We provide a new well-posedness concept for saddle-point problems. We characterize it by means of the behavior of the sublevel sets of an associated function. We then study the concave-convex case in Euclidean spaces. Applying these results in the setting of Convex Programming, we get a result on the convergence of the pair solution-Lagrange multiplier of approximating problems to the pair solution-Lagrange multiplier of the limit problem.

Well-posed saddle point problems

CAPRARI, ELISA;
2005-01-01

Abstract

We provide a new well-posedness concept for saddle-point problems. We characterize it by means of the behavior of the sublevel sets of an associated function. We then study the concave-convex case in Euclidean spaces. Applying these results in the setting of Convex Programming, we get a result on the convergence of the pair solution-Lagrange multiplier of approximating problems to the pair solution-Lagrange multiplier of the limit problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/102730
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact