De Carlo, Alessandro

De Carlo, Alessandro  

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE  

Mostra records
Risultati 1 - 12 di 12 (tempo di esecuzione: 0.01 secondi).
Titolo Data di pubblicazione Autore(i) File
A Two-Stages Global Sensitivity Analysis by using the delta sensitivity index in presence of correlated inputs: Application on a Tumor Growth Inhibition model based on the Dynamic Energy Budget theory 1-gen-2023 De Carlo, A.; Tosca, E. M.; Melillo, N.; Magni, P.
A Two-Stages Global Sensitivity Analysis in presence of correlated inputs: Application on a Tumor-in-host-growth Inhibition model based on the Dynamic Energy Budget theory 1-gen-2022 De Carlo, A.; Tosca, E. M.; Melillo, N.; Magni, P.
Combining Reinforcement Learning and PK-PD models to personalize multiple drug administration: an application to Axitinib-Anti-Hypertensive treatment in metastatic renal cancer patients 1-gen-2024 De Carlo, A.; Tosca, E. M.; Terranova, N.; Magni, P.
Dealing with stochasticity in precision dosing decision-making processes by fully exploiting PK-PD modelling in Reinforcement Learning algorithms. A practical case-study on Vancomycin continuous infusion in ICU patients 1-gen-2024 De Carlo, A.; Tosca, E. M.; Magni, P.
How Modelling and Simulations combined with Artificial Intelligence can improve Precision Dosing 1-gen-2022 De Carlo, A.; Tosca, E. M.; Bartolucci, R.; Castellano, S.; Fiorentini, F.; Manzoni, S.; Di Tollo, S.; Caserini, M.; Rocchetti, M.; Bettica, P.; Magni, P.
In silico trial for the assessment of givinostat dose adjustment rules based on the management of key hematological parameters in polycythemia vera patients 1-gen-2024 Tosca, E. M.; De Carlo, A.; Bartolucci, R.; Fiorentini, F.; Di Tollo, S.; Caserini, M.; Rocchetti, M.; Bettica, P.; Magni, P.
Integrating Reinforcement Learning and PK-PD modelling to enable precision dosing: a multi-objective optimization for the treatment of Polycithemia Vera patients with Givinostat 1-gen-2023 De Carlo, A.; Tosca, E. M.; Magni, P.
Model-informed reinforcement learning for enabling precision dosing via adaptive dosing 1-gen-2024 Tosca, E. M.; De Carlo, A.; Ronchi, D.; Magni, P.
mvLognCorrEst: an R package for sampling from multivariate lognormal distributions and estimating correlations from uncomplete correlation matrix 1-gen-2023 De Carlo, A.; Tosca, E. M.; Melillo, N.; Magni, P.
PopPK-PD modelling of Carboplatin-induced myelosuppression to support therapeutic drug monitoring and dose individualization in cancer patients using Electronic Health Record Data 1-gen-2024 De Carlo, A.; Crul, M.; Schutte, T.; van Zuylen, L.; Bahce, I.; van Valkengoed, C. F. Loo and D.; Huls, H.; Tosca, E. M.; Magni, P.; Bartelink, I.
Predicting ADMET properties from molecule SMILE: a bottom-up approach using attention-based Graph Neural Networks 1-gen-2024 De Carlo, A.; Ronchi, D.; Piastra, M.; Tosca, E. M.; Magni, P.
Reinforcement Learning and PK-PD Models Integration to Personalize the Adaptive Dosing Protocol of Erdafitinib in Patients with Metastatic Urothelial Carcinoma 1-gen-2024 De Carlo, A.; Tosca, E. M.; Fantozzi, M.; Magni, P.