We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.

Remote Sensing Image Classification Exploiting Multiple Kernel Learning

CUSANO, CLAUDIO;
2015-01-01

Abstract

We propose a strategy for land use classification, which exploits multiple kernel learning (MKL) to automatically determine a suitable combination of a set of features without requiring any heuristic knowledge about the classification task. We present a novel procedure that allows MKL to achieve good performance in the case of small training sets. Experimental results on publicly available data sets demonstrate the feasibility of the proposed approach.
File in questo prodotto:
File Dimensione Formato  
1410.5358.pdf

accesso aperto

Descrizione: Articolo principale (versione Arxiv)
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 355.03 kB
Formato Adobe PDF
355.03 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1103454
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 16
social impact