Species in the mushroom genus Lepiota can cause fatal mushroom poisonings due to their content of amatoxins such as α-amanitin. Previous studies of the toxin composition of poisonous Lepiota species relied on analytical methods of low sensitivity or resolution. Using liquid chromatography coupled to UV absorbance and mass spectrometry, we analyzed the spectrum of peptide toxins present in six Italian species of Lepiota, including multiple samples of three of them collected in different locations. Field taxonomic identifications were confirmed by sequencing of the internal transcribed spacer (ITS) regions. For comparison, we also analyzed specimens of Amanita phalloides from Italy and California, a specimen of A. virosa from Italy, and a laboratory-grown sample of Galerina marginata. α-Amanitin, β-amanitin, amanin, and amaninamide were detected in all samples of L. brunneoincarnata, and α-amanitin and γ-amanitin were detected in all samples of L. josserandii. Phallotoxins were not detected in either species. No amatoxins or phallotoxins were detected in L. clypeolaria, L. cristata, L. echinacea, or L. magnispora. The Italian and California isolates of A. phalloides had similar profiles of amatoxins and phallotoxins, although the California isolate contained more β-amanitin relative to α-amanitin. Amaninamide was detected only in A. virosa.

Profiling of amatoxins and phallotoxins in the genus Lepiota by liquid chromatography combined with UV absorbance and mass spectrometry

SASSERA, DAVIDE;
2014-01-01

Abstract

Species in the mushroom genus Lepiota can cause fatal mushroom poisonings due to their content of amatoxins such as α-amanitin. Previous studies of the toxin composition of poisonous Lepiota species relied on analytical methods of low sensitivity or resolution. Using liquid chromatography coupled to UV absorbance and mass spectrometry, we analyzed the spectrum of peptide toxins present in six Italian species of Lepiota, including multiple samples of three of them collected in different locations. Field taxonomic identifications were confirmed by sequencing of the internal transcribed spacer (ITS) regions. For comparison, we also analyzed specimens of Amanita phalloides from Italy and California, a specimen of A. virosa from Italy, and a laboratory-grown sample of Galerina marginata. α-Amanitin, β-amanitin, amanin, and amaninamide were detected in all samples of L. brunneoincarnata, and α-amanitin and γ-amanitin were detected in all samples of L. josserandii. Phallotoxins were not detected in either species. No amatoxins or phallotoxins were detected in L. clypeolaria, L. cristata, L. echinacea, or L. magnispora. The Italian and California isolates of A. phalloides had similar profiles of amatoxins and phallotoxins, although the California isolate contained more β-amanitin relative to α-amanitin. Amaninamide was detected only in A. virosa.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1105805
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 54
  • ???jsp.display-item.citation.isi??? 50
social impact