Abstract Although ergogenic effects and health benefits have been reported for creatine used as nutritional supplement, to date little is known about the mechanism of creatine absorption in the small intestine. Thus the current study was undertaken to elucidate the mechanism of creatine intake in rat jejunum with the use of well-purified brush border membrane vesicles, isolated from jejunal enterocyte. Creatine uptake was found markedly stimulated by inwardly directed Na(+) and Cl(- )gradients, potential-sensitive, strongly reduced by the substitution of Na(+) and Cl(-) with various cations and anions and positively affected by intravesicular K(+). Moreover, creatine uptake is: 1) significantly inhibited by creatine structural analogs, 2) abolished by low concentrations of 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA), 3) saturable as a function of creatine concentration with an apparent Michaelis-Menten constant of 24.08 +/- 0.80 muM and a maximal velocity of 391.30 +/- 6.19 pmoles mg protein(-1) 30 s(-1). The transport is electrogenic since at least two Na(+) and one Cl(-) are required to transport one creatine molecule. Western blot analysis showed the same amount of creatine transport protein in the jejunal apical membrane when compared to ileum. Thus, these data demonstrate the existence of a Na(+)- and Cl(-)-dependent, membrane potential-sensitive, electrogenic carrier-mediated mechanism for creatine absorption in rat jejunal apical membrane vesicles, which is biochemically and pharmacologically similar to those observed in other tissues. However, in other cell types the stimulatory effect of intravesicular K(+) was never detected.

A Creatine Transporter Is Operative at the Brush Border Level of the Rat Jejunal Enterocyte

GASTALDI, GIULIA;
2004-01-01

Abstract

Abstract Although ergogenic effects and health benefits have been reported for creatine used as nutritional supplement, to date little is known about the mechanism of creatine absorption in the small intestine. Thus the current study was undertaken to elucidate the mechanism of creatine intake in rat jejunum with the use of well-purified brush border membrane vesicles, isolated from jejunal enterocyte. Creatine uptake was found markedly stimulated by inwardly directed Na(+) and Cl(- )gradients, potential-sensitive, strongly reduced by the substitution of Na(+) and Cl(-) with various cations and anions and positively affected by intravesicular K(+). Moreover, creatine uptake is: 1) significantly inhibited by creatine structural analogs, 2) abolished by low concentrations of 2-aminoethyl methanethiosulfonate hydrobromide (MTSEA), 3) saturable as a function of creatine concentration with an apparent Michaelis-Menten constant of 24.08 +/- 0.80 muM and a maximal velocity of 391.30 +/- 6.19 pmoles mg protein(-1) 30 s(-1). The transport is electrogenic since at least two Na(+) and one Cl(-) are required to transport one creatine molecule. Western blot analysis showed the same amount of creatine transport protein in the jejunal apical membrane when compared to ileum. Thus, these data demonstrate the existence of a Na(+)- and Cl(-)-dependent, membrane potential-sensitive, electrogenic carrier-mediated mechanism for creatine absorption in rat jejunal apical membrane vesicles, which is biochemically and pharmacologically similar to those observed in other tissues. However, in other cell types the stimulatory effect of intravesicular K(+) was never detected.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/110010
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 291
  • ???jsp.display-item.citation.isi??? 16
social impact