Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) is a recently suggested electroanalytical technique designed for the determination of the free concentration of heavy metals (such as Zn, Cd or Pb) which is here developed and applied to seawater samples. A key improvement for the implementation of AGNES with complex matrices is the development of a new blank, called the shifted blank (presented in this work for the first time), which can be applied to the same sample where the measurement is intended. The careful selection of the required parameters for the determination of the free Zn concentration (or activity) at the nanomolar level is described in detail. The methodology has been validated with a synthetic solution containing Zn and nitrilotriacetic acid (NTA) and then applied, as a first case, to two coastal seawater samples taken close to Barcelona and Tarragona (Catalonia, North-Eastern Spain) finding values in the range of 1–3 nM, representing around 25% of total Zn. This technique can, in the near future, be crucial in helping to elucidate the role of the free zinc(II) concentration in natural waters.
AGNES: a technique for determining the concentration of free metal ions. The case of Zn(II) in coastal Mediterranean seawater
ALBERTI, GIANCARLAInvestigation
2007-01-01
Abstract
Absence of Gradients and Nernstian Equilibrium Stripping (AGNES) is a recently suggested electroanalytical technique designed for the determination of the free concentration of heavy metals (such as Zn, Cd or Pb) which is here developed and applied to seawater samples. A key improvement for the implementation of AGNES with complex matrices is the development of a new blank, called the shifted blank (presented in this work for the first time), which can be applied to the same sample where the measurement is intended. The careful selection of the required parameters for the determination of the free Zn concentration (or activity) at the nanomolar level is described in detail. The methodology has been validated with a synthetic solution containing Zn and nitrilotriacetic acid (NTA) and then applied, as a first case, to two coastal seawater samples taken close to Barcelona and Tarragona (Catalonia, North-Eastern Spain) finding values in the range of 1–3 nM, representing around 25% of total Zn. This technique can, in the near future, be crucial in helping to elucidate the role of the free zinc(II) concentration in natural waters.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.