Hypertrophic scars (HTS) are aberrant structures that develop following a complex cutaneous injury characterized by a chronic inflammatory process as a response to healing. To date, there is no satisfactory solution available on the market for preventing the onset of HTSs due to the complexity of the multiple mechanisms underlying these pathological structures. Regarding the therapeutic treatments currently employed in clinical practice, they result to be invasive, and their effectiveness is closely related to interindividual variability. The present research work involved the design, development, and validation of an advanced electrospun dressing capable of countering the formation of HTSs in complex wounds through extended three-day action on the application site. The first part of this research activity included a design study concerning the shape and texture intended for the development of the electrospun platform (Biofiber). These structural elements of the matrix were carefully selected to achieve maximum functionality and versatility in clinical application. In the second part of the study, the unique characteristics of the matrix were combined with the ancillary antifibrotic action derived from the encapsulation of Naringin (NG; 2.0 % w/w), a natural agent selected to produce a Class IIb medical device with prophylactic action (Biofiber NG). The concluding part involved the development of prototypes with pharmacological-therapeutic action belonging to the Class III medical devices (Biofiber PF). Pirfenidone (PF; 1.5 % w/w), a product of synthesis specific for pathological fibrotic processes, was chosen as the ancillary therapeutic agent to counter the formation of HSFs. Biofiber consists of a textured fibrous matrix based on poly-L-lactide-co poly-ε-caprolactone (PLA-PCL), composed of homogeneous and well interconnected electrospun fibers. The dense network of polymeric fibers, due to its moderately hydrophobic behavior, allows for ideal management of exudate, ensuring an optimal balance between fluid absorption and transmission of water vapor. The unique flexibility and conformability of Biofiber to body surfaces are attributed to its innovative circular texture, capable of maintaining an optimal elongation rate and good tenacity throughout the treatment duration. The prophylactic antifibrotic activity of Biofiber NG and Biofiber PF was analyzed in-vitro on normal human dermal fibroblasts (NHDF) and human fibroblasts of scar origin (HSF). Subsequently, the same action was evaluated in a complex ex-vivo model of human skin. The results obtained in NHDF demonstrated the antifibrotic potential of both developed prototypes by regulating the main factors involved in the fibrotic process, starting from the third day of treatment. Antifibrotic activity in HSF was observed only from the sixth day of treatment with Biofiber PF, given the pathological nature of these fibrotic cells. Data obtained from the complex ex-vivo model of human skin did not yield significant results due to the time limitations of the experimental model. Therefore, to meet the requirements set by the 2017/745 EU regulation for medical devices, the antifibrotic activity of Biofiber PF must be investigated in an extended time frame (30 days), using a swine animal model. Utilizing the variety of physical, chemical, and mechanical properties offered by electrospinning technologies, this work has demonstrated the scientific contribution that Biofiber could make in the field of complex wound treatments.
Il presente lavoro di ricerca ha previsto la progettazione, realizzazione e validazione di una medicazione avanzata elettrofilata in grado di contrastare la formazione di cicatrici ipertrofiche (HTS) in ferite complesse mediante un'azione prolungata di tre giorni sul sito di applicazione. La prima parte di questa attività di ricerca ha previsto uno studio di progettazione riguardante la forma e la texture destinate alla realizzazione della piattaforma elettrofilata (Biofiber). Questi elementi strutturali della matrice sono stati accuratamente selezionati per ottenere la massima funzionalità e versatilità nell'applicazione clinica. Nella seconda parte dello studio, le caratteristiche peculiari della matrice sono state abbinate all’azione ancillare antifibrotica derivata dall'incapsulazione di Naringina (NG; 2.0 % w/w), un agente di origine naturale, selezionato per la realizzazione di dispositivo medico di classe II B con azione di profilassi (Biofiber NG). La parte conclusiva ha previsto lo sviluppo di prototipi con azione farmacologica-terapeutica appartenenti alla classe dei dispositivi medici di classe III (Biofiber PF). Pirfenidone (PF; 1.5 % w/w), un agente di sintesi specifico per processi patologici di origine fibrotica, è stato scelto come agente ancillare terapeutico per contrastare la formazione di HSF. I risultati ottenuti hanno dimostrato che Biofiber consiste in una matrice testurizzata a base di poli-L-lattide-co-polie-caprolattone (PLA-PCL), composta da fibre elettrofilate omogenee e ben interconnesse. La fitta rete di fibre polimeriche, grazie al suo comportamento moderatamente idrofobico, permette una gestione ideale dell'essudato, garantendo un equilibrio ottimale tra assorbimento dei fluidi e trasmissione del vapore acqueo. La peculiare flessibilità e conformabilità di Biofiber alle superfici corporee sono dovute alla sua innovativa texture circolare, in grado di mantenere un tasso di elongazione ottimale ed una buona tenacità per tutta la durata del trattamento. L'attività profilattica antifibrotica di Biofiber NG e Biofiber PF è stata analizzata in-vitro su fibroblasti dermici umani normali (NHDF) e fibroblasti umani di origine cicatriziale (HSF); successivamente, la medesima azione è stata valutata in un modello complesso ex-vivo di cute umana. I risultati ottenuti in NHDF hanno evidenziato il potenziale antifibrotico di entrambi i prototipi realizzati a partire dai 3 giorni di trattamento, mediante la regolazione dei principali fattori coinvolti nel processo fibrotico. L'attività antifibrotica in HSF è stata rilevata solo a partire dal sesto giorno di trattamento con Biofiber PF.I dati ottenuti nel trattamento di NHDF hanno evidenziato il potenziale profilattico antifibrotico di Biofiber NG in un processo di guarigione precoce; per questa tipologia di formulazione, nessun risultato statisticamente significativo è stato osservato nel trattamento di cellule ipertrofiche (HSF). L'efficacia di Biofiber PF in un processo di guarigione consolidato è stata dimostrata mediante evidenze ottenute nel trattamento di HSF le quali hanno permesso di evidenziare il potenziale terapeutico in-vitro nella modulazione di α-SMA. I risultati ottenuti dal modello sperimentale complesso ex-vivo di cute umana non hanno avuto un riscontro significativo a causa delle limitazioni temporali del modello sperimentale. Per questo motivo, l'attività antifibrotica di Biofiber PF dovrà essere indagata in un modello animale suino con un arco temporale di trattamento esteso (30 giorni). Utilizzando la varietà di proprietà fisiche, chimiche e meccaniche offerte dalle tecnologie di elettrofilatura, il presente lavoro ha dimostrato il contributo scientifico che Biofiber potrebbe apportare nell'ambito dei trattamenti delle ferite complesse.
Design and Development of an Advanced Electrospun Dressing for Complex Wounds
TOTTOLI, ERIKA MARIA
2024-04-12
Abstract
Hypertrophic scars (HTS) are aberrant structures that develop following a complex cutaneous injury characterized by a chronic inflammatory process as a response to healing. To date, there is no satisfactory solution available on the market for preventing the onset of HTSs due to the complexity of the multiple mechanisms underlying these pathological structures. Regarding the therapeutic treatments currently employed in clinical practice, they result to be invasive, and their effectiveness is closely related to interindividual variability. The present research work involved the design, development, and validation of an advanced electrospun dressing capable of countering the formation of HTSs in complex wounds through extended three-day action on the application site. The first part of this research activity included a design study concerning the shape and texture intended for the development of the electrospun platform (Biofiber). These structural elements of the matrix were carefully selected to achieve maximum functionality and versatility in clinical application. In the second part of the study, the unique characteristics of the matrix were combined with the ancillary antifibrotic action derived from the encapsulation of Naringin (NG; 2.0 % w/w), a natural agent selected to produce a Class IIb medical device with prophylactic action (Biofiber NG). The concluding part involved the development of prototypes with pharmacological-therapeutic action belonging to the Class III medical devices (Biofiber PF). Pirfenidone (PF; 1.5 % w/w), a product of synthesis specific for pathological fibrotic processes, was chosen as the ancillary therapeutic agent to counter the formation of HSFs. Biofiber consists of a textured fibrous matrix based on poly-L-lactide-co poly-ε-caprolactone (PLA-PCL), composed of homogeneous and well interconnected electrospun fibers. The dense network of polymeric fibers, due to its moderately hydrophobic behavior, allows for ideal management of exudate, ensuring an optimal balance between fluid absorption and transmission of water vapor. The unique flexibility and conformability of Biofiber to body surfaces are attributed to its innovative circular texture, capable of maintaining an optimal elongation rate and good tenacity throughout the treatment duration. The prophylactic antifibrotic activity of Biofiber NG and Biofiber PF was analyzed in-vitro on normal human dermal fibroblasts (NHDF) and human fibroblasts of scar origin (HSF). Subsequently, the same action was evaluated in a complex ex-vivo model of human skin. The results obtained in NHDF demonstrated the antifibrotic potential of both developed prototypes by regulating the main factors involved in the fibrotic process, starting from the third day of treatment. Antifibrotic activity in HSF was observed only from the sixth day of treatment with Biofiber PF, given the pathological nature of these fibrotic cells. Data obtained from the complex ex-vivo model of human skin did not yield significant results due to the time limitations of the experimental model. Therefore, to meet the requirements set by the 2017/745 EU regulation for medical devices, the antifibrotic activity of Biofiber PF must be investigated in an extended time frame (30 days), using a swine animal model. Utilizing the variety of physical, chemical, and mechanical properties offered by electrospinning technologies, this work has demonstrated the scientific contribution that Biofiber could make in the field of complex wound treatments.File | Dimensione | Formato | |
---|---|---|---|
PhD_Thesis_EMT.pdf
embargo fino al 22/10/2025
Descrizione: Tesi definitiva Erika Maria Tottoli
Tipologia:
Tesi di dottorato
Dimensione
4.96 MB
Formato
Adobe PDF
|
4.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.