We deal with a class of Penrose-Fife type phase field models for phase transitions, where the phase dynamics is ruled by a Cahn-Hilliard type equation. Suitable assumptions on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity are considered. An existence result is obtained by a double approximation procedure and compactness methods. Moreover, uniqueness and regularity results are proved as well.

On a conserved Penrose-Fife type system

GILARDI, GIANNI MARIA;
2005

Abstract

We deal with a class of Penrose-Fife type phase field models for phase transitions, where the phase dynamics is ruled by a Cahn-Hilliard type equation. Suitable assumptions on the behaviour of the heat flux as the absolute temperature tends to zero and to infinity are considered. An existence result is obtained by a double approximation procedure and compactness methods. Moreover, uniqueness and regularity results are proved as well.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/106929
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact