Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip, but the devices demonstrated so far require millimeter lengths and pump powers of the order of hundreds of milliwatts to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been proven in these devices. Here we report the first demonstration, to the best of our knowledge, of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell’s inequal- itybymorethansevenstandarddeviationswithaninternalpairgenerationexceeding107 Hz.Thesourceis integrated on a silicon chip, operates at milliwatt and submilliwatt pump power, emits in the telecom band, and outputs into a photonic waveguide. These are all essential features of an entangled state emitter for a quantum photonic network

Micrometer-scale integrated silicon source of time-energy entangled photons

GRASSANI, DAVIDE;AZZINI, STEFANO;LISCIDINI, MARCO;GALLI, MATTEO;SIPE, JOHN EDWARD;BAJONI, DANIELE
2015-01-01

Abstract

Entanglement is a fundamental resource in quantum information processing. Several studies have explored the integration of sources of entangled states on a silicon chip, but the devices demonstrated so far require millimeter lengths and pump powers of the order of hundreds of milliwatts to produce an appreciable photon flux, hindering their scalability and dense integration. Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been proven in these devices. Here we report the first demonstration, to the best of our knowledge, of a microring resonator capable of emitting time-energy entangled photons. We use a Franson experiment to show a violation of Bell’s inequal- itybymorethansevenstandarddeviationswithaninternalpairgenerationexceeding107 Hz.Thesourceis integrated on a silicon chip, operates at milliwatt and submilliwatt pump power, emits in the telecom band, and outputs into a photonic waveguide. These are all essential features of an entangled state emitter for a quantum photonic network
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11571/1107597
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 235
  • ???jsp.display-item.citation.isi??? 200
social impact