Fragile X mental retardation protein (FMRP) is an RNA binding protein necessary for correct spatiotemporal control of neuronal gene expression in humans. Lack of functional FMRP causes fragile X mental retardation, which is the most common inherited neurodevelopmental disorder in humans. In a previous study, we described the biochemical and biophysical aggregation properties of constructs spanning the conserved region of FMRP and of two other human fragile X related (FXR) proteins, FXR1P and FXR2P. Here, we show that the same regions have an intrinsic tendency to aggregate and spontaneously misfold towards β-rich structures, also under non-destabilizing conditions. These findings pave the way to future studies of the mechanism of formation of FXR-containing ribonucleoprotein granules and suggest a possible link with the as yet poorly understood FXR proteins' associated pathologies.
On the aggregation properties of FMRP - a link with the FXTAS syndrome?
PASTORE, ANNALISA
2011-01-01
Abstract
Fragile X mental retardation protein (FMRP) is an RNA binding protein necessary for correct spatiotemporal control of neuronal gene expression in humans. Lack of functional FMRP causes fragile X mental retardation, which is the most common inherited neurodevelopmental disorder in humans. In a previous study, we described the biochemical and biophysical aggregation properties of constructs spanning the conserved region of FMRP and of two other human fragile X related (FXR) proteins, FXR1P and FXR2P. Here, we show that the same regions have an intrinsic tendency to aggregate and spontaneously misfold towards β-rich structures, also under non-destabilizing conditions. These findings pave the way to future studies of the mechanism of formation of FXR-containing ribonucleoprotein granules and suggest a possible link with the as yet poorly understood FXR proteins' associated pathologies.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.