Nowadays, additive manufacturing in construction industry gives advantages in terms of improved production rate, architectural flexibility and cost reduction, posing new engineering challenges. Most of these challenges consist in optimizing the concrete compatibility with the extrusion and the buildup process, resulting in specific mechanical requirements. However, focusing on testing procedure, it is clear that until now no standards are recognized; it comes out that authors may refer either to soil or to hardened testing, giving rise to a scarce prediction capability. As a result, this work deals with the monitoring of 3D printable concrete mechanical strength evolution, i.e., when the early age mix develops from the fresh to the hardened state. Initially, fundamentals of 3D Concrete Printing are outlined, along with a breakdown of the chronological succession of literature documents where potentials and challenges of the method are highlighted. Subsequently, a 3D printable concrete mix is developed and tested: in detail, three testing typologies are explored, i.e., uniaxial unconfined compression tests, uniaxial compression creep tests and rheological tests. In order to define a dedicated testing framework, we consider four variables that may affect results influencing buildability and creep: (i) the early age curing time, (ii) the percentage of superplasticizer, (iii) the employment of membrane during the sample casting and (iv) the displacement rate. By contrast, rheological tests are performed by varying only the percentage of superplasticizer. Finally, we provide an analytical framework for failure prediction.
Oggigiorno la manifattura additiva per le costruzioni fornisce vantaggi in termini di migliorato tasso di produzione, flessibilità architettonica e riduzione dei costi, ponendo nuove sfide ingegneristiche. Molte di queste sfide consistono nellottimizzare la compatibilità del calcestruzzo con il processo di estrusione e di buildability, sfociando in specifici requisiti meccanici. Tuttavia, focalizzandosi sulle procedure di prova, è chiaro che fino ad oggi nessuna linea guida è stata riconosciuta; ne consegue che gli autori possono riferirsi o a test sul terreno o su calcestruzzi induriti, dando vita a una scarsa capacità di predizione. Questo lavoro tratta il monitoraggio dellevoluzione della resistenza meccanica per calcestruzzi stampabili, cioè quando il materiale si trasforma dallo stato fresco a quello indurito. Inizialmente sono stati delineati i fondamenti del 3D Concrete Printing, assieme ad un analisi dettagliata della successione cronologica in letteratura, dove potenzialità e sfide del metodo sono state evidenziate. Successivamente un mix stampabile in 3D è stato sviluppato e testato: precisamente, tre tipologie di test sono state esplorate, cioè, prove a compressione uniassiali non confinate, prove a compressione uniassiali per creep e test reologici. Al fine di definire una struttura per i test futuri, sono state considerate quattro variabili che potenzialmente influenzano la buildaiblity e il creep: (i) la maturazione dallo stato fresco, (ii) la percentuale di superfluidificante, (iii) lutilizzo di una membrana durante la produzione dei provini e (iv) il tasso di spostamento. Contrariamente, i test reologici sono effettuati variando unicamente la percentuale di superfluidificante. Infine viene fornita una struttura analitica per la predizione del collasso.
3D Concrete Printing: a new Era in Construction Industry
CASAGRANDE, LORENZO
2020-03-20
Abstract
Nowadays, additive manufacturing in construction industry gives advantages in terms of improved production rate, architectural flexibility and cost reduction, posing new engineering challenges. Most of these challenges consist in optimizing the concrete compatibility with the extrusion and the buildup process, resulting in specific mechanical requirements. However, focusing on testing procedure, it is clear that until now no standards are recognized; it comes out that authors may refer either to soil or to hardened testing, giving rise to a scarce prediction capability. As a result, this work deals with the monitoring of 3D printable concrete mechanical strength evolution, i.e., when the early age mix develops from the fresh to the hardened state. Initially, fundamentals of 3D Concrete Printing are outlined, along with a breakdown of the chronological succession of literature documents where potentials and challenges of the method are highlighted. Subsequently, a 3D printable concrete mix is developed and tested: in detail, three testing typologies are explored, i.e., uniaxial unconfined compression tests, uniaxial compression creep tests and rheological tests. In order to define a dedicated testing framework, we consider four variables that may affect results influencing buildability and creep: (i) the early age curing time, (ii) the percentage of superplasticizer, (iii) the employment of membrane during the sample casting and (iv) the displacement rate. By contrast, rheological tests are performed by varying only the percentage of superplasticizer. Finally, we provide an analytical framework for failure prediction.File | Dimensione | Formato | |
---|---|---|---|
Casagrande2019Thesis_REV.pdf
Open Access dal 30/09/2021
Descrizione: tesi di dottorato
Dimensione
28.03 MB
Formato
Adobe PDF
|
28.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.