In the last few years, mutations that cause disease through increased efficiency of mRNA translation have been discovered. Hereditary hyperferritinaemia-cataract syndrome (HHCS) arises from various point mutations or deletions within the iron-responsive element (IRE) in the 5'-UTR of the L-ferritin mRNA. Each unique mutation confers a characteristic degree of hyperferritinaemia and severity of cataract in affected individuals. We report a novel six-nucleotide deletion identified in an Italian family presenting with elevated serum ferritin and early onset bilateral cataract. This deletion involves a sequence with a TCT repetition and may have occurred through a mechanism of slippage mispairing. Because of the above repetition, the observed mutation can be interpreted as deletion 22-27, 23-28, 24-29 or 25-30. Structural modelling predicted an IRE stem modification that is expected to markedly reduce the binding to iron-regulatory proteins. A double-gradient denaturing gradient gel electrophoresis (DG-DGGE) method easily detected the above deletion.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | A novel deletion of the L-ferritin iron-responsive element responsible for severe hereditary hyperferritinaemia-cataract syndrome. | |
Autori: | ||
Data di pubblicazione: | 2002 | |
Rivista: | ||
Abstract: | In the last few years, mutations that cause disease through increased efficiency of mRNA translation have been discovered. Hereditary hyperferritinaemia-cataract syndrome (HHCS) arises from various point mutations or deletions within the iron-responsive element (IRE) in the 5'-UTR of the L-ferritin mRNA. Each unique mutation confers a characteristic degree of hyperferritinaemia and severity of cataract in affected individuals. We report a novel six-nucleotide deletion identified in an Italian family presenting with elevated serum ferritin and early onset bilateral cataract. This deletion involves a sequence with a TCT repetition and may have occurred through a mechanism of slippage mispairing. Because of the above repetition, the observed mutation can be interpreted as deletion 22-27, 23-28, 24-29 or 25-30. Structural modelling predicted an IRE stem modification that is expected to markedly reduce the binding to iron-regulatory proteins. A double-gradient denaturing gradient gel electrophoresis (DG-DGGE) method easily detected the above deletion. | |
Handle: | http://hdl.handle.net/11571/104561 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |