The Navier-Stokes equation in the bidimensional torus is considered, with initial velocity in the Besov spaces B^(pr)_(-s+2-2/r) and forcing term in L(r) (0, T; B^(pq)_(-s)) for suitable indices s, r, p, q, Results of local existence and uniqueness are proven in the case -1 < -s + 2 - 2/r < 0 and of global existence in the case -1/2 < -s + 2 - 2/r < 0.
2D Navier-Stokes equations in Besov spaces of negative order
FERRARIO, BENEDETTA
2009-01-01
Abstract
The Navier-Stokes equation in the bidimensional torus is considered, with initial velocity in the Besov spaces B^(pr)_(-s+2-2/r) and forcing term in L(r) (0, T; B^(pq)_(-s)) for suitable indices s, r, p, q, Results of local existence and uniqueness are proven in the case -1 < -s + 2 - 2/r < 0 and of global existence in the case -1/2 < -s + 2 - 2/r < 0.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.