We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.
Remote Sensing Image Classification Exploiting Multiple Kernel Learning
CUSANO, CLAUDIO;
2015-01-01
Abstract
We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1410.5358.pdf
accesso aperto
Descrizione: Articolo principale (versione Arxiv)
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
355.03 kB
Formato
Adobe PDF
|
355.03 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.