Bone reconstruction and regeneration via biocompatible scaffolds becomes a clinical choice when the bone healing ability is hampered by critical size damage or by specific pathologies such as osteoporosis, osteoarthritis, or diabetes. Bone physiology is profoundly dependent on the physical solicitations the tissue receives, also due to its inherent and lifelong dynamicity. That said, the study of the biological response to different physical stimulation is of great relevance for the molecular understanding and manipulation of bone regenerative skills. In this project, I focused on the study and the application of different physical cues on the bone environment and bone cells. The aim was to better characterize and improve the molecular mechanisms behind bone regeneration. The effects of topological and electromagnetic solicitations, nanotechnology application (i.e., strontium hydroxyapatite), and simulated microgravity exposure were investigated with different biochemical, biomolecular and bioinformatic approaches. More in details, bone regeneration and osseointegration has been studied using titanium scaffolds with advanced topological features, Gelfoam scaffolds loaded with strontium hydroxyapatite, and wool-keratin scaffolds functionalized with newly synthesized extracellular matrix (Chapter 3.1, 3.2-3, and 3.4 respectively). These solutions have been applied to in vitro and/or in vivo models, allowing us to obtain promising results on the osseointegration capacity of the designed scaffolds. Moreover, human bone marrow stromal cells (BMSCs) in osteogenic differentiation were exposed to simulated microgravity and the effects of these stimulus were studied (Chapter 4). The working hypothesis can be stated as follow: BMSCs might only be relatively affected by direct exposure to simulated gravity in vitro, as the biochemical signalling and their plasticity would rescue the osteogenic phenotype in time. The results, only partially explored to date, seem to suggest our initial working hypothesis might be accepted. However, the need for additional empirical profs is necessary. The basic and translational research advancements in the fields of bone tissue engineering and bone tissue regeneration, on one hand is necessary to solve current worldwide healthcare issues. On the other hand, it could aid, along with other disciplines, the safety and potentialities of space travelling.
La rigenerazione del tessuto osseo mediante innesti sintetici è una soluzione clinica sempre più rilevante. Un approccio ricostruttivo diventa ncessario nel momento in cui le capacità di guarigione del tessuto vengono inficiate da lesioni di dimensioni critiche o patologie quali osteoporosi, osteoartrite o diabete. La fisiologia del tessuto osseo è strettamente dipendente dalle sollecitazioni fisiche che questo riceve, anche per via della sua intrinseca dinamicità che permane durante tutta la vita dell’organismo. Quindi, lo studio della risposta biologica ai diversi stimoli meccanici è fondamentale per la corretta comprensione e manipolazione delle capacità rigenerative. In questo progetto, ci siamo concentrati sullo studio e l’applicazione di diversi stimoli meccanici sulle cellule dell’osso coltivate in vitro, e sul tessuto stesso, in vivo. Lo scopo è stato quello di caratterizzare ed accelerare i meccanismi molecolari che portano alla rigenerazione. Gli effetti di topologia, sollecitazioni elettromagnetiche, applicazioni nanotecnologiche (per esempio le nanoparticelle di idrossiapatite di stronzio) e l’esposizione ad un ridotto vettore gravità (microgravità), sono stati analizzati con diversi approcci biochimici, biomolecolari e bioinformatici. Nel dettaglio, il processo rigenerativo e l’osteointegrazione degli impianti sono stati studiati con innesti in titanio con avanzate caratteristiche topologiche, innesti di gelatina (Gelfoam) caricati con idrossiapatite di stronzio, e scaffolds di cheratina funzionalizzati con matrice extracellulare (Capitoli 3.1, 3.2-3, e 3.4 rispettivamente). Queste soluzioni hanno consentito l’ottenimento di promettenti risultati, in termini di capacità osteointegrativa e rigenerativa. In aggiunta, è stata studiata l’influenza della microgravità simulata sul differenziamento osteogenico delle cellule staminali scheletriche (Capitolo 4). L’ipotesi di lavoro può essere enunciata come segue: le cellule cresciute in vitro vengono condizionate solo parzialmente dalla diretta esposizione alla microgravità simulata. Ciò può essere attribuito agli stimoli biochimici applicati e la plasticità delle stesse cellule, che consente di recuperare il fenotipo osteogenico, in tempi più lunghi. I risultati sono stati solo parzialmente elaborati ad oggi e ulteriori analisi sono necessarie per concludere lo studio. Tuttavia, i dati analizzati sembrano sostenere l’ipotesi di lavoro. Gli avanzamenti sulla ricerca di base e traslazionale nel campo dell’ingegneria tissutale e della rigenerazione dell’osso possono, da un lato, promuovere la risoluzione di problemi di portata mondiale, come fratture e amputazioni, e dall’altro lato porterebbero ad accrescere le chance e ridurre le tempistiche, per rendere più sicura la permanenza nello spazio extraterrestre.
L’ingegneria tissutale nella biologia dell’osso: la meccano-trasduzione dei segnali fisici
MONTAGNA, GIULIA
2022-03-18
Abstract
Bone reconstruction and regeneration via biocompatible scaffolds becomes a clinical choice when the bone healing ability is hampered by critical size damage or by specific pathologies such as osteoporosis, osteoarthritis, or diabetes. Bone physiology is profoundly dependent on the physical solicitations the tissue receives, also due to its inherent and lifelong dynamicity. That said, the study of the biological response to different physical stimulation is of great relevance for the molecular understanding and manipulation of bone regenerative skills. In this project, I focused on the study and the application of different physical cues on the bone environment and bone cells. The aim was to better characterize and improve the molecular mechanisms behind bone regeneration. The effects of topological and electromagnetic solicitations, nanotechnology application (i.e., strontium hydroxyapatite), and simulated microgravity exposure were investigated with different biochemical, biomolecular and bioinformatic approaches. More in details, bone regeneration and osseointegration has been studied using titanium scaffolds with advanced topological features, Gelfoam scaffolds loaded with strontium hydroxyapatite, and wool-keratin scaffolds functionalized with newly synthesized extracellular matrix (Chapter 3.1, 3.2-3, and 3.4 respectively). These solutions have been applied to in vitro and/or in vivo models, allowing us to obtain promising results on the osseointegration capacity of the designed scaffolds. Moreover, human bone marrow stromal cells (BMSCs) in osteogenic differentiation were exposed to simulated microgravity and the effects of these stimulus were studied (Chapter 4). The working hypothesis can be stated as follow: BMSCs might only be relatively affected by direct exposure to simulated gravity in vitro, as the biochemical signalling and their plasticity would rescue the osteogenic phenotype in time. The results, only partially explored to date, seem to suggest our initial working hypothesis might be accepted. However, the need for additional empirical profs is necessary. The basic and translational research advancements in the fields of bone tissue engineering and bone tissue regeneration, on one hand is necessary to solve current worldwide healthcare issues. On the other hand, it could aid, along with other disciplines, the safety and potentialities of space travelling.File | Dimensione | Formato | |
---|---|---|---|
PhDThesisR_GM_24222pdf_A.pdf
Open Access dal 28/09/2023
Descrizione: PhD_Thesis_GMontagna
Tipologia:
Tesi di dottorato
Dimensione
5.2 MB
Formato
Adobe PDF
|
5.2 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.