Friedreich's ataxia is due to loss of function mutations in the gene encoding frataxin (FRDA). Frataxin is a protein of unknown function. In situ hybridization analyses revealed that mouse frataxin expression correlates well with the main site of neurodegeneration, but the expression pattern is broader than expected from the pathology of the disease. Frataxin mRNA is predominantly expressed in tissues with a high metabolic rate, including liver, kidney, brown fat and heart. We found that mouse and yeast frataxin homologues contain a potential mitochondrial targeting sequence in their N-terminal domains and that disruption of the yeast gene results in mitochondrial dysfunction. Finally, tagging experiments demonstrate that human frataxin co-localizes with a mitochondrial protein. Friedreich's ataxia is therefore a mitochondrial disease caused by a mutation in the nuclear genome.
Studies of human, mouse and yeast homologues indicate a mitochondrial function for frataxine.
CAZZALINI, ORNELLA;
1997-01-01
Abstract
Friedreich's ataxia is due to loss of function mutations in the gene encoding frataxin (FRDA). Frataxin is a protein of unknown function. In situ hybridization analyses revealed that mouse frataxin expression correlates well with the main site of neurodegeneration, but the expression pattern is broader than expected from the pathology of the disease. Frataxin mRNA is predominantly expressed in tissues with a high metabolic rate, including liver, kidney, brown fat and heart. We found that mouse and yeast frataxin homologues contain a potential mitochondrial targeting sequence in their N-terminal domains and that disruption of the yeast gene results in mitochondrial dysfunction. Finally, tagging experiments demonstrate that human frataxin co-localizes with a mitochondrial protein. Friedreich's ataxia is therefore a mitochondrial disease caused by a mutation in the nuclear genome.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.