The concept of hypoxia and its role in tumor therapy are currently under re-evaluation. Poor oxygenation is no longer visualized as an independent feature promoting necrosis and resistance to treatments, but rather as one of the several interdependent microenvironmental parameters associated with impaired blood perfusion. Tumor cells display several survival strategies and remain clonogenic for long periods in nutrient-deprived situations. Reoxygenation may cause lethal damage, improve the response to therapy, or else allow the cell variants adapted to hypoxia to resume proliferation with enhanced aggressiveness and resistance to treatment. The blood supply parameters, oxygenation status and metabolism of malignant cells are discussed here from the standpoint of tumor photodynamic therapy. The role of the tumor interstitial fluid as oxygen- and sensitizer-carrier is discussed. Techniques for assessing tumor oxygenation and for mapping hypoxic territories are described. Strategies for locally improving the oxygenation levels or for selectively destroying the hypoxic populations are outlined.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | "Tumor hypoxia, reoxygenation and oxygenation strategies. Possible role in photodynamic therapy". |
Autori: | |
Data di pubblicazione: | 1991 |
Rivista: | |
Abstract: | The concept of hypoxia and its role in tumor therapy are currently under re-evaluation. Poor oxygenation is no longer visualized as an independent feature promoting necrosis and resistance to treatments, but rather as one of the several interdependent microenvironmental parameters associated with impaired blood perfusion. Tumor cells display several survival strategies and remain clonogenic for long periods in nutrient-deprived situations. Reoxygenation may cause lethal damage, improve the response to therapy, or else allow the cell variants adapted to hypoxia to resume proliferation with enhanced aggressiveness and resistance to treatment. The blood supply parameters, oxygenation status and metabolism of malignant cells are discussed here from the standpoint of tumor photodynamic therapy. The role of the tumor interstitial fluid as oxygen- and sensitizer-carrier is discussed. Techniques for assessing tumor oxygenation and for mapping hypoxic territories are described. Strategies for locally improving the oxygenation levels or for selectively destroying the hypoxic populations are outlined. |
Handle: | http://hdl.handle.net/11571/100034 |
Appare nelle tipologie: | 1.1 Articolo in rivista |