Although general anesthetics are thought to modify critical neuronal functions, their impact on neuronal communication has been poorly examined. We have investigated the effect induced by desflurane, a clinically used general anesthetic, on information transfer at the synapse between mossy fibers and granule cells of cerebellum, where this analysis can be carried out extensively. Mutual information values were assessed by measuring the variability of postsynaptic output in relationship to the variability of a given set of presynaptic inputs. Desflurane synchronized granule cell firing and reduced mutual information in response to physiologically relevant mossy fibers patterns. The decrease in spike variability was due to an increased postsynaptic membrane excitability, which made granule cells more prone to elicit action potentials, and to a strengthened synaptic inhibition, which markedly hampered membrane depolarization. These concomitant actions on granule cells firing indicate that desflurane re-shapes the transfer of information between neurons by providing a less informative neurotransmission rather than completely silencing neuronal activity.

The effect of desflurane on neuronal communication at a central synapse

GANDOLFI, DANIELA;D'ANGELO, EGIDIO UGO;
2015-01-01

Abstract

Although general anesthetics are thought to modify critical neuronal functions, their impact on neuronal communication has been poorly examined. We have investigated the effect induced by desflurane, a clinically used general anesthetic, on information transfer at the synapse between mossy fibers and granule cells of cerebellum, where this analysis can be carried out extensively. Mutual information values were assessed by measuring the variability of postsynaptic output in relationship to the variability of a given set of presynaptic inputs. Desflurane synchronized granule cell firing and reduced mutual information in response to physiologically relevant mossy fibers patterns. The decrease in spike variability was due to an increased postsynaptic membrane excitability, which made granule cells more prone to elicit action potentials, and to a strengthened synaptic inhibition, which markedly hampered membrane depolarization. These concomitant actions on granule cells firing indicate that desflurane re-shapes the transfer of information between neurons by providing a less informative neurotransmission rather than completely silencing neuronal activity.
2015
Physiology considers resources that study the regulation of biological functions at the level of the whole organism. This includes research from biochemical, cell biological and whole system studies of human and animal physiology. Comparative physiology, biological rhythms, and physiological measurement are also included. Resources emphasizing cellular regulation, or the physiology of specific organs are excluded and are covered in the Cell & Developmental Biology and Medical Research: Organs & Systems categories.
Esperti anonimi
Inglese
Internazionale
STAMPA
10
4
e0123534
18
http://www-5.unipv.it/dangelo/?page_id=3971
no
8
info:eu-repo/semantics/article
262
Mapelli, Jonathan; Gandolfi, Daniela; Giuliani, Enrico; Prencipe, Francesco P; Pellati, Federica; Barbieri, Alberto; D'Angelo, EGIDIO UGO; Bigiani, Al...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1102216
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 15
social impact