Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology.

Understanding the Role of the Josephin Domain in the PolyUb Binding and Cleavage Properties of Ataxin-3

PASTORE, ANNALISA;
2010-01-01

Abstract

Ataxin-3, the disease protein in the neurodegenerative disorder Spinocerebellar Ataxia Type 3 or Machado Joseph disease, is a cysteine protease implicated in the ubiquitin proteasome pathway. It contains multiple ubiquitin binding sites through which it anchors polyubiquitin chains of different linkages that are then cleaved by the N-terminal catalytic (Josephin) domain. The properties of the ubiquitin interacting motifs (UIMs) in the C-terminus of ataxin-3 are well established. Very little is known, however, about how two recently identified ubiquitin-binding sites in the Josephin domain contribute to ubiquitin chain binding and cleavage. In the current study, we sought to define the specific contribution of the Josephin domain to the catalytic properties of ataxin-3 and assess how the topology and affinity of these binding sites modulate ataxin-3 activity. Using NMR we modeled the structure of diUb/Josephin complexes and showed that linkage preferences are imposed by the topology of the two binding sites. Enzymatic studies further helped us to determine a precise hierarchy between the sites. We establish that the structure of Josephin dictates specificity for K48-linked chains. Site 1, which is close to the active site, is indispensable for cleavage. Our studies open the way to understand better the cellular function of ataxin-3 and its link to pathology.
2010
Biochemistry & Biophysics focuses on the structure and chemistry of biomolecules and covers all aspects of basic biochemistry/biophysics, including molecular structure, enzyme kinetics and protein-protein interaction; this category also contains cross-disciplinary resources focused on a specific class of biological molecules, e.g., nucleic acids, steroids, magnesium, growth factors, free radicals, bio-membranes, and peptides. Excluded are resources dealing with the application of biochemical techniques to specific topics listed elsewhere in CC/LS. Resources with a strong emphasis on the integration of biochemical pathways (such as signal transduction or molecular motors) at the cellular level are placed in the Cell & Developmental Biology category.
Esperti anonimi
Inglese
Internazionale
STAMPA
5
8
7
info:eu-repo/semantics/article
262
Nicastro, Giuseppe; Todi Sokol, V.; Karaca, Ezgi; Bonvin Alexandre, M. J. J.; Paulson Henry, L.; Pastore, Annalisa; RI Bonvin Alexandre/A 5420, 2009...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1106752
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 56
social impact