The amount of gene expression data available in public repositories has grown exponentially in the last years, now requiring new data mining tools to transform them in information easily accessible to biologists. By exploiting expression data publicly available in the Gene Expression Omnibus (GEO) database, we developed a new bioinformatics tool aimed at the identification of genes whose expression appeared simultaneously altered in different experimental conditions, thus suggesting co-regulation or coordinated action in the same biological process. To accomplish this task, we used the 978 human GEO Curated DataSets and we manually performed the selection of 2,109 pair-wise comparisons based on their biological rationale. The lists of differentially expressed genes, obtained from the selected comparisons, were stored in a PostgreSQL database and used as data source for the CorrelaGenes tool. Our application uses a customized Association Rule Mining (ARM) algorithm to identify sets of genes showing expression profiles correlated with a gene of interest. The significance of the correlation is measured coupling the Lift, a well-known standard ARM index, and the χ(2) p value. The manually curated selection of the comparisons and the developed algorithm constitute a new approach in the field of gene expression profiling studies. Simulation performed on 100 randomly selected target genes allowed us to evaluate the efficiency of the procedure and to obtain preliminary data demonstrating the consistency of the results. The preliminary results of the simulation showed how CorrelaGenes could contribute to the characterization of molecular pathways and biological processes integrating data obtained from other applications and available in public repositories.

CorrelaGenes: a new tool for the interpretation of the human transcriptome.

CREMASCHI, PAOLO;SACCHI, LUCIA;MONTECUCCO, ALESSANDRA;BIONE, SILVIA;
2014-01-01

Abstract

The amount of gene expression data available in public repositories has grown exponentially in the last years, now requiring new data mining tools to transform them in information easily accessible to biologists. By exploiting expression data publicly available in the Gene Expression Omnibus (GEO) database, we developed a new bioinformatics tool aimed at the identification of genes whose expression appeared simultaneously altered in different experimental conditions, thus suggesting co-regulation or coordinated action in the same biological process. To accomplish this task, we used the 978 human GEO Curated DataSets and we manually performed the selection of 2,109 pair-wise comparisons based on their biological rationale. The lists of differentially expressed genes, obtained from the selected comparisons, were stored in a PostgreSQL database and used as data source for the CorrelaGenes tool. Our application uses a customized Association Rule Mining (ARM) algorithm to identify sets of genes showing expression profiles correlated with a gene of interest. The significance of the correlation is measured coupling the Lift, a well-known standard ARM index, and the χ(2) p value. The manually curated selection of the comparisons and the developed algorithm constitute a new approach in the field of gene expression profiling studies. Simulation performed on 100 randomly selected target genes allowed us to evaluate the efficiency of the procedure and to obtain preliminary data demonstrating the consistency of the results. The preliminary results of the simulation showed how CorrelaGenes could contribute to the characterization of molecular pathways and biological processes integrating data obtained from other applications and available in public repositories.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1001385
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact