The self-assembly and self-organization behavior of uracil-conjugated enantiopure (R)- or (S)-1,1′-binaphthyl-2,2′-diol (BINOL) and a hydrophobic oligo(p-phenylene ethynylene) (OPE) chromophore exposing 2,6-di(acetylamino)-pyridine termini are reported. Systematic spectroscopic (UV-vis, CD, fluorescence, NMR, and SAXS) and microscopic studies (TEM and AFM) showed that BINOL and OPE compounds undergo triple H-bonding recognition, generating different organic nanostructures in solution. Depending on the solvophobic properties of the liquid media (toluene, CHCl3, CHCl3/CHX, and CHX/THF), spherical, rod-like, fibrous, and helical morphologies were obtained, with the latter being the only nanostructures expressing chirality at the microscopic level. SAXS analysis combined with molecular modeling simulations showed that the helical superstructures are composed of dimeric double-cable tape-like structures that, in turn, are supercoiled at the microscale. This behavior is interpreted as a consequence of an interplay among the degree of association of the H-bonded recognition, the vapor pressure of the solvent, and the solvophobic/solvophilic character of the supramolecular adducts in the different solutions under static and dynamic conditions, namely solvent evaporation conditions at room temperature.

Solvent Molding of Organic Morphologies Made of Supramolecular Chiral Polymers

PASINI, DARIO;
2015-01-01

Abstract

The self-assembly and self-organization behavior of uracil-conjugated enantiopure (R)- or (S)-1,1′-binaphthyl-2,2′-diol (BINOL) and a hydrophobic oligo(p-phenylene ethynylene) (OPE) chromophore exposing 2,6-di(acetylamino)-pyridine termini are reported. Systematic spectroscopic (UV-vis, CD, fluorescence, NMR, and SAXS) and microscopic studies (TEM and AFM) showed that BINOL and OPE compounds undergo triple H-bonding recognition, generating different organic nanostructures in solution. Depending on the solvophobic properties of the liquid media (toluene, CHCl3, CHCl3/CHX, and CHX/THF), spherical, rod-like, fibrous, and helical morphologies were obtained, with the latter being the only nanostructures expressing chirality at the microscopic level. SAXS analysis combined with molecular modeling simulations showed that the helical superstructures are composed of dimeric double-cable tape-like structures that, in turn, are supercoiled at the microscale. This behavior is interpreted as a consequence of an interplay among the degree of association of the H-bonded recognition, the vapor pressure of the solvent, and the solvophobic/solvophilic character of the supramolecular adducts in the different solutions under static and dynamic conditions, namely solvent evaporation conditions at room temperature.
File in questo prodotto:
File Dimensione Formato  
Body Text - Revised Version.pdf

accesso aperto

Descrizione: Documento in Pre-Print
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 3.89 MB
Formato Adobe PDF
3.89 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1104327
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 46
social impact