trained on a sophisticated

robot simulator, which replicates the dynamics of the manipulator and the

behavior of its internal controllers.

• MPC uses a conservative evaluation of the distance with the obstacles, while

DRL can rely on precise distances calculated by the employed simulator

during training.

• MPC does not need training data, and is therefore much more robust towards

managing unforeseen events, such as a reference motion never seen before;

DRL might instead show unexpected behavior should this happen.

145

Figure 12.4: Time evolution of the components of joint angular speed reference vector

q̇∗ for the first set of experiments

146

time (s)

Figure 12.5: Time evolution of the xyz components of reference p∗, and corresponding

values of pe for DRL and MPC, in the first set of experiments

147

Figure 12.6: Time evolution of the components of joint angular speed reference vector

q̇∗ for the second set of experiments

148

time (s)

Figure 12.7: Time evolution of the xyz components of reference p∗, and corresponding

values of pe for DRL and MPC, in the second set of experiments

149

Chapter 13

Experiments on the Epson VT6

industrial manipulator

In this Chapter, preliminary work on the deployment of the proposed DRL

framework for collision avoidance on a real manipulator is presented and discussed.

The robot on which the experiments were performed is an Epson VT61 [95], a

6-axis industrial manipulator with built-in controllers. In order not to bypass the

embedded security measures implemented within the proprietary industrial software

(Epson RC+), it was decided to create a middleware interface between the learning

environment and the industrial software, which communicates directly with the real

robot, in order to replicate the movements of the virtualized robot. Furthermore, it

allows the simulation of external elements (i.e., obstacles and other entities) without

the actual physical obstacles and the necessary motion capture system.

13.1 System Setup

The system, property of the Identification And Control of Dynamic Systems

(ICDS) Lab of the University of Pavia, is composed of three main elements and the

interfaces between them, as summarized in Figure 13.1. Specifically:

1. The Epson VT6 industrial manipulator: the physical manipulator, an-

chored to a base on the concrete floor of a sensorized cage to which the safety

1The Epson VT6 that has been used to perform the experiments presented in this Chapter

has been awarded to the University of Pavia for being one of the three winners of the Epson’s

�Win-a-Robot� contest, directed at EMEAR research institutes.

151

Figure 13.1: Interfacing between the robot and the control units

and emergency stop system are connected. It is directly interfaced with its

proprietary software, from which it receives the low-level control commands

and operation signals (turn on/off commands, emergency stops, etc.), and to

which sends feedback information on the operation status.

2. Epson RC+ proprietary control system: the industrial software that

manages exchanges of information from and to the physical system and

regulates the robot’s operation. The program runs on a dedicated computer,

which stays connected via USB to the robot. On the other hand, the software

communicates via TCP/IP with the virtualized environment, receiving the

high-level control commands.

3. The virtualized environment and control algorithm: the virtual rep-

resentation of the robot and the custom dynamic environment (reproduced

with V-Rep), which simulates the robot together with other elements and

reacts accordingly to the custom control algorithm (e.g., end-to-end DRL,

MPC, etc.). The control algorithm and the virtualized environment are

interconnected through a dedicated API.

13.1.1 Epson VT6 Industrial Manipulator

The Epson VT6 is a 6-axis manipulator from Epson. The robot, pictured in

Figure 13.2, is designed for industrial applications and features built-in controllers,

152

Figure 13.2: Photo of the Epson VT6 industrial manipulator

an operation range of 900 mm, and can support a payload of up to 6 kg. The joint

specifications are reported in Table 13.1 and visualized in Figure 13.3. The motion

has a repeatability of 0.1 mm for all joints.

Table 13.1: Epson VT6 joint specifications

Position (deg) Velocity (deg/s) Torque (Nm)

Joint 1 [-170, 170] ±166.2 50

Joint 2 [-160, 65] ±122.2 50

Joint 3 [-51, 190] ±118.8 50

Joint 4 [-200, 200] ±271.4 12

Joint 5 [-125, 125] ±296.8 12

Joint 6 [-360, 360] ±293.2 7

Furthermore, the Epson VT6 supports three different operation modes:

• Teach mode: operates at low power and enables the operator to manually

guide the robot to point data that must be reached sequentially, by means of

a dedicated device.

153

Figure 13.3: Epson VT6 motion ranges

154

• Auto mode: enables automatic execution of a preloaded program to deploy

manufacturing operations.

• Test mode: enables program verification.

For the presented work, the robot always operates in auto mode, which in turn

relies on external information to execute the routine. The robot is controlled by

the RC700 controller, which features a built-in motion system for the 6 AC Servo

motors and manages I/O communication through the proprietary software Epson

RC+, which will be detailed in the following subsection. Robot’s motion, which

can be done both in the joint space and the operative space, can be controlled in

the following ways:

• Point To Point (PTP): moves directly the end-effector from its current

position to a desired point.

• Linear motion: moves the end-effector from its current position to a (se-

quence of) desired point(s) with a straight line.

• Curve motion: moves the end-effector from its current position to a (se-

quence of) desired point(s) with a predefined curve.

• Joint relative movement: moves one joint up to a specified distance from

the current position.

Although a native function to define joint reference positions all at once is

not directly available, this can be easily achieved using a function that computes

the forward kinematic given the desired joint configuration: motion can be then

be performed in the operative space using the output of said function. More

details on the motion functions are reported in Appendix B. The controller uses

trapezoidal velocity profiles (TVP) to perform the motion. If a sequence of different

movements must be performed, continuous path operation can be imposed, so

that two consecutive velocity profiles are overlapped to avoid full deceleration and

acceleration during motion, as exemplified in Figure 13.4. In all options, is possible

to set the maximum velocity and acceleration, expressed in mm/s and mm/s2.

155

Figure 13.4: Trapezoidal velocity profile when imposing continuous motion between

two points

13.1.2 Proprietary interfacing software Epson RC+

Epson RC+ is Epson’s proprietary software to directly interface a computer

with the robot’s controllers, via USB or Ethernet. Besides managing the proper

setting and communications of the robotic application, the software features a

proprietary IDE for high-level development of programs for the robot’s controllers.

As it is designed for industry applications, the language features intuitive, easy

to interpret commands to define routines and robot motions, in order to facilitate

operation by employees. The most relevant features are:

• Developement environment: enables the writing, editing, debugging, and

testing of a robot routine. Programs are written in the SPEL+ programming

language, which is based on a robust library of pre-built, high-level functions

to handle motion, multithreading, I/O control, sensor sampling, and actuation

running in the RC700 controller.

• Simulators: allows the execution of the developed program on a built-

in simulated environment before deploying on the physical system. The

simulator presents an extensive library of robots, whose dynamic behaviors

are reproduced with high accuracy, so that the deployment on the physical

robot is transparent to the user.

• External communication: Epson RC+ can be easily interfaced with other

software and applications using TCP/IP communication.

156

Figure 13.5: Epson RC+ GUI showing the IDE with a program script to be executed

on a simulated robot.

• Safety checks and emergency management: prevents dangerous opera-

tions from occurring by halting the controllers and activating the emergency

system.

In Figure 13.5, the user interface showing the IDE and the built-in robot

simulator is represented. The purpose of Epson RC+ is to provide a safe and

compliant interface between any external module and the physical system: in

fact, it needs to be ensured that all implemented safety procedures and native

controllers are not bypassed or overridden by custom control algorithms. Epson

RC+ is installed on a Microsoft Windows system running Windows 10.

13.1.3 Virtualized environment

The virtualized environment is the reproduction of the desired robotic scenario

within a general-purpose robot simulator. As one can see in Figure 13.6, a replica

of the Epson VT6 robot has been implemented in V-Rep, using the original CAD

file and the available dynamical parameters provided in the datasheets. Together

with the robot, a spherical obstacle was inserted in the environment, where it can

move freely in two directions. Additionally, a visual rendering of the target point

(the black dot) was added. The purpose of the virtualized environment is dual:

157

Figure 13.6: Virtualization of the Epson VT6 robot with the V-Rep robotic simulator

first, it is used to recreate complex, dynamic scenarios (which would be impossible

to reproduce in Epson RC+) that are needed for the deployment of the custom

control algorithm running synchronously on the same system; then, it generates

the high-level reference signals that are sent to the proprietary software, so that

the actual robot can reproduce them. The virtualized environment, along with the

controller, run on a Linux Ubuntu system running Ubuntu 18.04 LTS.

13.2 Case study

For the proposed experiments, the same scenario introduced in the previous

chapters of this Part is considered. Specifically, the Epson VT6, placed in an

environment together with a randomly moving obstacle, needs to perform the

following two tasks:

T1) to track a desired trajectory in order to reach a pre-specified target;

T2) to avoid collisions with elements invading the workspace, while reaching the

target.

To achieve this, the DRL-based hybrid approach for motion planning and obstacle

avoidance introduced in Chapter 11, Algorithm 3 is used. The policy used for

End-to-End control of collision avoidance is selected after 550 episodes of training

158

Figure 13.7: Cumulative reward function for training on the Epson VT6

on the Epson VT6 model. The cumulative reward function is represented in Figure

13.7. Furthermore, the scenario considered reproduces the spot welding example

introduced in Section 11.4.2: the robot must track a target that moves along a

path, on which it advances after being reached.

13.2.1 Interfacing between components

For the execution of the experiment, the elements in the framework communicate

as detailed in the following. More specifically, two threads work in parallel to handle

interfacing between components: one manages the execution of the control algorithm

on the virtual environment, while the other deals with the communication between

the virtual environment in V-Rep and Epson RC+.

1. First, the control algorithm is initialized and connected to the virtual envi-

ronment in V-Rep.

2. At run-time, the algorithm reads the status of the simulation (i.e., sensor

data, changes in the environment, collision detection, etc.) and elaborates

the retrieved information from V-Rep to generate desired output, in this case

(q?, q̇?) (SBL) or q̇? (DRL).

3. Once the algorithm determines the output, this is sent to V-Rep, where the

physics engine executes the command and advances the simulation. Com-

munication from and to V-Rep is handled by the PyRep [77] plugin, which

159

encapsulates the native V-Rep API.

4. Throughout execution, the virtual robot configuration q is sampled by a

dedicated thread, running in an embedded script within V-Rep, which then

sends the joint information, in the form of a string, to Epson RC+ through

TCP/IP via Ethernet connection.

5. Every time new information is received in Epson RC+ from V-Rep, the

running program decodes the received string into joint positions, and runs the

motion command so that the configuration of the virtual robot is reproduced.

6. Epson RC+ then directly controls the Epson VT6 via USB to execute the

desired motion in real-time.

13.2.2 Experimental results

In the following, the movements of the real Epson VT6 industrial manipulator

are reported and compared to those of the virtualized version. Figure 13.8 shows

that the end-effector’s position of the real robot obtained through the presented

interfacing architecture features a satisfactory level of fidelity with what is obtained

in simulation, with a delay of about 0.5 s, allowing a reliable deployment of the

proposed approach. In Figure 13.9 the distances from the target point and the

distance between robot and obstacle are reported. A video of the experiment can be

visualized at the link http://bit.ly/CH13_EXP, with some screenshots reported

in Figure 13.10.

160

http://bit.ly/CH13_EXP

Figure 13.8: Position of the end-effector of the Epson VT6 industrial manipulator:

virtual (blue) and real (cyan) with respect to the reference position (red)

Figure 13.9: Distances between end-effector and target point (black) and robot and

obstacle (red).

161

Figure 13.10: Some frames of the experiment described. On the monitor on the left,

the virtual robot controlled by the algorithm in Chapter 11 is performing the task, while

the real robot mimics it.

162

Chapter 14

Conclusions

This Part of the thesis dealt with the design and possible applications of a DRL-

based, end-to-end control for full-body collision avoidance of industrial manipulators.

In the considered scenario, robots are tasked with tracking reference positions with

their end-effectors while avoiding collisions with obstacles invading their operative

space. This is achieved by training a policy with a suitably selected framework used

by a Deep Reinforcement Learning algorithm, i.e., Normalized Advantage Function

[18], which enables model-free, end-to-end control of continuous systems. The

proposed framework for full-body collision avoidance and target reaching has then

been successfully applied to various scenarios, with varying degrees of complexity,

featuring different robots, reference signals, and obstacle behaviors. Specifically,

the following cases were considered and discussed:

1. Tracking of a fixed target, avoiding a single obstacle moving on a linear path.

2. Tracking fixed or linearly moving targets, with obstacles moving planarly or

spatially. Training in more complex scenarios is facilitated using the so-called

transfer learning, enabling the reuse of previously acquired knowledge.

3. Tracking a trajectory generated online by a human operator while avoiding

fixed obstacles present in the operative space with a teleoperated robot.

In all cases, satisfactory performances were observed for both target reaching and

obstacle avoidance, showing the validity of the proposed approach. Furthermore, a

novel hybrid approach was introduced to combine end-to-end DRL-based control

with conventional motion control: the robot then can achieve model-free collision

163

avoidance while performing motion as generated by a suitable motion planning

algorithm. The use of either approach is determined whether a given safety condition

is met, thus conferring the system a self-configuring capability. As can be expected,

the target reaching performance is improved using conventional methods, while

collision avoidance maintained satisfactory performance. The proposed hybrid

structure was then deployed on a physical robot, the Epson VT6, interfaced with a

virtualized environment.

164

Part IV

Conclusion

165

Chapter 15

Concluding remarks

This Thesis aimed to present different examples of self-configuring systems

involving robotic manipulators. The topics of motion control and collision avoidance

for robots operating under varying degrees of uncertainty have been explored, and

several case studies have been introduced showing the results obtained using the

proposed approaches. In both cases, Deep Reinforcement Learning (DRL) has

been implemented in the system into consideration, whether for decision-making or

end-to-end control.

A novel switched-structure control scheme to achieve both centralized and

decentralized control, using the perturbation estimation feature of the Integral

Sliding Mode controller has been introduced; DRL has then been used to train the

decision-maker that regulates the switch between either controller.

Then, the framework for end-to-end, model-free control of robotic manipulators

to perform full-body collision avoidance with randomly moving obstacles has been

introduced and validated on several scenarios, with varying complexity. The frame-

work has then been used together with conventional motion planning algorithms in

order to reduce the uncertainties given by the stochastic nature of the policy and

improve performance in a novel algorithm that confers the system a self-configuring

capability. Both the end-to-end approach and the hybrid algorithm have then been

successfully deployed on real robots, and experimental data have been reported.

Encouraging results emerged, indicating that Deep Reinforcement Learning can

indeed be successfully used in combination with conventional control methods to

solve robotics applications.

167

15.1 Future work

Starting from the research conducted for this Thesis, future work in this direction

could include the following:

• Integrate a vision system in the training process: in the presented

research, sensor data was assumed known and retrieved from the simulator.

Integrating the sensor models into the training, with image recognition and

perception techniques, would facilitate deployment on the real system and

improve the robustness of the proposed method.

• Improve end-to-end control: by training on a broader variety of scenarios,

presenting specific industrial tasks, it would be possible to deploy the proposed

framework for collision avoidance to solve more sophisticated tasks, such as

interaction with other robots.

• Scenario-based self-configuring control architecture: given a set of

control approaches, a decision-maker could be designed to select the most

appropriate controller at any given time, for any given task, in order to achieve

the best performance. A natural extension of the hybrid algorithm introduced

in Chapter 11 would be to integrate other control strategies and different

metrics, while a more sophisticated approach could use Deep Learning in

order to pick the best choice, instead of relying of fixed metrics.

• Improve policy training for decision making: as shown by the prelimi-

nary results reported in Chapter 6, DRL has been used to train a policy for

decision making. The approach could be extended to more controllers and a

wider spectrum of applications.

• Combine the proposed approaches: an interesting case study could stem

from the combination of the self-configuring control scheme for motion and

the proposed DRL-based collision avoidance approach. Specifically, it could

be of interest to observe the behavior of the switching strategy, employed as

the low-level controller, in a scenario with unexpected changes caused by the

reaction of the trained policy to incoming obstacles. Indeed, the effects of

abrupt motion triggered by the avoidance strategy could be observed and

handled by the ISM controller, perhaps improving performances.

168

Part V

Appendices

169

Appendix A

Comau Smart3-S2 model

In this Appendix, the model of the robot that has been used to produce the

results presented in Chapters 5, 6 (Part II), and that has been virtually reproduced

in V-Rep for the DRL experiments presented in Chapters 9, 10, 11 (Part III), is

reported. The robot is an industrial anthropomorphic rigid manipulator Comau

Smart3-S2, currently present at University of Pavia, and represented in Figure A.1.

It consists of 6 links and 6 rotational joints driven by brushless electric motors.

In order to design the controllers introduced in Chapters 5 and 6, an estimation

of dynamical parameters has been performed on the basis on real data, as extensively

reported in the work of A. Calanca, M. Capisani, and A. Ferrara [57, 58], via a

Maximum Likelihood estimation procedure. For this purpose, only vertical planar

motions of the robot have been enabled, and a schematic representation of the

considered model is reported in Figure A.2, where m1, m2, m3, I1, I2, I3 are the

link’s masses and inertias, lc1 , lc2 , lc3 are the distances of the centers of mass with

respect to the link’s origin, and l1 = 0.65 m, l2 = 0.6576 m and l3 = 0.34 m are the

link lengths. For the sake of completeness, the results of the parameter estimation

are reported in Table A.1 from the aforementioned papers, to which the reader is

referred for in-depth explanation.

Considering the dynamical model of the robot expressed as in Eq. (2.19)

B(q)q̈ + C(q, q̇)q̇ + Fv q̇ + Fssign(q̇) + g(q) = τ,

for a 3-DoF rigid manipulator, elements composing the equation can be expressed

using the estimated parameters as follows.

171

Figure A.1: Graphic representation of the Comau Smart3-S2 and its degrees of freedom.

Figure A.2: Schematic representation of the planar model of the Comau Smart3-S2

172

Table A.1: Estimated values for dynamical parameters

Parameter Expression Value

γ1 m3l
2
c3

+ I3 0.2973

γ2 I3 +m3(l
2
1 + l2c3) + I2 +m2l

2
c2

10.066

γ3 I3 +m3(l
2
1 + l22 + l2c3) + I2 +m2(l

2
1 + l2c2 + I1 +m1l

2
c1

87.9151

γ4 m1lc1 +m2lc2 +m3l1 57.0347

γ5 m2lc2 +m3l2 9.2148

γ6 m3lc3 0.3163

γ7 Fs1 190.4790

γ8 Fv1 66.3430

γ9 Fs2 20.9745

γ10 Fv2 14.7050

γ11 Fs3 4.6565

γ12 Fv3 8.2911

Inertia Matrix

B(q) =


B11 B12 B13

B12 B22 B23

B13 B23 B33

 (A.1)

B11 = γ3 + 2γ5l1cos(q2) + 2γ6l2cos(q3) + 2γ6l1cos(q2 + q3)

B12 = γ5l1cos(q2) + γ2 + 2γ6l2cos(q3) + γ6l1cos(q2 + q3)

B13 = γ6l1cos(q2 + q3) + γ6l2cos(q3) + γ1

B22 = γ2 + 2γ6l2cos(q3)

B23 = γ1 + 2γ6l2cos(q3)

B33 = γ1

(A.2)

173

Centripetal and Coriolis forces Matrix

C(q, q̇) =


C11 C12 C13

C21 C22 C32

C31 C32 C33



C11 = −q̇2γ5l1sin(q2)− (q̇2 + q̇3)γ6l1sin(q2 + q3)− q̇3γ6l2sin(q3)

C12 = −(q̇1 + q̇2)γ5l1sin(q2)(q̇1 + q̇2 + q̇3)γ6l1sin(q2 + q3)− q̇3γ6l2sin(q3)

C13 = −(q̇1 + q̇2 + q̇3)γ6(l1sin(q2 + q3) + l2sin(q3))

C21 = q̇1γ5l1sin(q2) + q̇1γ6l1sin(q2 + q3)− q̇3l2sin(q3)

C22 = −q̇3γ6l2sin(q3)

C23 = −(q̇1 + q̇2 + q̇3)γ6l2sin(q3)

C31 = γ6(q̇1l1sin(q2 + q3) + q̇1l2sin(q3) + q̇2l2sin(q3))

C32 = (q̇1 + q̇2)γ6l2sin(q3)

C33 = 0

(A.3)

Friction coefficients

Fs =


Fs1 0 0

0 Fs2 0

0 0 Fs3

 , Fv =


Fv1 0 0

0 Fv2 0

0 0 Fv3



Fs1 = γ7, Fv1 = γ8

Fs2 = γ9, Fv2 = γ10

Fs3 = γ11 Fv3 = γ12

(A.4)

Gravitational torques

g(q) =


g1

g2

g3



174

g1 = γ4sin(q1) + γ5gsin(q1 + q2) + γ6gsin(q1 + q2 + q3)

g2 = γ5gsin(q1 + q2) + γ6gsin(q1 + q2 + q3)

g3 = γ6gsin(q1 + q2 + q3)

(A.5)

175

Appendix B

Epson RC+ motion commands

In this Appendix, a list of useful functions available for motion control of the

Epson VT6 industrial manipulator (Chapter 13) is presented. The functions are

defined in the SPEL+ programming language for the proprietary software Epson

RC+ 7.0.

Motion in the operative space

Functions to define motion of the robot’s end-effector in the cartesian space,

through points expressed in x, y, z coordinates with respect to the base reference

frame.

Go

Go {Point}

Performs Point-to-Point motion from the current position the the specified point

Point. Each joint interpolates independently, and the resulting path is not pre-

dictable. Velocity and acceleration of the robot can be specified with the Speed

and Accel instructions.

Jump

Jump3 {PDepart, PApproach, PDestination}

Performs a 3D gate motion from the current position to a desired point, through three

segments connected as in Figure B.1, where PDepart, PApproach, PDestination

are pre-specified points.

177

Figure B.1: 3D Gate motion

Pass

Pass {Point, [Point,...]}

Performs motion near (but not through) pre-specified points.

Move

Move {Point}

Perform motion from the current position to a pre-specified point using linear

interpolation at constant velocity. Velocity and acceleration rates of the robot can

be specified with the SpeedS and AccelS instructions.

Arc

Arc {PMiddle, PDestination}

Performs motion in a circular way from the current position to the desired point

PDestination, passing through PMiddle. Velocity and acceleration rates of the

robot can be specified with the SpeedS and AccelS instructions.

Continuous Path CP

CP {On | Off}

178

Enables continuous path. When activated, motion continues without deceleration

between two consecutive motion commands.

Till

Till {Condition}

Specifies a condition that, if met, stops the robot’s motion. It is applied directly

after a motion statement.

Example

Till Condition = False;

Move Point Till;

Motion in the configuration space

Functions used to define motion of the robot directly through its joints. Target

positions are expressed in degrees.

JTran

JTran {JointN, Dist}

Performs incremental motion of the selected joint to a pre-specified distance Dist

from the current position.

JA

JA(Joint1, Joint2, Joint3,Joint4,Joint5,Joint6)

Returns the resulting point in the cartesian space for the defined joints positions.

It computes the forward kinematics given a specific joint configuration. It can be

used together with a function for motion in the operative space in order to perform

motion in the configuration space, by directly providing joint references.

Example

Move JA(J1, J2, J3, J4, J5, J6)

179

Bibliography

[1] International Federation Of Robotics, “World robotics report 2020.”

https://ifr.org/ifr-press-releases/news/record-2.7-million-robots-work-in-

factories-around-the-globe.

[2] S. Haddadin, A. Albu-Schäffer, and G. Hirzinger, “Requirements for safe

robots: Measurements, analysis and new insights,” The International Journal

of Robotics Research, vol. 28, no. 11-12, pp. 1507–1527, 2009.

[3] A. Bicchi, M. A. Peshkin, and J. E. Colgate, Safety for Physical Human–Robot

Interaction, pp. 1335–1348. Berlin, Heidelberg: Springer, 2008.

[4] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias, “Safety in

human-robot collaborative manufacturing environments: Metrics and control,”

IEEE Transactions on Automation Science and Engineering, vol. 13, no. 2,

pp. 882–893, 2016.

[5] L. Johannsmeier and S. Haddadin, “A hierarchical human-robot interaction-

planning framework for task allocation in collaborative industrial assembly

processes,” IEEE Robotics and Automation Letters, vol. 2, no. 1, pp. 41–48,

2016.

[6] M. S. Branicky, V. S. Borkar, and S. K. Mitter, “A unified framework for

hybrid control: Model and optimal control theory,” IEEE Transactions on

Automatic Control, vol. 43, no. 1, pp. 31–45, 1998.

[7] J. P. Hespanha, D. Liberzon, and A. S. Morse, “Hysteresis-based switching

algorithms for supervisory control of uncertain systems,” Automatica, vol. 39,

no. 2, pp. 263–272, 2003.

181

[8] M. Zefran and J. W. Burdick, “Design of switching controllers for systems with

changing dynamics,” in IEEE Conference on Decision and Control (CDC),

vol. 2, pp. 2113–2118, 1998.

[9] D. S. Shah, J. P. Powers, L. G. Tilton, S. Kriegman, J. Bongard, and R. Kramer-

Bottiglio, “A soft robot that adapts to environments through shape change,”

Nature Machine Intelligence, pp. 1–9, 2020.

[10] D. Falanga, K. Kleber, S. Mintchev, D. Floreano, and D. Scaramuzza, “The

foldable drone: A morphing quadrotor that can squeeze and fly,” IEEE Robotics

and Automation Letters, vol. 4, no. 2, pp. 209–216, 2018.

[11] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,

A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level

control through deep reinforcement learning,” Nature, vol. 518, no. 7540, p. 529,

2015.

[12] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:

A survey,” The International Journal of Robotics Research, vol. 32, no. 11,

pp. 1–37, 2013.

[13] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review of recent

research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835, 2017.

[14] R. E. Bellman, Dynamic Programming. New York, NY, USA: Dover Publica-

tions, Inc., 2003.

[15] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,

no. 7553, p. 436, 2015.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,

and D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv

preprint arXiv:1509.02971, 2015.

[17] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation error

in actor-critic methods,” in International Conference on Machine Learning

(ICML), vol. 80, (Stockholmsmässan, Stockholm, Sweden), pp. 1582–1591,

PMLR, 10–15 Jul 2018.

182

[18] S. Gu, T. P. Lillicrap, I. Sutskever, and S. Levine, “Continuous deep q-learning

with model-based acceleration,” in International Conference on Machine Learn-

ing (ICML), (New York, NY, USA), PMLR, June 2016.

[19] S. Levine, P. Pastor, A. Krizhevsky, J. Ibarz, and D. Quillen, “Learning hand-

eye coordination for robotic grasping with deep learning and large-scale data

collection,” The International Journal of Robotics Research, vol. 37, no. 4–5,

pp. 421–436, 2017.

[20] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,”

The International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724,

2015.

[21] M. P. Deisenroth, C. E. Rasmussen, and D. Fox, “Learning to control a low-cost

manipulator using data-efficient reinforcement learning,” in Robotics: Science

and Systems VII, (Los Angeles, CL, USA), pp. 57–64, June 2011.

[22] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Vecerik,

T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient deep rein-

forcement learning for dexterous manipulation,” 2017.

[23] T. Haarnoja, V. Pong, A. Zhou, M. Dalal, P. Abbeel, and S. Levine, “Compos-

able deep reinforcement learning for robotic manipulation,” in IEEE Interna-

tional Conference on Robotics and Automation (ICRA), (St. Paul, MN, USA),

pp. 6244–6251, May 2018.

[24] N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft,

P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The limits and potentials

of deep learning for robotics,” The International Journal of Robotics Research,

vol. 37, no. 4-5, pp. 405–420, 2018.

[25] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[26] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics: modelling,

planning and control. Springer Science & Business Media, 2010.

[27] R. S. Hartenberg and J. Denavit, “A kinematic notation for lower pair mech-

anisms based on matrices,” Journal of Applied Mechanics, vol. 77, no. 2,

pp. 215–221, 1955.

183

[28] A. L. Samuel, “Some studies in machine learning using the game of checkers,”

IBM Journal of Research and Development, vol. 44, no. 1.2, pp. 206–226, 1959.

[29] R. S. Sutton, A. G. Barto, et al., Introduction to reinforcement learning, vol. 2.

Cambridge: MIT Press, 1998.

[30] C. J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, no. 3-4,

pp. 279–292, 1992.

[31] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy

maximum entropy deep reinforcement learning with a stochastic actor,” in

International Conference on Machine Learning (ICML) (J. Dy and A. Krause,

eds.), vol. 80, (Stockholmsmässan, Stockholm Sweden), pp. 1861–1870, PMLR,

10–15 Jul 2018.

[32] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control,

vol. 3. Wiley New York, 2006.

[33] T. C. Hsia and L. S. Gao, “Robot manipulator control using decentralized

linear time-invariant time-delayed joint controllers,” in IEEE International

Conference on Robotics and Automation (ICRA), pp. 2070–2075, IEEE, 1990.

[34] T. Verstraten, R. Furnémont, P. López-Garćıa, D. Rodriguez-Cianca, B. Van-

derborght, and D. Lefeber, “Kinematically redundant actuators, a solution for

conflicting torque–speed requirements,” The International Journal of Robotics

Research, pp. 612–629, 2018.

[35] A. Girard, Fast and strong lightweight robots based on variable gear ratio

actuators and control algorithms leveraging the natural dynamics. PhD thesis,

Massachusetts Institute of Technology, 2017.

[36] A. Girard and H. H. Asada, “Leveraging natural load dynamics with variable

gear-ratio actuators,” IEEE Robotics and Automation Letters, vol. 2, no. 2,

pp. 741–748, 2017.

[37] V. I. Utkin, Sliding modes in control and optimization. Springer Science &

Business Media, 1992.

184

[38] V. Utkin, J. Guldner, and J. Shi, Sliding mode control in electro-mechanical

systems, vol. 34. CRC press, 1999.

[39] C. Edwards and S. Spurgeon, Sliding mode control: theory and applications.

CRC Press, 1998.

[40] J.-J. E. Slotine and S. S. Sastry, “Tracking control of non-linear systems using

sliding surfaces, with application to robot manipulators,” International Journal

of Control, vol. 38, no. 2, pp. 465–492, 1983.

[41] J.-J. E. Slotine, “Sliding controller design for non-linear systems,” International

Journal of Control, vol. 40, no. 2, pp. 421–434, 1984.

[42] J.-J. E. Slotine and J. A. Coetsee, “Adaptive sliding controller synthesis for non-

linear systems,” International Journal of Control, vol. 43, no. 6, pp. 1631–1651,

1986.

[43] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall, 1991.

[44] A. Levant, “Higher-order sliding modes, differentiation and output-feedback

control,” International Journal of Control, vol. 76, no. 9-10, pp. 924–941, 2003.

[45] G. Bartolini, A. Ferrara, E. Usai, and V. I. Utkin, “On multi-input chattering-

free second-order sliding mode control,” IEEE Transactions on Automatic

Control, vol. 45, no. 9, pp. 1711–1717, 2000.

[46] G. Bartolini, A. Ferrara, and E. Usai, “Output tracking control of uncertain

nonlinear second-order systems,” Automatica, vol. 33, no. 12, pp. 2203–2212,

1997.

[47] F. Dinuzzo and A. Ferrara, “Higher order sliding mode controllers with optimal

reaching,” IEEE Transactions on Automatic Control, vol. 54, no. 9, pp. 2126–

2136, 2009.

[48] A. Ferrara and L. Magnani, “Motion control of rigid robot manipulators via

first and second order sliding modes,” Journal of Intelligent & Robotic Systems,

vol. 48, no. 1, pp. 23–36, 2007.

185

[49] L. M. Capisani, A. Ferrara, and L. Magnani, “Design and experimental valida-

tion of a second-order sliding-mode motion controller for robot manipulators,”

International Journal of Control, vol. 82, no. 2, pp. 365–377, 2009.

[50] G. P. Incremona, M. Tanelli, M. Rubagotti, and A. Ferrara, “Switched third-

order sliding mode control,” in IEEE American Control Conference (ACC),

(Boston, MA, USA), pp. 7189–7194, IEEE, July 2016.

[51] V. Utkin and J. Shi, “Integral sliding mode in systems operating under un-

certainty conditions,” in IEEE Conference on Decision and Control (CDC),

vol. 4, (Kobe, Japan), pp. 4591–4596, IEEE, Dec. 1996.

[52] A. Ferrara, G. P. Incremona, and B. Sangiovanni, “Integral sliding mode based

switched structure control scheme for robot manipulators,” in International

Workshop on Variable Structure Systems (VSS), (Graz, Austria), pp. 168–173,

IEEE, July 2018.

[53] A. Ferrara, G. P. Incremona, and B. Sangiovanni, “Tracking control via

switched integral sliding mode with application to robot manipulators,” Control

Engineering Practice, vol. 90, pp. 257–266, 2019.

[54] B. Sangiovanni, G. P. Incremona, A. Ferrara, and M. Piastra, “Deep reinforce-

ment learning based self-configuring integral sliding mode control scheme for

robot manipulators,” in IEEE Conference on Decision and Control (CDC),

(Miami Beach, FL, USA), pp. 5969–5974, IEEE, Dec. 2018.

[55] A. Levant, “Chattering analysis,” IEEE Transactions on Automatic Control,

vol. 55, pp. 1380–1389, June 2010.

[56] D. Liberzon, Switching in Systems and Control. Birkh auser Basel, 2003.

[57] A. Calanca, L. M. Capisani, A. Ferrara, and L. Magnani, “Mimo closed loop

identification of an industrial robot,” IEEE Transactions on Control Systems

Technology, vol. 19, no. 5, pp. 1214–1224, 2011.

[58] L. M. Capisani, A. Ferrara, and L. Magnani, “Mimo identification with opti-

mal experiment design for rigid robot manipulators,” in 2007 IEEE/ASME

international conference on advanced intelligent mechatronics, pp. 1–6, 2007.

186

[59] G. P. Incremona, A. Saccon, A. Ferrara, and H. Nijmeijer, “Trajectory tracking

of mechanical systems with unilateral constraints: Experimental results of a

recently introduced hybrid PD feedback controller,” in IEEE Conference on

Decision and Control (CDC), (Osaka, Japan), pp. 920–925, IEEE, Dec. 2015.

[60] J. Han, “From PID to active disturbance rejection control,” IEEE Transactions

on Industrial Electronics, vol. 56, no. 3, pp. 900–906, 2009.

[61] A. De Luca and F. Flacco, “Integrated control for pHRI: Collision avoidance,

detection, reaction and collaboration,” in IEEE RAS & EMBS IInternational

Conference on Biorobotics and Biomechanics, (Rome, Italy), pp. 288–295,

IEEE, June 2012.

[62] F. Flacco, T. Kröger, A. De Luca, and O. Khatib, “A depth space approach

to human-robot collision avoidance,” in IEEE International Conference on

Robotics and Automation (ICRA), (St Paul, MN, USA), pp. 338–345, May

2012.

[63] S. Haddadin, A. De Luca, and A. Albu-Schäffer, “Robot collisions: A survey

on detection, isolation, and identification,” IEEE Transactions on Robotics,

vol. 33, no. 6, pp. 1292–1312, 2017.

[64] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,”

International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[65] C. W. Warren, “Global path planning using artificial potential fields,” in

IEEE International Conference on Robotics and Automation (ICRA), vol. 1,

(Scottsdale, AZ, USA), pp. 316–321, May 1989.

[66] P. Ogren, L. Petersson, M. Egerstedt, and X. Hu, “Reactive mobile manipula-

tion using dynamic trajectory tracking: design and implementation,” in IEEE

Conference on Decision and Control (CDC), vol. 3, (San Francisco, CA, USA),

pp. 3001–3006, Dec. 2000.

[67] M. Parigi Polverini, A. M. Zanchettin, and P. Rocco, “Real-time collision

avoidance in human-robot interaction based on kinetostatic safety field,” in

2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 4136–4141, 2014.

187

[68] L. M. Capisani, T. Facchinetti, A. Ferrara, and A. Martinelli, “Obstacle

modelling oriented to safe motion planning and control for planar rigid robot

manipulators,” The Journal of Intelligent and Robotic Systems, vol. 71, no. 2,

pp. 159–178, 2013.

[69] L. Balan and G. M. Bone, “Real-time 3d collision avoidance method for safe

human and robot coexistence,” in IEEE/RSJ Int. Conf. on Intell. Robot. and

Syst., (Beijing, PRC), pp. 276–282, Oct. 2006.

[70] M. Ragaglia, A. M. Zanchettin, and P. Rocco, “Trajectory generation al-

gorithm for safe human-robot collaboration based on multiple depth sensor

measurements,” Mechatronics, vol. 55, pp. 267–281, 2018.

[71] L. Rozo, D. Bruno, S. Calinon, and D. G. Caldwell, “Learning optimal con-

trollers in human-robot cooperative transportation tasks with position and force

constraints,” in IEEE/RSJ Int. Conf. on Intell. Robot. and Syst., (Hamburg,

Germany), pp. 1024–1030, Sept. 2015.

[72] Y. Li, K. P. Tee, R. Yan, W. L. Chan, and Y. Wu, “A framework of hu-

man–robot coordination based on game theory and policy iteration,” IEEE

Transactions on Robotics, vol. 32, no. 6, pp. 1408–1418, 2016.

[73] Y. Wang, Y. Sheng, J. Wang, and W. Zhang, “Optimal collision-free robot

trajectory generation based on time series prediction of human motion,” IEEE

Robotics and Automation Letters, vol. 3, no. 1, pp. 226–233, 2018.

[74] B. Sangiovanni, A. Rendiniello, G. P. Incremona, A. Ferrara, and M. Piastra,

“Deep reinforcement learning for collision avoidance of robotic manipulators,”

in European Control Conference, (Lymassol, Cyprus), pp. 2063–2068, July

2018.

[75] B. Sangiovanni, G. P. Incremona, M. Piastra, and A. Ferrara, “Self-configuring

robot path planning with obstacle avoidance via deep reinforcement learning,”

IEEE Control Systems Letters, vol. 5, no. 2, pp. 397–402, 2021.

[76] E. Rohmer, S. P. N. Singh, and M. Freese, “V-REP: a versatile and scalable

robot simulation framework,” in IEEE International Conference on Intelligent

Robots and Systems (IROS), (Tokyo, Japan), pp. 1321–1326, Nov. 2013.

188

[77] S. James, M. Freese, and A. J. Davison, “Pyrep: Bringing V-REP to deep

robot learning,” arXiv preprint arXiv:1906.11176, 2019.

[78] G. Sánchez and J.-C. Latombe, A Single-Query Bi-Directional Probabilistic

Roadmap Planner with Lazy Collision Checking, pp. 403–417. Berlin, Heidel-

berg: Springer, 2003.

[79] J. Meijer, Q. Lei, and M. Wisse, “An empirical study of single-query motion

planning for grasp execution,” in IEEE/ASME International Conference on

Advanced Intelligent Mechatronics, (Munich, Germany), pp. 1234–1241, July

2017.

[80] P. F. Hokayem and M. W. Spong, “Bilateral teleoperation: An historical

survey,” Automatica, vol. 42, no. 12, pp. 2035–2057, 2006.

[81] J. Luo, W. He, and C. Yang, “Combined perception, control, and learning

for teleoperation: key technologies, applications, and challenges,” Cognitive

Computation and Systems, vol. 2, no. 2, pp. 33–43, 2020.

[82] J. Vertut, Teleoperation and robotics: applications and technology. Springer

Science & Business Media, 2013.

[83] A. Flores-Abad, O. Ma, K. Pham, and S. Ulrich, “A review of space robotics

technologies for on-orbit servicing,” Progress in Aerospace Sciences, vol. 68,

pp. 1–26, 2014.

[84] R. H. Taylor, A. Menciassi, G. Fichtinger, P. Fiorini, and P. Dario, “Medical

robotics and computer-integrated surgery,” in Springer handbook of robotics,

pp. 1657–1684, 2016.

[85] T. Zhang, Z. McCarthy, O. Jow, D. Lee, X. Chen, K. Goldberg, and P. Abbeel,

“Deep imitation learning for complex manipulation tasks from virtual reality

teleoperation,” in IEEE International Conference on Robotics and Automation

(ICRA), 2018.

[86] B. Fang, S. Jia, D. Guo, M. Xu, S. Wen, and F. Sun, “Survey of imitation

learning for robotic manipulation,” International Journal of Intelligent Robotics

and Applications, pp. 1–8, 2019.

189

[87] P. Owan, J. Garbini, and S. Devasia, “Faster confined space manufacturing

teleoperation through dynamic autonomy with task dynamics imitation learn-

ing,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 2357–2364,

2020.

[88] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman, E. Todorov,

and S. Levine, “Learning complex dexterous manipulation with deep reinforce-

ment learning and demonstrations,” in Robotics: Science and Systems (RSS),

(Pittsburgh, PA, USA), June 2018.

[89] L. Fan, Y. Zhu, J. Zhu, Z. Liu, O. Zeng, A. Gupta, J. Creus-Costa, S. Savarese,

and L. Fei-Fei, “Surreal: Open-source reinforcement learning framework and

robot manipulation benchmark,” in Proc. Conference on Robot Learning,

pp. 767–782, 2018.

[90] W. Yuan, J. A. Stork, D. Kragic, M. Y. Wang, and K. Hang, “Rearrangement

with nonprehensile manipulation using deep reinforcement learning,” in IEEE

International Conference on Robotics and Automation (ICRA), 2018.

[91] M. Rubagotti, T. Taunyazov, B. Omarali, and A. Shintemirov, “Semi-

autonomous robot teleoperation with obstacle avoidance via model predictive

control,” IEEE Robotics and Automation Letters, vol. 4, no. 3, pp. 2746–2753,

2019.

[92] A. Shintemirov, T. Taunyazov, B. Omarali, A. Nurbayeva, A. Kim, A. Bukeyev,

and M. Rubagotti, “An open-source 7-DOF wireless human arm motion-

tracking system for use in robotics research,” Sensors, vol. 20, no. 11, p. 3082,

2020.

[93] B. Houska, H. J. Ferreau, and M. Diehl, “ACADO toolkit - an open-source

framework for automatic control and dynamic optimization,” Optimal Control

Applications and Methods, vol. 32, no. 3, pp. 298–312, 2011.

[94] H. J. Ferreau, C. Kirches, A. Potschka, H. G. Bock, and M. Diehl, “qpOASES:

A parametric active-set algorithm for quadratic programming,” Mathematical

Programming Computation, vol. 6, no. 4, pp. 327–363, 2014.

190

[95] Epson Robotics, “Epson VT6.” https://www.epson.eu/products/robot/epson-

6-axis-vt6-a901s-with-built-in-controller.

191

	Abstract
	Sommario
	Acknowledgements
	I Introduction and Background
	Introduction
	Deep Reinforcement Learning for Robotics
	Thesis contribution
	Thesis structure
	List of peer-reviewed scientific publications

	Preliminaries of Robotics
	Basic Definitions
	Kinematic Model
	Direct Kinematics
	Inverse Kinematics
	Differential Kinematics

	Dynamical Model
	Lagrangian formulation

	Motion Planning
	Motion planning in the joint space
	Motion planning in the operative space

	Preliminaries on Deep Reinforcement Learning
	General overview on Machine Learning
	Reinforcement Learning
	Reward
	Markov Decision Process
	Policy
	Value function
	Q-learning

	Deep Reinforcement Learning
	Normalized Advantage Function
	Hyperparameters

	II Self-configuring control schemes for robot motion
	Motivation and state of the art
	Structure

	Switched Structure Control Scheme for Robot Manipulators
	Basics of Sliding Mode Control
	Problem formulation
	Self-configuring switched structure scheme
	Decentralized Control Scheme
	Centralized Control Scheme
	Switching Block

	Integral Sliding Mode Control design
	Stability proof
	Perturbation Estimator and Chattering Alleviation

	Case studies
	Case study 1: Variable Gear Actuators
	Case study 2: Industrial Robot Comau Smart3-S2
	Results

	Comparison with ADRC
	Conclusions

	DRL-based Switching Rule for Motion Control
	Problem formulation
	Self-configuring switched structure scheme
	Decentralized Control Scheme
	Centralized Control Scheme
	DRL-based Switching Block

	RL Framework for Self-Configuring Motion Control
	State space
	Action space
	Reward

	Case study
	System specifications
	Results

	Conclusions

	Conclusions

	III Self-configuring approaches for robot collision avoidance
	Motivation and state of the art
	Structure

	Deep Reinforcement Learning for Collision Avoidance
	Problem definition
	Robot model
	Collision avoidance problem

	RL Framework for Collision Avoidance
	State Space
	Action Space
	Reward Function
	Hyperparameters

	Environment description and setup
	System specifications

	Case studies
	Results

	Conclusions

	Transfer Learning for DRL-Based Collision Avoidance
	Transfer learning for improved performances
	Transfer learning for scalability

	Self-configuring Motion Planning and Obstacle Avoidance
	Hybrid Dual-Mode Strategy
	Motion Planning
	End-to-end control
	Case studies
	System specifications
	Results
	Comparison with a model-based approach

	Conclusions

	DRL for Teleoperated Robots
	Problem definition
	DRL Framework
	System specifications

	Case study
	Results

	MPC as an alternative approach
	Experimental Results
	System specifications
	Results

	Conclusions

	Experiments on the Epson VT6 industrial manipulator
	System Setup
	Epson VT6 Industrial Manipulator
	Proprietary interfacing software Epson RC+
	Virtualized environment

	Case study
	Interfacing between components
	Experimental results

	Conclusions

	IV Conclusion
	Concluding remarks
	Future work

	V Appendices
	Comau Smart3-S2 model
	Epson RC+ motion commands

