Induction of a state of long-term, alloantigen-specific T cell nonresponsiveness has significant implications for human transplantation. It has been previously described that alloantigen-specific anergy may be induced by addition of cyclosporin-A together with anti-CD80(B7-1) mAb to a MLR. In this study we endeavored to verify whether alloantigen-induced PBL rendered anergic by the addition of a combination of anti-B7 mAb and cyclosporin-A during a MLR had a suppressive effect when added to autologous lymphocytes activated in MLR. We found that: 1) the addition of cells rendered anergic by this procedure to a MLR suppress both proliferative and cytotoxic response of autologous responsive PBL to either the same or third-party stimulator cells; 2) the suppressive effect is limited to alloantigen-induced T cell activation, as addition of anergic cells does not influence mitogen- or antigen-induced proliferation of autologous responsive T cells; 3) nonresponsiveness of suppressed cells cannot be reversed by either subsequent restimulation with allogeneic cells or addition of exogenous IL-2 to the cultures; 4) the suppressive effect is apparently not due to secretion of anergic cell-derived soluble factors, but it seems to be dependent on cell-cell contact between anergic, responsive, and stimulator cells. These data suggest that: 1) the delivery of a direct signal mediated by anergic lymphocytes through a cell-cell contact is likely to be the mechanism responsible for the suppressive effect here described; 2) anergic cells may propagate alloantigen-specific tolerance to potentially responsive autologous lymphocytes. Preliminary experiments indicate that anti-CD86(B7-2) mAb may play a similar role in the generation of alloantigen-induced nonresponsiveness.
Alloantigen-induced human lymphocytes rendered nonresponsive by a combination of anti-CD80 monoclonal antibodies and Cyclosporin-A suppress mixed lymphocyte reaction in vitro
MONTAGNA, DANIELA;LOCATELLI, FRANCO;
1995-01-01
Abstract
Induction of a state of long-term, alloantigen-specific T cell nonresponsiveness has significant implications for human transplantation. It has been previously described that alloantigen-specific anergy may be induced by addition of cyclosporin-A together with anti-CD80(B7-1) mAb to a MLR. In this study we endeavored to verify whether alloantigen-induced PBL rendered anergic by the addition of a combination of anti-B7 mAb and cyclosporin-A during a MLR had a suppressive effect when added to autologous lymphocytes activated in MLR. We found that: 1) the addition of cells rendered anergic by this procedure to a MLR suppress both proliferative and cytotoxic response of autologous responsive PBL to either the same or third-party stimulator cells; 2) the suppressive effect is limited to alloantigen-induced T cell activation, as addition of anergic cells does not influence mitogen- or antigen-induced proliferation of autologous responsive T cells; 3) nonresponsiveness of suppressed cells cannot be reversed by either subsequent restimulation with allogeneic cells or addition of exogenous IL-2 to the cultures; 4) the suppressive effect is apparently not due to secretion of anergic cell-derived soluble factors, but it seems to be dependent on cell-cell contact between anergic, responsive, and stimulator cells. These data suggest that: 1) the delivery of a direct signal mediated by anergic lymphocytes through a cell-cell contact is likely to be the mechanism responsible for the suppressive effect here described; 2) anergic cells may propagate alloantigen-specific tolerance to potentially responsive autologous lymphocytes. Preliminary experiments indicate that anti-CD86(B7-2) mAb may play a similar role in the generation of alloantigen-induced nonresponsiveness.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.