Brain modeling constantly evolves to improve the accuracy of the simulated brain dynamics with the ambitious aim to build a digital twin of the brain. Specific models tuned on brain regions specific features empower the brain simulations introducing bottom-up physiology properties into data-driven simulators. Despite the cerebellum contains 80 % of the neurons and is deeply involved in a wide range of functions, from sensorimotor to cognitive ones, a specific cerebellar model is still missing. Furthermore, its quasi-crystalline multi-layer circuitry deeply differs from the cerebral cortical one, therefore is hard to imagine a unique general model suitable for the realistic simulation of both cerebellar and cerebral cortex. The present thesis tackles the challenge of developing a specific model for the cerebellum. Specifically, multi-neuron multi-layer mean field (MF) model of the cerebellar network, including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells, was implemented, and validated against experimental data and the corresponding spiking neural network microcircuit model. The cerebellar MF model was built using a system of interdependent equations, where the single neuronal populations and topological parameters were captured by neuron-specific inter- dependent Transfer Functions. The model time resolution was optimized using Local Field Potentials recorded experimentally with high-density multielectrode array from acute mouse cerebellar slices. The present MF model satisfactorily captured the average discharge of different microcircuit neuronal populations in response to various input patterns and was able to predict the changes in Purkinje Cells firing patterns occurring in specific behavioral conditions: cortical plasticity mapping, which drives learning in associative tasks, and Molecular Layer Interneurons feed-forward inhibition, which controls Purkinje Cells activity patterns. The cerebellar multi-layer MF model thus provides a computationally efficient tool that will allow to investigate the causal relationship between microscopic neuronal properties and ensemble brain activity in health and pathological conditions. Furthermore, preliminary attempts to simulate a pathological cerebellum were done in the perspective of introducing our multi-layer cerebellar MF model in whole-brain simulators to realize patient-specific treatments, moving ahead towards personalized medicine. Two preliminary works assessed the relevant impact of the cerebellum on whole-brain dynamics and its role in modulating complex responses in causal connected cerebral regions, confirming that a specific model is required to further investigate the cerebellum-on- cerebrum influence. The framework presented in this thesis allows to develop a multi-layer MF model depicting the features of a specific brain region (e.g., cerebellum, basal ganglia), in order to define a general strategy to build up a pool of biology grounded MF models for computationally feasible simulations. Interconnected bottom-up MF models integrated in large-scale simulators would capture specific features of different brain regions, while the applications of a virtual brain would have a substantial impact on the reality ranging from the characterization of neurobiological processes, subject-specific preoperative plans, and development of neuro-prosthetic devices.

DEVELOPMENT OF A CEREBELLAR MEAN FIELD MODEL: THE THEORETICAL FRAMEWORK, THE IMPLEMENTATION AND THE FIRST APPLICATION

LORENZI, ROBERTA MARIA
2022-12-19

Abstract

Brain modeling constantly evolves to improve the accuracy of the simulated brain dynamics with the ambitious aim to build a digital twin of the brain. Specific models tuned on brain regions specific features empower the brain simulations introducing bottom-up physiology properties into data-driven simulators. Despite the cerebellum contains 80 % of the neurons and is deeply involved in a wide range of functions, from sensorimotor to cognitive ones, a specific cerebellar model is still missing. Furthermore, its quasi-crystalline multi-layer circuitry deeply differs from the cerebral cortical one, therefore is hard to imagine a unique general model suitable for the realistic simulation of both cerebellar and cerebral cortex. The present thesis tackles the challenge of developing a specific model for the cerebellum. Specifically, multi-neuron multi-layer mean field (MF) model of the cerebellar network, including Granule Cells, Golgi Cells, Molecular Layer Interneurons, and Purkinje Cells, was implemented, and validated against experimental data and the corresponding spiking neural network microcircuit model. The cerebellar MF model was built using a system of interdependent equations, where the single neuronal populations and topological parameters were captured by neuron-specific inter- dependent Transfer Functions. The model time resolution was optimized using Local Field Potentials recorded experimentally with high-density multielectrode array from acute mouse cerebellar slices. The present MF model satisfactorily captured the average discharge of different microcircuit neuronal populations in response to various input patterns and was able to predict the changes in Purkinje Cells firing patterns occurring in specific behavioral conditions: cortical plasticity mapping, which drives learning in associative tasks, and Molecular Layer Interneurons feed-forward inhibition, which controls Purkinje Cells activity patterns. The cerebellar multi-layer MF model thus provides a computationally efficient tool that will allow to investigate the causal relationship between microscopic neuronal properties and ensemble brain activity in health and pathological conditions. Furthermore, preliminary attempts to simulate a pathological cerebellum were done in the perspective of introducing our multi-layer cerebellar MF model in whole-brain simulators to realize patient-specific treatments, moving ahead towards personalized medicine. Two preliminary works assessed the relevant impact of the cerebellum on whole-brain dynamics and its role in modulating complex responses in causal connected cerebral regions, confirming that a specific model is required to further investigate the cerebellum-on- cerebrum influence. The framework presented in this thesis allows to develop a multi-layer MF model depicting the features of a specific brain region (e.g., cerebellum, basal ganglia), in order to define a general strategy to build up a pool of biology grounded MF models for computationally feasible simulations. Interconnected bottom-up MF models integrated in large-scale simulators would capture specific features of different brain regions, while the applications of a virtual brain would have a substantial impact on the reality ranging from the characterization of neurobiological processes, subject-specific preoperative plans, and development of neuro-prosthetic devices.
19-dic-2022
File in questo prodotto:
File Dimensione Formato  
Lorenzi_PHD_Thesis.pdf

Open Access dal 24/06/2023

Descrizione: DEVELOPMENT OF A CEREBELLAR MEAN FIELD MODEL: THE THEORETICAL FRAMEWORK, THE IMPLEMENTATION AND THE FIRST APPLICATION
Tipologia: Tesi di dottorato
Dimensione 12.85 MB
Formato Adobe PDF
12.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1474653
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact