SPAIRANI, EDOARDO

SPAIRANI, EDOARDO  

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE  

Mostra records
Risultati 1 - 19 di 19 (tempo di esecuzione: 0.042 secondi).
Titolo Data di pubblicazione Autore(i) File
A Deep Learning Approach for Beamforming and Contrast Enhancement of Ultrasound Images in Monostatic Synthetic Aperture Imaging: a Proof-of-Concept 1-gen-2024 Bosco, Edoardo; Spairani, Edoardo; Toffali, Eleonora; Meacci, Valentino; Ramalli, Alessandro; Matrone, Giulia
A deep learning mixed-data type approach for the classification of FHR signals 1-gen-2022 Spairani, E.; Daniele, B.; Signorini, M. G.; Magenes, G.
A Novel Large Structured Cardiotocographic Database 1-gen-2022 Spairani, E.; Daniele, B.; Magenes, G.; Signorini, M. G.
A semi-Supervised Deep Learning Approach to Automate the Identification of Fetal Behavioral States in Fetal Heart Rate Tracings 1-gen-2024 Spairani, Edoardo; Steyde, Giulio; Subitoni, Luca; Magenes, Giovanni; Signorini, Maria G.
Artificial intelligence solutions for processing, analyzing and classifying fetal heart rate variability series: a multi-parametric approach 14-mar-2024 Spairani, Edoardo
Deep learning based Human Activity Recognition in first responders wearing a sensorized garment 1-gen-2024 Spairani, Edoardo; Paradiso, Rita; Magenes, Giovanni
Deep Learning Driven Classification of Echocardiographic Apical Views: An Approach Based on Variational Autoencoders and Multilayer Perceptrons 1-gen-2025 Podda, Francesco; Spairani, Edoardo; Bosco, Edoardo; Ferrari, Michela; Piastra, Marco; Matrone, Giulia; Magenes, Giovanni
Discriminating Healthy and IUGR fetuses through Machine Learning models 1-gen-2022 Daniele, B.; Steyde, G.; Spairani, E.; Magenes, G.; Signorini, M. G.
Fetal heart rate spectral analysis in raw signals and PRSA-derived curve: normal and pathological fetuses discrimination 1-gen-2024 Steyde, Giulio; Spairani, Edoardo; Magenes, Giovanni; Signorini, Maria G.
Fetal states identification in cardiotocographic tracings through discrete emissions multivariate hidden Markov models 1-gen-2023 Spairani, E.; Steyde, G.; Tagliaferri, S.; Signorini, M. G.; Magenes, G.
Fetal states identification in cardiotocographic tracings through discrete emissions multivariate hidden Markov models 1-gen-2023 Spairani, Edoardo; Steyde, Giulio; Tagliaferri, Salvatore; Signorini, Maria G.; Magenes, Giovanni
Generalization of a deep learning network for beamforming and segmentation of ultrasound images 1-gen-2021 Seoni, S.; Matrone, G.; Casali, N.; Spairani, E.; Meiburger, K. M.
High-frame-rate coherence imaging of the heart with ultrasound diverging waves 1-gen-2020 Matrone, G.; Spairani, E.; Matrone, B.; Ramalli, A.
Improving the Quality of Monostatic Synthetic-Aperture Ultrasound Imaging Through Deep-Learning-Based Beamforming 1-gen-2022 Toffali, E; Spairani, E; Ramalli, A; Matrone, G
Mountain Rescuers through the computation of Sample Entropy 1-gen-2022 Spairani, E.; Leyenda, A. B. C.; Rodriguez-Marroyo, J. A.; De Toma, G.; Magenes, G.
Prediction of IUGR condition at birth by means of CTG recordings and a ResNet model 1-gen-2025 Spairani, E.; Steyde, G.; Spuri Forotti, F.; Magenes, G.; Signorini, M. G.
Semi-simulated Data for Improving Fetal QRS Detection Using Deep Neural Networks 1-gen-2025 Steyde, Giulio; Galli, Alessandra; Cardinali, Andrea; Spairani, Edoardo; Magenes, Giovanni; Signorini, Maria G.
Single-channel, ultraportable, real-time imaging system based on deep learning: a proof-of-concept 1-gen-2023 Meacci, V.; Bosco, E.; Ramalli, A.; Boni, E.; Tortoli, P.; Mazierli, D.; Spairani, E.; Matrone, G.
Unsupervised Assessment of Coronary Artery Tortuosity Through Hidden Markov Models 1-gen-2025 Ferrari, Michela; Spairani, Edoardo; Urtis, Mario; Tescari, Antonio; Grasso, Maurizia; Arbustini, Eloisa; Magenes, Giovanni