Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins that then aggregate extracellularly as insoluble fibrils, damaging structure and function of affected organs. My PhD project has been designed to address the crucial question of the mechanism of globular to fibrillary conversion of two amyloidogenic proteins, transthyretin (TTR) and β2-microglobulin (β2-m), in conditions that closely resemble the physiological environment. For those reasons, I have been trying to combine in vitro and in vivo methods in order to get a general and broadest comprehension of the process that leads toward the deposition of amyloid fibrils. Wild-type TTR is intrinsically amyloidogenic and tends to form microscopic and clinically silent amyloid deposits in the heart, in the lungs and in the blood vessels wall of the majority of elderly people, causing Senile systemic amyloidosis (SSA). Over 100 mutations codify for protein variants of the WT TTR, causing familial amyloidosis, although they have a rare incidence. Firstly, I investigated the inhibition of transthyretin isoforms by small ligands. The study was based on the discovery of the previously unrecognised mechano enzymatic mechanism in which shear stress and proteolysis play a key role towards the formation of amyloid fibrils. This pathway of aggregation is efficiently inhibited only by ligands that occupy both binding sites in TTR. Mds84, a bivalent ligand of TTR superstabiliser family, has shown to be more potent than the monovalent ligands probably because of its additional interactions of its linker within the TTR central channel. Secondly, I have been actively involved in the identification of the putative protease responsible for proteolysis of transthyretin in vivo. In a comprehensive bioinformatics search for systemically active proteases with tryptic specificity, plasmin was selected as the leading candidate. Indeed, plasmin selectively cleaves TTR in vitro, releasing full length and truncated protomers that rapidly aggregate via nucleation and elongation into genuine amyloid fibrils. Finally, I carried out a comparative analysis of the thermodynamic stability of natural and in vitro made TTR fibrils. The second protein that I studied was β2-m. WT β2-m is associated with the amyloidosis of patients under chronic haemodialytic treatment; known as dialysis-related amyloidosis, but in the presence of a specific mutation (D76N β2-m) causes a familial form of systemic amyloidosis. Recently C. elegans, a nematode model well suited to the investigation of age-related diseases, was used in order to establish three transgenic lines expressing the wild type and two highly amyloidogenic forms, but the expression of the D76N variant was not possible with this system. Therefore, the smg-1 temperature sensitive strain was engineered, in order to express the protein variant only at higher temperatures. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and an algorithm, Paragon, we were able to rapidly detect growth and motility impairment in D76N β2-m expressing worms that were incubated at 25°C. Moreover, the INVAPP/Paragon system enabled demonstration of the efficacy of doxycycline, a drug able to inhibit β2-m fibrillogenesis both in vitro and in vivo. Thus, a useful C. elegans model for D76N β2-m related amyloidosis has been developed and the INVAPP/Paragon system provides a powerful tool with which to undertake high-throughput screening in the search for candidates able to combat amyloid-induced toxicity. Indeed, using the automated system for C. elegans phenotyping, a library-scale screening was performed and 11 molecules, which are interactors of protein-protein complexes, have been selected for their ability to revert the defective phenotype of transgenic worms expressing Aβeta1-42 peptide.
Il mio progetto di ricerca ha riguardato lo studio dei meccanismi di aggregazione di proteine globulari dalla loro forma solubile a quella fibrillare insolubile. In particolare mi sono occupata dello studio di due proteine: transtiretina (TTR) e β2-microglobulina (β2-m). La prima proteina è correlata ad una forma di amiloidosi senile e sistemica denominata Senile Systemic Amyloidosis. Inoltre esistono più di 100 mutazioni di TTR che danno luogo a patologie ereditarie differenti. Dallaltra parte, lelevata concentrazione di β2-m nei pazienti dializzati per lungo tempo può causare una forma di amiloidosi acquisita chiamata Dialysis Related Amyloidosis. Nel 2012, è stata scoperta la prima variante naturale di β2-m, che presenta una sostituzione amminoacidica in posizione 76 (β2-m D76N) ed è responsabile di una forma ereditabile e molto aggressiva della patologia. Per andare a meglio comprendere quali siano i meccanismi molecolari alla base dellinsorgenza dellamiloidosi correlata a queste due proteine, ho sviluppato sia modelli della patologia in vitro sia modelli a complessità biologica maggiore in vivo. Per quanto riguarda la TTR: il mio lavoro di ricerca è stato promosso dalla recente individuazione di un meccanismo di fibrillogenesi in vitro denominato meccano- enzimatico che, utilizzando la tripsina e in condizioni di agitazione meccanica, porta alla formazione di fibrille amiloidi con caratteristiche morfologiche simili a quelle estratte ex vivo da campioni di pazienti affetti da amiloidosi. In particolare ho potuto riesaminare con questo nuovo metodo di aggregazione, lefficacia di alcuni farmaci studiati per evitare la dissociazione della struttura tetramerica di TTR che rappresenta levento scatenante dellaggregazione ottenuta in condizioni di pH estremo. Tra questi ho potuto osservare che ligandi bivalenti, tra cui mds84, legandosi a entrambi i siti di legame della tiroxina, si sono dimostrati più efficaci rispetto a quelli monovalenti. In secondo luogo ho potuto contribuire allidentificazione della proteasi responsabile del taglio proteolitico della TTR e della sua conseguente aggregazione in vivo. La plasmina è stata identificata a partire da un database denominato MEROPS, e la sua abilità di generare fibre amiloidi in vitro con caratteristiche simili a quelle naturali, è stata dimostrata sperimentalmente. Nellottica di comparare le fibrille prodotte con quelle estratte ex vivo, ho effettuato degli studi di termodinamica e ho evidenziato la maggiore stabilità delle fibrille ottenute con il metodo meccano-enzimatico rispetto a quelle ottenute a pH acido con il metodo proposto da Kelly a pH acido. Il secondo progetto di cui mi sono occupata durante questi anni ha riguardato la creazione e la caratterizzazione di una linea transgenica di C. elegans che esprime la variante naturale della β2-microglobulina umana tramite lutilizzo di un sistema termo-inducibile. Infatti con questo sistema, lespressione della proteina è permessa solo quando i vermi vengono coltivati ad alte temperature (23-25°C). Per poter valutare il difetto fenotipico di questa linea transgenica, ho utilizzato un sistema automatizzato, chiamato INVAPP/Paragon, e tramite il suo utilizzo, ho dimostrato in vivo lefficacia della doxiciclina, un noto inibitore dellaggregazione della β2-m in vitro. Ho avuto anche loccasione di effettuare uno screening su una libreria di molecole disegnata a partire da una database disponibile online che raccoglie informazioni riguardo la struttura dei complessi proteina-proteina e dei loro inibitori. Ho quindi testato questa libreria su una linea di C. elegans esprimente il peptide Aβeta1-42, modello della patologia di Alzheimer, e sono riuscita ad identificare 11 molecole in grado di agire sul difetto di motilità presentato dai nematodi transgenici.
Meccanismi molecolari dell'amiloidosi sistemica: modelli in vitro e in vivo
FARAVELLI, GIULIA
2019-12-12
Abstract
Systemic amyloidosis is a fatal disease caused by misfolding of native globular proteins that then aggregate extracellularly as insoluble fibrils, damaging structure and function of affected organs. My PhD project has been designed to address the crucial question of the mechanism of globular to fibrillary conversion of two amyloidogenic proteins, transthyretin (TTR) and β2-microglobulin (β2-m), in conditions that closely resemble the physiological environment. For those reasons, I have been trying to combine in vitro and in vivo methods in order to get a general and broadest comprehension of the process that leads toward the deposition of amyloid fibrils. Wild-type TTR is intrinsically amyloidogenic and tends to form microscopic and clinically silent amyloid deposits in the heart, in the lungs and in the blood vessels wall of the majority of elderly people, causing Senile systemic amyloidosis (SSA). Over 100 mutations codify for protein variants of the WT TTR, causing familial amyloidosis, although they have a rare incidence. Firstly, I investigated the inhibition of transthyretin isoforms by small ligands. The study was based on the discovery of the previously unrecognised mechano enzymatic mechanism in which shear stress and proteolysis play a key role towards the formation of amyloid fibrils. This pathway of aggregation is efficiently inhibited only by ligands that occupy both binding sites in TTR. Mds84, a bivalent ligand of TTR superstabiliser family, has shown to be more potent than the monovalent ligands probably because of its additional interactions of its linker within the TTR central channel. Secondly, I have been actively involved in the identification of the putative protease responsible for proteolysis of transthyretin in vivo. In a comprehensive bioinformatics search for systemically active proteases with tryptic specificity, plasmin was selected as the leading candidate. Indeed, plasmin selectively cleaves TTR in vitro, releasing full length and truncated protomers that rapidly aggregate via nucleation and elongation into genuine amyloid fibrils. Finally, I carried out a comparative analysis of the thermodynamic stability of natural and in vitro made TTR fibrils. The second protein that I studied was β2-m. WT β2-m is associated with the amyloidosis of patients under chronic haemodialytic treatment; known as dialysis-related amyloidosis, but in the presence of a specific mutation (D76N β2-m) causes a familial form of systemic amyloidosis. Recently C. elegans, a nematode model well suited to the investigation of age-related diseases, was used in order to establish three transgenic lines expressing the wild type and two highly amyloidogenic forms, but the expression of the D76N variant was not possible with this system. Therefore, the smg-1 temperature sensitive strain was engineered, in order to express the protein variant only at higher temperatures. Using the INVertebrate Automated Phenotyping Platform (INVAPP) and an algorithm, Paragon, we were able to rapidly detect growth and motility impairment in D76N β2-m expressing worms that were incubated at 25°C. Moreover, the INVAPP/Paragon system enabled demonstration of the efficacy of doxycycline, a drug able to inhibit β2-m fibrillogenesis both in vitro and in vivo. Thus, a useful C. elegans model for D76N β2-m related amyloidosis has been developed and the INVAPP/Paragon system provides a powerful tool with which to undertake high-throughput screening in the search for candidates able to combat amyloid-induced toxicity. Indeed, using the automated system for C. elegans phenotyping, a library-scale screening was performed and 11 molecules, which are interactors of protein-protein complexes, have been selected for their ability to revert the defective phenotype of transgenic worms expressing Aβeta1-42 peptide.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_FARAVELLI.pdf
Open Access dal 23/06/2021
Descrizione: tesi di dottorato
Dimensione
15.2 MB
Formato
Adobe PDF
|
15.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.