Using rigorous electro-optical calculations, we predict a significant efficiency enhancement in thin-film crystalline silicon (c-Si) solar cells with rough interfaces. We show that an optimized rough texture allows one to reach the Lambertian limit of absorption in a wide absorber thickness range from 1 to 100 lm. The improvement of efficiency due to the roughness is particularly substantial for thin cells, for which light trapping is crucial. We consider Auger, Shockley-Read-Hall (SRH), and surface recombination, quantifying the importance of specific loss mechanisms. When the cell performance is limited by intrinsic Auger recombination, the efficiency of 24.4% corresponding to the wafer-based PERL cell can be achieved even if the absorber thickness is reduced from 260 to 10 lm. For cells with material imperfections, defect-based SRH recombination contributes to the opposite trends of short-circuit current and open-circuit voltage as a function of the absorber thickness. By investigating a wide range of SRH parameters, we determine an optimal absorber thickness as a function of material quality. Finally, we show that the efficiency enhancement in textured cells persists also in the presence of surface recombination. Indeed, in our design the efficiency is limited by recombination at the rear (silicon absorber/back reflector) interface, and therefore it is possible to engineer the front surface to a large extent without compromising on efficiency.

Light trapping and electrical transport in thin-film solar cells with randomly rough textures

KOWALCZEWSKI, PIOTR ADAM;BOZZOLA, ANGELO;LISCIDINI, MARCO;ANDREANI, LUCIO
2014-01-01

Abstract

Using rigorous electro-optical calculations, we predict a significant efficiency enhancement in thin-film crystalline silicon (c-Si) solar cells with rough interfaces. We show that an optimized rough texture allows one to reach the Lambertian limit of absorption in a wide absorber thickness range from 1 to 100 lm. The improvement of efficiency due to the roughness is particularly substantial for thin cells, for which light trapping is crucial. We consider Auger, Shockley-Read-Hall (SRH), and surface recombination, quantifying the importance of specific loss mechanisms. When the cell performance is limited by intrinsic Auger recombination, the efficiency of 24.4% corresponding to the wafer-based PERL cell can be achieved even if the absorber thickness is reduced from 260 to 10 lm. For cells with material imperfections, defect-based SRH recombination contributes to the opposite trends of short-circuit current and open-circuit voltage as a function of the absorber thickness. By investigating a wide range of SRH parameters, we determine an optimal absorber thickness as a function of material quality. Finally, we show that the efficiency enhancement in textured cells persists also in the presence of surface recombination. Indeed, in our design the efficiency is limited by recombination at the rear (silicon absorber/back reflector) interface, and therefore it is possible to engineer the front surface to a large extent without compromising on efficiency.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1094992
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 15
social impact