We study the curvature of the moduli space M_g of curves of genus g with the Siegel metric induced by the period map. We give an explicit formula for the holomorphic sectional curvature of M_g along a Schiffer variation at a point P on the curve X, in terms of the holomorphic sectional curvature of A_g and the second Gaussian map. Finally we extend the Kaehler form of the Siegel metric as a closed current on the Deligne-Mumford compatification of M_g and we determine its cohomology class as a multiple of the first Chern class of the Hodge bundle.

Siegel metric and curvature of the moduli space of curves

FREDIANI, PAOLA
2010-01-01

Abstract

We study the curvature of the moduli space M_g of curves of genus g with the Siegel metric induced by the period map. We give an explicit formula for the holomorphic sectional curvature of M_g along a Schiffer variation at a point P on the curve X, in terms of the holomorphic sectional curvature of A_g and the second Gaussian map. Finally we extend the Kaehler form of the Siegel metric as a closed current on the Deligne-Mumford compatification of M_g and we determine its cohomology class as a multiple of the first Chern class of the Hodge bundle.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/108182
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 20
social impact