Multisite recording represents a suitable condition to study microphysiology and network, interactions in the central nervous system and; therefore, to understand brain functions. Several different materials and array configurations have been proposed for the development of new probes utilized to record brain activity from experimental animal models. We describe new multisite silicon probes that broaden the currently available application base for neuroscientists. The array arrangement of the probes recording sites was extended to increase their spatial resolution. Probes were integrated with a newly developed electronic hardware and novel software for advanced real-time processing and analysis. The new system, based on 32- and 64-electrode silicon probes, proved very valuable to record field potentials and single unit activity from the olfactory-limbic cortex of the in vitro isolated guinea-pig brain preparation and to acutely record unit activity at multiple sites from the cerebellar cortex in vivo. The potential advantages of the new system in comparison to the currently available technology are discussed.

A novel high channel-count system for acute multi-site neuronal recordings

BIELLA, GERARDO ROSARIO;
2006-01-01

Abstract

Multisite recording represents a suitable condition to study microphysiology and network, interactions in the central nervous system and; therefore, to understand brain functions. Several different materials and array configurations have been proposed for the development of new probes utilized to record brain activity from experimental animal models. We describe new multisite silicon probes that broaden the currently available application base for neuroscientists. The array arrangement of the probes recording sites was extended to increase their spatial resolution. Probes were integrated with a newly developed electronic hardware and novel software for advanced real-time processing and analysis. The new system, based on 32- and 64-electrode silicon probes, proved very valuable to record field potentials and single unit activity from the olfactory-limbic cortex of the in vitro isolated guinea-pig brain preparation and to acutely record unit activity at multiple sites from the cerebellar cortex in vivo. The potential advantages of the new system in comparison to the currently available technology are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/100454
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact