This paper considers biomedical problems in which a sample of subjects, for example clinical patients, is monitored through time for purposes of individual prediction. Emphasis is on situations in which the monitoring generates data both in the form of a time series and in the form of events (development of a disease, death, etc.) observed on each subject over specified intervals of time. A Bayesian approach to the combined modeling of both types of data for purposes of prediction is presented. The proposed method merges ideas of Bayesian hierarchical modeling, non parametric smoothing of time series data, survival analysis, and forecasting into a unified framework. Emphasis is on flexible modeling of the time series data based on stochastic process theory. The use of Markov Chain Monte Carlo simulation to calculate the predictions of interest is discussed. Conditional independence graphs are used throughout for a clear presentation of the models. An application in the monitoring of transplant patients is presented.

A unified approach for modeling longitudinal and failure time data, with application in medical monitoring.

BERZUINI, CARLO;LARIZZA, CRISTIANA
1996-01-01

Abstract

This paper considers biomedical problems in which a sample of subjects, for example clinical patients, is monitored through time for purposes of individual prediction. Emphasis is on situations in which the monitoring generates data both in the form of a time series and in the form of events (development of a disease, death, etc.) observed on each subject over specified intervals of time. A Bayesian approach to the combined modeling of both types of data for purposes of prediction is presented. The proposed method merges ideas of Bayesian hierarchical modeling, non parametric smoothing of time series data, survival analysis, and forecasting into a unified framework. Emphasis is on flexible modeling of the time series data based on stochastic process theory. The use of Markov Chain Monte Carlo simulation to calculate the predictions of interest is discussed. Conditional independence graphs are used throughout for a clear presentation of the models. An application in the monitoring of transplant patients is presented.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/108449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 33
social impact