The response to caffeine was studied in mouse muscles [diaphragm, soleus, and extensor digitorum longus (EDL)] with different ryanodine receptor isoform (RyR1, RyR3) composition and in single permeabilized muscle fibers dissected from diaphragm of wild-type (WT) and RyR3-deficient (RyR3-/-) mice at 1, 15, 30, and 60 postnatal days (PND). The caffeine response decreased during development, and, in adult mice, was greater in diaphragm, lower in EDL, and intermediate in soleus. This suggests a direct relation between response to caffeine and RyR3 expression. The lack of RyR3 reduced caffeine response in young, but not in adult mice, and did not abolish the age-dependent variation and the intermuscle differences. In diaphragm single fibers, the response to caffeine increased during development and was reduced in fibers lacking RyR3 both at 15 and 60 PND. A population of fibers highly responsive to caffeine was present in adult WT and disappeared in RyR3-/-. The results confirm the contribution of RyR3 to calcium release for contractile response and clarify the contribution of RyR3 to developmental changes and intermuscle differences.

Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscles

ROSSI, ROSETTA;BOTTINELLI, ROBERTO;
2001-01-01

Abstract

The response to caffeine was studied in mouse muscles [diaphragm, soleus, and extensor digitorum longus (EDL)] with different ryanodine receptor isoform (RyR1, RyR3) composition and in single permeabilized muscle fibers dissected from diaphragm of wild-type (WT) and RyR3-deficient (RyR3-/-) mice at 1, 15, 30, and 60 postnatal days (PND). The caffeine response decreased during development, and, in adult mice, was greater in diaphragm, lower in EDL, and intermediate in soleus. This suggests a direct relation between response to caffeine and RyR3 expression. The lack of RyR3 reduced caffeine response in young, but not in adult mice, and did not abolish the age-dependent variation and the intermuscle differences. In diaphragm single fibers, the response to caffeine increased during development and was reduced in fibers lacking RyR3 both at 15 and 60 PND. A population of fibers highly responsive to caffeine was present in adult WT and disappeared in RyR3-/-. The results confirm the contribution of RyR3 to calcium release for contractile response and clarify the contribution of RyR3 to developmental changes and intermuscle differences.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/104025
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact