Nonsynaptic mitochondria isolated from rat brain hippocampus were compared with those obtained by means of the same preparative procedure from cerebral cortex and striatum. Protein recovery, marker enzyme activities (lactate dehydrogenase, citrate synthase, and acid phosphatase), state 4 respiration, and response to hypoosmotic shock showed no difference among the three cerebral regions, suggesting homogeneous behavior during the subfractionation procedure. Cholinergic markers--choline acetyltransferase, acetylcholinesterase activities, and high-affinity choline uptake--evaluated on synaptosomes showed the classic regional pattern with an enrichment in the striatum (striatum much greater than hippocampus). The coupling state of the mitochondrial fractions was maintained (respiratory control ratios ranging from 3.62 to 5.08 with glutamate + malate as oxidizable substrates), showing a metabolic competence sufficient to perform metabolic studies. Regional differences were found in state 3, uncoupled state of respiration, and cytochrome oxidase activity. Hippocampus showed the lower values (hippocampus less than striatum less than cortex). A possible role of this lower capacity of mitochondrial energy metabolism in determining the sensitivity of hippocampal neurons to ischemia or epileptic seizures is suggested
Oxidative metabolism of non-synaptic mitochondria isolated from rat brain hippocampus: a comparative regional study
DAGANI, FIORENZO;MARZATICO, FULVIO;CURTI, DANIELA
1988-01-01
Abstract
Nonsynaptic mitochondria isolated from rat brain hippocampus were compared with those obtained by means of the same preparative procedure from cerebral cortex and striatum. Protein recovery, marker enzyme activities (lactate dehydrogenase, citrate synthase, and acid phosphatase), state 4 respiration, and response to hypoosmotic shock showed no difference among the three cerebral regions, suggesting homogeneous behavior during the subfractionation procedure. Cholinergic markers--choline acetyltransferase, acetylcholinesterase activities, and high-affinity choline uptake--evaluated on synaptosomes showed the classic regional pattern with an enrichment in the striatum (striatum much greater than hippocampus). The coupling state of the mitochondrial fractions was maintained (respiratory control ratios ranging from 3.62 to 5.08 with glutamate + malate as oxidizable substrates), showing a metabolic competence sufficient to perform metabolic studies. Regional differences were found in state 3, uncoupled state of respiration, and cytochrome oxidase activity. Hippocampus showed the lower values (hippocampus less than striatum less than cortex). A possible role of this lower capacity of mitochondrial energy metabolism in determining the sensitivity of hippocampal neurons to ischemia or epileptic seizures is suggestedI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.