Poly(ethylene glycol) (PEG) and sodium chloride (NaCl) are excipients used in PLGA microsphere preparation to stabilize proteins and reduce their burst release. No information is till now available in the literature on the effect due to the use of such excipients on the biopharmaceutical performance of g-irradiated microparticulate systems. On this purpose, different batches of microspheres containing ovalbumin (OVA) were prepared by using a PLGA 50:50 (average Mr: 13000), different amounts of PEG (Mr: 400 or 4000) and/or sodium chloride. The non-irradiated and irradiated microspheres were characterized in terms of morphology (SEM, particle size distribution), OVA and PEG content and in vitro OVA release. Radiolysis mechanisms of OVA and OVA loaded microspheres were investigated by EPR analysis. Gamma irradiation affects either microsphere morphology or the release of OVA as a function of the amount of PEG, and the use of NaCl. Irradiation significantly reduces release rate of protein from the microspheres containing 15% and 30% of PEG and from controls (microspheres without additives), while no significative effect on protein release rate is highlighted on microspheres containing lower amounts of PEG. EPR investigation shows that increasing amounts of PEG up to 30% have a perturbation effect on OVA radiolysis path.

The effect of gamma irradiation on PLGA/PEG microspheres containing ovalbumin

DORATI, ROSSELLA;GENTA, IDA;BUTTAFAVA, ARMANDO;FAUCITANO, ANTONIO;CONTI, BICE
2005

Abstract

Poly(ethylene glycol) (PEG) and sodium chloride (NaCl) are excipients used in PLGA microsphere preparation to stabilize proteins and reduce their burst release. No information is till now available in the literature on the effect due to the use of such excipients on the biopharmaceutical performance of g-irradiated microparticulate systems. On this purpose, different batches of microspheres containing ovalbumin (OVA) were prepared by using a PLGA 50:50 (average Mr: 13000), different amounts of PEG (Mr: 400 or 4000) and/or sodium chloride. The non-irradiated and irradiated microspheres were characterized in terms of morphology (SEM, particle size distribution), OVA and PEG content and in vitro OVA release. Radiolysis mechanisms of OVA and OVA loaded microspheres were investigated by EPR analysis. Gamma irradiation affects either microsphere morphology or the release of OVA as a function of the amount of PEG, and the use of NaCl. Irradiation significantly reduces release rate of protein from the microspheres containing 15% and 30% of PEG and from controls (microspheres without additives), while no significative effect on protein release rate is highlighted on microspheres containing lower amounts of PEG. EPR investigation shows that increasing amounts of PEG up to 30% have a perturbation effect on OVA radiolysis path.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11571/102843
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 47
  • ???jsp.display-item.citation.isi??? 44
social impact