In this Ph.D thesis, we investigate different approaches to prepare high energy and power density self-standing electrodes, based on high voltage/capacity active materials and carbon nanofibers (CNFs). First, the characterization and electrochemical investigation was carried out on conventional tape-casted electrodes with the Na3MnZr(PO4)3, Na3MnTi(PO4)3 and ZnS-GO active materials for sodium-ion batteries (SIBs), and on the only electrospun CNFs matrix. Thereafter, a self–standing cathode was synthesized, based on CNFs and the well-known LiFePO4 active material for lithium-ion batteries (LIBs), to investigate the role of CNFs on the electrochemical performance. Finally, the active materials for SIBs are loaded into CNFs, to prepare the new self-standing electrodes. The results are very promising in terms of enhanced capacity at high C-rate, cell lifespan, and power density (high cycling rate), thanks to the CNFs matrix, which improves the electronic conductivity and the electrode/electrolyte contact.

In questa tesi di dottorato si sono studiati diversi approcci per produrre elettrodi self-standing caratterizzati da alta densità di energia e di potenza, ottenuti con materiali ad alto voltaggio e/o alta capacità e una matrice di nanofibre di carbonio (CNF). Sono stati effettuati dei test preliminari sui composti Na3MnZr(PO4)3, Na3MnTi(PO4)3 e ZnS-GO per batterie a ioni sodio (SIBs), preparati con metodo tradizionale (tape-casted), e sulla singola matrice di CNFs elettrodepositata. Dopo aver realizzato un catodo self-standing utilizzando il ben noto materiale catodico per le batterie al Litio LiFePO4 per valutare l’influenza delle CNFs sulla prestazione elettrochimica, i materiali attivi scelti per le SIBs sono stati caricati nelle nanofibre di carbonio per preparare i nuovi elettrodi self-standing. Le prestazioni elettrochimiche ottenute sono molto promettenti per la buona capacità ad alte C-rate, ciclabilità della cella e densità di potenza, grazie alla matrice di CNF che migliora la conducibilità elettronica e il contatto elettrodo/elettrolita.

Design of CNFs-supported self-standing cathodes for Sodium-ion batteries with enhanced performance at high C-rate

CONTI, DEBORA MARIA
2024-09-09

Abstract

In this Ph.D thesis, we investigate different approaches to prepare high energy and power density self-standing electrodes, based on high voltage/capacity active materials and carbon nanofibers (CNFs). First, the characterization and electrochemical investigation was carried out on conventional tape-casted electrodes with the Na3MnZr(PO4)3, Na3MnTi(PO4)3 and ZnS-GO active materials for sodium-ion batteries (SIBs), and on the only electrospun CNFs matrix. Thereafter, a self–standing cathode was synthesized, based on CNFs and the well-known LiFePO4 active material for lithium-ion batteries (LIBs), to investigate the role of CNFs on the electrochemical performance. Finally, the active materials for SIBs are loaded into CNFs, to prepare the new self-standing electrodes. The results are very promising in terms of enhanced capacity at high C-rate, cell lifespan, and power density (high cycling rate), thanks to the CNFs matrix, which improves the electronic conductivity and the electrode/electrolyte contact.
9-set-2024
In questa tesi di dottorato si sono studiati diversi approcci per produrre elettrodi self-standing caratterizzati da alta densità di energia e di potenza, ottenuti con materiali ad alto voltaggio e/o alta capacità e una matrice di nanofibre di carbonio (CNF). Sono stati effettuati dei test preliminari sui composti Na3MnZr(PO4)3, Na3MnTi(PO4)3 e ZnS-GO per batterie a ioni sodio (SIBs), preparati con metodo tradizionale (tape-casted), e sulla singola matrice di CNFs elettrodepositata. Dopo aver realizzato un catodo self-standing utilizzando il ben noto materiale catodico per le batterie al Litio LiFePO4 per valutare l’influenza delle CNFs sulla prestazione elettrochimica, i materiali attivi scelti per le SIBs sono stati caricati nelle nanofibre di carbonio per preparare i nuovi elettrodi self-standing. Le prestazioni elettrochimiche ottenute sono molto promettenti per la buona capacità ad alte C-rate, ciclabilità della cella e densità di potenza, grazie alla matrice di CNF che migliora la conducibilità elettronica e il contatto elettrodo/elettrolita.
File in questo prodotto:
File Dimensione Formato  
tesi dottorato Debora Maria Conti.pdf

accesso aperto

Descrizione: Tesi Dottorato Debora Maria Conti
Tipologia: Tesi di dottorato
Dimensione 20.36 MB
Formato Adobe PDF
20.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1504655
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact