Acoustophoresis is a widely reported and used technique for microparticle manipulation and separation. In the study described here, acustophoresis is employed to prefocus the flow (i.e., focusing occurring upstream of the analysis region) in a microfluidic chip intended for optical trapping and stretching. The whole microchip is made of silica with optical waveguides integrated by femtosecond laser writing. The acoustic force is produced by driving an external piezoelectric ceramic attached underneath the microchip at the chip resonance frequency. Thanks to an efficient excitation of acoustic waves in both water and glass, acoustophoretic focusing is observed along the channel length (>40 mm) and it is successfully demonstrated both with polystyrene beads, swollen red blood cell, and cells from mouse fibroblast cellular lines (L929). Moreover, by comparing results of cell stretching measurements, we demonstrate that acoustic waves do not alter the optical deformability of the cells and that the acoustic prefocusing results in a considerable enhancement of throughput in optical stretching experiments.

All-silica microfluidic optical-stretcher with acoustophoretic prefocusing

NAVA, GIOVANNI;BRAGHERI, FRANCESCA;YANG, TIE;MINZIONI, PAOLO;CRISTIANI, ILARIA;
2015-01-01

Abstract

Acoustophoresis is a widely reported and used technique for microparticle manipulation and separation. In the study described here, acustophoresis is employed to prefocus the flow (i.e., focusing occurring upstream of the analysis region) in a microfluidic chip intended for optical trapping and stretching. The whole microchip is made of silica with optical waveguides integrated by femtosecond laser writing. The acoustic force is produced by driving an external piezoelectric ceramic attached underneath the microchip at the chip resonance frequency. Thanks to an efficient excitation of acoustic waves in both water and glass, acoustophoretic focusing is observed along the channel length (>40 mm) and it is successfully demonstrated both with polystyrene beads, swollen red blood cell, and cells from mouse fibroblast cellular lines (L929). Moreover, by comparing results of cell stretching measurements, we demonstrate that acoustic waves do not alter the optical deformability of the cells and that the acoustic prefocusing results in a considerable enhancement of throughput in optical stretching experiments.
File in questo prodotto:
File Dimensione Formato  
Acoustic_Focusing.pdf

accesso solo dalla rete interna

Descrizione: articolo
Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 802.67 kB
Formato Adobe PDF
802.67 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1104588
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 33
social impact